Economic Principles in Cell Biology

Vienna, July 23-26, 2025

Optimal Cell Behavior in Time

Dafni Giannari, Hidde de Jong, Diego A. Oyarzún, Steffen Waldherr, Agustín G. Yabo

Outline of presentation

- Dynamic optimization: introduction and motivation
- Time-varying expression of enzymes in a metabolic pathway
- Teaser: time-varying resource allocation and cellular growth
- Conclusions and perspectives

Outline of presentation

- Dynamic optimization: introduction and motivation
- Time-varying expression of enzymes in a metabolic pathway
- Teaser: time-varying resource allocation and cellular growth
- Conclusions and perspectives
- Many links with previous lectures
 - Optimization of metabolic fluxes
 - The enzyme cost of metabolic fluxes
 - Principles of cell growth
 - Growth balance analysis
 - 0 ...

Bacterial adaptation

- Bacterial cells need to adapt to dynamically changing environments
 - Example: diauxic growth of *E. coli*

Bettenbrock et al. (2006), J. Biol. Chem., 281:2578-84

Regulation of bacterial adaptation

- Bacterial cells have developed complex sensory and regulatory systems to realize adaptation
- Difficult to obtain
 quantitative, mechanistic
 models for these systems
 Incompletely known mechanisms,
 unknown parameter values, ...

Kremling et al. (2015), Trends Microbiol., 23:99-109

Dynamic optimization approach

- Alternative: ignore regulatory mechanisms and assume that cells perform (dynamic) optimization
 - Limiting resources (proteins, fluxes, ...)
 - ... allocated to cellular processes (reactions)
 - ... so as to maximize some objective (biomass synthesis, adaptation time, ...)
 - ... in a changing environment (nutrients, temperature, light, ...)
 - ... over a time-interval (response time, day/night cycle, ...)
- Dynamic vs static optimization
 - Time-varying allocation of resources
 - Non-trivial features: resource buffers, anticipation of future changes, ...
- **Assumption**: bacteria have evolved to (dynamically) optimize their functioning in competitive, changing environments

Evidence for dynamic optimization

- Microorganisms are capable of anticipating changes in their environment
 - Along digestive tract, exposure of *E. coli* to lactose precedes exposure to maltose
 - Expression of maltose genes when lactose is present

Savageau (1998), Genetics, 149:1677-91

Mitchell et al. (2008), Nature, 460:220-4

But: assumption remains working hypothesis!

Dynamic optimization and optimal control

 Mathematical formulation of dynamic optimization yields optimal control problem:

such that

$$\max_{u \in U} J(x, u, t_0, t_e),$$

$$\frac{dx}{dt} = f(x(t), u(t)), \quad x(t_0) = x_0,$$

$$0 \ge c_1(x(t), u(t)),$$

$$0 \ge c_2(x(t_0), x(t_e)).$$

- Specification of optimal control problem:
 - Dynamical system with state x and dynamics f
 - Time-varying control u, over time-interval $[t_0, te]$
 - \circ Objective function J, and path constraints c_1 and time-point constraints c_2

Dynamic optimization and optimal control

Rich variety of mathematical techniques exist to (numerically)
 solve optimal control problems

Gerdts (2013), OMPC Summer school Bayreuth, link

Examples of dynamic optimization

- Dynamic optimization in two examples, increasingly larger scope:
 - Time-varying expression of enzymes in **metabolic pathways and networks**
 - Teaser: time-varying resource allocation and cellular growth

Outline of presentation

- Dynamic optimization: introduction and motivation
- Time-varying expression of enzymes in a metabolic pathway
- Teaser: time-varying resource allocation and cellular growth
- Conclusions and perspectives

- Metabolic pathway: chain of enzymatic reactions converting substrate into product
- Allocation of enzyme capacity to reactions is resource allocation problem

Enzymes are limiting (costly) resource

Klipp et al. (2002), Eur. J. Biochem., 269:5406–13 Bartl et al. (2010), BioSystems, 101:67-77 De Hijas-Liste et al. (2014), BMC Syst. Biol., 8:1

Model describing dynamics of metabolic pathway
 Mass-action kinetics

$$\frac{ds}{dt} = N \cdot v(s(t), e(t)), \quad s(t_0) = [s_{10}, 0, 0, 0]',$$

$$N = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix},$$

$$v_1(s_i, e_i) = k_i e_i s_i, \quad i = 1, \dots, 3,$$

- Assumption: pathway has evolved so as to minimize transition time, that is, time to make a (certain amount of) product.
- Dynamic optimization problem: given an objective function

$$J(e) = t_e$$

where e(t) is a time-dependent function, find

$$e_{opt} = \arg\min_{e} J(e)$$

under constraints

$$e_T \ge e_1 + e_2 + e_3,$$

 $s_4(t_e) = 0.9 \cdot s_{10}.$

What is the optimal enzyme expression pattern?

What is the optimal enzyme expression pattern?

 Temporal ordering of expression of enzymes corresponding to ordering of reactions in pathway

De Hijas-Liste et al. (2014), BMC Syst. Biol., 8:1

• Experimental evidence for temporal expression patterns of

enzymes?

Just-in-time expression of enzymes in arginine metabolism

Measurement of (normalized) promoter activities

• Temporal order corresponds to order of enzymes in

unbranched pathways

Glutamate

argA

- Generalization from pathways to networks
 - Diauxic growth on glucose and ethanol in yeast

X₁: glucose

X_{2,3}: intermediate metabolites

X₄: ethanol

v₁: upper glycolysis

v₂: lower glycolysis

v₃: ethanol production

v₄: ethanol consumption

v₅: TCA cycle

v₆: respiratory chain

v₇₋₈: cofactor recycling

Klipp et al. (2002), Eur. J. Biochem., 269:5406–13 De Hijas-Liste et al. (2014), BMC Syst. Biol., 8:1

- Generalization from pathways to networks
 - Diauxic growth on glucose and ethanol in yeast
 - Mass-action model, constraint on total enzyme concentration
 - Maximization of survival time (quiescent state)

Klipp et al. (2002), Eur. J. Biochem., 269:5406-13 De Hijas-Liste et al. (2014), BMC Syst. Biol., 8:1

- Generalization from pathways to networks
 - Diauxic growth on glucose and ethanol in yeast
 - Mass-action model, constraint on total enzyme concentration
 - Maximization of survival time (quiescent state)
 - Predicted diauxic growth: glucose → ethanol

Klipp et al. (2002), Eur. J. Biochem., 269:5406–13 De Hijas-Liste et al. (2014), BMC Syst. Biol., 8:1

Outline of presentation

- Dynamic optimization: introduction and motivation
- Time-varying expression of enzymes in a metabolic pathway
- Teaser: time-varying resource allocation and cellular growth
- Conclusions and perspectives

Time-varying resource allocation and growth

- Bacterial growth is fundamentally a resource allocation problem How does the cell distribute available resources over cellular functions?
- Resource allocation can be studied using self-replicator models of bacterial growth

S: substrate (nutrient)

P: precursor

M: metabolic machinery

R: gene expression machinery

Biomass: M + R

α: resource allocation

Molenaar et al. (2009), Mol. Syst. Biol., 5:323 Scott et al. (2014), Mol. Syst. Biol., 10:747 Giordano et al. (2016), PLoS Comput. Biol., 12:e1004802

Time-varying resource allocation and growth

- Assumption: bacteria have evolved to maximize growth, i.e., total amount of biomass
- Example questions of interest:
 - Which resource allocation strategy (choice of a) would optimize biomass in stable environment?
 - Which strategy would optimize biomass after a shift from poor to rich substrate?
 - Which strategy would optimize biomass in an environment with poor substrate with periodic pulses of rich substrate?

 See "Optimal Cell Behavior in Time" chapter for more information!

Outline of presentation

- Dynamic optimization: introduction and motivation
- Time-varying expression of enzymes in a metabolic pathway
- Teaser: time-varying resource allocation and cellular growth
- Conclusions and perspectives

Conclusions

- Pros of dynamical optimization approach
 - Avoids modeling of (unknown) regulatory mechanisms
 - Allows for specification of constraints on solutions
 - Exploits availability of numerical tools for solving optimal control problems
 - Applies both to explaining observed behavior and designing desired behavior

Conclusions

Pros of dynamical optimization approach

- Avoids modeling of (unknown) regulatory mechanisms
- Allows for specification of constraints on solutions
- Exploits availability of numerical tools for solving optimal control problems
- Applies both to explaining observed behavior and designing desired behavior

Cons of dynamical optimization approach

- Faces problems with numerical solvers: robustness, multiple solutions, ...
- Requires prior specification of plausible objective function(s): many possibilities...
- Is based on (questionable) hypothesis that observed behavior has been optimized through natural selection

Perspectives

- Multi-objective optimality (Pareto optimality): system simultaneously optimizes several objectives, leading to trade-offs
- Inverse optimality: exploits huge amounts of available data to infer rather than assume objective function(s)
- Experimental validation of model predictions

Please give us your feedback about this lecture!

