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Reminder: What are elementary flux modes?
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The forest of methods

r1

r2

r3

+ principle importance
+ metabolic lego blocks
+ characterize full space
– computationally difficult
– constraints ≥ 0, = 0
– yields only

r1

r2

r3

+ any linear constraints
+ computationally easy
+ flux rates & yields
– only one point
– optimally

doi:10.1038/nrmicro2737
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Zoo of minimal pathways: Elementary flux vectors (EFVs)
EFV1

pyr

1

1

EFV2 = EFM1 + EFM2
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▶ unique, but not support-minimal

▶ defined rates and yields

▶ respect capacity constraints

▶ any flux convex sums of pathways
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How many EFMs does ... have?

▶ E. coli ’s central carbon metabolism, doi:10.1186/s12918-018-0607-5

▶ a Minimal cell, JCVI-syn3A, doi:10.7554/eLife.36842

▶ a Human cell doi:10.1038/nbt.4072

124,341,216 ≈ 1012 (one trillion) > 1029
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Functional space of a minimal cell

▶ > 1 trillion EFMs, ≈ 1% = 12, 051, 382, 513 computed

▶ 2.5 years w/ 1000 CPUs and 33 × 106GB = 33PB storage for full set
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Why do we do this? (Personal motivation)

▶ fundamental understanding
of biological processes

▶ metabolic engineering

▶ synthetic biology
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The Problem: Pilsbach, Upper Austria
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The Problem: Pilsbach, Upper Austria

1.000 m

Natural gas reservoir / rock
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Schematic representation  
of sun storage

01 	Elektrolysis

02 	CO2 - tank

03	 Compressor station

04	 Injection well 

05 	Gas reservoir  

06 	Withdrawal well

07 	Drying unit  

08 	Gas conditioning 

09 	Electricity grid connection

10 	Control unit / EMSR

Grain size of approx. 0.5 mm

Pore space in the thin section
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Underground Sun Conversion
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How can we maximize “biogas” production?

▶ What community compositions are feasible?

▶ What community composition is optimal?
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Microbial community

N i
ext N j

ext

x1

φ1

viexc,1

x2
viexc,2 vjexc,2

...

xn
viexc,n vjexc,n

φnγi γj

N i,vi
int, µi N j ,vj

int, µj

species i species j
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Q&A

Given
– a set of microbial species (their metabolic models),
– a medium, and
– a growth rate:

What are all feasible community compositions and metabolic interactions?
What are the minimal communities?

We define:

community metabolic space (a polytope)
elementary compositions & exchange fluxes (ECXs)
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Elementary vectors in metabolic pathway analysis

▶ Elementary flux modes (EFMs) flux cone
Elementary flux vectors (EFVs) flux polyhedron (FBA)

▶ Elementary conversion modes (ECMs) exchange fluxes

▶ Elementary growth modes (EGMs) next-generation models
resource balance analysis (RBA)

▶ ECXs microbial communities
ECs, EXs
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Elementary vectors
Linear subspace S:
elementary vector (EV): e ∈ S with minimal support

Theorem (Rockafellar 1969)

Every f ∈ S is a finite, conformal sum of EVs:

f =
∑
e

e with sign(e) ≤ sign(f)

Reaction directions, thermodynamics

Generalization (Müller, Regensburger 2016)

linear subspace S → general polyhedral cone (e.g. flux cone),
polyhedron (e.g. flux polyhedron)

elementary vector: (convex-)conformally non-decomposable
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Microbial community
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(Constraint-based) metabolic modeling of microbial communities

▶ Single species growth

▶ Exchange with medium

▶ From dynamics to steady state
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Single species growth

Πάντα αὐξάνεται (Panta auxanetai) ... ‘Everything grows’

Self-fabricating cell:

d

dt

(
x
y

)
=

(
N S
0 I

)
︸ ︷︷ ︸

Nnxt-gen

(
v(x, y)
w(x, y)

)
− µ

(
x
y

)

x ... metabolites, y ... macromolecules

CBM: RBA (resource balance analysis)
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Single species growth

Dynamics of growth:

d

dt

(
x
y

)
=

(
N −S
0 I

)
︸ ︷︷ ︸

Nnxt-gen

(
v(x, y)
w(x, y)

)
− µ

(
x
y

)

CBM: FBA (flux balance analysis) and EFM analysis

dy
dt = 0 → w = µ y → Sw = µ Sy︸︷︷︸

xbound

→ dx
dt = Nv(x)− µ (xbound + x)︸ ︷︷ ︸

xtotal

dx
dt = 0 → 0 = Nv − µxtotal → 0 =

(
N −xtotal

g
mol

)︸ ︷︷ ︸
Nbm

(
v

µ mol
g

)
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Single species growth

0 = Nbm

(
v

µ mol
g

)
,

l ≤ v ≤ u

Multiple species: i = 1, . . . ,#species

γi =
mi

m
with m =

∑
i

mi =⇒ 0 ≤ γi ≤ 1 and
∑
i

γi = 1

Individual species i:

0 = N i
bm

(
vi

µi
mol
g

)
,

li ≤ vi ≤ ui,

γi ≥ 0
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Exchange with medium

Internal metabolites:

N =
( Exc Int

Met Nexc Nint

)

Metabolites in medium:

(
∗
N

)
=

( Exc Int

Med Next 0
Met Nexc Nint

)
Dynamics in medium:

dXMed

dt
= m

∑
i

γiN
i
extv

i
exc − Φ

dXMed
dt = 0 → 0 =

∑
i γiN

i
extv

i
exc −Φ/m → Φj ≥ 0:

∑
i γiN

i
extv

i
exc ≥ 0, . . .
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Community model in µ, γ and vi

0 = N i
bm

(
vi

µ mol
g

)
,

li ≤ vi ≤ ui,

γi ≥ 0,

for i = 1, . . . ,#species, and

∑
i

γi (N
i
extv

i
exc)j


= 0, if j ∈ Med0,

≤ 0, if j ∈ Medin,

≥ 0, if j ∈ Medout,∑
i

γi = 1.

Introduce v̄i = γi v
i (scaled fluxes) Koch, . . . , Klamt (2019), Plos Comp. Biol.

Constraint-based modeling of microbial communities 23/44



Community model in µ, γ and vi

0 = N i
bm

(
vi

µ mol
g

)
,

li ≤ vi ≤ ui,

γi ≥ 0,

for i = 1, . . . ,#species, and

∑
i

γi (N
i
extv

i
exc)j


= 0, if j ∈ Med0,

≤ 0, if j ∈ Medin,

≥ 0, if j ∈ Medout,∑
i

γi = 1.

Introduce v̄i = γi v
i (scaled fluxes) Koch, . . . , Klamt (2019), Plos Comp. Biol.

Constraint-based modeling of microbial communities 23/44



Community model in µ, γ and v̄i

0 = N i
bm

(
v̄i

γi µ
mol
g

)
,

γi l
i ≤ v̄i ≤ γi u

i,

γi ≥ 0,

for i = 1, . . . ,#species, and

∑
i

(N i
extv̄

i
exc)j


= 0, if j ∈ Med0,

≤ 0, if j ∈ Medin,

≥ 0, if j ∈ Medout,∑
i

γi = 1.

Project fluxes to exchange fluxes (v̄i → v̄iexc)
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Community model in µ, γ and v̄iexc

Ai v̄iexc + bi(µ) γi ≥ 0,

γi l
i
exc ≤ v̄iexc ≤ γi u

i
exc,

γi ≥ 0,

for i = 1, . . . ,#species, and

∑
i

(N i
extv̄

i
exc)j


= 0, if j ∈ Med0,

≤ 0, if j ∈ Medin,

≥ 0, if j ∈ Medout,∑
i

γi = 1.

Fix µ (define polytope)
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Community model → community modes

Fix µ
↓

composition & exchange flux polytope in γ, v̄exc
↙ ↘

composition polytope in γ exchange flux polytope in v̄exc

Convex-conformally non-decomposable vectors:

ECXs
↙ ↘

ECs EXs

Constraint-based modeling of microbial communities 26/44



Community model → community modes

Fix µ
↓

composition & exchange flux polytope in γ, v̄exc
↙ ↘

composition polytope in γ exchange flux polytope in v̄exc

Convex-conformally non-decomposable vectors:

ECXs
↙ ↘

ECs EXs

Constraint-based modeling of microbial communities 26/44



Example

X1

Y 1 Y 2

X2

S1 B1

A1 P 1

S2B2

A2P 2

γ1

γ2

v̄11 v̄14

v̄13v̄12

v̄15

γ1µ

v̄21v̄24

v̄23 v̄22

v̄25

γ2 µ
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Example: elementary compositions & exchange fluxes
µ̂ ∈ [0, 1]:

γ1, γ2; v̂11, v̂
1
2, v̂

1
3; v̂21, v̂

2
2, v̂

2
3

ECX1 = ( 1, 0; µ̂, 0, µ̂; 0, 0, 0 )⊤,

ECX2 = ( 0, 1; 0, 0, 0; µ̂, 0, µ̂ )⊤,

ECX3 = ( 1
2 ,

1
2 ;

µ̂
2 , 0,

µ̂
2 ; 0, µ̂2 , 0 )⊤,

ECX4 = ( 1
2 ,

1
2 ; 0, µ̂2 , 0;

µ̂
2 , 0,

µ̂
2 )⊤.

µ̂ ∈ [1, 2]:

ECX5 = ( 1
µ̂ ,

µ̂−1
µ̂ ; 1

µ̂ ,
µ̂−1
µ̂ , 1

µ̂ ;
µ̂−1
µ̂ , (µ̂−1)

2

µ̂ , µ̂−1µ̂ )⊤,

ECX6 = ( µ̂−1
µ̂ , 1

µ̂ ;
µ̂−1
µ̂ , (µ̂−1)

2

µ̂ , µ̂−1µ̂ ; 1
µ̂ ,

µ̂−1
µ̂ , 1

µ̂ )⊤,

ECX7 = ( 1
2 ,

1
2 ;

1
2 ,

µ̂−1
2 , 12 ;

µ̂−1
2 , 12 ,

µ̂−1
2 )⊤,

ECX8 = ( 1
2 ,

1
2 ;

µ̂−1
2 , 12 ,

µ̂−1
2 ; 1

2 ,
µ̂−1
2 , 12 )⊤.
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µ̂ , µ̂−1µ̂ ; 1
µ̂ ,

µ̂−1
µ̂ , 1

µ̂ )⊤,

ECX7 = ( 1
2 ,

1
2 ;

1
2 ,

µ̂−1
2 , 12 ;

µ̂−1
2 , 12 ,

µ̂−1
2 )⊤,

ECX8 = ( 1
2 ,

1
2 ;

µ̂−1
2 , 12 ,

µ̂−1
2 ; 1

2 ,
µ̂−1
2 , 12 )⊤.
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Example: elementary compositions

µ̂ ∈ [0, 1]:

γ1, γ2

EC1 = (1, 0)⊤,

EC2 = (0, 1)⊤.

µ̂ ∈ [1, 2]:

EC5 = ( 1µ̂ ,
µ̂−1
µ̂ )⊤,

EC6 = ( µ̂−1µ̂ , 1
µ̂)

⊤.

analogously for elementary exchange fluxes (EXs)
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Example: projection to µ, γ1, v̄
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Example: ECs and EXs
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Ecological significance

µ̂ ∈ [0, 1] µ̂ ∈ (1, 2]
ECX 1 2 3 4 5 6 7 8

specialization ✓ ✓
commensalism ✓ ✓

mutualism ✓ ✓ ✓ ✓
maximum uptake ✓ ✓
maximum yield ✓ ✓ ✓ ✓
nonlinear in µ̂ ✓ ✓
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Interpretation of flux patterns: Topology

▶ Based on network structure

▶ Independent of growth or
objective

▶ Applicable to any flux pattern

▶ Descriptive

▶ Biological implication not
straight forward

Nutrient competition

Product competition Bidirectional cross-feeding

Unidirectional cross-feeding
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Interpretation of flux patterns: Ecology

▶ Classical ecology framework

▶ Sign-based classification
(+/-/0)

▶ Requires ecological outcome

▶ Requires comparison of states

▶ Direct translation to
biological significance

-/0

0/0

0/+

+/+

+/-

-/-

Neutralism

Commensalism

Mutualism

Amensalism

Competition

Predation
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Interpretation of flux patterns: Example
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Isotypic vs. anisotypic mutualism

Isotypic Mutualism

When deconstructed into ECFMs, at
least one ECFM is mutualistic.

In example (a) all ECFM are
mutualistic.

Anisotypic Mutualism

When deconstructed into ECFMs, no
ECFM is mutualistic.

In example (b) all ECFM are
commensalistic, and non is mutualistic.

(a) µ/µ∗
max = 1.5

= +

(b) µ/µ∗
max = 0.5

= +
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Community model generation

Additional structure

▶ Shared medium compartment

▶ Transfer reactions

▶ Community exchange
reactions

▶ Community biomass reaction
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Python package for community modeling (PyCoMo)

Model generation steps

▶ Match external metabolites

▶ Merge models

▶ Add shared medium compartment

▶ Manage exchange reactions

▶ Add community biomass function

▶ Scale member fluxes by mass fraction

▶ Check for mass and charge balance

fixed growth

fixed abundance

cross-feeding prediction

metabolite matching

quality control

load

save

import

=
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Genome-scale example

A co-culture of two human gut microbes

M. smithii: A methanogenic archaeon
B. thetaiotaomicron: A polysaccharide degrading bacterium

The community metabolic model is big!

▶ # Reactions: 3860

▶ # Metabolites: 3355

▶ # Genes: 1141
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Analysis options: growth rate
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Analysis options: interactions

▶ FBA and FVA allow the detection
of feasible cross-feeding

▶ Metabolic plasticity of the model:
some cross-feeding interactions
can occur in either direction

▶ Feasible cross-feeding patterns
change across growth rate and
composition
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Analysis options: visualization

Visualization with
ScyNet and Cytoscape

▶ Allows exploration of the model

▶ Reduced complexity by hiding
internal reactions

▶ Reactions arrows can be
contextualized with flux data D-Glyceraldehyde
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Analysis options: ECFMs

Computation of ECFMs with
PyCoMo and efmtool

▶ PyCoMo community models can be
used as input

▶ efmtool calculates ECFMs for fixed µ

▶ As of now, computation only feasible
for smaller models (e.g. two E. coli
core models)
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Summary
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