Economic Principles in Cell Biology

Vienna, July 23-26, 2025

Growth Balance Analysis

Hugo Dourado

Why yet another "balance analysis"?

Growth Balance Analysis (GBA): simplified framework for nonlinear self-replicating cell models at balanced growth¹.

- Nonlinear: includes nonlinear kinetic rate laws.
- **Self-replicating:** metabolism + protein synthesis and dilution of **all** components.
- Balanced growth: constant (external and internal) concentrations in time.

A framework, not a model: find common properties to all possible models.

Mathematical simplification: allows analytical study to find fundamental principles.

Dourado & Lercher. An analytical theory of balanced cellular growth, Nature Communications 2020.

Mathematical simplification: the least number of variables and equations

Not important for linear problems, but critical for nonlinear problems!

Example: Simple pendulum

Angle θ ("generalized coordinate") completely determines the system state, no need of x,y,z.

Why looking for simplest formulation?

- Easier numerical calculations.
- ▶ Independent variables are preferable for analytical methods.
- ▶ Deeper understanding of the problem.
- ► Most "elegant" solution.

Balanced growth (or steady-state growth)

For a steady-state environment defined by "external" concentrations a:

- ▶ Steady-state growth rate μ (1/h), direct measure of fitness.
- Steady-state internal concentrations c (g/L) of reactants (substrates, products)

$$c_i = rac{\mathsf{abundance\ of\ "i"\ (g/cell)}}{\mathsf{volume\ (L/cell)}} = \mathsf{constant}$$

Mass concentrations (not abundances) better describe cell states: i) constant, ii) reaction kinetics depend on concentrations, iii) relate to cell density (g/L).

Matching units for fluxes v: mass per volume per time (g L^{-1} h^{-1}).

Main differences to other modeling frameworks

Density constraint: cell density² ρ (g/L) including all mass concentrations c (g/L)

$$\rho = c_{\rm p} + \sum_m c_m$$

where $c_{\rm p}$ is the total protein concentration, and m are all "non-protein" components³.

Units: to match the units, we normalize N with the molecular weights w (g/mol)

$$\mathbf{N} \xrightarrow[\mathsf{columns} \mathsf{by} \mathbf{w}]{\mathsf{diag}}(\mathbf{w}) \mathbf{N} \xrightarrow[\sum(-)=-1, \ \sum(+)=1]{\mathsf{scale}} \mathbf{M}_{total} \xrightarrow[\mathsf{exclude}]{\mathsf{external}} \mathbf{M}$$

 \mathbf{M} entries are mass fractions of reactants into (-) and out (+) each reaction.

² Baldwin et al. Archives of Microbiology 1995, Kubitschek et al. Journal of bacteriology 1983, Cayley et al. Journal of Molecular Biology 1991

Dourado et al. PLOS Comp Bio 2023

GBA models: transport, protein synthesis, kinetics, dilution by growth

A) Scheme of a simple GBA model "L3"

B) Mathematical definition (M,ρ,τ) of the model L3:

$$\mathbf{M} = \begin{bmatrix} [ctr] & [enz] & [r] \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} (C) \\ (A) \\ (p) \end{pmatrix}$$

$$\rho = 340 \ qL^{-1}$$

$$\tau = \left(\ \frac{1}{7} \left(1 + \frac{0.1}{a_C} \right), \ \frac{1}{7} \left(1 + \frac{23}{c_C} \right), \ \frac{1}{6} \left(1 + \frac{41}{c_A} \right) \ \right)$$

C) Mathematical definition of a (static) medium:

$$a_C = 10 \ gL^{-1}$$

- D) Cell states $(\mu, \mathbf{v}, \mathbf{c})$ must satisfy:
- i) Mass conservation: $\mathbf{M} \mathbf{v} = \mu \mathbf{c}$

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{\text{ctr}} \\ v_{\text{enz}} \\ v_{\text{r}} \end{bmatrix} = \mu \begin{bmatrix} c_C \\ c_A \\ c_{\text{p}} \end{bmatrix}$$
flux balance dilution by growth

where $\mathbf{s} \coloneqq \text{column sums of } \mathbf{M} = (1, \mathbf{0}, \mathbf{0})$

ii) Kinetic rate laws and protein sum: $\mathbf{v} \cdot \boldsymbol{\tau}(\mathbf{a}, \mathbf{c}) = c_{\mathrm{p}}$

$$\frac{v_{\rm ctr}}{7} \left(1 + \frac{0.1}{10} \right) + \frac{v_{\rm enz}}{7} \left(1 + \frac{23}{c_C} \right) + \frac{v_{\rm r}}{6} \left(1 + \frac{41}{c_A} \right) = c_{\rm p}$$

iii) Density constraint: $\sum \mathbf{c} = \rho$

$$c_C + c_A + c_D = 340$$

The general GBA optimization problem

For some given GBA model (M, τ, ρ) and medium concentrations a:

$$\begin{array}{ll} \text{maximize} & \mu & \text{(Maximize growth rate)} \\ \mathbf{v} \in \mathbb{R}^{\mathbf{r}}, \mathbf{c} \in \mathbb{R}^{\mathbf{p}}_{+} & \\ \text{subject to:} & \mathbf{M} \, \mathbf{v} = \mu \, \mathbf{c} & \text{(Flux balance)} \\ & c_{\mathbf{p}} = \mathbf{v} \cdot \boldsymbol{\tau}(\mathbf{a}, \mathbf{c}) & \text{(Reaction kinetics and protein sum)} \\ & \rho = \sum \mathbf{c} & \text{(Constant cell density)} \end{array}$$

No alternative pathways: simplification with ${\bf c}$ as independent variables

1) For a square ${\bf M}$, there is an inverse ${\bf W}={\bf M}^{-1}$ and

$$\mathbf{M} \mathbf{v} = \mu \mathbf{c} \Rightarrow \mathbf{v} = \mu \mathbf{W} \mathbf{c}$$
.

2) Substituting into $c_{\rm p} = {\bf v} \cdot {m au}({\bf a},{\bf c})$

$$c_{\rm p} = \mu \left(\mathbf{W} \, \mathbf{c} \right) \cdot \boldsymbol{\tau}(\mathbf{a}, \mathbf{c})$$
.

3) Solving for μ : we get the objective function $\mu(\mathbf{c}, \mathbf{a})$

$$\mu(\mathbf{a}, \mathbf{c}) = \frac{c_{\mathrm{p}}}{(\mathbf{W} \, \mathbf{c}) \cdot \boldsymbol{\tau}(\mathbf{a}, \mathbf{c})} \quad .$$

4) The only constraint left:

$$\rho = \sum \mathbf{c}$$
 .

The GBA problem with no alternative pathways: analytical solution

Reformulated problem: for some given GBA model $(\mathbf{M}, \boldsymbol{\tau}, \rho)$ and medium \mathbf{a}

subject to:

$$\sum \mathbf{c} = \rho \quad .$$

Analytical conditions for optimal states: using Lagrange multipliers, we find

$$\left| \mu \left(\mathbf{W} \, \mathbf{c} \right) \cdot \frac{\partial \boldsymbol{\tau}}{\partial c_m} + \mu \, \boldsymbol{\tau} \cdot \left(\mathbf{W}_m - \mathbf{W}_p \right) + 1 = 0 \quad \forall \ m \right|$$
 (1)

We got: # algebraic equations = # variables (solvable).

Cell economics: the costs and benefits of reactants

Substituting $\mathbf{v} = \mu \mathbf{W} \mathbf{c}$ into the solution (1)

$$\frac{c_{\rm p}}{\mu} \frac{\partial \mu}{\partial c_m} = -\sum_j v_j \frac{\partial \tau^j}{\partial c_m} + \mu \sum_j \tau_j \left(W_{\rm p}^j - W_m^j \right) - \mathbf{1} = 0 \quad \forall m$$

Economics analogy: costs and benefits (in terms of protein allocation)

(marginal) reactant value = local benefit + global benefit + density cost (= 0 if optimal)

Protein is the underlying "currency"

$$-\sum_{j} v_{j} \frac{\partial \tau^{j}}{\partial c_{m}} = -\sum_{j} \left(\frac{\partial p_{j}}{\partial c_{m}}\right)_{\mathbf{v} = const.}, \text{and } \mu \sum_{j} \tau_{j} \left(W_{\mathbf{p}}^{j} - W_{m}^{j}\right) = -\sum_{j} \left(\frac{\partial p_{j}}{\partial c_{m}}\right)_{\tau, \, \mu = const.} \approx 0.03^{\mathbf{a}}$$

^aDourado, Quantitative principles of optimal cellular resource allocation, *PhD Thesis* 2020.

Comparison to data: E. coli and yeast ribosome proteome fraction ϕ_r vs. μ

All data available, in vivo data close to the predicted optimality⁴ (red lines, no fitting).

⁴Dourado & Lercher. An analytical theory of balanced cellular growth, *Nature Communications* 2020.

(Approximate) Enzyme-substrate optimality (without k_{cat})

Considering the Michaelis-Menten kinetics and no global benefit:

$$-\sum_{j} v_{j} \frac{\partial \tau^{j}}{\partial c_{m}} + \mu \sum_{j} \tau_{j} \left(W_{p}^{j} - W_{m}^{j} \right)^{-1} = 0 \quad \Rightarrow \quad \boxed{p_{j} = c_{m} \left(1 + \frac{c_{m}}{K_{j}^{m}} \right)}$$

E. coli enzymes and substrates are close to this optimality⁵

⁵Dourado et al. On the optimality of the enzyme–substrate relationship in bacteria, *PLOS Biology* 2021.

"Growth Control Analysis": holistic view of the growing cell

Metabolic Control Analysis (MCA): perturbations on metabolism (open system).

Growth Control Analysis (GCA): perturbations self-replicating system (closed system), all is connected \Rightarrow analytical expressions⁶.

- ▶ Growth Control Coefficients: change in μ by perturbing one concentration c_i .
- ▶ Growth Adaptation Coefficients A: change in optimal μ^* by changing parameters.

E.g.: changing in the density ρ

$$A_{\rho} = \frac{\rho}{\mu^*} \frac{\mathrm{d}\mu^*}{\mathrm{d}\rho} = \frac{\rho}{c_{\mathrm{p}}} \left(1 - \mu \sum_{j} \tau_{j} W_{\mathrm{p}}^{j} \right)$$

Comparing to *E. coli* data⁷ \rightarrow

Dourado & Lercher, Nature Communications 2020, ⁷ Cayley et. al, Biophys. J 2000

The general GBA problem: formulation on q

Problem simplification on new (adimensional) independent variables:

$$\mathbf{q} := \frac{\mathbf{v}}{\mu \, \rho}$$

We get the optimality condition j for each reaction j ($s_j \coloneqq \mathsf{sum}$ of column M_j)

$$M_j^{\mathrm{p}} - \mu \tau_j - \mathbf{v} \cdot \frac{\partial \tau}{\partial \mathbf{c}} \mathbf{M}_j + s_j \mathbf{v} \cdot \frac{\partial \tau}{\partial \mathbf{c}} \mathbf{c} / \rho = \mathbf{0}$$

Cell economics: the protein costs and benefits of each reaction

$$\underbrace{\text{production benefit}}_{\text{(protein production)}} + \underbrace{\text{local cost}}_{\text{(protein in } j)} + \underbrace{\text{local benefit}}_{\text{(local saturation)}} + \underbrace{\text{transport benefit}}_{\text{(global saturation)}} (= 0 \text{ if opt.})$$

⁷ Dourado et al. Mathematical properties of optimal fluxes in cellular reaction networks at balanced growth. PLOS Comp Biol 2023.

Grow Control Analysis: Grow Adaptation Coefficient for k_{cat}

We can show from first principles (using the Envelope Theorem)⁸ that:

$$A_{k_{\text{cat}}^j} = \frac{k_{\text{cat}}^j}{\mu^*} \frac{\mathrm{d}\mu^*}{\mathrm{d}k_{\text{cat}}^j} = \phi_j$$

Proportional change in μ^* is exactly the same as proportion of protein allocated to j.

⁸Dourado et al. Mathematical properties of optimal fluxes in cellular reaction networks at balanced growth, *PLOS Comp Biol* 2023.

Simplified mathematical formulation also facilitates numerical solutions

Model L3 on different media ($\approx 0.1 \, s$):

Genome-scale GBA models are feasible: 10 reactions $\approx 1 \, s$, 100 reactions $\approx 1 \, min$.

Computational tools for GBA

Numerical implementation in R (including also dynamical simulations):

https://github.com/HDourado/Growth_Mechanics

Online tool: Cell growth simulator

https://cellgrowthsim.com/

Summary

- GBA: self-replicating cell models on independent variables, easier to study.
- Analytical conditions for optimal balanced growth (fundamental principles).
- Experimental indications that cells do implement near optimal strategies.
- Proteins emerge as the "currency" in cell economics from first principles.

(soon chapter in the EPCB book)

Constraints on GBA

A) Flux balance for each reactant "i"

C) Kinetics: $v = p \cdot k(\mathbf{c}, \mathbf{x})$ or $p = v \cdot \tau(\mathbf{c}, \mathbf{x})$

D) Density constraints

Michaelis-Menten kinetics with activation

Based on "Convenience kinetics" 9, we define the Michaelis-Menten kinetics with activation, corresponding "activation constants" A

$$\tau_j = \frac{1}{k_{\text{cat}}^j} \prod_m \left(1 + \frac{A_j^m}{c_m} \right) \left(1 + \frac{K_j^m}{c_m} \right) \prod_n \left(1 + \frac{K_j^n}{a^n} \right)$$

⁹Liebermeister & Klipp, Bringing metabolic networks to life: convenience rate law and thermodynamic constraints, 2006.

Optimal substrate mass concentration = free enzyme mass concentration

The optimal mass concentration balance for minimal ρ :

$$c_m = \frac{p^j K_m^j}{K_m^j + c_m} \quad .$$

But this corresponds exactly to the free enzyme mass concentration

$$p_{\text{free}}^j := p^j - p^j \left(\frac{c_m}{c_m + K_m^j} \right) = \frac{p^j K_m^j}{K_m^j + c_m} \quad .$$

Thus¹⁰,

$$c_m = p_{\text{free}}^j$$
 .

 $^{^{10}}$ Dourado et al. On the optimality of the enzyme–substrate relationship in bacteria, $PLOS\ Biology\ 2021$

Equations for balance growth states: model L3

1) Original problem: Implicit constraints on μ_i involving $v_1, v_2, v_3, c_1, c_2, c_3, a_1$ (6 variables, 5 equations)

$$\begin{array}{c} v_1-v_2=\mu\,c_1\\ v_2-v_3=\mu\,c_2\\ v_3=\mu\,c_3\\ \end{array} \qquad \text{(mass conservation)}\\ \frac{v_1}{7}\left(1+\frac{1}{a_1}\right)+\frac{v_2}{7}\left(1+\frac{23}{c_1}\right)+\frac{v_3}{6}\left(1+\frac{41}{c_2}\right)=c_3\\ c_1+c_2+c_3=340 \qquad \text{(constant cell density)} \end{array}$$

2) GBA: Explicit constraint on $\mu(c_1,c_2,a_1)$ (using $c_3=340-c_1-c_2$)

$$\mu(c_1,c_2,a_1) = \frac{340-c_1-c_2}{\frac{1}{7}\left(1+\frac{1}{a_1}\right) + \frac{340-c_1}{7\cdot 340}\left(1+\frac{23}{c_1}\right) + \frac{340-c_1-c_2}{6\cdot 340}\left(1+\frac{41}{c_2}\right)} \quad \text{(constrained growth rate)}$$

3) Analytical conditions for optimal balanced growth state (system of algebraic equations)

$$\mu \frac{23}{7} \frac{(340 - c_1)}{(c_1)^2} + \mu \left[\frac{1}{7} \left(1 + \frac{23}{c_1} \right) + \frac{1}{6} \left(1 + \frac{41}{c_2} \right) \right] - 1 = 0 \quad (m = 1)$$

$$\mu \frac{40 \left(340 - c_1 - c_2 \right)}{6 \left(c_2 \right)^2} + \mu \left[\frac{1}{5} \left(1 + \frac{41}{c_2} \right) \right] - 1 = 0 \quad (m = 2)$$

The general GBA problem: formulation on q

General formulation on q in few steps

Substituting $\mathbf{v} = \mu \, \rho \, \mathbf{q}$ into $\mathbf{M} \, \mathbf{v} = \mu \, \mathbf{c}$

$$\rho \mathbf{M} \mathbf{q} = \mathbf{c}$$
 (independent of μ).

Substituting $\mathbf{c} = \rho \mathbf{M} \mathbf{q}$ into $c_{\mathrm{p}} = \mathbf{v} \cdot \boldsymbol{\tau}(\mathbf{a}, \mathbf{c})$

$$M_{\rm r}^{\rm p}q_{\rm r} = \mu \, \mathbf{q} \cdot \boldsymbol{\tau}(\rho \, \mathbf{M} \, \mathbf{q}, \mathbf{a})$$

Solving for μ :

$$\mu(\mathbf{q}, \mathbf{a}) = \frac{M_{\rm r}^{\rm p} q_{\rm r}}{\mathbf{q} \cdot \boldsymbol{\tau}(\rho \, \mathbf{M} \, \mathbf{q}, \mathbf{a})}$$

The density constraint:

$$\rho = \sum \mathbf{c} \quad \Leftrightarrow \quad \boxed{\mathbf{s} \cdot \mathbf{q} = 1}$$

The general GBA problem: analytical "solution"

Reformulated problem: for some given model (\mathbf{M}, τ, ρ) and environment a

Analytical conditions for optimal states: using KKT conditions, we find

$$\left| \left(M_j^{\mathrm{p}} - \mu \, \tau_j - \mu \, \mathbf{q} \cdot \frac{\partial \boldsymbol{\tau}}{\partial q^j} + s_j \mu \, \mathbf{q} \cdot \frac{\partial \boldsymbol{\tau}}{\partial \mathbf{q}} \, \mathbf{q} \right) q_j = 0 \quad \forall j \right|$$
 (2)

Using $\mathbf{s} \cdot \mathbf{q} = 1$: # algebraic equations = # variables (solvable)...

Equations for balance growth states: model L3

1) Original problem: Implicit constraints on μ , involving $v_1, v_2, v_3, c_1, c_2, c_3, a_1$ (6 variables, 5 equations)

$$\begin{array}{c} v_1-v_2=\mu\,c_1\\ v_2-v_3=\mu\,c_2\\ v_3=\mu\,c_3 \end{array} \qquad \text{(mass conservation)}\\ \frac{v_1}{7}\left(1+\frac{1}{a_1}\right)+\frac{v_2}{7}\left(1+\frac{23}{c_1}\right)+\frac{v_3}{6}\left(1+\frac{41}{c_2}\right)=c_3\\ c_1+c_2+c_3=340 \qquad \text{(constant cell density)} \end{array}$$

2) GBA: Explicit constraint on $\mu(q_2,q_3,a_1)$ (from the density constraint $q_1=1$)

$$\mu(q_2,q_3,a_1) = \frac{q_3}{\frac{1}{7}\left(1+\frac{1}{a_1}\right) + \frac{q_2}{7}\left(1+\frac{23}{340(1-q_2)}\right) + \frac{q_3}{6}\left(1+\frac{41}{340(q_2-q_3)}\right)} \quad \text{(constrained growth rate)}$$

3) Analytical conditions for optimal balanced growth state (system of algebraic equations)

$$\frac{1}{7} \left(1 + \frac{23}{340(1 - q_2)} \right) + \frac{23q_2}{7 \left[340(1 - q_2) \right]^2} - \frac{41q_3}{6 \left[340(q_2 - q_3) \right]^2} = 0 \quad (j = 2)$$

$$1 - \mu \frac{1}{6} \left(1 + \frac{41}{340(q_2 - q_3)} \right) - \mu \frac{41q_3}{6 \left[340(q_2 - q_3) \right]^2} = 0 \quad (j = 3)$$

The dynamic generalization: fitness optimization

For some given model (M, τ, ρ) and dynamic medium $\mathbf{a}(t)$:

$$\begin{array}{ll} \text{maximize} & \int_0^T \mu \, \mathrm{d}t & \text{(Maximize fitness)} \\ \text{subject to:} & & & \\ \mathbf{M} \, \mathbf{v} = \mu \, \mathbf{c} + \dot{\mathbf{c}} & \text{(Mass conservation)} \\ c_\mathrm{p} = \mathbf{v} \cdot \boldsymbol{\tau}(\mathbf{a}, \mathbf{c}) & \text{(Reaction kinetics and protein sum)} \\ \rho = \sum \mathbf{c} & \text{(Constant cell density)} \end{array}$$

Main trick for analytical "solution": define the "generalized fluxes" q such that

$$\rho \mathbf{M} \mathbf{q} = \mathbf{c} \quad ,$$

then reformulate the problem on $\dot{\mathbf{q}}, \mathbf{q}, \mathbf{a}$, and solve Euler-Lagrange equations.