A unifying autocatalytic network-based framework for bacterial growth laws

Anjan Roy¹, Dotan Goberman¹, <u>Rami Pugatch¹</u> ¹Dept. of Industrial Engineering and Management .Ben-Gurion University of the Negev, Israel

Take Home Message

Cell as an ecology of self-replicating molecular machines with the von Neuman's architecture. Universal constructor = transcription translation machinery.

- Any essential element has two associated growth laws
- Going beyond the ribocentric view, we derive new growth laws e.g. RNA-Polymerase growth law
- Growth laws are a manifestation of the conservation of matter, i.e., somewhat uninteresting. The challenge understand the controls and processing of information from external cues!

Nontrivial self-replication

Universal constructor – the machine that makes machines

Schematic diagram of a bacterial autocatalytic network, showcasing different autocatalytic cycles coarsely grained.

Anjan Roy et al. PNAS 2021 Vol. 118 No. 33 e2107829118.

Our contribution

Using autocatalytic network with a specific structure that is common to all bacteria and using Leontif production function we derive

- Known growth laws
- New growth laws (in particular RNA-polymerase growth law)

• Employ RNAP growth law to explain reduction in growth rate at constant RNA/protein ratio as rifampicin concentration increases.

Autocatalysis 101 + a grapical language to code quantitiave models

 Simple reactions consume substrates S₁,...,S_n, with a catalyst C and produce a product P

substrates reaction node de-novo synthesized product

Wassily Leontief

Autocatalysis 101 cont.

 Simple autocatalysis consume substrates S₁,...,S_n, employ a catalyst C and the product is more catalysts C. The newly created catalysts joins the existing ones and catalyze more copies. This can go on until one of the substrates is depleted.

The product is another catalyst

Wassily Leontief

Autocatalytic networks

 networks which consume substrates and jointly autocatalyze all the catalysts in them. A famous (non biological) example is the Hinshelwood cycle (here of degree n=4):

The graphical depiction of autocatalytic network codes a quantitative model

Going beyond the ribo-centric view

• In an autocatalytic network, any element can be viewd as the center around which autocatalysis revolves _ this leads to two growth laws per cycle.

NOTE: cycle need not be limiting.

(i) a growth law involving all the time scales in the cycle (+allocation parameters).

(ii) a growth law involving relative abundance of a given catalyst, its synthesis rate and its allocation parameter (famous example: ribosome growth law).

The RNA polymerase growth law

RNA/Protein = const. yet growth rate goes down

RNA/protein ratio

Anjan Roy et al. PNAS 2021;118:33:e2107829118

Bacterial growth laws

Growth rate dependence on temperature

Anjan Roy et al. PNAS 2021;118:33:e2107829118

Two-step model buildup.

Two-step model buildup.

Anjan Roy et al. PNAS 2021;118:33:e2107829118

Two-step model buildup.

Anjan Roy et al. PNAS 2021;118:33:e2107829118

What's next?

- Design rules for streamlining ribosome assembly
- Control in general and metabolic switchings
- Classification and analysis of all cost-benefit scenarios

"All model are wrong, some are useful." G. Box

Who's the universal constructor in the cell?

key players : RNA polymerase

mRNA

Effect of two antibacterial agents—lamotrigine and triclosan—on E. coli

Q: What about noise?

A: Surprisingly unimportant

Approximate growth law: Little's law for self-replicating factories

Coolant Leakage due to a hole in the radiator

Inspecting engine blueprints will not reveal the cause unless malfunction is due to an inherent design flaw

The genetic code

Leucine

"Laplace transform of assembly time evaluated at s = growth rate = 1/(1+relative WIP)"

$$P_{SA}(\mu) = \frac{1}{1 + n_{WIP}}$$

Distribution	Laplace transform	Growth rate	Relative WIP
Deterministic	$e^{-\mu\tau_{SA}}$	$\mu = \frac{1}{\tau_{\text{SA}}} \ln(1 + n_{WIP})$	$n_{WIP} = e^{\mu \tau SA} - 1$
Exponential	$\frac{1}{1 + \mu \tau_{SA}}$	$\mu = \frac{n_{WIP}}{\tau_{SA}}$	$n_{WIP} = \mu \tau_{SA}$
Erlang –k	$\frac{1}{\left(1+\frac{\mu\tau_{SA}}{k}\right)^k}$	$\mu = \frac{k}{\tau_{SA}} \left(\sqrt[k]{1 + n_{WIP}} - 1 \right)$	$n_{WIP} = \left(1 + \frac{\mu \tau_{SA}}{k}\right)^k - 1$
Mixture of two exponentials	$\frac{p\lambda_1}{\lambda_1+\mu} + \frac{(1-p)\lambda_2}{\lambda_2+\mu}$	Numerical	Numerical
Shifted exponential	$\frac{e^{-\mu\tau}}{1+\frac{\mu}{\lambda}}$	$\mu = \frac{\mathcal{L}_{w}\lambda\left(\tau e^{\lambda\tau}(1+n_{WIP})\right)}{\tau} - \lambda$	$n_{WIP} = e^{\mu\tau} \left(1 + \frac{\mu}{\lambda} \right) - 1$