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Why is there diversity in nature?

▶ Natural ecosystems ⇒ diversity

▶ Darwin ⇒ survival of the fittest

▶ Solving the paradox: tradeoffs!

Credit: Ostrich by Diego Delso, Colibri by The Lilac Breasted Roller
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▶ Natural ecosystems ⇒ diversity

▶ Darwin ⇒ survival of the fittest

▶ Solving the paradox: tradeoffs!
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Respiration versus Fermentation

Respiration

Credit: OpenStax College, Microbiology

Fermentation

Lactate dehydrogenase

Credit: Jawahar Swaminathan and MSD staff at the European

Bioinformatics Institute
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The ATP yield of respiration is much higher than fermentation

Feature Respiration Fermentation

Energy Yield (ATP) 26-32 2

Oxygen required Yes No

Membranes required Yes No

Involves glycolysis Yes Yes

Other pathways TCA cycle + ETC∗ specific fermentation pathway

End products CO2 + H2O lactate / ethanol + CO2

∗Electron Transport Chain
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Usually, evolution will maximize the rate, not yield

Glycolysis pathway:
S ⇌ X1 ⇌ . . . ⇌ P (∆Gdriv < 0)
coupled to:
d ADP ⇌ d ATP (∆GATP > 0)

What should d be?

∗Werner et al. [5]
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Assume∗ flux is given by:
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∆Gpath

Then the ATP production rate is:

JATP = −d L (∆Gdriv + d ∆GATP)

dopt = − ∆Gdriv
2∆GATP

dmax = − ∆Gdriv
∆GATP
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Usually, evolution will maximize the rate, not yield

▶ fermentation (glucose to lactate):
dopt ≈ 2, dmax = 4, dhuman = 2

▶ fermentation (glucose to ethanol):
dopt ≈ 3, dmax = 5, dyeast = 2

▶ respiration (glucose to CO2):
dopt ≈ 28, dmax = 55, decoli = 26

dopt = − ∆Gdriv
2∆GATP

dmax = − ∆Gdriv
∆GATP

d

J
A
T
P

∗Werner et al. [5]
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Thermodynamic bottlenecks

Is only considering the overall thermodynamic
force good enough?
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Thermodynamic force affects enzyme efficiency
Based on the flux-force relationship∗: J+

J− = e−∆G′/RT
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∗Noor et al. [3]
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Example with 3-step pathway: Max-min Driving Force
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Mechanistic models

Stoichiometric models usually ignore thermodynamics,
while Max-min Driving Force is heuristic.
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Mechanistic models

Stoichiometric models usually ignore thermodynamics,
while Max-min Driving Force is heuristic.

Is there a mechanistic model that can capture the rate/yield
trade-off?
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Metabolic pathway efficiency

Genome-scale models typically require
linearity, and metabolite concentrations are
ignored. Instead one assumes that internal
fluxes are∗:

1. unbounded

2. bounded by a constant: vi ≤ vmax
i

3. bounded by the enzyme maximal rate:
vi ≤ ei · kapp

In reality kapp is a function of the
metabolic state: v = e · f(c;k):
▶ k – kinetics constants (turnover

number, affinity, etc.)

▶ c – concentrations of all substrates
and products

▶ f(·) depends also on other factors
(e.g. pH, temperature, crowding), but
we assume the changes are small

∗Noor and Liebermeister [2]
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Metabolic pathway efficiency

3

external
substrate

2

1

enzyme 1 enzyme 2 enzyme 3

intermediate
metabolite 1

intermediate
metabolite 2

external
product

bounded enzyme amount
or

bounded enzyme cost

maximize steady-state
production flux

bounded total metabolite concentration (optional)

Σ si ≤ stot

Σ εi ≤ εtot

Σ wi εi ≤ εtot

max  J
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Reversible enzyme kinetics based on Haldane

For a reversible enzyme catalyzed reaction∗: S
E−−⇀↽−− P

v = e · kcat
+ s/KS − kcat

− p/KP

1 + s/KS + p/KP︸ ︷︷ ︸
kapp

∗where s, p, and e are the concentrations of S, P , and E
†where ∆rG

′ ≡ ∆rG
′◦ +R T ln(p/s) and ∆rG

′◦ = −R T ln(Keq)
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v = e · kcat
+ s/KS − kcat

− p/KP

1 + s/KS + p/KP︸ ︷︷ ︸
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Haldane further showed that the equilibrium constant satisfies the following
relationship:

Keq =
kcat

+

kcat
−
KP

KS
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Reversible enzyme kinetics based on Haldane

v = e · kcat
+ s/KS − kcat

− p/KP

1 + s/KS + p/KP︸ ︷︷ ︸
kapp

The Haldane rate law can be rewritten (Noor and Liebermeister [2]) as†:

v = e · kcat
+︸ ︷︷ ︸

Vmax

·
(
1− e

∆rG
′

RT

)
︸ ︷︷ ︸

ηfor

·
s
KS

1 + p
KP

+ s
KS︸ ︷︷ ︸

ηsat

∗where s, p, and e are the concentrations of S, P , and E
†where ∆rG

′ ≡ ∆rG
′◦ +R T ln(p/s) and ∆rG

′◦ = −R T ln(Keq)
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The factorized Haldane rate law and some simplification

Haldane
———————–

v = ekcat
+ (1− e∆rG′/RT )︸ ︷︷ ︸

ηfor

s
KS

1 + s
KS

+ p
KP︸ ︷︷ ︸

ηsat

Michaelis-Menten
———————–

v = ekcat
+ s

s+KS︸ ︷︷ ︸
ηsat

Thermodynamic
———————–

v = ekcat
+ (1− e∆rG′/RT )︸ ︷︷ ︸

ηfor

Mass-action
———————–

v = ekcat
+ (1− e∆rG′/RT )︸ ︷︷ ︸

ηfor

s

KS︸︷︷︸
ηsat

p ≪ KP, ηfor = 1 ηsat = 1
s ≪ KS, p ≪ KP

Noor and Liebermeister [2]
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Unbranched pathway with “thermodynamic” kinetics

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

J = ei kcat,i

(
1− e∆rG′

i/RT
)

(equivalent to assuming ηsat = 1)

∗Noor and Liebermeister [2]
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Unbranched pathway with “thermodynamic” kinetics

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

J = ei kcat,i

(
1− e∆rG′

i/RT
)

Optimized flux (approximated) solution∗

J∗ ≈ etot · k̄cat
(
1− eα∆G′

tot/RT
)

where: k̄cat ≡

∑
j

1

kcat,j

−1

︸ ︷︷ ︸
pathway specific activity

, α ≡
(∑

j
1

kcat,j

)
·
(∑

j
1√
kcat,j

)−2

, ∆G′
tot =

(∑
j ∆rG

′
j

)

∗Noor and Liebermeister [2]
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Unbranched pathway with “thermodynamic” kinetics

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

J = ei kcat,i

(
1− e∆rG′

i/RT
)

Optimized flux (approximated) solution∗

J∗ ≈ etot · k̄cat
(
1− eα∆G′

tot/RT
)

Compare to: Jpath = −L ·∆G′
tot

where: k̄cat ≡

∑
j

1
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︸ ︷︷ ︸
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Enzyme efficiency is also affected by saturation
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and low driving force

maximal rate:
catalytic constant kcat

rate lowered 
by reverse flux

rate lowered by
non-saturation or
allosteric effects

minimal demand

higher demand 
to compensate
reverse flux

higher demand
to compensate
non-saturation and
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Minimal demand can be expressed as the inverse of the rate law

Reversible Haldane rate law decomposition:

v = e · k+cat ·
(
1− e∆G′/RT

)
︸ ︷︷ ︸

ηfor

· s/KS

1 + p/KP + s/KS︸ ︷︷ ︸
ηsat

And the demand q is defined as the minimum required e for achieving a certain rate v:

e = v · 1

k+cat
· 1

1− e∆G′/RT︸ ︷︷ ︸
1/ηfor

· 1 + p/KP + s/KS

s/KS︸ ︷︷ ︸
1/ηsat
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The minimal enzyme cost of a pathway

Given a pathway:
S ⇌ X1 ⇌ . . . ⇌ P

The enzyme cost is defined as:

etot =
∑
i

ei

ei = vi ·
1

k+cat,i
· 1

ηfori (c)
· 1

ηsati (c)

where minimizing etot over all possible metabolite concentrations (c) gives us the ECM
score. This is a convex optimization problem.
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Example with 3-step pathway: Enzyme Cost Minimization

X

A

reaction 1

B

reaction 2

Y

reaction 3

external

metabolite

internal

metabolite

internal

metabolite

external

metabolite

reaction 1 reaction 2 reaction 3

lo
g
[B

]

[B]/ [A] < Keq

[B]/ [A] > Keq

log [A] log [A] log [A]

total
5-fold lower

kcat,1 value

Upper bound
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log [A] log [A] log [A]
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How do bacteria choose between two glycolyses?

EMP: Embden-Meyerhof-Parnas, ED: Entner-Doudoroff∗

∗Flamholz et al. [1]
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Overall thermodynamics

Stoichiometry of both glycolytic pathways:

Glucose+2NAD(P)++nADP+nPhosphate −−→ 2Pyruvate+2NAD(P)H+nATP+nH2O
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Overall thermodynamics

Stoichiometry of both glycolytic pathways:

Glucose+2NAD(P)++nADP+nPhosphate −−→ 2Pyruvate+2NAD(P)H+nATP+nH2O

The EMP pathway generates twice as much ATP:

▶ EMP: d = 2 (reminder: dopt = 2, according to Werner et al. [5])

▶ ED: d = 1

On the other hand, the total driving force of the ED pathway is larger:

▶ EMP: ∆G′
tot ≈ −100 kJ/mol

▶ ED: ∆G′
tot ≈ −160 kJ/mol
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ED has a better thermodynamic profile than EMP
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ED has a 5-times lower minimal enzyme cost than EMP
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More than a single pathway

Can we use ECM more generally to predict enzyme/metabolite
concentrations in vivo?
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We can calculate the cost of any given flux

Given any flux (e.g. measured using 13C
flux analysis) we can find the minimal
enzyme cost based on the kinetic model∗

∗Noor et al. [4]
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We can calculate the cost of any given flux

Given any flux (e.g. measured using 13C
flux analysis) we can find the minimal
enzyme cost based on the kinetic model∗

A small model of E. coli ’s central
metabolism – upper glycolysis, lower
glycolysis, pentose phosphate pathway,
TCA cycle
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We can calculate the cost of any given flux
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We can calculate the cost of any given flux
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Summary

We considered 4 models with increasing complexity, where pathway flux depends on:

1. the total ∆rG
′ (analytical)

2. the reaction with the lowest driving force (linear programming)

3. the enzyme cost, assuming ηsat = 1 (analytical)

4. the enzyme cost, allowing ηsat ≤ 1 (convex optimization)
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Translating enzyme cost to growth rate

Assume that:

1. The metabolic model describes the minimal amount of enzymatic proteins required

2. The fraction of the protein allocated to enzymes is a decreasing linear function of
growth rate

▶ vBM – biomass rate [gr / h]

▶ cBM – total biomass [gr]

▶ etot – the enzyme cost [gr]

▶ rBM – normalized biomass rate [1 / h]

▶ αccm – fraction of enzyme in proteome [unitless]

▶ αprot – fraction of protein in dry mass [unitless]
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Further extensions of ECM

▶ ECM can be solved efficiently using convex optimization

▶ But what if we don’t know the flux in advance?

▶ Wortel et al. [6] showed that optimal flux strategies must be Elementary Flux
Modes (EFMs)

▶ Since there is a finite number of EFMs, we can enumerate them and find the one
with the lower ECM score
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