Economic Principles in Cell Biology

Vienna, July 23-26, 2025

Economy of organ form and function

Frédérique Noël

Organ development

Goals

- ► Optimize its form under constraints
- ► Fulfill its function in the most optimized manner

Organ development

Goals

- Optimize its form under constraints
- ► Fulfill its function in the most optimized manner

Mathematical framework

- Cost function \mathcal{E} dependent on one or several variables $x \in \mathbb{R}^n$
- One or several equality constraints: c(x) = 0, where $c: \mathbb{R}^n \to \mathbb{R}^m$
- Find an optimal value x^* that minimizes the function $\mathcal{E}(x)$ while $c(x^*) = 0$

Organ form

Built with reproducible size and shape in each species.

Brain

Improved neural processing power

- ► Large cortical surface
- ► Small cranium

Organ function

Fulfilled as best as possible while minimizing cost variables (energy)

Heart

Different blood pressure in both ventricules

- ► Low pressure to irrigate the lung
- ► High pressure to irrigate the body

Cardiology Associates of Michigan

Focus on the lung

Geometry

- Complex system: exchange surface between ambient air and blood
- Divided into two parts: bronchial tree and the acini

Principal function

- ▶ Brings oxygen from the ambient air to the blood
- Removes carbon dioxide from the blood

Made possible thanks to the ventilation

Open MD

Table of contents

Human's lung shape

Human's lung function

Mammals' lung function

Conclusion

Human's lung shape

Lung morphometry

Problematics

- ightharpoonup Role: connects O_2 and CO_2 in atmosphere with inner body
- ► Medium: gas transfer by diffusion through alveolar membrane
- ► Major constraints:
 - Diffusion : a surface process
 - Limited thoracic volume

Lung morphometry

Problematics

- \triangleright Role: connects O_2 and CO_2 in atmosphere with inner body
- ► Medium: gas transfer by diffusion through alveolar membrane
- ► Major constraints:
 - Diffusion: a surface process
 - Limited thoracic volume

Solution

Optimize (maximize) the surface/volume ratio

Getty Images & Mammoth Memory

Lung morphometry

Characteristics for a proper functionning of the lung

- Space-filling
- Self-avoiding

Lung's cast made by E.R. Weibel

Lung morphology

Bronchial tree

- Cascade of bifurcating airways with cylindrical shapes
- Around 17 generations
- Size of the airways decreases at each bifurcation

Acini

- ightharpoonup Exchange surface with blood $(70-100\,\mathrm{m}^2)$
- ► Alveoli: bubble-like structure
- Around 6 generations

Human's lung function

Lung's function

Objectives

- Brings O_2 to the blood
- Removes CO_2 from the blood

Ventilation parameters

- ightharpoonup Rate of breathing (f_b)
- Depth of breathing (V_T)

Beals et al., 2000

Natural selection of ventilation

Stereotyped ventilation

 $ightharpoonup f_b$: 12 breaths per minute

 $ightharpoonup V_T$: 500 mL

Normal Breathing Pattern in Time

Natural selection of ventilation

Stereotyped ventilation

 $ightharpoonup f_b$: 12 breaths per minute

 $ightharpoonup V_T$: 500 mL

10 s

5 s

Hypothesis

Minimizing the cost of breathing while satisfying the body needs in oxygen

Time, seconds

15 swww.NormalBreathing.com

Oxygen transport in the lung

Diffusion

- Passive process
- Balance the concentration
- ► Too long for air to pass through the lung

Convection

- Dynamic process
- Performed thanks to a set of muscles (ex. diaphragm)
- ► Two phases: inspiration and expiration

Modeling oxygen transport

Convection-diffusion-reaction equation in each airway

$$\frac{\partial P}{\partial t} - D \frac{\partial^2 P}{\partial x^2} + u(t) \frac{\partial P}{\partial x} = \beta \left(P_{\mathsf{blood}} - P \right)$$

Link all generations by assuming:

- Continuity between generations
- Conservation of the quantity of oxygen:

$$u_i S_i = 2u_{i+1} S_{i+1}$$

Boundary conditions:

- Partial pressure in the ambient air at the entrance of the tree
- Diffusive flow with the blood at the tree terminals

Modeling oxygen in the blood

Oxygen in the blood

- ► Linked to hemoglobin
- Dissolved in plasma

FreePik

Modeling oxygen in the blood

Oxygen in the blood

- ► Linked to hemoglobin
- Dissolved in plasma

FreePik

Modeling the exchanges with the blood

$$\underbrace{\alpha(P-P_{\rm blood})}_{\text{flow through the membrane}} = \underbrace{4Z_0\left(S_{O_2}(P_{\rm blood}) - S_{O_2}(P_{\rm vein})\right)v_s + \sigma v_s\left(P_{\rm blood} - P_{\rm vein}\right)}_{\text{flow transported by blood}}$$

Input of the model

- \triangleright Periodic ventilation dependant on V_T and f_b
- ► Volume of the lung:

$$V(t) = V_{FRC} + \frac{V_T}{2} (1 - \cos(2\pi f_b t))$$

Air velocity and airflow are deduced from the volume

Outputs of the model

O_2 flow to blood

- ightharpoonup Physiological value: $\dot{V}_{O_2}=250~{
 m mL\cdot min^{-1}}$
- ▶ Predicted value: $\dot{V}_{O_2} = 230 \text{ mL} \cdot \text{min}^{-1}$

CO_2 flow to blood

- ▶ Physiological value: $\dot{V}_{CO_2} = 200 \text{ mL} \cdot \text{min}^{-1}$
- ▶ Predicted value: $\dot{V}_{CO_2} = 180 \text{ mL} \cdot \text{min}^{-1}$

Outputs of the model

O_2 flow to blood

- ▶ Physiological value: $\dot{V}_{O_2} = 250 \text{ mL} \cdot \text{min}^{-1}$
- ▶ Predicted value: $\dot{V}_{O_2} = 230 \text{ mL} \cdot \text{min}^{-1}$

CO_2 flow to blood

- ▶ Physiological value: $\dot{V}_{CO_2} = 200 \text{ mL} \cdot \text{min}^{-1}$
- ▶ Predicted value: $\dot{V}_{CO_2} = 180 \text{ mL} \cdot \text{min}^{-1}$

Model validated

Cost of breathing

Hypothesis

Minimizing the cost of breathing while satisfying the body needs in oxygen

Cost of breathing

Hypothesis

Minimizing the cost of breathing while satisfying the body needs in oxygen

Action of the muscles on the lung:

- Deforms the tissues
- Displaces the air along the bronchial tree

$$\underbrace{\mathcal{P}_{\mathrm{m}}}_{}\simeq \underbrace{\mathcal{P}_{\mathrm{e}}}_{}+\underbrace{\mathcal{P}_{\mathrm{a}}}_{}$$
 muscle power elastic power air viscous dissipation

Power spent during ventilation

Viscous dissipation of air

- ► Characterized by the lung hydrodynamic resistance
 - ightharpoonup Connects the airflow \mathcal{F} to the air pressure p: $p = \mathcal{F}\mathcal{R}$
- Power dissipated

$$\mathcal{P}_{a} = \mathcal{R}\mathcal{F}^{2} = \frac{1}{4}\mathcal{R}(\pi f_{b}V_{T})^{2}$$

Elastic power

- ► Characterized by the compliance of the lung
 - Relates the force per unit of surface applied by the muscles to the volume change of the lung
- Elastic power

$$\mathcal{P}_{e} = \frac{V_T^2 f_b}{2\mathcal{C}}$$

Optimal ventilation for humans

$$\min_{V_T,f_b} \, \mathcal{P}_{\mathrm{e}}(V_T,f_b) + \mathcal{P}_{\mathrm{a}}(V_T,f_b) \quad ext{s.t.} \; \dot{V}_{O_2}(V_T,f_b) = \dot{V}_{O_2}^{\mathrm{obs}}$$

Optimal ventilation for humans

$$\min_{V_T,f_b} \, \mathcal{P}_{\mathrm{e}}(V_T,f_b) + \mathcal{P}_{\mathrm{a}}(V_T,f_b) \quad \text{s.t. } \dot{V}_{O_2}(V_T,f_b) = \dot{V}_{O_2}^{\mathrm{obs}}$$

Mammals' lung function

Extension to mammals

Question

Can our model be extended to all mammals?

Extension to mammals

Question

Can our model be extended to all mammals?

Why?

- Share morphological properties
- Share functional properties

Sato et al., 2015

Concept of allometry

Shared properties dependent on the mass M of the mammal

$$Y = aM^b$$

Adaptation of the model of the lung

Shared characteristics

- ► Tree-like structure with bifurcating branches
- Decomposition into two parts: bronchial tree and acini

Morphological parameters

- ▶ Tracheal radius ($\propto M^{3/8}$) and length ($\propto M^{1/4}$)
- ▶ Radius ($\propto M^{1/12}$) and length ($\propto M^{-1/24}$) of alveolar ducts
- ightharpoonup Exchange surface ($\propto M^{3/4}$)

Adaptation of the oxygen transport model

Oxygen transport

- No modification
- ► Convection-diffusion-reaction equation

Constraint on the oxygen flow

- ▶ Basal Metabolic Rate (BMR): $\dot{V}_{O_2} \propto M^{0.75}$
- Field Metabolic Rate (FMR): $\dot{V}_{O_2} \propto M^{0.64}$
- Maximal Metabolic Rate (MMR): $\dot{V}_{O_2} \propto M^{0.875}$

Optimal ventilation for mammals

$$\min_{V_T,f_b} \mathcal{P}_{\mathrm{e}}(V_T,f_b) + \mathcal{P}_{\mathrm{a}}(V_T,f_b) \quad ext{s.t. } \dot{V}_{O_2}(V_T,f_b) = \dot{V}_{O_2}^{\mathrm{obs}}$$

Optimal ventilation for mammals

$$\min_{V_T,f_b} \, \mathcal{P}_{\mathrm{e}}(V_T,f_b) + \mathcal{P}_{\mathrm{a}}(V_T,f_b) \quad ext{s.t.} \; \dot{V}_{O_2}(V_T,f_b) = \dot{V}_{O_2}^{\mathrm{obs}}$$

	f_b (pred)	f_b (obs)
BMR	-0.27	-0.26
FMR	-0.31	N.D
MMR	-0.17	-0.14

Optimal ventilation for mammals

$$\min_{V_T,f_b} \mathcal{P}_{\mathrm{e}}(V_T,f_b) + \mathcal{P}_{\mathrm{a}}(V_T,f_b) \quad ext{s.t. } \dot{V}_{O_2}(V_T,f_b) = \dot{V}_{O_2}^{\mathrm{obs}}$$

	V_T (pred)	V_T (obs)
BMR	1.04	1.04
FMR	0.97	N.D
MMR	1.01	N.D

Conclusion

Conclusion

- Principles of economy applied on larger living structures
- Constraints guide the development and the functioning of mammalian lung
 - form: optimize the surface/volume ratio
 - function: minimize the cost of breathing while satisfying the body needs in oxygen
- Allometric laws allow an understanding of the mechanics of breathing