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The forest of methods
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Zoo of minimal pathways: Elementary flux vectors (EFVs)

EFV1 EFV2 = EFM1 + EFM2 r3
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P unique, but not support-minimal P respect capacity constraints
> defined rates and yields » any flux convex sums of pathways
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How many EFMs does ... have?

» E. coli's central carbon metabolism, doi:10.1186//512918-018-0607-5
» a Minimal cell, JCVI-syn3A, doi:10.7554 /cLife.36842
» a Human cell doi:10.1038/nbt. 4072
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124,341,216 ~ 10'2 (one trillion) > 102
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Functional space of a minimal cell
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Why do we do this? (Personal motivation)

> fu n d amen ta I un d € rSta n d n g Theorem 1. The flux distribution that maximizes an objective flux over the total enzyme cost in a metabolic network without
M . additional constraints is an Elementary Flux Mode.
of biological processes
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Why do we do this? (Personal motivation)

> fu n d amen ta I un d € rSta n d n g Theorem 1. The flux distribution that maximizes an objective flux over the total enzyme cost in a metabolic network without
M . additional constraints is an Elementary Flux Mode.
of biological processes

> metabolic engineering

Nomatzed ethanc secreson

> synthetic biology
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The Problem: Pilsbach, Upper Austria

© RAG (photography: RAG-Archiv)

Constraint-based modeling of microbial communities 10/44 :.



The Problem: Pilsbach, Upper Austria

© RAG (photography: RAG-Archiv)

01 Etekurolysis
02 co,-ank
03 comprossor station

04 injection well

Schematic representation
of sun storage

05 Gas reservoir 09 Etecicity grid connection
06 withdrawal well 10 control unit/ EMSR
07 orying unit

08 Gas conditioning




Underground Sun Conversion

| hydrogen (H,
(CO,) into renewabl

Using existing natural gas reservoirs
for conversion and storage of renewable energy




How can we maximize “biogas” production?

» What community compositions are feasible?

» What community composition is optimal?
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How can we maximize “biogas” production?

» What community compositions are feasible?

» What community composition is optimal?

Energetic utilization

(4B} o] / 2181 uoponpid suéipaw

dsting natural gas reserv
d storage of renewal

LR E N

Methanosarcina barkeri | [%]
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Microbial community

species 1 species j

Constraint-based modeling of microbial communities 13/44 :.




Q&A

Given
— a set of microbial species (their metabolic models),

— a medium, and
— a growth rate:

What are all feasible community compositions and metabolic interactions?
What are the minimal communities?
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Q&A

Given
— a set of microbial species (their metabolic models),

— a medium, and
— a growth rate:

What are all feasible community compositions and metabolic interactions?
What are the minimal communities?

We define:

community metabolic space (a polytope)
elementary compositions & exchange fluxes (ECXs)
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Elementary vectors in metabolic pathway analysis

» Elementary flux modes (EFMs) flux cone

Elementary flux vectors (EFVs) flux polyhedron (FBA)
» Elementary conversion modes (ECMs) exchange fluxes
» Elementary growth modes (EGMs) next-generation models

resource balance analysis (RBA)

> ECXs microbial communities
ECs, EXs
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Elementary vectors

Linear subspace S:
elementary vector (EV): e € S with minimal support

Theorem (Rockafellar 1969)

Every f € S is a finite, conformal sum of EVs:

f= Z e with sign(e) < sign(f)
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Elementary vectors

Linear subspace S:
elementary vector (EV): e € S with minimal support

Theorem (Rockafellar 1969)

Every f € S is a finite, conformal sum of EVs:

f= Ze with  sign(e) < sign(f)

Reaction directions, thermodynamics

Generalization (Miiller, Regensburger 2016)

linear subspace S — general polyhedral cone (e.g. flux cone),
polyhedron (e.g. flux polyhedron)

elementary vector: (convex-)conformally non-decomposable
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Microbial community

species 1 species j
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(Constraint-based) metabolic modeling of microbial communities

> Single species growth
» Exchange with medium

» From dynamics to steady state
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Single species growth

Mé&vto av&dvetan (Panta auxanetai) ... ‘Everything grows'
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Single species growth

Mé&vto av&dvetan (Panta auxanetai) ... ‘Everything grows'

Self-fabricating cell:

N, nxt-gen

x ... metabolites, y ... macromolecules

Constraint-based modeling of microbial communities 19/44 :.



Single species growth

Mé&vto av&dvetan (Panta auxanetai) ... ‘Everything grows'

Self-fabricating cell:

N, nxt-gen

x ... metabolites, y ... macromolecules

CBM: RBA (resource balance analysis)
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Single species growth

Dynamics of growth:

N, nxt-gen

CBM: FBA (flux balance analysis) and EFM analysis
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Single species growth

Dynamics of growth:

N, nxt-gen

CBM: FBA (flux balance analysis) and EFM analysis
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Single species growth

Dynamics of growth:

N, nxt-gen

CBM: FBA (flux balance analysis) and EFM analysis

$=0 - w=py - Sw=pSy — £=Nv@) —u(Thound+7)
Thound Ttotal
v
(:j_:g:O — OZN'U_Mxtotal — 0:(N _mtotalmgd)/(umol>
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Single species growth

v
Osz mol | »
’ (Mg')

[ <v<u

Constraint-based modeling of microbial communities 21/44 :.



Single species growth

v
Osz mo 3
’ (Mg')

[<v<u

Multiple species: i =1, ..., #species

my .
ﬂyizﬁ with m=Zmi
1
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Single species growth
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Single species growth

v
Osz mo 3
’ (Mg')

[ <v<u

Multiple species: i =1, ..., #species

my .
%-:EZ with m=Zmi = 0<% <1 and Z’ﬁzl
1 (3

0=N ,
bm (Nz‘ m;')

<ot <,
vi >0
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Exchange with medium

Internal metabolites:
Exc Int

N = Met ( Nexe  Nint )
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Exchange with medium

Internal metabolites:
Exc Int

N = Met ( Nexe  Nint )
Metabolites in medium:

Exc Int

*\ _ Med Neit O
N} Met Nexc ]Vint
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Exchange with medium

Internal metabolites:
Exc Int

N = Met ( Nexe  Nint )
Metabolites in medium:

Exc Int

*\ _ Med Neit O
N} Met Nexc ]Vint

d X Med .
dte - mzz:’yl Nelxtvéxc -

Dynamics in medium:
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Exchange with medium

Internal metabolites:
Exc Int

N = Met ( Nexe  Nint )
Metabolites in medium:

Exc Int
*\ _ Med Neit O
N/ ™ Met Nexc Nint

Dynamics in medium:

dXM d
= = Z’YZ extvexc -o

d)gl\tAed:() - 0=> %N, Ll —®/m = D;>0: >, 7 N, Ve >0,

exc —
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Community model in z, v and v

. ,Ui
o= in ).
g

K Svi Sui,
77,205

fori=1,...,#species, and

=0, ifje Medo,

Z'Yz xtvexc < 07 'f] € I\/Iedina
>0, if j € Medout,
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Community model in z, v and v

. ,Ui
0= ngm ( mol) 3
. . M?
[P <ot <l
Vi Z Oa
fori=1,...,#species, and
=0, ifj e Medg,

Z'Yz xtvexc < 07 'f] € I\/Iedina
>0, if j € Medout,

Introduce v = 7; v’ (scaled fluxes) Koch, ..., Klamt (2019), Plos Comp. Biol.
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Community model in 1, v and ¥

) ot
0=N; :
bm (%u m;"')

77,205

fori=1,...,#species, and

—0, ifj € Medy,
Z( eixt?_)é'xc)j <0, ifj e Medi,

! >0, if j € Medout,

Constraint-based modeling of microbial communities 24/44 :.



Community model in z, v and

0=N{ v |
bm Vi 1t % )
Vi Z Oa
fori=1,...,#species, and
=0, ifje Medy,
D (Nieic)j § <0, if j € Medin,
‘ >0, ifj € Medout,
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Z%‘Z 1.
i

Project fluxes to exchange fluxes (v° — ¥}

exc )



1

Community model in p, v and v,

Ai ’Eé'xc + bl(:u) Vi 2 Oa
Yi lixc < ﬁixc < uixcv
Yi Z 07
fori=1,...,#species, and

— 0, ifj € Medy,
Z( eixtz_)éxc)j <0, ifje Medp,,

g >0, if j € Medout,
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1

Community model in p, v and v,

Ai ’Eixc + bl(:u) Vi 2 Oa
Yi lzxc < ﬁixc < uixcv
Yi Z 07
fori=1,...,#species, and

— 0, ifj € Medy,
Z( eixtz_)éxc)j <0, ifje Medp,,

! >0, if j € Medoyt,

Fix p (define polytope)
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Community model — community modes

Fix p
+

composition & exchange flux polytope in v, Uexc

v

composition polytope in v  exchange flux polytope in Ugxc
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Community model — community modes

Fix 1
+

composition & exchange flux polytope in v, Uexc

v

composition polytope in v  exchange flux polytope in Ugxc

Convex-conformally non-decomposable vectors:

ECXs
v N\
ECs EXs
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Example
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Example: elementary compositions & exchange fluxes

i €10,1]: 7 7
Y,y2; 01, 05,035 0F, 03,03

ECX;=( 1,0 [, 0, fi; 0,0,0 )T,

ECXo =( 0,1; 0,0,0;  f,0,a )T,

ECXs=( 4,1 &0 0L )T,

B =( bd 080 B0k )T
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Example: elementary compositions & exchange fluxes

i €10,1]: 7 7
V1,725 01,03,03; 0F,03,03
ECXy = ( 1,05 2,0, f; 0,0,0 )Tv
ECXz = ( 0,1; 0,0,0; £, 0, i )T’
ECX3 :( %7%7 %707%7 07%)0 )T7
ECXy=( 44 040  &o0,4 )T
e 1,2
ECX5 = ( 1, &L Lol Lo fd (DR el T
5 npr EANTIRENY TR R )
ECXg = ( &1 1, il (A1) fid, 1L 13T
6 o n PR iR )
_ 1 1. 1 g1 1 —1 1 gl T
ECX7 - ( 2599 2 MT7 92 9 19y o ) )
_ 1 1. -1 1 1, 1 g1 1 T
ECXS - ( 2599 %7 2 %7 29 %7 2 ) .
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Example: elementary compositions

i€ [0,1]:
V1,72
EC; = (1,0)7,
ECo=(0,1)".
o€ l,2]:
1 g=1\T
EC5 - (ﬁ? T) )
_ (=l ANT
ECs = ( I vﬂ) :
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Example: elementary compositions

i€ [0,1]:
Y1572
EC; = (1,0)T,
ECo=(0,1)".
e 1,2
_ (1 pINT
ECS—(,;7 ,;) )
_ (Bl INT
EC6—( i} vﬂ) :

analogously for elementary exchange fluxes (EXs)
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Example: projection to u, 1, U3
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Example: ECs and EXs
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Ecological significance

Q€ 10,1] foe (1,2]
ECX|1 2 3 4|5 6 7 8
specialization | v/ v
commensalism v v
mutualism v v v v
maximum uptake v v
maximum yield v v v v
nonlinear in [ v v
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Interpretation of flux patterns: Topology

v

Based on network structure

Independent of growth or
objective

Applicable to any flux pattern
Descriptive

Biological implication not
straight forward

/N S
O & O

‘/

Nutrient competition Unidirectional cross-feeding

/N -
o o || &

‘f/

Product competition Bidirectional cross-feeding
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Interpretation of flux patterns: Ecology

Mutualism

+/+

Predation Commensalism

» Classical ecology framework

+/- 0/+

» Sign-based classification
(+/-/0)

» Requires ecological outcome

» Requires comparison of states

» Direct translation to
biological significance

-/-

Competition

0/0

Neutralism

-/0

Amensalism
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Interpretation of flux patterns: Example

mutualism mutualism mutualism

/s

commensalism

spezialisation




Isotypic vs. anisotypic mutualism

Isotypic Mutualism - > -
When deconstructed into ECFMs, at ZE - % i .

least one ECFM is mutualistic. E v I
¢ oo oa

In example (a) all ECFM are
mutualistic.

Anisotypic Mutualism (b) 4/ = 05

When deconstructed into ECFMs, no > {% >

ECFM is mutualistic. {%
y = o —+

In example (b) all ECFM are

A

<
k BRI
t

commensalistic, and non is mutualistic. < *
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Community model generation

Additional structure b,

» Shared medium compartment
» Transfer reactions

» Community exchange
reactions

» Community biomass reaction

’ M1_extern

M1_intern

M1_a_M1_intern

l [ 1_TP_a_M1_intern

M1_TF_a_M1_extern

EX_a_medium

M2

medium

M2_TF_a_M2_extern

M2_TP_a_M2_intern

M2_a_M2_in

M1_a M1_extern

&

().
NI

a_medium

&

M2_a_M2_ex

M2_extern

M2_intern

-0

tern
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Python package for community modeling (PyCoMo)

Model generation steps

» Match external metabolites

Merge models

quality control

Add shared medium compartment
metabolite matching

Manage exchange reactions

Add community biomass function

fixed growth

(R T
Ixed abundance
Q2

cross-feeding prediction

Scale member fluxes by mass fraction

vVvyVvyVvyYyvyy

Check for mass and charge balance
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Genome-scale example

A co-culture of two human gut microbes

M. smithii: A methanogenic archaeon
B. thetaiotaomicron: A polysaccharide degrading bacterium

The community metabolic model is big!
> # Reactions: 3860
> # Metabolites: 3355
> # Genes: 1141
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Analysis options: growth rate

Maximum Growth-Rate of M. smithii - B. thetaiotaomicron Co-Culture
Minimal Medium, Transport Reactions Constrained (+-10)

08 -

Community Growth Rate

0.0 i i i : R

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of M. smithii
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Analysis options: interactions

Cross-fed Metabolites across Compositions
~— cpd00277_Deoxyguanosine

- cpd00221_D-Lactate
= cpd00412_Deoxyuridine
~— cpd00092_Uracil
e e
- ggdoooeimy
Zopatteio i

. —Ms.toBt. = cpd01217_Xanthosine
» FBA and FVA allow the detection [ cod00363 Ethanal
of feasible cross-feeding [ - a0t L hroone
. .. : cpd00138 D-Mannos_e
» Metabolic plasticity of the model: Z a0ize L P
. . . = cpd00121_L-Inositol
some Cross- feed ng i nteractions N gggggggg-ﬁ?;g;‘ne
. . . . = cpd00053_L-Glutamine
can occur in either direction ~ cpd00003_NAD

= cpd00010_CoA

— Bidirectional

—Bt toMs.

=1 M

()
Metabolite

)

[ — cpd11606_Menagquinone 7
1 1 ~ cpd00082_D-Fructose
» Feasible cross-feeding patterns [ cpdo0de2. D-f ructos
h h d - cpd00027_D-Glucose

= cpd00118_Putrescine
chan ge across grOWt rate an - cpd00448_D-Glyceraldehyde
.t. — cpd00141_Propionate

—= cpd00013_NH3
composition Bt

— cpd00264_Spermidine

— cpd00182_Adenosine

= cpd00001_H20

— cpd00071_Acetaldehyde

~— cpd00035_L-Alanine

~ cpd11451_mql7

|

0.1 0.25 0.48 0.75 0.9
Fraction M. smithii
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Analysis options: visualization

Acetaldehyde

Visualization with .
ScyNet and Cytoscape e
» Allows exploration of the model e

» Reduced complexity by hiding
internal reactions

> Reactions arrows can be
contextualized with flux data
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Analysis options: ECFMs

Computation of ECFMs with
PyCoMo and efmtool
» PyCoMo community models can be
used as input
» efmtool calculates ECFMs for fixed p
» As of now, computation only feasible
for smaller models (e.g. two E. coli
core models)

Abundance of microbe 1

1.0 A1

0.8 1

0.6

0.4 1

0.2 1

0.0 1

Projected compositions

OjO OjS le 1j5 2j0
Growth rate
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Summary

mutualism mutualism mutualism

Mutualism

+/+

Predation

+/-

-/-

Competition Neutralism

-/0

Amensalism

spezialisation 2 4 6 commensalism
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