

Paris, July 10-14, 2023

Flux balance analysis

Steffen Waldherr

From metabolic networks to models

A whole-cell perspective on metabolism

Optimality principle instead of kinetics: Maximize growth subject to flux balance and uptake constraints

Restrictions for "basic" FBA:

- Fixed composition of biomass
- (Quasi-)steady state
- Metabolite concentrations fall out of the model
- Limited consideration of thermodynamics

Constraints on fluxes

1. Steady state constraint

Sv = 0

- Fluxes constrained to subspace
- 2. Irreversibility constraints on some fluxes (from thermodynamics/heuristics/empirical evidence)

 $v_i \ge 0, \qquad i \text{ irreversible}$

- Fluxes constraint to flux cone
- 3. Flux bounds from capacity constraints, maintenance, ...

 $v_{i,min} \leq v \leq v_{i,max}$

Fluxes constraint to convex polytope

Geometric illustration

Flux space \rightarrow cone \rightarrow polytope example

Construct the ...

- flux space;
- flux cone assuming v_2 , $v_3 \ge 0$;
- flux polytope assuming $v_1 \leq 0.5$.

Molar balancing:

$$\dot{x} = \begin{pmatrix} 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Flux space from Sv = 0

Plane defined by

$$v_1 - v_2 - v_3 = 0$$

Flux cone

Flux cone

Add irreversibility

 $v_2, v_3 \ge 0$

Flux polytope

Add upper bound(s) $v_1 \le 0.5$ $\frac{1}{2}$ v_1 $^{-1}$

Setting up the constraint based model (CBM)

Constraint based model useful if non-trivial steady state fluxes exist

The steady state equation

$$Sv = 0$$

should have a non-zero solution $v \Rightarrow$ non-trivial steady state flux space

• We need $\operatorname{rank} S < m$; most models have more reactions than metabolites anyway.

Metabolite / flux units

- In CBMs, metabolites are usually considered in molar amounts per dry biomass: mmol/g
- \blacktriangleright Fluxes are then in $\rm mmol/(gh)$

Exchange reactions

- Exchange reactions are added for all metabolites that are either consumed or produced in a metabolic steady state.
- They normally involve only extracellular metabolites.
- ▶ By convention, the reaction **direction** is towards the outside of the system

$$\rightarrow$$
 exchange reaction

Positive vs. negative flux on exchange reaction

- Negative flux = actually goes into the system = supply (consumption) of a metabolite
- ▶ Positive flux = goes outside of system = **removal** (production) of a metabolite

Biomass composition

E. coli biomass composition

Compound Proportion [% g/g DW	
Protein	72
DNA	4
RNA	10
Lipids	9
Polysaccharides	2.5
Mureine	2.5

Chassagnole *et al.* 2002, via bionumbers.hms.harvard.edu, ID 108705 Varies depending on environmental conditions (nutrients, aerobic/anaerobic, growth rate, ...)

Break down to metabolites

- 20 proteinogenic amino acids
- ▶ 8 D/R nucleotides
- phospholipids
- cofactors / vitamins
- ATP hydrolysis required for biomass assembly ("growth associated maintenance" GAM)

Biomass reaction

Biomass reaction formalizes consumption of metabolites to generate biomass

$$v_{bio}: \qquad \sum_{i=1}^n c_i X_i o 1 ext{ g dry biomass}$$

- Based on pre-determined constant biomass composition
- Coefficients c_i commonly in mmol / g dry biomass
- Unit of v_{bio} becomes 1/h: interpretable as dry biomass growth rate μ !

Maintenance

"Non-growth associated maintenance" (NGAM):

- membrane voltage gradients and osmolarity (ion pumps)
- movement (flagella)
- macromolecule (RNA/protein/carbohydrates) turnover
- ► Energy demand is commonly represented by a single ATP hydrolysis reaction

 v_{maint} : ATP + H₂O \rightarrow ADP + Pi + H⁺

- Put as constraint into constraint based model
 - $v_{maint} \ge \alpha \text{ [mmol / (h \cdot g biomass)]}$
 - ▶ NGAM rate estimates: E. coli 8.4 mmol/g/h; S. cerevisiae 1.0 mmol/g/h

Optimization principle

Constraint based model

Sv = 0

$$v_{i,min} \le v_i \le v_{i,max}$$

- ▶ Underdetermined system of equalities / inequalities: flux polytope
- ▶ How do we determine fluxes v that we expect to occur in nature?

Add an optimization objective

Hypothesis: Cells regulate fluxes within constraints to achieve an "optimal" configuration from an evolutionary perspective.

$$\max J(v)$$
s.t. $Sv = 0$
 $v_{i,min} \le v_i \le v_{i,max}$

Useful objective functions

Туре	Objective $J(v)$	Principle	
Biomass yield	$\boxed{\max v_{bio}}$	Biomass flux at fixed max. substrate up- take	
ATP yield	$\max v_{ATP}$	ATP flux at fixed max. substrate up- take	
Minimal flux	$\min \ v\ ^2$	$\begin{array}{lll} {\sf Minimization} & {\sf of} \\ {\sf overall} & {\sf flux} & (\sim \\ {\sf enzyme} \ {\sf usage}) \end{array}$	
Biomass flux yield	$\boxed{\max v_{bio}/\ v\ ^2}$	Biomass yield per overall flux unit	

Empirical evaluation of objective functions: Schuetz, R., Kuepfer, L., & Sauer, U. (2007). Systematic evaluation of objective functions for predicting intracellular fluxes in *Escherichia coli*. Molecular Systems Biology, 3, 119.

Collections of constraint based models

BiGG Models

Home Advanced Search Data Access Memote Validator 2*

Search Database Search

Search Results ®

Exclude multistrain models from search

Models

0 0 1 to 108 (106) 0 0						
BIGG ID	Organism	e Metabolites	Reactions	e Genes e		
e_col_core	Escherichia coli str. K-12 substr. MG1655	n	95	137		
IAB_RBC_283	Homo sapiens	342	460	346		
WF1260	Escherichia coli str. K-12 substr. MG1655	1660	2362	1261		
WF12606	Escherichia coli str. K-12 substr. MG1655	1660	2368	1261		
WF092	Methanosarcina barkeri str. Fusaro	628	690	692		
WF987	Geobacter metallizeducens GS-15	1109	1265	937		
WM_P6448	Plasmodum berghei	903	1067	448		
IAM_P0455	Plasmodium cynomolgi strain B	907	1074	455		
WW_P9680	Plasmodium falciparum 307	909	1063	490		
WM_P%459	Plasmodium knowlesi strain H	900	1079	459		
WM_PV81	Plasmodium vivax Sal-1	900	1078	461		
IAPECO1_1312	Escherichia coll APEC O1	1942	2735	1313		
WT_PLT_636	Homo sapiens	738	1008	636		
IB21_1397	Escharichia coli BL21(DE3)	1943	2741	1337		
IRWO 1329	Fachasizhia rell RW2852	1940	2741	1329		

- BiGG models database: http://bigg.ucsd.edu/models
- ModelSEED (plant models): https://modelseed.org/genomes/

Linear programs

A linear program in standard form:

Example

$$\max_{v_1, v_2} v_2$$

s.t. $v_1 + v_2 = 1$
 $v \ge 0$

Thus:

$$c^{\mathrm{T}} = \begin{pmatrix} 0 & 1 \end{pmatrix}$$
$$A = \begin{pmatrix} 1 & 1 \end{pmatrix}$$
$$b = 1$$

Generalized geometrical interpretation

Non-uniqueness of optimal solutions

Set of optimal solutions is a face of the polytope

Unboundedness

Unboundedness: $\max c^{\mathrm{T}}v = \infty$

Infeasibility: Constraint set is empty

Example

$$v_1 + v_2 \le -1$$
$$v_1, v_2 \ge 0$$

Flux balance analysis (FBA)

FBA to maximize biomass yield as LP

 $J^* = \max v_{bio}$ s.t. Sv = 0 $v_{i,min} \le v_i \le v_{i,max}$

▶ Typical relevant constraint is glucose / oxygen uptake rate

$$-v_{e,gluc,max} \le v_{e,gluc} \le 0$$

- For practical reasons $v_{i,max} = M (10^6 \text{ mole/h/g})$ even if no capacity constraint
- \blacktriangleright Typically no unique optimal flux distribution v^{\ast}

FBA example: E. coli core

- ► Core carbon network from BiGG database: 72 metabolites, 95 reactions
- Network visualization from https://escher.github.io/

FBA results: comparing intracellular flux states

With a graphical layout of the metabolic network is available: graphical illustration of intracellular metabolic state

 ${\sf Made with \ escher.github.io}$

Dynamic FBA: general idea

- > Put FBA models in a dynamic context (biomass growth, nutrient consumption)
- Starting from a mass balancing model like the Monod model:

$$\frac{dX}{dt} = \mu(c)X$$
$$\frac{dc}{dt} = -\frac{\mu(c)}{Y_{X/c}}X$$

- \blacktriangleright replace the growth rate $\mu(c)$ by an "optimal" growth rate from FBA model
- replace the substrate / product rates by exchange fluxes from FBA model

Key steps / questions

- How do we set the reaction constraints (mostly transport capacity) based on the changing nutrient availability?
- Connect the FBA-based part (optimization problem) to the dynamic part (differential equation model)

Integrating the DFBA model parts

EPCB book, chapter "Optimal cell behavior in time"

- ► Enzyme kinetics for bounds $v_{i,min}(c)$, $v_{i,max}(c)$: usually only a couple of (uptake) reactions
- Optimal growth rate & exchange fluxes from FBA model are used in dynamic equations

DFBA: Example with *E. coli* core model

Oxygen co.

Exchange constraints

в

$$\begin{array}{l} -10.5 \; \frac{\text{mmol}}{\text{gDW h}} \frac{c_{\text{G}}}{2.7 \; \frac{\text{mg}}{\text{L}} + c_{\text{G}}} \leq v_{\text{G}} \leq 0 \\ -30 \; \frac{\text{mmol}}{\text{gDW h}} \frac{c_{\text{O}_2}}{10 \; \frac{\text{mg}}{\text{L}} + c_{\text{O}_2}} \leq v_{\text{O}_2} \leq 0 \\ 0 \leq v_E \end{array}$$

$$-30 \frac{\mathrm{mmol}}{\mathrm{gDW}\,\mathrm{h}} \frac{c_\mathrm{A}}{100\,\frac{\mathrm{mg}}{\mathrm{L}} + c_\mathrm{A}} \leq v_\mathrm{A}$$

C Dynamic equations

$$\begin{split} \dot{X} &= \mu X \\ \dot{c}_{\mathrm{O}_2} &= v_{\mathrm{O}_2} m_{\mathrm{O}_2} X + k_L a (10 \, \frac{\mathrm{mg}}{\mathrm{L}} - c_{\mathrm{O}_2}) \\ \dot{c}_{\mathrm{G}} &= v_{\mathrm{G}} m_{\mathrm{G}} X \\ \dot{c}_{\mathrm{E}} &= v_{\mathrm{E}} m_{\mathrm{E}} X \\ \dot{c}_{\mathrm{A}} &= v_{\mathrm{A}} m_{\mathrm{A}} X \end{split}$$

EPCB book, chapter "Optimal cell behavior in time"

Outlook: further extensions of FBA

- Thermodynamic FBA
- Resource allocation models:
 - ME models
 - Resource balance analysis
 - Dynamic enzyme-cost FBA

Exercise on https://principlescellphysiology.org/ book-economic-principles/index.html

Run FBA on the carbon core model (Jupyter notebook ightarrow Google Colaboratory)