Economic Principles in Cell Physiology

Paris, July 10-14, 2023

Economy of organ shapes and function

Cyril Karamaoun & Frédérique Noël

Table of contents

Organ morphogenesis

Optimization

The example of the lung

The lung as a model organ for optimization under constraints

Lung morphology

Lung dynamics

Energetic cost of breathing

Allometric scaling laws

History of allometry

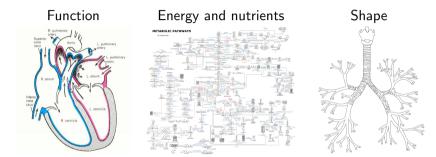
The respiratory system

Conclusion

Organ morphogenesis

Constraints

Organ development in pluricellulars is submitted to constraints:



Connection of constraints:

function \leftrightarrow minimization of the cost in energy \leftrightarrow appropriate organ structure

Adequate organ?

The perfect organ does not exist. But the optimal can be reached.

Mathematical framework

- lacktriangle Cost function $\mathcal E$ dependent on one or several variables $x\in\mathbb R^n$
- ▶ One or several equality constraints: c(x) = 0, where $c: \mathbb{R}^n \to \mathbb{R}^m$
- Find an optimal value x^* that minimizes the function $\mathcal{E}(x)$ while $c(x^*)=0$

The example of the lung

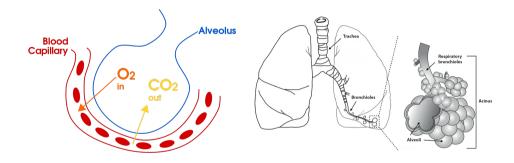
Problematics

- ightharpoonup Role: connects O_2 and CO_2 in atmosphere with inner body ightarrow metabolism
- ▶ Medium: gas transfer by diffusion through alveolar membrane
- Major constraints:
 - Diffusion: a surface process
 - Limited thoracic volume

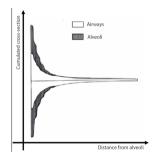
Solution

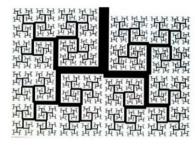
Optimize (maximize) the surface/volume ratio!

Lung morphometry – Increased surface/volume ratio

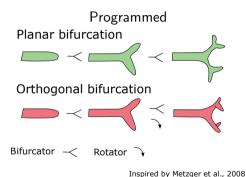


Lung morphometry – A fractal space-filling structure

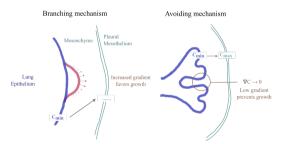




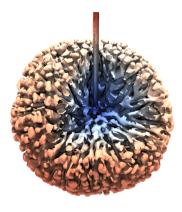
Lung morphogenesis – Approaches



Self-organized



Lung morphogenesis – Self-organized budding



Rendered image based on simulations from Clément et al., 2014

The lung as a model organ for optimization under constraints

Lung morphology

Bronchial tree

- Cascade of bifurcating airways with cylindrical shapes
- Around 17 generations
- Size of the airways decreases at each bifurcation

Acini

- ightharpoonup Exchange surface with blood $(70-100\,\mathrm{m}^2)$
- ► Alveoli: bubble-like structure
- Aroud 6 generations

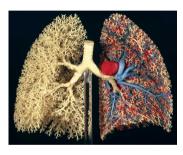


Figure: Cast of the human's lung made by E.R. Weibel

Modelling the human lung

Assumptions

- Symmetric dichotomic bifurcating tree.
- ▶ Branches are assumed to be cylindrical.
- ► Size of the bronchi of generation *i*:

$$l_{i+1} = l_i h \Rightarrow l_i = l_0 h^i,$$

$$r_{i+1} = r_i h \Rightarrow r_i = r_0 h^i,$$

Homothetic ratio between generations.

$$h = \begin{cases} 2^{-1/3} & \text{in the bronchial tree,} \\ 1 & \text{in the acinus.} \end{cases}$$

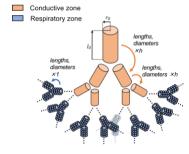


Figure: Illustration of the lung model

Diffusion process

Diffusion

- Passive process
- ▶ Balance the partial pressures between blood ans the alveolar air

Limitations

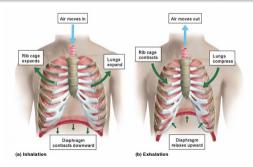
- Pathways from the ambient air to the respiratory zone are too long $(L_p \approx 30 \text{ cm})$
- Characteristic time to travel by diffusion:

$$t_p = \frac{L_p}{D} \approx 4500 \text{ s } = 1 \text{ hour and } 15 \text{ minutes !}$$

Convection process

Ventilation

- Dynamic process
- ► Air of the lung renewed
- ▶ Performed thanks to a set of muscles (ex. diaphragm)
- ► Two phases: inspiration and expiration



Modelling oxygen transport

Convection-diffusion-reaction equation in each airway

$$\frac{\partial P}{\partial t} - D \frac{\partial^2 P}{\partial x^2} + u(t) \frac{\partial P}{\partial x} = \beta \left(P_{\mathsf{blood}} - P \right)$$

Link all generations by assuming:

- Continuity between generations
- Conservation of the quantity of oxygen

Numerical simulations

Inputs

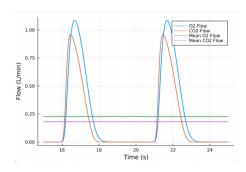
- ▶ Tidal volume
- Breathing frequency

$$\dot{V}_{O_2} = 230 \text{ mL}$$

$$\begin{split} \dot{V}_{O_2} &= 230 \text{ mL} \\ \dot{V}_{CO_2} &= 180 \text{ mL} \end{split}$$

Outputs

- $ightharpoonup O_2$ flow to blood
- ► CO₂ flow to blood

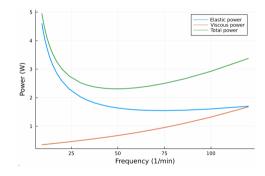


Power spent during ventilation

Action of the muscles on the lung:

- Deforms the tissues
- ▶ Displaces the air along the bronchial tree

$$\underbrace{\mathcal{P}_{\rm m}}_{\text{muscle power}} \, \simeq \, \underbrace{\mathcal{P}_{\rm e}}_{\text{elastic power}} \, + \, \underbrace{\mathcal{P}_{\rm a}}_{\text{air viscous dissipation}}$$



Power spent during ventilation

Viscous dissipation of air

- ► Characterized by the lung hydrodynamic resistance
 - ightharpoonup Connects the airflow \mathcal{F} to the air pressure p: $p = \mathcal{FR}$
- Power dissipated

$$\mathcal{P}_{\mathbf{a}} = \mathcal{R}\mathcal{F}^2 = \frac{1}{4}\mathcal{R}(\pi f_b V_T)^2$$

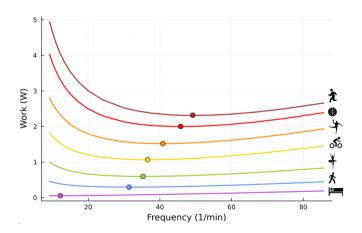
Elastic power

- ► Characterized by the compliance of the lung
 - ▶ Relates the force per unit of surface applied by the muscles to the volume change of the lung
- ► Elastic power

$$\mathcal{P}_{e} = \frac{V_T^2 f_b}{2\mathcal{C}}$$

Optimal ventilation for humans

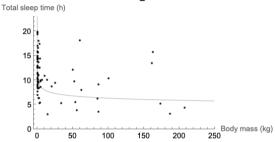
$$\min_{V_T,f_b} \, \mathcal{P}_{\mathrm{e}}(V_T,f_b) + \mathcal{P}_{\mathrm{a}}(V_T,f_b) \quad \text{s.t. } \dot{V}_{O_2}(V_T,f_b) = \dot{V}_{O_2}^{\mathrm{obs}}$$



Allometric scaling laws

Concept of allometry

Raw ecological data



Distribution of total sleep duration (h) in mammals, based on data from Savage & West, 2007.

The data are best fitted by the curve indicated in light gray.

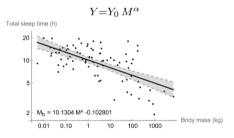
Concept of allometry

Total sleep time (h)

Raw ecological data

20 15 10 150 200 250 Body mass (kg)

Log-Log plot



History of allometry

Constant Differential Growth-ratios and their Significance.

A STUDY of the growth of the abdomen in the shore-crab Carcinus maenas (Huxley and Richards, unpublished) showed that whereas in the male the ratio abdomen-breadth: carapace-breadth remained constant, in the female it increased continuously during the whole of post-larval life.

ON
GROWTH AND FORM

BY
D'ARCY WENTWORTH THOMPSON

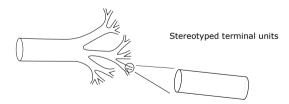
THE CHEMICAL BASIS OF MORPHOGENESIS*

 A. M. Turing University of Manchester, Manchester, U.K.

Mechanistic approach – WBE hypotheses

- 1. Transport of nutrients i.e., oxygen in a fractal-like branching tree
- 2. Metabolic rate \propto flow of nutrient-carrier i.e., blood; independent of body size
- 3. Fluid carrier incompressible
- 4. Total volume of the fluid proportional to body size
- 5. Size of the terminal units i.e., capillaries invariant or mass independent

Semi-fractal branching tree



Mechanistic approach – WBE results

WBE – Model & Results

- lacktriangle General metabolic allometry follows a $\propto M^{3\over 4}$ relation
- ▶ Data-based allometric relations are retrieved from the model

Cardiovascular			Respiratory		
Variable	Exponent		Variable	Exponent	
	Observed	Predicted		Observed	Predicted
Aorta radius	0.36	3/8 = 0.375	Trachea radius	0.39	3/8 = 0.375
Blood volume	1.00	1.00	Lung volume	1.05	1.00
Circulation time	0.25	1/4 = 0.25	Respiratory frequency	-0.26	-1/4 = -0.25
Metabolic rate	0.75	3/4 = 0.75	Air velocity in trachea	0.02	0

Allometric laws in the respiratory system

- ► Mammals share morphological and functional properties dependent on the mass of the animal with allometric scaling laws
- ▶ Morphological differences amongst mammals affect the control of ventilation



Adaptation of the oxygen transport model

Shared characteristics

- ► Tree-like structure with bifurcating branches
- Decomposition into two parts: bronchial tree and acini

Adaptation of morphological parameters

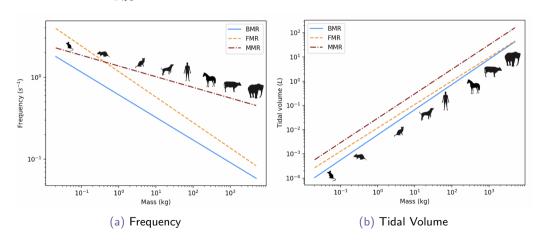
- Tracheal radius and length
- Radius and length of alveolar ducts
- Exchange surface

Oxygen transport

- Convection-diffusion-reaction equation
- ightharpoonup Exchange eta coefficient dependent on the mass of the mammal

Optimal ventilation for mammals

$$\min_{V_T,f_b} \mathcal{P}_{\mathrm{e}}(V_T,f_b) + \mathcal{P}_{\mathrm{a}}(V_T,f_b) \quad ext{s.t. } \dot{V}_{O_2}(V_T,f_b) = \dot{V}_{O_2}^{\mathrm{obs}}$$



Allometric laws for ventilation

Allometric law:

$$Y = Y_0 M^{\alpha}$$

	f_b (pred)	f_b (obs)	V_T (pred)	V_T (obs)
BMR	-0.29	-0.26	1.05	1.04
FMR	-0.32	N.D	0.98	N.D.
MMR	-0.15	-0.14	1.04	N.D.

Table: Predicted and observed exponents α for the allometric scaling laws of breathing frequency f_b and tidal volume V_T at three different metabolic regimes.

Conclusion

Conclusion

- Principles of economy applied on larger living structures
- Constraints guide the development and the functionning of mammalian lung
- ► Allometric laws allow a deep understanding of the mechanisms of differential growth