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The Problem

Diversity of metabolic flux distributions




The simplest math

=2 Nty (®

» s, concentration of metabolite i € [1,..M]
» v, velocity of reaction j € [1,..N]

» N,; Stoichiometric Matrix

» N>M
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Stationarity

dSi -
J
Constraint modelling
Nv =0
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Stationarity

Constraint modelling

Constraint modelling
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Graphical representation
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Additional Assumption

» Maximize: F = Zj hjv;
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Additional Assumption

» Maximize: F = Zj hjv;

Flux Balance Analysis = Linear Programming

N§ =b
maxy B
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Graphical representation
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Experimental Support
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Figure 1 Growth of £. coliK-12 on malate. a, The malate-oxygen phenotype phase plane
(PPP) Phase 1 is characterized by metabolic futile cycles, whereas phase 2 is
characterized by acetate overflow metabolism. The line of optimality (LO, in red) separates
phases 1 and 2 (ref. 21 Data points (open circles) represent malate concentrations
ranging from 0.25-3 g1~"; and temperatures ranging from 29-37 °C. The two data
points in blue represent the starting point (day 0) and endpoint (day 30) of adaptive
evolution respectively, at a malate concentration of 21~ and a temperature of 37°C.
These data points represent a span of 500 generations. b, Three-dimensional
representation of growth rates. The xand y axes represent the same variables asin a. The
Zzaxis represents the cellular growth rate (h™"). OUR, oxygen uptake rate; MUR, malate
uptake rate.

J.S. Edwards, R.U. Ibarra and B.O. Palsson, In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data,

Nature Biotechnology 2001, 19, 125-130
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But Life is more complex than that
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Figure 3. (a—c) Snapshots at different time points (at £, = 9 min, t; = 151 min, and t, = 264 min after the cell culture is settled, all frames are
reported in the Supporting Information Figures $1-55) of the same square visual field (length L = 500 ym) during a typical experiment.
Cells are represented schematically as disks of diameter 10 um whose color intensity scales with the flux (side bar, blue vs red for importing
vs exporting flux). Probes not shown. (d,e) Quality of the reconstructed pH gradient profile. In (d), the error between the pH calculated
from the inferred fluxes and the experimentally observed pH is plotted against the latter for each probe (at time f, = 264 min, all frames are
reported in the Supporting Information Figures S6-S10). In (e), the time trace of the pH measured by a given probe is reported alongside
the reconstructed trend at that spatial point. Shaded areas represent the experimental error on the pH at the probes. (f) Time trends of the
bulk [H°] i i dots and continuous line, left  scale) and inferred bulk acidic efflux (dashed line,
righty scale). (g) Time trend of th i ‘measured bulk | in a biological replicate. (h) Single-cell flux intensity
(in mmol/gdw/h) as a function of time (in min, sampling every 10 min) of the cells forming the dipole motif highlighted in the upper right
corner of the frames in (a—c). (i) Single-cell experimental flux distribution (in mmol/gdw/h, (dots) and its Gaussian approximation (lines)
in linear-logarithmic scale. The histogram is built from all single-cell flux values (100200 cells per frame) and time frames (36 frames
resulting from a 6 h experiment sampled every 10 min) tracked in one visual field of one experiment.

ers, ACS Nano 2023, 17, 4,

V. Onesto el al, Probing Single-Cell Fermentation Fluxes and Exchange Networks pH-Sensing Hybrid Nanofi
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But Life is more complex than that
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A. Traven et al, Transcriptional profiling of a yeast colony provides new insight into the heterogeneity of multicellular fungal communities. PLoS One.

2012;7(9):e46243.
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But Life is more complex than that

REVIEWS

[Physiological heterogeneity in biofilms

Philip S. Stewart*" and Michael J. Franklin*$
Abstract| Biofilms contain bacterial cells that are in a wide range of physiological states,
Within a biofilm population, cells with diverse genotypes and phenotypes that express
distinct thways, stress specific bological activities are
juxtaposed. The that contribute to thi d

heterageneity include microscale chemica gadients, adaptatio tolocal environmental
that occurs through

ndition: and
mutation and selection. Here we discuss the processes that generate chemical gradients in
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The gence of bolic h ity and diverse growth
responses in isogenic bacterial cells

Emrah Simsek' - Minsu Kim'?

Available online at www.sciencedireet com Current Opinion in

ScienceDirect Microbiology
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Metabolic heterogeneity in clonal microbial populations ®
otk

Vakil Takhaveev and Matthias Heinemann

sc of subpopulations having distincrly diffe
ics of metabol

In the past decades, numerous instances of phenotypic

extreme
diversity were observed in clonal microbial populations, ne activi




Opening a mathematical parethesis

We must define a probability P(v)

How to choose?
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Maximum Entropy Principle

S = —maxp,, [ P(v)log P(v)
Among all the probability densities compatible with the data (or knowledge), the one
having the largest value of S is the one that best represents our knowledge of the

system
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Derivation

maxp —maxp >, P,logP,
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Derivation

maxp —maxp >, P,logP,

subject to: > P, =1
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Derivation

£==Y P,logP,—a(d P(n)—1)
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Derivation
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Derivation

as 1
dT——Zloandnm—ZPnP O O‘Z‘Sn,m_o
_dif =—logP, —1—a=0

m
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Derivation

as 1
dT——Zloandnm—ZPnP O O‘Z‘Sn,m_o
_dif =—logP, —1—a=0

m

Diversity of metabolic flux distributions 13/20 ;



A more general and interesting case

L==% P,logP,
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A more general and interesting case

L==% P,logP,

subject to: >° P, =1 and 2o, fnPn =< f>
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Derivation

ZP log P, —ozZP—l ann <f>)
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Derivation

ZP log P, —ozZP—l ann <f>)

Pn ~ eﬂfn
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Relationship between fitness and heterogeneity in exponentially growing
microbial populations Biophysical Journal, 121, 1919-1930 (2022)

Datasets:

» Nanchen, A., A. Schicker, and U. Sauer. 2006. Nonlinear dependency of intracellular
fluxes on growth rate in miniaturized continuous cultures of Escherichia coli. Appl.
Environ. Microbiol. 72:1164-1172.

» Schuetz, R., N. Zamboni, ., U. Sauer. 2012. Multidimensional otimality of microbial
metabolism. Science. 336:601-604

P> 33 experiments, growth rate, glucose uptake, more than 20 values of fluxes
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Relationship between fitness and heterogeneity in exponentially growing
microbial populations Biophysical Journal, 121, 1919-1930 (2022)
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Relationship between fitness and heterogeneity in exponentially growing
microbial populations Biophysical Journal, 121, 1919-1930 (2022)
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Relationship between fitness and heterogeneity in exponentially growing

microbial populations Biophysical Journal, 121, 1919-1930 (2022)

’I‘riﬁarboxylic Acid Cycle (TCA)

Var(”x)is?

Inferred

8 = Opt L]
6" M %
4 F) o & ]

L . =
2 s "
0 , - ]
2.

05
Growth rate [h~1]

gi)snmer—Doudomﬂ Pathway

3. © Inferred n
.= Opt
-.I ‘-
L]
1 I . Wy
L1
05 _m m
ol e @ 0cle Gy

05
Growth rate [h~!]



Inference of metabolic fluxes in nutrient-limited continuous cultures: A
Maximum Entropy approach with the minimum information, iscence 25, 105450 (2022)

D
Ci X, s;
reservoir effluent
X , S

culture vessel
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Inference of metabolic fluxes in nutrient-limited continuous cultures: A
Maximum Entropy approach with the minimum information, iscence 25, 105450 (2022)

dX
T (n—D)X
p= p(u,r) o=o0(s)
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Inference of metabolic fluxes in nutrient-limited continuous cultures: A
Maximum Entropy approach with the minimum information, iscence 25, 105450 (2022)

dX
_— = — X:
o = w—D)X=0
p(u, ) =D
C,L‘D

Diversity of metabolic flux distributions 17/20 ;



Inference of metabolic fluxes in nutrient-limited continuous cultures: A

Maximum Entropy approach with the minimum information, iscence 25, 105450 (2022)
Datasets:
» Kayser, A., Weber, J., Hecht, V., and Rinas, U. (2005). Metabolic flux analysis of

Escherichia coli in glucose-limited continuous culture. |. Growth-rate dependent metabolic
efficiency at steady state. Microbiology 151, 693-706.

» Nanchen, A., A. Schicker, and U. Sauer. 2006. Nonlinear dependency of intracellular
fluxes on growth rate in miniaturized continuous cultures of Escherichia coli. Appl.
Environ. Microbiol. 72:1164-1172.

» Folsom, J.P., Parker, A.E., and Carlson, R.P. (2014). Physiological and proteomic analysis
of Escherichia-coli iron-limited chemostat growth. J. Bacteriol. 196, 2748-2761.
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Inference of metabolic fluxes in nutrient-limited continuous cultures: A
Maximum Entropy approach with the minimum information, iscence 25, 105450 (2022)

p(v) ~ B tBgug

<:u>eocp Z/dvﬂeﬁlu+ﬁgu9

c
(ug>exp < ﬁ/dvugeﬁw*ﬁg“g
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Inference of metabolic fluxes in nutrient-limited continuous cultures: A
Maximum Entropy approach with the minimum information, iscence 25, 105450 (2022)
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Inference of metabolic fluxes in nutrient-limited continuous cultures: A
Maximum Entropy approach with the minimum information, iscence 25, 105450 (2022)
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Phenotype-specific estimation of metabolic fluxes using gene expression
data, iScience 26, 106201 (2023)

Given a transcriptome, how unobserved mechanisms of reaction kinetics should

be systematically accounted for when inferring the fluxome?

We have the probability distribution of the transcritome P(g)
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Phenotype-specific estimation of metabolic fluxes using gene expression
data, iScience 26, 106201 (2023)

S=-=Y P(v)log P(v)
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Phenotype-specific estimation of metabolic fluxes using gene expression
data, iScience 26, 106201 (2023)

where V' = va Zji v;/9;
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Phenotype-specific estimation of metabolic fluxes using gene expression

d ata ; iScience 26, 106201

2023

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
S. cerevisiae GEM Moetal Mo etal.72 iMM904

S. cerevisiae RNA-seq transcriptomics

S. cerevisiae 13C fluxomics

©

stipitis GEM

©

stipitis RNA-seq transcriptomics

S. stipitis 13C fluxomics.

. lipolytica GEM

. lipolytica RNA-seq tran-scriptomics
. lipolytica 13C fluxomics

E. coli GEM

coli microarray transcrip-tomic

coli 13C fluxomics

subtilis GEM

subtilis microarray tran-scriptomics

subtilis 13C fluxomics.

I®w®@mm

sapiens GEM
Kidney primary tumor and solid tissue normal
FPKMs

Breast primary tumor and solid tissue normal
FPKMs

Bronchus-Lung primary tu-mor and solid tissue
normal FPKMs

Nookaew et al.””
Papini etal.”*

Liu et al

Papini etal.

Papini et al

Kerkhoven et al
Sabra et al.'©
Sabra et al."
Orth et al.
Gerosa etal.'”
Gerosa et al.
Ohetal.™
Nicolas et al.
Chubukov et al. '
Brunk et al.*

https://portal.gdc.cancer.gov/

https://portal.gdc.cancer.gov/

https://portal. gdc.cancer.gov/

Chemostat and batch, using glucose as car-
bon source.

Chemostat and batch, using glucose as car-
bon source

iTL88s

Chemostat and batch, using glucose as car-
bon source

Chemostat and batch, using glucose as car-
bon source

ivali

Glycerol and glucose as carbon source
Glycerol and glucose as carbon source
iJO1366

Eight different carbon sources.

Eight different carbon sources

iYO844

Eight different carbon sources.

Eight different carbon sources.

Recon3D

GDC AP fields: cases primary_site: kidney,
files.analysis.workflow_type: HTSeq - FPKM
GDC AP fields: cases.primary_site: breast,
files.analysis.workflow_type: HTSeq - FPKM
GDC API fields: cases.primary_site: bronchus
and lung, files.analysis.workflow_type: HTSeq -
FPKM
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Phenotype-specific estimation of metabolic fluxes using gene expression
data, iScience 26, 106201 (2023)
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Phenotype-specific estimation of metabolic fluxes using gene expression
data, iScience 26, 106201 (2023)
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Conclusions
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