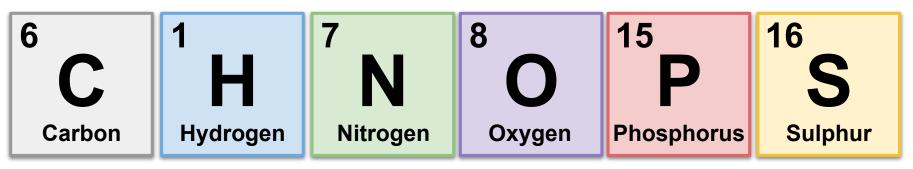

Economic Principles in Cell Biology

Paris, July 10-14, 2023

What makes up a cell?

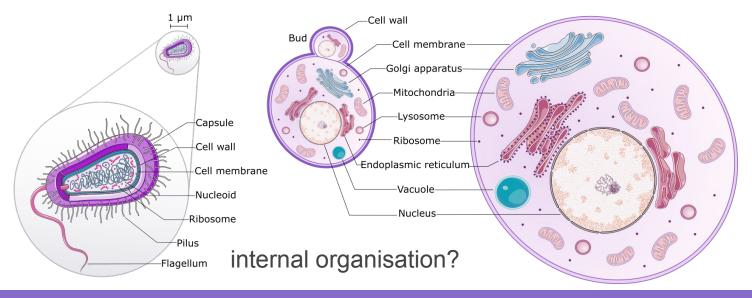

Diana Széliová & Pranas Grigaitis

Cells as chemicals

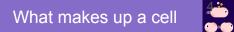
99% of cell mass

1% of cell mass: Na, K, Fe, Mo, Cl, Ca...

Yeast: CH_{1.61}O_{0.56}N_{0.16}

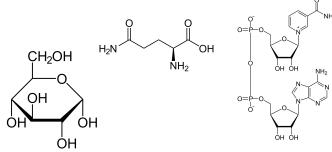

Cells as bags of things

Prokaryotic

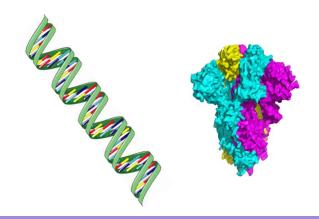

- bacteria, archaea
- do not have organelles

Eukaryotic

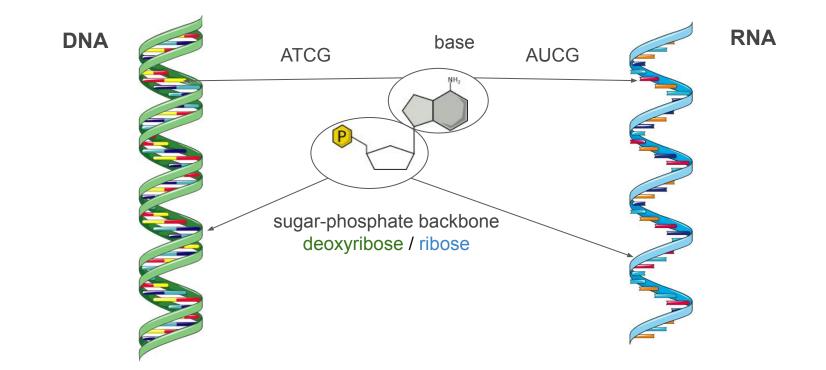
- yeast, plant, animal cells
- have organelles


Biological molecules

Biological molecules


Small molecules

- < 1000 Da
- mono-/dimers
- thousands of different compounds
- metabolites, cofactors
- various functions

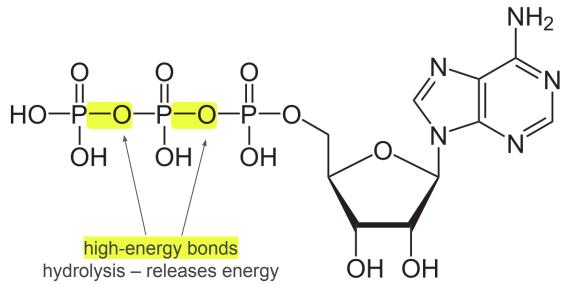

Macromolecules

- polymers
- proteins, nucleic acids, polysaccharides, (lipids?)

Nucleic acids – polymers of nucleotides

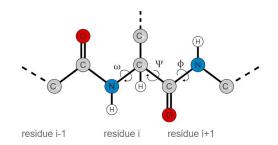
Nucleic acids – functions

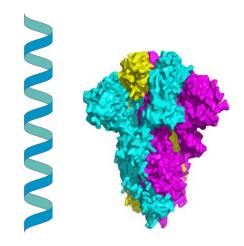
DNA


- stores genetic information
- all info to make a new cell

RNA

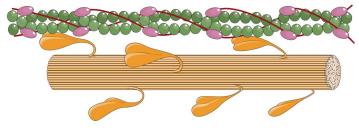
- transcribed from DNA (e.g. ATCG to UAGC)
- **rRNA** synthesizes proteins
- **mRNA** template for protein synthesis
- tRNA brings AAs to the synthesis site
- small RNAs

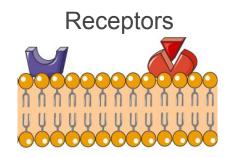

Important nucleotide – ATP

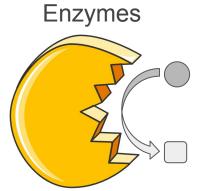

- energy currency
- powers processes in a cell

Proteins – polymers of amino acids

- 20 proteinogenic AAs
- 100 AA protein 20¹⁰⁰ combinations
- Poll: Is average protein length in bacteria < 1000 AAs?
- 325 AAs in E. coli
- AA chain folds into 3D structures
- can form multimers

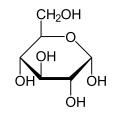




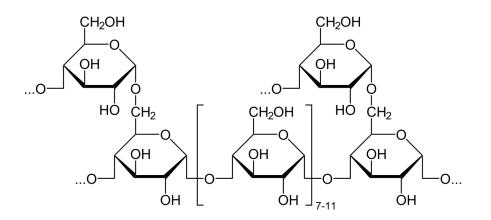

Protein functions

Structural proteins

Transporters



Carbohydrates


Monomers/dimers (e.g. glucose)

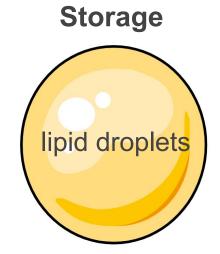
• carbon & energy source

Polymers

- storage glycogen, starch
- structure mannan, part of peptidoglycan

Lipids – diverse hydrophobic compounds

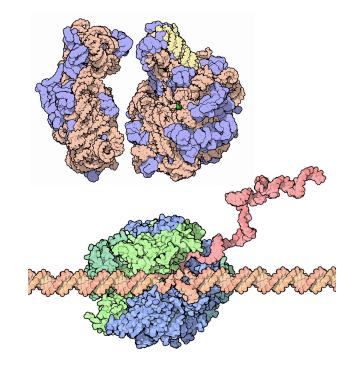
Bilayer membranes


Membranes

around cells

organelles

Golgi, ER – protein synthesis & processing

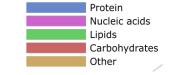

Biological machines – huge complexes of macromolecules

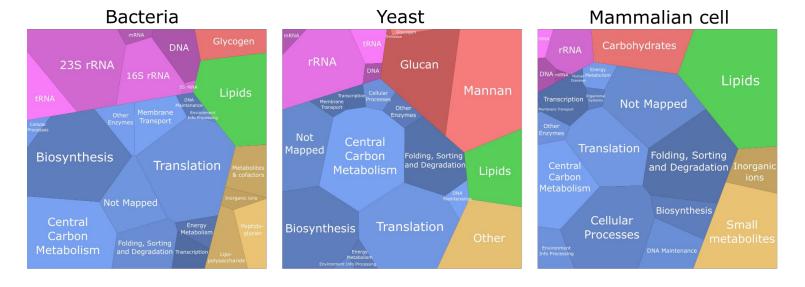
Ribosome

- complex of rRNA + proteins
- makes proteins

DNA, RNA polymerases

- protein complexes
- synthesis of DNA and RNA


PDB-101: Educational resources supporting molecular explorations through biology and medicine. Christine Zardecki, Shuchismita Dutta, David S. Goodsell, Robert Lowe, Maria Voigt, Stephen K. Burley. (2022) *Protein Science* **31**: 129-140 doi:10.1002/pro.4200


Amounts of cell components

Cells: 70% water, 30% dry mass

Dry mass composition – similar

• engineered yeast cells – up to 80% lipids

Amounts have to be expressed in relation to other quantities

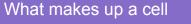
Units:

Poll:

- number
- mol
- gram

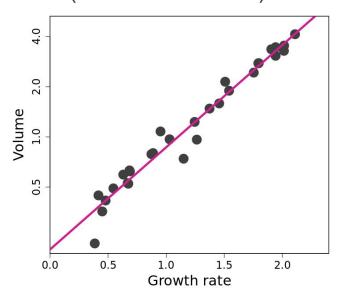
Per:

- cell
- volume
- dry mass
- surface area


How many proteins are there in E. coli cell?

Raise your hand if you think $> 10^6$

- E. coli: $1 \mu m^3$ $\rightarrow 4^{*}10^{6}$
- S. cerevisiae: 60 μ m³ \rightarrow 2*10⁸ $\rightarrow 1^{*}10^{10}$
- Mammalian cell: 3000 µm³


Variability of cell composition

Biomass component amounts change with growth rate

Nutrient growth law (Schaechter 1958)

- Cell size, **absolute** DNA, RNA, protein content increase with growth rate
- Bacterial/yeast/mammalian cells
- Holds when growth rate modulated by carbon source (not temperature)

Relative composition changes with increasing growth rate

Cells reallocate resources to support higher growth rate

RNA & RNA:protein ratio

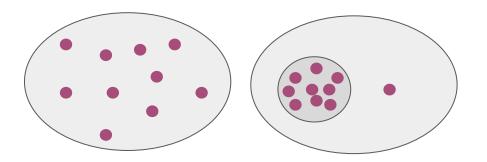
- measure of proteosynthetic capacity
- most RNA involved in protein synthesis

Higher growth rate \rightarrow more protein synthesis \rightarrow more ribosomes

Ribosome – ²/₃ rRNA, ¹/₃ protein

More tRNA

Other factors that change composition but not growth and vice versa

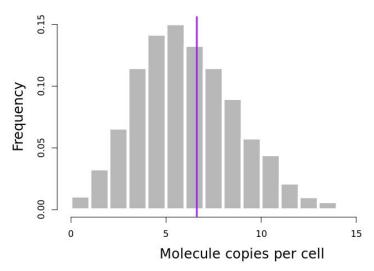

- O_2 concentration
- Medium composition
- Mutations
- Temperature

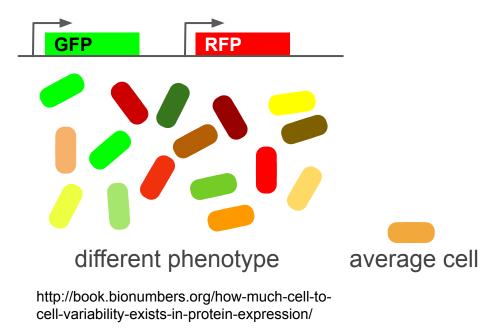
• AA composition - constant in various conditions (bacteria, yeast, mammals)

Composition is not uniform throughout a cell

- different concentrations in different organelles/areas
- transport regulated
- different pH, membrane potential
- consequence different enzyme rates, direction

same number of molecules

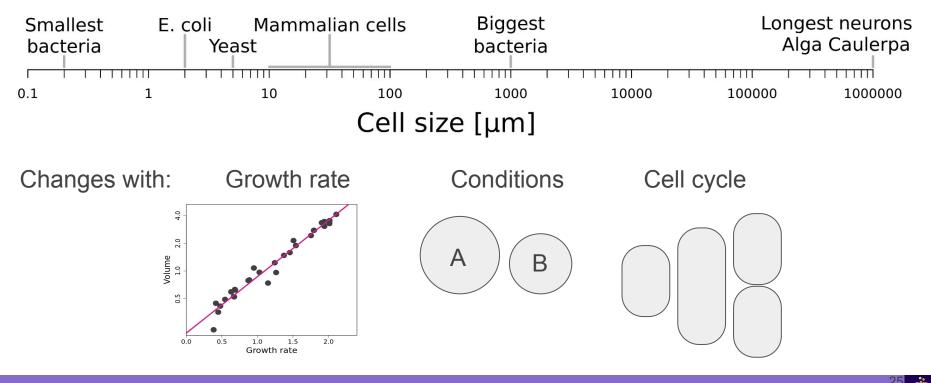

different concentration


What makes up a cell

Populations are not uniform

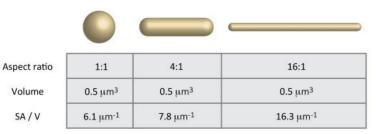
- processes in a cell stochastic
- important at low copy numbers

same genome

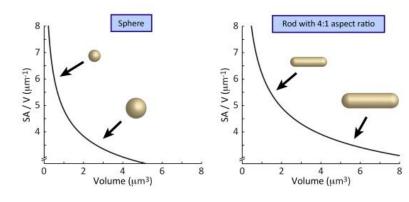

bet-hedging

Cell size and density

Cell size – huge variability


What makes up a cell

Cell size in multiple dimensions


Name	Unit	E. coli	S. cerevisiae
Cell size	μm	1-2	5
Cell surface area	μm^2	6	70
Cell volume	μm^3	1	60

depends on shape

(A) Hold volume constant

(B) Hold shape constant

https://doi.org/10.1016/j.tim.2018.04.008 CC BY 4.0

Exercise – buoyant density estimation

What is the buoyant density of a typical bacteria?

	density of component (g/mL)	mass fraction per cell
water	1	0.7
proteins	1.3	0.18
nucleic acids	1.7	0.08
lipids	1	0.03
carbohydrates	1.5	0.01

https://bionumbers.hms.harvard.edu/search.aspx

Buoyant cell density – rule of thumb

1.1 g/mL

Cell density – variable, but the range is small

- 1.05-1.15 g/mL
- some species constant at different growth rates, during cell cycle
- others changes during cell cycle, in stationary phase
- increases with osmolarity

• exceptions – fat cells, gassy cells – lower density

Is there an optimal density?

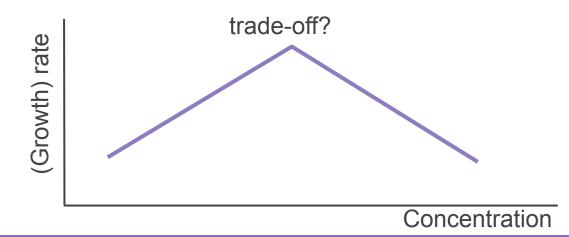
Physical ("hard") constraints – cannot be bypassed

Temperature, pH, osmolarity

Diffusion limit

- enzyme + substrate have to collide
- perfect enzymes specific and fast limited only by diffusion (rare)
- no known enzymes above the diffusion limit

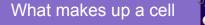
Macromolecular crowding


- concentration of macromolecules
- limits cellular processes, e.g. translation

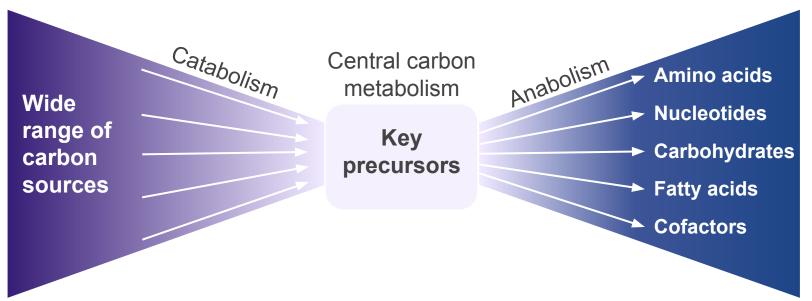
Is there an optimal density?

Too few molecules

Collisions rare


Too many molecules Crowding – slow diffusion

Macromolecule synthesis & needed resources



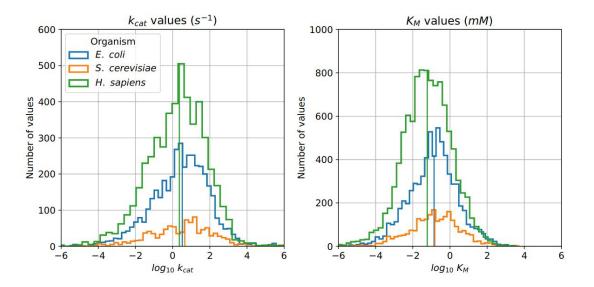
What does a cell need to grow?

- precursors
- enzymes that catalyze precursor synthesis
- "machines" that synthesize enzymes + themselves

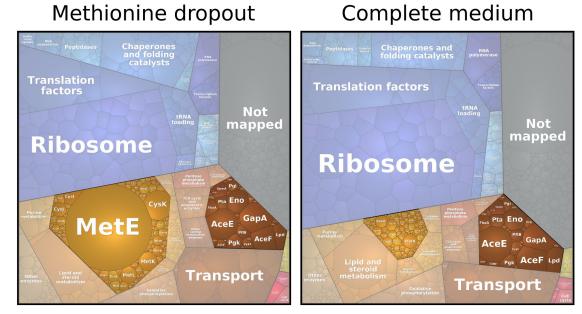
- Processes have to be coordinated
- There needs to be physical space/volume

Precursor synthesis – bow-tie structure of metabolism

- Allows growth in various environments
- Many microorganisms grow on a minimal medium (Single source of C, N, S, P)
- Synthesis of macromolecule precursors competes for the same molecules

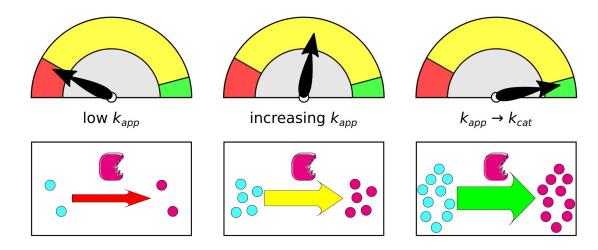


Metabolic enzymes – convert nutrients to precursors


wide variety of sizes and functions

main characteristics:

- k_{cat} turnover number
- K_{M} measure of affinity
- k_{cat}/K_{M} kinetic efficiency


Different enzymes are needed in different environments

Pathway	Enzyme	Proteome mass fraction (%) Met dropout Complete		Turpover value $k = (c^{-1})$
Tatiway		Met dropout	Complete	
Glycolysis	Enolase (Eno)	0.53	0.53	192.95
Amino acid biosynthesis	Methionine synthase (MetE)	7.45	0.009	0.12

Enzymes in living cells

- k_{cat} highest possible efficacy when enzyme is saturated
- in cells we observe apparent turnover rate k_{app}
- enzyme efficiency k_{app}^{\prime}/k_{cat}

Macromolecule polymerisation

catalyzed by large complexes – DNA/RNA polymerases & ribosomes

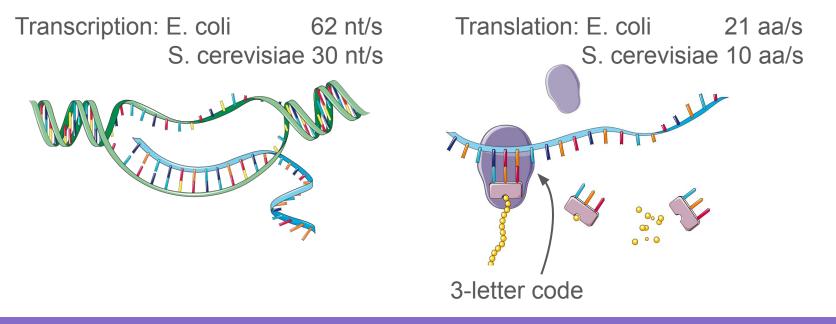
Ribosomes:

- synthesis of metabolic enzymes & other proteins
- their own synthesis significant cost (precursors & energy)
- average protein in E. coli ~ 33 kDa vs. ribosome 2300 kDa

Processes have to be coordinated

- synthesis of many subunits
- e.g. ribosome: 3-4 rRNA molecules and > 50 proteins
- ribosomal proteins similar length

Ribosomes are optimized for autocatalytic production


Shlomi Reuveni, Måns Ehrenberg & Johan Paulsson 🖂

Nature 547, 293–297 (2017) Cite this article

Processes have to be coordinated

• transcription & translation

Physical proteome space is limited

- cells have a finite volume
- most of dry mass protein (ribosomal proteins, metabolic enzymes)
- optimal allocation is necessary to achieve high growth rate

Acknowledgements

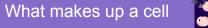
Pranas Grigaitis

Wolfram Liebermeister

Elad Noor

Samira van den Bogaard

Figures were generated using Bioicons: https://bioicons.com/



Biomass composition in mathematical models

models often focus on proteome

different levels of detail (total protein ➤ protein subgroups ➤ individual proteins)

fixed vs. variable biomass composition

Thank you for your attention!

