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Why yet another “balance analysis”?

Growth Balance Analysis (GBA): simplified framework for nonlinear self-replicating
cell models at balanced growth1.

▶ Nonlinear: includes nonlinear kinetic rate laws.

▶ Self-replicating: metabolism + protein synthesis and dilution of all components.

▶ Balanced growth: constant (external and internal) concentrations in time.

A framework, not a model: find common properties to all possible models.

Mathematical simplification: allows analytical study to find fundamental principles.

1
Dourado & Lercher, An analytical theory of balanced cellular growth, Nature Communications 2020.
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Mathematical simplification: the least number of variables and equations

Not important for linear problems, but critical for nonlinear problems!

Example: Simple pendulum

Angle θ (“generalized coordinate”) completely
determines the system state, no need of x,y,z.

Why looking for simplest formulation?
▶ Easier numerical calculations.
▶ Independent variables are preferable for analytical methods.
▶ Deeper understanding of the problem.
▶ Most “elegant” solution.
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Balanced growth (or steady-state growth)

For a steady-state environment defined by “external” concentrations a:

▶ Steady-state growth rate µ (1/h), direct measure of fitness.

▶ Steady-state internal concentrations c (g/L) of reactants (substrates, products)

ci =
abundance of “i” (g/cell)

volume (L/cell)
= constant

Mass concentrations (not abundances) better describe cell states: i) constant,
ii) reaction kinetics depend on concentrations, iii) relate to cell density (g/L).

Matching units for fluxes v: mass per volume per time (g L−1 h−1).
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Main differences to other modeling frameworks

Density constraint: cell density2 ρ (g/L) including all mass concentrations c (g/L)

ρ = cp +
∑
m

cm

where cp is the total protein concentration, and m are all “non-protein” components3.

Units: to match the units, we normalize N with the molecular weights w (g/mol)

N
multiply−−−−−−−−→

columns byw
diag(w)N

scale columns, s.t.−−−−−−−−−−−−−→∑
(−)=−1,

∑
(+)=1

Mtotal
exclude−−−−−−−→

external rows
M

M entries are mass fractions of reactants into (−) and out (+) each reaction.

2
Baldwin et al.Archives of Microbiology 1995, Kubitschek et al. Journal of bacteriology 1983, Cayley et al. Journal of Molecular Biology 1991

3
Dourado et al. PLOS Comp Bio 2023.
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GBA models: transport, protein synthesis, kinetics, dilution by growth

Optimal state: maximize µ limited by mass conservation, kinetics and total protein.

Self-replicating models must be nonlinear: saturation/dilution trade-off.
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The general GBA optimization problem

For some given GBA model (M, τ , ρ) and medium concentrations a:

maximize
v∈Rr,c∈Rp

+

µ (Maximize growth rate)

subject to:

Mv = µ c (Flux balance)

cp = v · τ (a, c) (Reaction kinetics and protein sum)

ρ =
∑

c (Constant cell density)
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No alternative pathways: simplification with c as independent variables

1) For a square M, there is an inverse W = M−1 and

Mv = µ c ⇒ v = µWc .

2) Substituting into cp = v · τ (a, c)

cp = µ (Wc) · τ (a, c) .

3) Solving for µ: we get the objective function µ(c,a)

µ(a, c) =
cp

(Wc) · τ (a, c)
.

4) The only constraint left:

ρ =
∑

c .
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The GBA problem with no alternative pathways: analytical solution

Reformulated problem: for some given GBA model (M, τ , ρ) and medium a

maximize
c∈Rp

+

µ(c,a) =
cp

(Wc) · τ (a, c)

subject to: ∑
c = ρ .

Analytical conditions for optimal states: using Lagrange multipliers, we find

µ (Wc) · ∂τ

∂cm
+ µ τ · (Wm −Wp) + 1 = 0 ∀ m (1)

We got: # algebraic equations = # variables (solvable).
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Cell economics: the costs and benefits of reactants

Substituting v = µWc into the solution (1)

cp
µ

∂µ

∂cm
= −

∑
j

vj
∂τ j

∂cm
+µ

∑
j

τj
(
W j

p −W j
m

)
− 1 = 0 ∀ m

Economics analogy: costs and benefits (in terms of protein allocation)

(marginal) reactant value = local benefit + global benefit + density cost (= 0 if optimal)

Protein is the underlying “currency”

−
∑
j

vj
∂τ j

∂cm
= −

∑
j

(
∂pj
∂cm

)
v=const.

, and µ
∑
j

τj
(
W j

p −W j
m

)
= −

∑
j

(
∂pj
∂cm

)
τ , µ=const.

≈ 0.03a

a
Dourado, Quantitative principles of optimal cellular resource allocation, PhD Thesis 2020.
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Comparison to data: E. coli and yeast ribosome proteome fraction ϕr vs. µ

All data available, in vivo data close to the predicted optimality4 (red lines, no fitting).

4
Dourado & Lercher, An analytical theory of balanced cellular growth, Nature Communications 2020.
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(Approximate) Enzyme-substrate optimality (without kcat)

Considering the Michaelis-Menten kinetics and no global benefit:

−
∑
j

vj
∂τ j

∂cm
������������:0
+µ

∑
j

τj
(
W j

p −W j
m

)
− 1 = 0 ⇒ pj = cm

(
1 +

cm
Km

j

)
E. coli enzymes and substrates are close to this optimality5

5
Dourado et al. On the optimality of the enzyme–substrate relationship in bacteria, PLOS Biology 2021.
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“Growth Control Analysis”: holistic view of the growing cell

Metabolic Control Analysis (MCA): perturbations on metabolism (open system).

Growth Control Analysis (GCA): perturbations self-replicating system (closed
system), all is connected ⇒ analytical expressions6.

▶ Growth Control Coefficients: change in µ by perturbing one concentration ci.

▶ Growth Adaptation Coefficients A: change in optimal µ∗ by changing parameters.

E.g.: changing in the density ρ

Aρ =
ρ

µ∗
dµ∗

dρ
=

ρ

cp

1− µ
∑
j

τjW
j
p


Comparing to E. coli data7 →

6
Dourado & Lercher, Nature Communications 2020, 7 Cayley et. al, Biophys. J 2000
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The general GBA problem: formulation on q

Problem simplification on new (adimensional) independent variables:

q :=
v

µρ

We get the optimality condition7 for each reaction j (sj := sum of column Mj)

Mp
j −µ τj −v · ∂τ

∂c
Mj + sj v · ∂τ

∂c
c/ρ = 0

Cell economics: the protein costs and benefits of each reaction

production benefit︸ ︷︷ ︸
(protein production)

+ local cost︸ ︷︷ ︸
(protein in j)

+ local benefit︸ ︷︷ ︸
(local saturation)

+ transport benefit︸ ︷︷ ︸
(global saturation)

(= 0 if opt.)

7
Dourado et al. Mathematical properties of optimal fluxes in cellular reaction networks at balanced growth, PLOS Comp Biol 2023.
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Grow Control Analysis: Grow Adaptation Coefficient for kcat

We can show from first principles (using the Envelope Theorem)8 that:

A
kjcat

=
kjcat
µ∗

dµ∗

dkjcat
= ϕj

Proportional change in µ∗ is exactly the same as proportion of protein allocated to j.

8
Dourado et al. Mathematical properties of optimal fluxes in cellular reaction networks at balanced growth, PLOS Comp Biol 2023.
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Simplified mathematical formulation also facilitates numerical solutions

Model L3 on different media (≈ 0.1 s):

Genome-scale GBA models are feasible: 10 reactions ≈ 1 s, 100 reactions ≈ 1min.
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Computational tools for GBA

Numerical implementation in R (including also dynamical simulations):

https://github.com/HDourado/Growth_Mechanics

Online tool: Cell growth simulator

https://cellgrowthsim.com/
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Summary

▶ GBA: self-replicating cell models on independent variables, easier to study.

▶ Analytical conditions for optimal balanced growth (fundamental principles).

▶ Experimental indications that cells do implement near optimal strategies.

▶ Proteins emerge as the “currency” in cell economics from first principles.

(soon chapter in the EPCB book)
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Constraints on GBA
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Michaelis-Menten kinetics with activation

Based on “Convenience kinetics”9, we define the Michaelis-Menten kinetics with
activation, corresponding “activation constants” A

τj =
1

kjcat

∏
m

(
1 +

Am
j

cm

)(
1 +

Km
j

cm

)∏
n

(
1 +

Kn
j

an

)

9
Liebermeister & Klipp, Bringing metabolic networks to life: convenience rate law and thermodynamic constraints, 2006.
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Optimal substrate mass concentration = free enzyme mass concentration

The optimal mass concentration balance for minimal ρ :

cm =
pj Kj

m

Kj
m + cm

.

But this corresponds exactly to the free enzyme mass concentration

pjfree := pj − pj
(

cm

cm +Kj
m

)
=

pj Kj
m

Kj
m + cm

.

Thus10,
cm = pjfree .

10
Dourado et al. On the optimality of the enzyme–substrate relationship in bacteria, PLOS Biology 2021
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Equations for balance growth states: model L3
1) Original problem: Implicit constraints on µ, involving v1, v2, v3, c1, c2, c3, a1 (6 variables, 5 equations)

v1 − v2 = µ c1

v2 − v3 = µ c2 (mass conservation)

v3 = µ c3

v1

7

(
1 +

1

a1

)
+

v2

7

(
1 +

23

c1

)
+

v3

6

(
1 +

41

c2

)
= c3 (kinetics and protein sum)

c1 + c2 + c3 = 340 (constant cell density)

2) GBA: Explicit constraint on µ(c1, c2, a1) (using c3 = 340− c1 − c2)

µ(c1, c2, a1) =
340− c1 − c2

1

7

(
1 +

1

a1

)
+

340− c1

7 · 340

(
1 +

23

c1

)
+

340− c1 − c2

6 · 340

(
1 +

41

c2

) (constrained growth rate)

3) Analytical conditions for optimal balanced growth state (system of algebraic equations)

µ
23

7

(340− c1)

(c1)2
+µ

[
1

7

(
1 +

23

c1

)
+

1

6

(
1 +

41

c2

)]
− 1 = 0 (m = 1)

µ
40 (340− c1 − c2)

6 (c2)2
+ µ

[
1

5

(
1 +

41

c2

)]
− 1 = 0 (m = 2)
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The general GBA problem: formulation on q

General formulation on q in few steps

Substituting v = µρq into Mv = µ c

ρMq = c (independent of µ).

Substituting c = ρMq into cp = v · τ (a, c)

Mp
r qr = µq · τ (ρMq,a)

Solving for µ:

µ(q,a) =
Mp

r qr
q · τ (ρMq,a)

The density constraint:

ρ =
∑

c ⇔ s · q = 1
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The general GBA problem: analytical “solution”

Reformulated problem: for some given model (M, τ , ρ) and environment a

maximize
q∈Rr

µ(q,a) =
Mp

r qr
q · τ (ρMq,a)

subject to:

s · q = 1

q⊙ τ (ρMq,a) ≥ 0 .

Analytical conditions for optimal states: using KKT conditions, we find(
Mp

j − µ τj − µq · ∂τ
∂qj

+ sjµq · ∂τ

∂q
q

)
qj = 0 ∀ j (2)

Using s · q = 1: # algebraic equations = # variables (solvable)..
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Equations for balance growth states: model L3
1) Original problem: Implicit constraints on µ, involving v1, v2, v3, c1, c2, c3, a1 (6 variables, 5 equations)

v1 − v2 = µ c1

v2 − v3 = µ c2 (mass conservation)

v3 = µ c3

v1

7

(
1 +

1

a1

)
+

v2

7

(
1 +

23

c1

)
+

v3

6

(
1 +

41

c2

)
= c3 (kinetics and protein sum)

c1 + c2 + c3 = 340 (constant cell density)

2) GBA: Explicit constraint on µ(q2, q3, a1) (from the density constraint q1 = 1)

µ(q2, q3, a1) =
q3

1

7

(
1 +

1

a1

)
+

q2

7

(
1 +

23

340(1− q2)

)
+

q3

6

(
1 +

41

340(q2 − q3)

) (constrained growth rate)

3) Analytical conditions for optimal balanced growth state (system of algebraic equations)

1

7

(
1 +

23

340(1− q2)

)
+

23q2

7 [340(1− q2)]
2

−
41q3

6 [340(q2 − q3)]
2
= 0 (j = 2)

1−µ
1

6

(
1 +

41

340(q2 − q3)

)
−µ

41q3

6 [340(q2 − q3)]
2
= 0 (j = 3)
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The dynamic generalization: fitness optimization
For some given model (M, τ , ρ) and dynamic medium a(t):

maximize
v(t), c(t)

∫ T

0
µdt (Maximize fitness)

subject to:

Mv = µ c+ ċ (Mass conservation)

cp = v · τ (a, c) (Reaction kinetics and protein sum)

ρ =
∑

c (Constant cell density)

Main trick for analytical “solution”: define the “generalized fluxes” q such that

ρMq = c ,

then reformulate the problem on q̇,q,a, and solve Euler-Lagrange equations.
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