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Outline of talk

• The complexity of the simplest life forms

• The simplicity of the prebiotic Earth – hence the puzzle of the origin of 
life

• Autocatalytic sets – an organizing principle

• Dynamics of autocatalytic sets

• Evolution of autocatalytic sets and protocells

• Other puzzles in the origin of life
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Bacterial cells  - E. coli
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Illustration of Escherichia Coli by  Goodsell
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The simple molecules of life

Pictures of molecules from Cell Biology by the Numbers. Authors R. Milo and R. Phillips.
Illustrated by N. Orme.
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Proteins:  Macromolecules
with a few hundred  to several
thousand amino acids.

Produced by a complicated 
machinery of transcription and 
translation.

Each playing a specific role in
the larger organization



The simplest living cells are very complex 
compared to what obtained on the Earth about 4 bya

At the molecular level:

Ingredients (within ~ 1 µm3): water ~ 1010 molecules
small molecules (metabolites) inorganic + organic: ions, sugars, amino acids, 

nucleobases, lipids, cofactors (~ 1000 species)
macromolecules: protein (~ 500 species, avg length ~ 200 amino acids)

RNA, DNA (~ 1 molecule, ~ 500 genes)
assemblies: cell membrane (made of lipid, transporter protein, receptors)

machines, e.g., Ribosome, RNAP, DNAP (made of protein, RNA)

Molecular Processes: chemical reactions, catalysis, transport by diffusion, 
lipid assembly, transport by enzymes, signaling, transcription (base pairing), translation (genetic 
code), DNA replication (with errors), growth, division



The simplest living cells are very complex 
compared to what obtained on the Earth about 4 bya

At the level of the whole: 

Organization: biochemical networks (metabolic, genetic, signaling)
Role playing: specificity of action, “made for each other” property

System level properties: 
(i) The ability, in a suitable environment, to transform raw materials available in the environment into 
other products needed in the system.  
(ii) Reproduction of the whole. 
(iii) Capacity to evolve. 

NASA definition of life: “Life is a self-sustaining chemical system capable of Darwinian evolution.”

Hence there must have been a period of chemical evolution for life to appear.  Evolution of 
chemical complexity.

Origin of life



What came first?

• Organization

• Metabolism

• Self reproduction

• Enclosure

• Evolvability

• Large molecules

There may have been many transitions in the chemical evolution leading to life.
However, we do not have evidence of the intermediate stages.



What the early Earth might have looked like – a ball of fire

Source: http://tylkonauka.pl/wiadomosc/poczatki-ziemi



What the prebiotic Earth might have looked like after the oceans condensed

Source: http://tylkonauka.pl/wiadomosc/poczatki-ziemi



What kind of objects and processes existed on the prebiotic Earth?

Chemical molecules undergoing chemical reactions:

A → B

A + B → C,      C → A + B

Also catalyzed reactions:

A + C → B + C

A + B + C → P + C

Catalysis speeds up the rates of reaction and is crucial in cells
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Gorlero et al (2009) FEBS Lett. 583
Reproduced from Luisi, The Emergence of Life (2016)

Catalytic activity of small molecules



Catalysis and Autocatalytic Sets (ACSs)

• Small molecules with catalytic properties are ubiquitous and are  readily 
produced by natural processes on the prebiotic earth

• Consider a class of small molecules which are naturally produced in the 
prebiotic Earth and are abundant in a particular locale. We will refer to them 
as the “food set”, and assume that their supply is maintained “for free”.

A set of catalyzed reactions with the following properties is referred to 
as an ACS:
1. The catalyzed reactions form a continuous path from the food set to 

higher molecules
2. Each catalyst is itself produced in a catalyzed reaction belonging to 

the set

Autocatalytic set (ACS)

Eigen, Die Naturwissenschaften (1971); Kauffman, J. Cybernetics (1971); Rossler,  
Zeitschrift fur Naturforschung B (1971) 



Alternative definition of Autocatalytic Set 

Let  F denote the “food set” (the set of molecules which are naturally produced in 
the prebiotic Earth and are abundant in a particular locale). 

Let S be a set of catalyzed reactions. Every catalyzed reaction has a set of 
reactants, products, and a catalyst.
Let R, P and C be the unions of reactants, products and catalysts, respectively, 
of all the reactions in S. 

Then S is an ACS if both C and R are subsets of   P  ∪ F.

In other words, all the catalysts and reactants required to carry out the 
reactions of S should be either be produced in S itself, or be in the food set.

For a formal definition and an algorithm to find ACSs in a list of reactions, 
see Hordijk and Steel, J Theor. Biol. (2004)
This is not the only kind of structure that can be called an ACS. For generalizations and a 
classification,  see  Blokhuis, Lacoste and Nghe, PNAS (2020)



S = {R1, R2}
F  = {A,B,C,D}, R = {A,B,C,D}, P  = {P,Q}, C = {P,Q}
P ∪ F = {A,B,C,D,P,Q} Catalytic closure; 

Positive feedback

Example 1



Farmer, Kauffman, Packard 
(1986) Physica D

Example 2

Artificial chemistry: 
• All molecules are strings of two 

monomers a and b
• Reactions are ligations and 

cleavage of the strings
• Some molecules are catalysts of 

some reactions



REACTION SET S = { R" , R$ , R% }
R" ∶ F F)*+,-*./
R$ ∶ F)*+,-*./ M
R%. ∶ 2 3

4

4
4

REACTANTS    R = { F, F)*+,M }
PRODUCTS    P = F)*+,M, L
CATALYSTS      9 = { L }
P ∪ F   = { F, F)*+ ,M, L }Since R and C are subsets of P ∪ F,

S is an ACS

Example 3: CELL AS AN AUTOCATALYTIC SET



What came first?

• Organization

• Metabolism

• Self reproduction

• Enclosure

• Evolvability

• Large molecules

The idea of autocatalytic sets naturally embodies the first three. Autocatalytic sets  
might involve lipid molecules that naturally form enclosures (micelles and 
vesicles). Theoretical models suggest that autocatalytic sets could be evolvable. 
Their evolution might be aided by the formation of enclosures. They could also 
produce large molecules.



Some questions about ACSs 

Consider the entire reaction space spanned by organic chemistry.

Clearly, it has subsets of reactions that are autocatalytic (e.g., the set of all reactions in any living cell).

Question 1:  Does it also have simpler ACSs in the part of chemical space proximate to what existed on the 
prebiotic Earth? (Amino acids, their dimers, trimers, other small molecules, minerals)

Question 2: If so, might those have been the primitive chemical organizations that first arose on the Earth?

Question 3: In a large chemistry of catalysed and uncatalyzed reactions, do ACSs stand out? Do the products 
of the ACS have significantly larger populations than the other molecules? (This is a question that goes from 
structure (network topology of ACS) to its dynamics (chemical kinetics, population dynamics).

Question 4: Can ACSs evolve to become more complex? Can we imagine evolutionary paths leading to 
complex ACSs such as those that exist in a living cell?

Q1 is largely an experimental question. Q2-4 can be investigated theoretically for artificial chemistries 
assuming they have ACSs.
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Qualitative summary of ACS dynamics

Answer to Q3: 

ACS products do stand out above the background, but that depends on many details: 

Non-equilibrium conditions maintained by an influx of food molecules is a must. 

ACS dominance depends upon on kinetic rate constants (e.g., sufficiently large catalytic 
efficiencies, magnitudes of forward and backward reaction rates, dissipation rates).

Depends upon details of ACS network topology (e.g., where the catalysts are located in the 
reaction network).

Starting from small food molecules, it is difficult to produce large molecules in significant 
quantities even if they are products of an ACS.  A `nested ACS’ structure, in which ACSs with 
small catalyst molecules are embedded inside ACSs with larger catalysts can produce large 
molecules.
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Evolution of an autocatalytic set in a protocell
(where the enclosure forming molecule is part of ACS)

Origin of life

Singh, AY and Jain S 
(2023) Life 13, 2327



Reactions
Transport : A(1)ext

↵X2�! A(1)

R1 (uncatalyzed) : 2A(1)
kF⌦
kR

A(2)

R1 (catalyzed) : 2A(1) +A(4)
kF⌦
kR

A(2) +A(4)

R2 (uncatalyzed) : 2A(2)
kF⌦
kR

A(4)

R2 (catalyzed) : 2A(2) +A(4)
kF⌦
kR

A(4) +A(4)

Degradation : A(2)
��! ;, A(4)

��! ;.

A(1)ext denotes the monomer species outside the cell; its concentration is assumed constant. The
membrane formed by the dimers is permeable only to monomers; the rate at which monomers come
in is proportional to the number of dimers, ↵ being the proportionality constant. Two monomers can
spontaneously ligate to form a dimer and two dimers to form a tetramer, both with the same rate constant
kF . The reverse (dissociation) reactions have a spontaneous rate constant kR. These ligation-dissociation
reactions are also catalyzed by the tetramer, whose ‘catalytic efficiency’ is denoted  (this effectively
means that the catalyzed reaction rate is x4 times the spontaneous rate). The dimer and tetramer are
assumed to degrade with rate constant � into a waste product that quickly diffuses out of the protocell.
Note that the catalyzed reactions R1 and R2 together with the transport reaction form an ACS starting
from the food set A(1)ext.

In this model the dimer does double duty as both the enclosure forming molecule as well as a reactant
for catalyst production. In the equations below, we do not introduce separate population variables for the
two roles. This is purely for simplicity and is not a crucial assumption. In the Supplementary Material
Section 1 we show that in a model with two monomer species in which these two functions are performed
by distinct molecules, similar results arise.

Using mass action kinetics, the deterministic rate equations of the model are given by

dx1

dt
= ↵x2 � 2(k0Fx

2
1 � k0Rx2)�

V̇

V
x1, (1)

dx2

dt
= k0Fx

2
1 � k0Rx2

� 2(k0Fx
2
2 � k0Rx4) � (�+

V̇

V
)x2, (2)

dx4

dt
= (k0Fx

2
2 � k0Rx4) � (�+

V̇

V
)x4, (3)

k0F ⌘ kF (1 + x4), k
0
R ⌘ kR(1 + x4). (4)

The V̇ /V terms represent dilution in an expanding volume. Note that when V is not constant, Eqs. (1-3)
do not specify the dynamics completely unless the growth rate V̇ /V is specified. Since here we want an
endogenous growth rate, we do not specify V̇ /V exogenously. Instead, we write the model in terms of
the populations, and assume a certain functional form for V in terms of the populations. In terms of Xi,

3/28

Origin of life

S = {Transport, R1(catalyzed), R2 (catalyzed)} is an ACS
F = {A(1)ext},   R = {A(1)ext , A(1), A(2), A(4)},   P = {A(1), A(2), A(4)},   C = {A(2), A(4)}



Equations defining the model
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the above equations reduce to

dX1

dt
=↵X2 � 2(

kFX2
1

V
� kRX2)(1 + 

X4

V
), (5)

dX2

dt
=(

kFX2
1

V
� kRX2)(1 + 

X4

V
)

� 2(
kFX2

2

V
� kRX4)(1 + 

X4

V
) � �X2, (6)

dX4

dt
=(

kFX2
2

V
� kRX4)(1 + 

X4

V
) � �X4. (7)

For simplicity we take V to be a linear function of the populations X = (X1, X2, X4):

V (X) = v(X1 + 2X2 + 4X4), (8)

where v is a constant. This choice gives the protocell a constant mass density (as observed in bacterial
cells [38]) since V is proportional to the mass of the protocell. This choice is not essential; we have tried
other linear functions V = v1X1 + v2X2 + v4X4 (vi constant), including V = v(X1 +X2 +X4). The
quantitative results depend on the values of vi but the qualitative features presented below hold for
all the cases considered. We have also considered other versions of the model with the transport term
↵X2 in 5 modified to a gradient term ↵X2(x1,ext � x1) (where x1,ext is the constant concentration of
A(1)ext), certain other autocatalytic reaction topologies, etc. (see Supplementary Material Section 1).
The qualitative conclusions seem to be robust to these choices. Without loss of generality, the constants
kR and v are set to unity by rescaling t ! kRt, ↵ ! ↵/kR, � ! �/kR, kF ! kF /(kRv),  ! /v, which
makes time and the other parameters dimensionless.

The definition of V (X) and the values of the rescaled parameters kF ,�,↵, completely define Eqs.
(5-7), and one can solve for X(t) given any initial condition. In a particular trajectory V may increase or
decrease. Protocells larger than a characteristic size may become floppy or unstable and spontaneously
break up into smaller entities. We assume that if V increases to a critical value Vc the cell divides into
two identical daughters each containing half of the three chemicals of the mother protocell at division.
The dynamics of a daughter after division is again governed by Eqs. (5-8). This division rule and Eqs.
(5-8) together completely define the model at the deterministic level.

The dynamics of the ACS consisting of the catalyzed reactions R1 and R2 in a fixed size container
but with buffered A(1) as the food set is given by Eqs. (6-7) with V and X1 constant. This was studied
in [36] at the deterministic level where a bistability was observed, and in [37] at the stochastic level where
transitions between the attractors was observed. The present model by adding Eqs. (5), (8) and the
division rule embeds the ACS in a growing-dividing protocell instead of a fixed volume container. It
shares the bistability of the fixed volume version, but also possesses qualitatively new properties. These
properties (considered along with stochastic dynamics) enable a population of such protocells to mimic
(one step of) Darwinian evolution, as will be discussed below.

2 Results

2.1 Deterministic dynamics: Bistability with two distinct growth rates

Since V is a linear function of the populations, V̇ /V can be expressed in terms of the concentrations.
Differentiating Eq. (8) w.r.t. t and using Eqs. (5-7), it follows that

µ ⌘ V̇

V
= ↵x2 � �(2x2 + 4x4). (9)

Eqn. (9) expresses the instantaneous growth rate of the protocell in terms of its chemical composition, a
feature that is missing from previous protocell models.
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Figure 1. An illustration of a protocell inside an aqueous medium buffered with monomeric food molecules,

A(1)ext. The protocell membrane is composed of dimer molecules A(2).

multiple ACSs [31,32] causes protocells that contain distinct ACSs to grow with different rates [10,26].
This can give rise to differential fitness of protocells.

Notwithstanding all the above work, a crisp and convincing theoretical demonstration of the Darwinian
evolution of a population of ACS containing protocells remains an unfinished task [12]. In this paper we
present a new model which explicitly demonstrates the evolution of a population of such protocells in the
Darwinian sense (albeit only one step of evolution due to the simplicity of the model). Our work makes
use of an interesting feature of certain autocatalytic network topologies: the presence of multi-stability in
the dynamics [33–37]. Our protocell has just two stable states, one in which no ACS is present (inactive
state) and the other in which it is (active state). The protocell has a higher growth rate in the active
state compared to the inactive state. The variation in a protocell is just the spontaneous transition, due
to chemical fluctuation in a small volume, from the inactive to the active state without any change of
environment. The evolution exhibited is the establishment, growth and dominance of the active protocells
in a population of protocells. The simplicity of the model allows us to quantify the conditions under
which this ‘natural selection’ can take place, in terms of the various dynamically generated timescales
of the model. In future work we hope to generalize this to multiple evolutionary steps of increasing
complexity.

1 The model

The protocell consists of three molecular species, a monomer A(1) (food molecule), a dimer A(2) (assumed
to be the enclosure forming molecule) and tetramer A(4) (catalyst); see Fig. 1. The population of A(i)
(i = 1, 2, 4) in the protocell is denoted Xi; xi ⌘ Xi/V is its concentration, where V is the volume of the
protocell. The set of reactions these molecules can undergo are:
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=  Population of A(i)

Figure 1. An illustration of a protocell inside an aqueous medium buffered with monomeric food molecules,

A(1)ext. The protocell membrane is composed of dimer molecules A(2).

multiple ACSs [31,32] causes protocells that contain distinct ACSs to grow with different rates [10,26].
This can give rise to differential fitness of protocells.

Notwithstanding all the above work, a crisp and convincing theoretical demonstration of the Darwinian
evolution of a population of ACS containing protocells remains an unfinished task [12]. In this paper we
present a new model which explicitly demonstrates the evolution of a population of such protocells in the
Darwinian sense (albeit only one step of evolution due to the simplicity of the model). Our work makes
use of an interesting feature of certain autocatalytic network topologies: the presence of multi-stability in
the dynamics [33–37]. Our protocell has just two stable states, one in which no ACS is present (inactive
state) and the other in which it is (active state). The protocell has a higher growth rate in the active
state compared to the inactive state. The variation in a protocell is just the spontaneous transition, due
to chemical fluctuation in a small volume, from the inactive to the active state without any change of
environment. The evolution exhibited is the establishment, growth and dominance of the active protocells
in a population of protocells. The simplicity of the model allows us to quantify the conditions under
which this ‘natural selection’ can take place, in terms of the various dynamically generated timescales
of the model. In future work we hope to generalize this to multiple evolutionary steps of increasing
complexity.

1 The model

The protocell consists of three molecular species, a monomer A(1) (food molecule), a dimer A(2) (assumed
to be the enclosure forming molecule) and tetramer A(4) (catalyst); see Fig. 1. The population of A(i)
(i = 1, 2, 4) in the protocell is denoted Xi; xi ⌘ Xi/V is its concentration, where V is the volume of the
protocell. The set of reactions these molecules can undergo are:
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Rate equations in terms of population variablesthe above equations reduce to
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For simplicity we take V to be a linear function of the populations X = (X1, X2, X4):

V (X) = v(X1 + 2X2 + 4X4), (8)

where v is a constant. This choice gives the protocell a constant mass density (as observed in bacterial
cells [38]) since V is proportional to the mass of the protocell. This choice is not essential; we have tried
other linear functions V = v1X1 + v2X2 + v4X4 (vi constant), including V = v(X1 +X2 +X4). The
quantitative results depend on the values of vi but the qualitative features presented below hold for
all the cases considered. We have also considered other versions of the model with the transport term
↵X2 in 5 modified to a gradient term ↵X2(x1,ext � x1) (where x1,ext is the constant concentration of
A(1)ext), certain other autocatalytic reaction topologies, etc. (see Supplementary Material Section 1).
The qualitative conclusions seem to be robust to these choices. Without loss of generality, the constants
kR and v are set to unity by rescaling t ! kRt, ↵ ! ↵/kR, � ! �/kR, kF ! kF /(kRv),  ! /v, which
makes time and the other parameters dimensionless.

The definition of V (X) and the values of the rescaled parameters kF ,�,↵, completely define Eqs.
(5-7), and one can solve for X(t) given any initial condition. In a particular trajectory V may increase or
decrease. Protocells larger than a characteristic size may become floppy or unstable and spontaneously
break up into smaller entities. We assume that if V increases to a critical value Vc the cell divides into
two identical daughters each containing half of the three chemicals of the mother protocell at division.
The dynamics of a daughter after division is again governed by Eqs. (5-8). This division rule and Eqs.
(5-8) together completely define the model at the deterministic level.

The dynamics of the ACS consisting of the catalyzed reactions R1 and R2 in a fixed size container
but with buffered A(1) as the food set is given by Eqs. (6-7) with V and X1 constant. This was studied
in [36] at the deterministic level where a bistability was observed, and in [37] at the stochastic level where
transitions between the attractors was observed. The present model by adding Eqs. (5), (8) and the
division rule embeds the ACS in a growing-dividing protocell instead of a fixed volume container. It
shares the bistability of the fixed volume version, but also possesses qualitatively new properties. These
properties (considered along with stochastic dynamics) enable a population of such protocells to mimic
(one step of) Darwinian evolution, as will be discussed below.

2 Results

2.1 Deterministic dynamics: Bistability with two distinct growth rates

Since V is a linear function of the populations, V̇ /V can be expressed in terms of the concentrations.
Differentiating Eq. (8) w.r.t. t and using Eqs. (5-7), it follows that

µ ⌘ V̇

V
= ↵x2 � �(2x2 + 4x4). (9)

Eqn. (9) expresses the instantaneous growth rate of the protocell in terms of its chemical composition, a
feature that is missing from previous protocell models.
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Protocell division: If V increases to a critical value Vc, the protocell divides into 
two identical  daughters: Xi→ Xi / 2



Trajectories

Origin of life

Figure 3. Deterministic trajectories in the bistable region of the model.  = 2400, other parameters
are as in Fig. 2. A: Phase portrait projected onto the x2 � x4 plane. Several trajectories starting with
different initial conditions are shown; they reach one of two stable fixed points denoted by blue closed
dots. All the solid curve trajectories end at the stable fixed point on the top right (ACS active) while
all the dotted trajectories end at the stable fixed point on bottom left of the plot (ACS inactive). The
red open dot represents an unstable fixed point. The dashed curve is a schematic of the basin boundary
between the two stable fixed point attractors. B: Deterministic trajectories of populations (in log scale)
of species A(1), A(2), A(4) and the protocell volume as functions of time for two initial conditions.
Vc = 1000. Initial conditions: IC1 (lower panel; dotted curves): X1 = 952, X2 = 20, X4 = 2. IC2 (upper
panel; solid curves): X1 = 944, X2 = 20, X4 = 4. Protocell starting with IC1 ends up in the inactive state

in which the population of the catalyst A(4) is less than one as seen in dotted red curve in the lower
panel. Protocell starting with IC2 ends up in the active state in which the population of the catalyst is
high (approximately between 10 and 20). The interdivision times in the inactive and active states are,
respectively, ⌧1 = 0.269, ⌧2 = 0.075.

without any explicit regulatory mechanism is a consequence of (a) the fact that the r.h.s. of Eqs. (5-7)
are homogeneous degree one functions of the populations (if all three populations are simultaneously
scaled by a factor �, Xi ! �Xi, then the r.h.s. of Eqs. (5-7) also scales by the same factor �), and (b)
that the ACS structure couples all chemicals to each other. This is discussed in detail in ref. [40] in the
context of models of bacterial physiology.

Fig. 3B shows, for a protocell, the trajectories of its chemical populations and volume as functions
of time for two very close initial conditions (defined by the population of species A(1), A(2) and A(4))
that lie in different attractor basins. They converge to different attractors: ACS-active (upper panel)
and inactive (lower panel). After a protocell divides we track one of its daughters. The attractor is a
fixed point for concentrations (Fig. 3A) but a limit cycle for populations and the volume (Fig. 3B).
The growth phase of the limit cycle has the same constant slope for all populations in a given attractor,
signifying exponential growth with the same growth rate for all chemicals in the attractor. The slope is
larger (and interdivision time shorter) for the active attractor. At division, since populations and the
volume both halve, concentrations do not see any discontinuity.

The existence of bistability is robust in parameter space. It may be noted that a nonzero degradation
rate � of the dimer and tetramer is essential for bistability (as also found in the model studied in ref. [36]).
A degradation term �0x1 for the monomer can also be introduced in Eq. (1); however it is found that �0
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Figure 2. Bifurcation diagram for the model: Steady state concentration, x4, of the catalyst versus catalytic

efficiency, . The region between I
(= 1840) and II

(= 3580) is the region having three fixed points, two of

which are stable (solid black curves) and one is unstable (red dotted curve). Inset: Growth rate, µ, of the
protocell, versus . Parameters: Hereafter, kR and v have been set to unity without loss of generality after

non-dimensionalizing the model. kF = 1, � = 20, ↵ = 100.

When Eq. (9) is substituted in Eqs. (1-3), the concentration dynamics also becomes completely
defined. It has fixed points. Fig. 2 shows a bifurcation diagram in which the fixed point concentration
of A(4) is plotted by varying the parameter . The model exhibits bistability for I <  < II . Note
that the catalyst concentration x4 in the upper stable branch is two orders of magnitude higher than
in the lower stable branch. On the lower branch the rates of catalyzed reactions are smaller than the
corresponding spontaneous reactions, while on the upper branch they are much higher. We therefore refer
to the upper branch as one in which the ACS is active and the lower branch as ACS inactive. Depending
on the initial condition, for a given  in the bistable region, the dynamics will settle into either of the two
stable attractors as shown in Fig 3A for one such . For  < I there is only one attractor (the inactive
one), and for  > II also only one attractor (the active one).

For each fixed point attractor, the r.h.s. of Eq. (9) is constant. Hence in the attractor, V grows
exponentially, V (t) = V (0)eµt with constant µ. In other words the protocell has a characteristic growth
rate in each attractor given by the expression in Eq (9). This is shown in the inset of Fig. 2. Hence in the
bistable region, the protocell can grow with two distinct growth rates depending upon which attractor it
is in. The growth rate is many times higher in the active state than in the inactive one.

Once the concentrations have reached their fixed point attractor, (9) implies that V grows exponentially,
and Eq. (8) then implies that each chemical population must also grow exponentially with the same

rate µ. (Only if all populations grow at the same rate as V will their concentrations be constant.) Thus
in each attractor we have Xi(t) = Xi(0)eµt. In other words, the protocell naturally exhibits balanced
growth in each attractor (growth with ratios of all populations constant [39]). Exponentially growing
trajectories in a nonlinear system and this remarkable emergent coordination between the chemicals
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Figure 3. Deterministic trajectories in the bistable region of the model.  = 2400, other parameters
are as in Fig. 2. A: Phase portrait projected onto the x2 � x4 plane. Several trajectories starting with
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panel; solid curves): X1 = 944, X2 = 20, X4 = 4. Protocell starting with IC1 ends up in the inactive state

in which the population of the catalyst A(4) is less than one as seen in dotted red curve in the lower
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Evolution of the protocell population:
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Origin of life



Autocatalytic sets in the lab
S. Ameta, Y. Matsubara, N. Chakraborty, S. Krishna, S. Thuttupalli (2021), Life 

Lu et al (2023) Nat. Chem.: Small-molecule autocatalysis drives compartment growth, 
competition and reproduction



•Origin of enclosure (cell membrane)
•Emergence of macro-molecules (proteins, RNA, DNA)
•Separation of roles (RNA, DNA – Information carriers, Proteins –

Functional agents)
•Emergence of the genetic code
•Origin of chirality

Origin of life

Other puzzles in the origin of life


