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Preface

Wolfram Liebermeister

How can a cell maintain itself as a living being? Living cells, shaped by billions of years of evolution, have

developed many ways to adapt to their environment, for example by regulation of gene expression. But

the rules of physics and chemistry enforce certain boundaries on what cells can achieve and how they can

allocate their own resources. Shaped by evolution, cells “do certain things right”, and computational models

of cells often assume that this ”doing something right” can be described by evoking optimality principles.

The goal of this book is to uncover some of these governing principles. While biological optimality is often

contested for good reasons, theories based on economic principles can explainmany observations (about cell

growth or the usage of cellular resources)much better than purelymechanisticmodels. Methods such as Flux

Balance Analysis are well established, but the idea of resource allocation is gaining ground, and metaphors

like ”currency metabolites” or ”energy budget” are common in cell biology. Optimality principles are often

applied ad hoc, and a coherent picture - in which many single observations or models would have their place

- is still missing. This book - a free and open textbook to which anyone is invited to contribute - gives an

overview of established approaches to ”cellular economics”, from descriptions of simple metabolic systems

to cell growth, variability, and dynamic behavior.

Compared to non-livingmatter, living organismshave some very specific abilities. How can a tiny cellmaintain

itself, whereas a cloud fades away? How can it grow and divide, how can it make copies of itself? Or in other

words, what does it take to be alive? There is no special “life force”; what makesmatter alive is its microscopic

structure or molecular organization. Living matter follows the laws of physics. However, to understand life,

physics alone is not enough! On the one hand, living beings are complex on many levels of organization,

from biomolecules to cells, body, population, and ecosystem. Each of these levels follows its own laws, but

in some cases a change on the lowest level - a point mutation - may change the fate of a population. On the

other hand, living systems do not just exist as they are, but have been shaped by billions of years of evolution.

This is also why some of their features - look like they were perfectly engineered. Since we do not know -

and certainly cannot always consider - evolution in its entirety, we often use “optimality” as a shortcut. To

explain a biological feature, like the shape of dolphin, wemight tell all the story of dolphin evolution, and how

changes in shape appeared and somewere conserved. But instead, wemay simply say: this is the shape that

functions best, and apparently evolution, by mutation and selection, converged to this shape.

In this book we mostly focus on microbes, and how they function internally: what compounds they need to

produce, and how, in order to live and self-replicate. We can describe this on three different levels. Level

1, the “inventory” of a cell, in a molecular view, consists of molecules and biochemical reactions, which form

a complex chemical network. Level 2, the dynamics of molecule concentrations, is determined by physical

laws like the conservation ofmass andby specific biochemical regulationmechanisms, for examplemolecular

recognition. But there is also a third level, concerning the function (or possibly, optimality) of these dynamics,

for which economicmetaphors are appropriate: given a limited “protein budget”, what biochemical pathways

should a cell prioritize to thrive, grow, and survive? In this book we focus on the third layer, the “economy of

1
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Figure 1: Protein abundances in the yeast Saccharomyces cerevisiae. Measured amounts of different sorts
of proteins are shown as areas, proteins of related functions are arranged into larger regions, shown by
colors. Why does the cell invest such a large fraction of their protein budget into the glycolysis pathway?
Such economic questions are central in this book.

the cell”, which in fact encompasses the previous two.

What dowemean by the “economy of the cell”? Economic theory is of course vast, and only a small bit of it has

made its way to biology so far. In this book, by “economy” we mostly mean resource allocation and schedul-

ing problems: what is the best allocation of protein resources in a bacterial cell (see the graphics above)?

How should photosynthetic bacteria adjust these investments during the day-night cycle? Our answers to

such questions, also in this book, are often based on an underlying assumption of optimality. But often we

simply consider all the constraints under which a cell needs to act, and figure out what cellular behaviors are

possible.

As we look at cells from the perspective of resource allocation, we will neglect other aspects: we will rarely

talk about regulation (e.g. the mechanisms for regulation of gene expression), and even more rarely about

gene or protein sequences. Instead, we assume that certain mechanisms are in place in the cell, and that

molecules encoded by sequences exist, and either ask why (that is, for what functional reason) they are the

way the are, or what the cell can do with them to perform certain tasks. This often means that we assume a

mechanistic system with possible “choices” (among flux profiles, expression levels, enzyme parameters, etc),

and ask, first, what choices exist (considering all the constraints) and, second, how profitable these choices

are for the cell (assuming certain objectives). While we are hardly concerned with genetics, we are certainly

interested in how optimality may arise from evolution - to connect the two, we need to think about fitness

(how long-term fitness can be defined, and how it gives rise to “momentary” or “local” optimization objectives

in a given part of the cell).

The topic of this book has emerged from the field of systems biology, and accordingly we address students

and researchers in related fields, with a background in biology, physics, engineering, or math. For read-

ers without a biological background, we recommend the book “Cell biology by the numbers” (book.bionum-

bers.org), which takes the reader on a journey through various aspects of cell biology.

The source of the book’s inspiration and the questions (discussions) that motivated the investigation of the

various mechanisms the cell employs to allocate resources in the most efficient way possible were a series

of events in formal settings such as an annual summer workshop, the monthly online Forum “Economic

principles in cell physiology”, and more informal hackathons. The book’s development is an endeavor that

http://book.bionumbers.org/
http://book.bionumbers.org/
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is truly global in scope, drawing on the expertise and integrating the contributions of scientists who were

members of a global network (formed a global community) representing research institutions located in

more than a dozen countries on three continents. Those who contributed to the book’s creation recognize

that the success they achieved in bringing it to a satisfactory conclusion is due, in no small part, to the support

of the institutions with which they are affiliated and they are indebted to INRAE, the Learning Planet Institute

Paris, and all other authors’ home institutions (as well as the taxpayers financing these institutions) who

encouraged the creation of the book by providing the its authors and contributors with both time and space

necessary to sustain its development and achieve its completion.

Finally, why did we choose to write this textbook as a collaborative, open book to begin with? Publishing with

a commercial publisher has a number of downsides, most of them reflecting a clash of interests between

publishers, authors, and readers. We wish to write this book as a community for the community. Many

colleagues were and are involved, and we would be glad to welcome you as part of the team!
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Chapter 1

The cell as a factory

Ohad Golan

The term “metabolism” is usually used to describe the chemical reactions that occur within biological organ-

isms to produce and transform molecules needed to sustain life. While this definition is useful, it gives no

scientific ormathematical ground for the analysis ofmetabolic systems. Here we considermetabolic systems

in a much broader sense, and in order to provide a logical framework for the analysis of metabolic systems,

we begin with a more formal definition that also covers systems outside biology. Metabolic system: “A well

defined system that takes up nutrients and uses them to sustain itself”. This definition can be represented

by a simple chemical equation:

nutrients −→ metabolic system + waste products

The process is carried out by themetabolic system itself - a point we will expand on later. The waste products

are typical leftovers of the reaction in case such products exist. Themost obvious example of ametabolic sys-

tem is a biological system that takes up substances from its environment and assimilates them to reproduce

its own components (often summarized as “biomass”). The chemical equation of metabolism for biological

systems is:

c1 sugar + c2 oxygen + c3 ammonia −→ biomass + waste products

The equation describes all the nutrients, including sugar, oxygen and ammonia, that are necessary to sus-

tain a biological system. Other molecules such as certain metals and phosphate are also necessary for the

reaction to occur but we neglect them for the sake of brevity. The typical waste products are water, carbon

dioxide, and other possible chemicals secreted by the system.

In this book we focus on the analysis of biological metabolic systems. However, given that economic systems

fall under the same definition of a metabolic system, we will use them as analogies to simplify explanations.

Whenever an analogy to economical systems is presented in this book, it will be displayed in an ”Economic

analogy” box such as the one above.

Many metabolic systems use a strategy of reproduction to sustain itself. That is, the nutrients are used to

make more of the metabolic system and not only maintain it. This means that the output of the metabolic

process is more of the metabolic system. This creates a system that, when unlimited resources are available,

grows exponentially - the metabolic system takes in nutrients which it uses to replicate, the output of the

process is also the metabolic system which takes in more nutrients and also replicates. Metabolism includes

5
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Economic analogy 1.A : Black box description of microbial growth and of an economic system

Another, less typical, example of a metabolic system in this general sense is an economic firm supplying a product.

In this example we will consider for simplicity a firm that builds houses, but any kind of product can be equally used.

Such a firm takes in land and different construction materials, these would be equivalent to the nutrients, and by

the use of the labor force, which would be equivalent to the proteins, uses them to build houses. The houses are

then sold in order to sustain and increase the value of the firm, just as the biological cell sustains itself. The chemical

equation of metabolism for a construction firm is:

c1 land + c2 construction materials −→ value + c3 waste

all the processes that take place in order to carry out the overall chemical conversion of metabolism - that is,

everything that happens inside the black box described above. The most fundamental model of a metabolic

system is one that takes nutrients from the environment, breaks them down into building blocks, and uses

these building blocks to sustain itself. In biological systems, these processes are termed catabolism and an-

abolism. In catabolism the cell takes up carbon and nitrogen sources from the environment and uses them to

synthesize the necessary building blocks: amino acids, nucleic acids and fatty acids. In the anabolic process,

the building blocks are used to form biomass which includes the functioning systems of the cells - proteins,

DNA strands and the membrane. Each process is catalyzed by a specific set of enzymes. These enzymes that

catalyze the reactions are actually the metabolic system itself. When the cell grows it makes more enzymes

to catalyze more reactions - this is the reproduction process which leads to exponential growth.

The metabolic system controls the allocation of the available resources. When coordinating the process, the

metabolic system decides between different strategies of how to best use the resources. For example, the

cell decides howmuch of the available enzymes to allocate to the catabolic process andmuch to the anabolic

process. Whenmaking these decisions, the cell takes into account different physical constraints. Examples of

these physical constraints are: a limited physical volume to maintain and carry out the metabolic processes,

a limited surface area that constrains the ability to take up nutrients or limiting thermodynamic constraints

on the activity of the enzymes. There is no one best strategy that is always utilized - different organisms

decide on different strategies based on the living conditions. This decision process is carried out by many

mechanisms in the cell with the main information processing core of the cell being the DNA. The decisions

carried out by the cell are based on the evolutionary process the metabolic system has gone through during

its existence. A description of cell information processing and how it is carried out is brought in appendix A.

So far, we describe the most fundamental metabolic system. This is a coarse-grained description in which

the cell catabolizes the nutrients into one type of precursor and does not take into account all the processes

that take place in catabolism and anabolism. In a biological metabolic system, the cell requires multiple

different types of precursors such as amino acids, nucleic acids and fatty acids. To create all the different

precursors, the cell takes in nutrients from the environment and through a set of chemical reactions, turns

the nutrients into the precursors that are necessary for the cell to sustain itself. Each chemical reaction in the



7

Economic analogy 1.B : Catabolic and anabolic processes in cells resemble an economic system: the example of
a construction firm

In an analogy to an economic system of a construction firm, the catabolic process would correspond to the purchase

and transfer of the construction materials to the construction site and the anabolic processes would correspond to

the construction of the house, the catalytic enzymes would correspond to the workers carrying out the transfer of

thematerials and construction process. The growth process in bacteria is analogous to the growth of the firm - when

the construction of the house is complete, the house is then sold to increase the value of the firm. The increased

value enables the firm to hire more work force and construct more houses.

Economic analogy 1.C

In an analogy to the economic system of a construction company, the manager of the company faces the decision

of how to allocate his workforce, how many of his workers to assign to bring in materials from the factory and how

many of his workers to assign to the construction process. In a similar way to the biological system, there are dif-

ferent limiting constraints such as a difficult topographic constructions site or limited available resources. Unlike the

biological cell though, in which the decision making is embedded by the evolutionary processes, here the decision is

made by the manager of the construction site.

metabolic process is carried out by proteins. The different precursors can be produced through different sets

of chemical reactions known as metabolic pathways and the different chemicals in the metabolic pathways

are known as metabolites. The cell decides which metabolic pathway to activate by producing the necessary

enzymes. In an analogy to the economic system of a construction company, each chemical reaction is one

process carried out by a worker – for example, the assembly of the frame of the house requires a carpenter

while the next step in the construction pathway is to place the foundation in the correct location which is

is done by another worker. The workers are analogous to enzymes and the different parts necessary for

construction are the metabolites.

Manymetabolic pathways have overlappingmetabolite reactants and products. Some of the key parameters

that describe metabolic pathways are the enzymatic catalytic rates. These parameters describe the rate at

which the enzymes consume and produce metabolites and at what concentration of reactants they saturate.

In the analogy to the construction firm, the enzymatic parameters are parameters that describe the rate of

work of each worker. Given that each metabolic pathway is made of a series of chemical reactions, each

with different catalytic rates, the different enzymes of each pathway must be coordinated perfectly to avoid

any excess buildup of metabolites - just like in a factory assembly line all the workers must be coordinated

together to avoid buildup of an intermediate.

In order to make sense of the complex network of metabolic reactions, different mathematical models were

developed. Themodels take into account the known experimental data of the different reactions and compile

them together to predict the overall response of the system in different growth conditions.
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Figure 1.1: In the metabolic process the cell takes in available nutriets and through a set of biochemical reac-
tions, turns them into precursors necessary for growth. The chemical reactions are carried out by proteins
in the cell.

The metabolic models described above describe biological systems that are disconnected from the environ-

ment except for some artificial supply of nutrients. In natural ecological systems, different organisms exist

together under a limited supply of nutrients. They compete or cooperate to best utilize the limited available

resources. All organisms try to improve their chances for survival according to the laws of evolution. In such

a setting, the metabolism of organisms living in an ecological system is directly dependent on the other or-

ganisms that coexist with them. In an analogy to an economic system, this would be a competition between

different companies for the same possible clientele. Some companies would compete against each other

while others cooperate to improve their profit.



Chapter 2

What makes up a cell

Pranas Grigaitis and Diana Széliová

Chapter overview

◦ Cells use the same building blocks to give rise to a high number of molecular species

◦ There are many parallel processes happening in cells, with similar precursors

◦ Composition of cells is environment-dependent

◦ Different time-scales give rise to coordination of processes

2.1 Describing and counting cellular components

Cells contain a diverse spectrum of molecules, needed to create two cells out of one (as Rudolf Virchow

proposed, omnis cellula e cellula, all cells come from cells). These molecules come in different sizes and

properties, and therefore create a demand for a cell to keep these components in different places (spatial

organization) with different patterns of use (temporal organization), and book-keep their quantities. Cell

composition directly influences the function of the cell: thus we observe different cellular make-up in dif-

ferent organisms or even in different cells of the same organism. Both historical research and the latest

advancements in instrumentation allow us to characterize the constituents of cells in more and more depth.

Thus in this chapter, we will do a census of cellular components: we will discuss what molecules make up a

cell, what they are derived from, how to measure these components in the lab and we will briefly consider

allocation of resources, directed to synthesize individual cellular components.

2.2 The components of a cell

2.2.1 Cell composition and structures

Although livingmatter comes in different shapes and sizes, over 99% of the cellular mass can be described by

only a handful of chemical elements. 6 most abundant elements form the famous CHNOPS notation: carbon

(C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S). Taken together, these 6 elements

encompass the vast majority of the mass, namely, ca. 97.5% in budding yeast Saccharomyces cerevisiae [1].

Living cells also containminute amounts of different metal ions, such as sodium (Na), potassium (K), iron (Fe),

molybdenum (Mo) and others – usually facilitating signal transduction or supporting enzymatic catalysis.

In an extremely simplified way, cells can be looked at as bags of fluid-like material, kept together by a mem-

brane. These “bags of things” can also contain other membrane structures inside them, forming so-called

9



10 What makes up a cell

organelles. In cell biology, we call cells prokaryotic if they do not possess these membrane structures, and

eukaryotic if they do. The divide between prokaryotes and eukaryotes can be illustrated by comparing two or-

ganisms: the prokaryotic bacterium Escherichia coli and the eukaryotic yeast Saccharomyces cerevisiae. They

both are organisms, composed of a single cell (thus called unicellular), and they both are very small, com-

pared to a typical human cell. However, E. coli does not contain any additional membrane structures except

from the plasma membrane (which encompasses the cellular contents). Meanwhile, a handful of different

organelles can be observed in S. cerevisiae. The cellular organization of these cells is shown in Figure 2.1.

Most biological membranes and membrane-based structures, including the plasma membrane itself, have

multiple functions (not only separating space), and are highly dynamic. Some membranes can fold into very

compact structureswith extremely high surface area (endoplasmic reticulum, Golgi apparatus), occupy differ-

ent volumes - from small vesicles to large vacuoles, occupying a major fraction of the cell volume. Moreover,

some molecules can form very large structures, which might be transient (short-lived), thus capturing and

defining them remains a major challenge. For these reasons, the fine structure of cells is unclear - some

findings (e.g. organelle contact sites, see [2] for a recent review) hint into some functional organization of

organelles, yet the canonical way to look at the cellular structure remains as to a “bag of things”.

A notable example of a highly specialized organelle is the mitochondrion. The mitochondrion is separated

from the rest of the cell by two (outer and inner) membranes; this feature is essential for their function.

In eukaryotes, mitochondria are a major hub of metabolism: they house essential biochemical pathways,

such as tricarboxylic acid cycle (also known as citric acid-, or Krebs cycle), as well as the so-called respiratory

chain, themachinery for generating energy with the use of oxygen (see Chapter 3 for more details). While the

most biochemical interconversions happen inside themitochondria (inmitochondrialmatrix), the respiratory

chain proteins are located in the inner mitochondrial membrane: these proteins create an electrochemical

gradient across this membrane, and use it to drive the conversion of energy, stored in nutrients, into the

energy the cell can use (in a form of ATP). What makes mitochondria even more interesting is that they also

contain mitochondria-specific genetic information (mitochondrial DNA), which is essential for mitochondria

to function inside the cell. In many organisms, the loss of mitochondrial DNA results in impaired growth (in

yeasts, that is called the petite phenotype) [3], and some organisms cannot grow unless mitochondrial DNA

is present (petite-negative yeasts).

2.2.2 Biological molecules

Although cells contain many different molecular species (“molecular identities”), we can crudely categorize

them into smallmolecules andmacromoleculesbasedon theirmolecularweight and complexity. Smallmolecules,

as the name suggests, are small chemical compounds, up to 1000 Daltons in mass (1 Dalton = 1 atomic mass

unit, 1 amu), and are usually composed of a non-repeating single chemical unit (called monomer). Macro-

molecules, on the contrary, are up to several megadaltons (MDa = 106 Da) in weight, and are frequently

composed of multiple monomers (forming so-called polymers). Compounds in the cells, both macro- and

small molecules, based on their chemical nature, fall into 5 big groups: proteins, nucleic acids (both macro-

molecules), carbohydrates (exist as both small molecules and polymers), lipids (small molecules), and cofac-

tors/other small molecules.

Proteins are polymers, composed of amino acids. Proteins are an exceptionally diverse class of molecules:

in Nature, 20 amino acids can be incorporated into proteins (so-called proteogenic amino acids), which, com-

binatorially provides 20 options for each position in the protein chain. Therefore, there is an enormous

amount of possible combinations to make a protein of a length of 100 amino acids (20100, to be precise),

even for a amino acid chain way shorter than the average in E. coli, around 325 amino acids (BioNumbers

ID (BNID) [4] 108986). This diversity gives rise to the spectrum of functions proteins can do, for instance,

catalysis (catalytic proteins are also called enzymes), transport of molecules, keeping structural integrity of

membranes, and others. Also two notable properties of proteins are that they (1) need to acquire a specific

three-dimensional structure (“to fold”) in order to become functionally active, and (2) sometimes, they also

https://bionumbers.hms.harvard.edu/search.aspx
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Box 2.A : Macromolecular machines

An important consideration about both proteins and nucleic acids is that they are polymerized by very specialized

protein- and protein-nucleic acid complexes. These molecular motors use energy (in terms of ATP equivalents) to

form chains of the respective monomers. In the case of proteins, the individual amino acids are combined into a

so-called peptide chain by a ribosome, a macromolecular complex made from proteins and RNA. The nucleic acids

are synthesized by a class of enzymatic complexes, called nucleic acid polymerases. There are two major classes of

them, specific to the nucleic acid: RNA and DNA polymerases, respectively.

need to form complexes of the same or other proteins (calledmultimers). Protein production is a major con-

sumer of energy and biosynthetic intermediates in the cell, therefore, in this book we will frequently consider

proteins as central players in implementing economic principles in cell physiology.

Nucleic acids are another category of macromolecules; their monomers are called nucleotides. There are

two major classes of nucleic acids, RNA (ribonucleic acid) and DNA (deoxyribonucleic acid). RNA and DNA

chemically have a slight, yet critical difference: the sugar, which is a part of the nucleotides, differs between

RNA (ribose) and DNA (deoxyribose). The two sugars are almost the same but for one chemical group: one

of the carbon atoms in ribose is connected to two another carbon atoms, a hydrogen atom, and a chemical

group, called hydroxy- (−OH). In deoxyribose, the hydroxy-group is substitutedwith another hydrogen atom,

hence the prefix “deoxy-” (“minus oxygen”). RNA and DNA have different functions in the cell: the primary

function of DNA is to store genetic information, while RNA canwork both as an intermediate agent to transfer

that genetic information to protein production (messenger RNA, mRNA) or to participate in catalysis and

protein production in general (e.g. transfer and ribosomal RNA, tRNA and rRNA, respectively). Outside the

polymers, nucleotides can also act as energy-accumulating compounds (e.g. ATP, adenosine triphosphate)

or signaling molecules (e.g. cyclic adenosine monophosphate, cAMP). In this text, we will mostly refer to

the energy-storing function of the nucleotides, although other functions, such as signaling, also are essential

aspects of describing cell physiology.

Carbohydrates are another major class of biological molecules, and are important both as monomers and

high molecular-weight polymers. Monomeric carbohydrates (sometimes also referred to as sugars) are

mainly used as carbon and energy sources for organisms, e.g. glucose or fructose. In oligomeric form (up to

10 monomers), carbohydrate chains are essential for cellular sensing systems, to be specific, receptor-ligand

binding. Finally, polymers of carbohydrates usually serve as structural components (part of peptidoglycan,

major part of bacterial cell walls) or energy/carbon storage (glycogen in, e.g. yeasts and animal cells, or starch

in plants).

Lipids are a vaguely-described class of compounds, which have anoverarching similarity, beingwater-insoluble.

The major function of lipids in biological cells is structural: a very abundant subclass of lipids, phospholipids,

is an essential constitutent of biological membranes. As discussed in Section 2.2.1, membranes themselves

have a variety of functions, which are mostly carried out by lipids (structural) or proteins (transport, sensing,

signaling etc.). Some lipids can also undertake other functions, such as signaling (various sterols), or energy

storage (tryglycerides, or fats).

As we see, themetabolism of biological molecules is tightly interlinked, although they exibit major differences

in their abundance, size and chemical properties. Macromolecules are present in very low concentrations,

and their biosynthesis usually takesminutes. Meanwhile, the time scale of small molecule reactions is usually

seconds (or fraction of), and the concentrations of small molecules are usually several magnitudes higher

than these of macromolecules. Yet, despite acting at different rates and concentrations, these two types of

biological molecules work in an orchestrated manner. To begin with, a number of different small molecules

are required to produce both other small molecules and themacromolecules. In return, themacromolecules

ensure cell integrity and growthby, amongother functions, operating the reaction networks of smallmolecule

interconversions (which we usually refer to as metabolism). Additionally, presence of some small molecules
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Figure 2.1: Biomass composition and cell structure of a typical bacterial, yeast, and a mammalian cell. The
area of each polygon corresponds to amass fraction of a component per cell. While the average composition
is quite similar in the three groups, there are major differences in size and internal organization (especially
when comparing prokaryotes with eukaryotes). Data for proteome groups (length-weighted protein abun-
dances) was obtained from Proteomaps. Sources of composition data: bacteria [5], yeast (BNID 108200,
108196, 107234, 100261, [6]), mammalian cells (BNID 107131, 107235, 107234). Pictures of cells were cre-
ated using Bioicons1.

can influence the function of macromolecules, both directly (e.g. essential cofactors, needed for enzymatic

reactions; enzyme activation or inhibition), and indirectly (e.g. modulation of gene expression, signaling).

Therefore, a lot of different processes have to happen in parallel to ensure the operation of the cells. Having

defined the major types of molecules we find in living cells, next we will discuss how abundant are different

components of the cells.

2.3 Cell composition in numbers

2.3.1 Biomass composition

Cells are composed of around 70% water and 30% dry mass. As mentioned in the previous section, we

can describe the composition of the dry mass with the most abundant chemical elements. For example,

the elemental formula for E. coli is CH1.77O0.49N0.24 (BNID 101800) and for S. cerevisiae CH1.61O0.56N0.16 (BNID

101801).

However, more often, we are interested in biomass composition in terms of the main macromolecules (pro-

teins, nucleic acids, lipids, and carbohydrates) and small molecules (metabolites, cofactors, and ions). Ta-

ble 2.1 summarizes an average composition of E. coli and S. cerevisiae during exponential growth, the typical

molecular masses and copy numbers of the components. The most abundant component is protein, which

1The icons bacterium-interior, golgi-3d-1, mitochondrium-3, endoplasmatic-reticulum-3d-medium, endoplasmatic-
reticulum-rough-3d-2, endoplasmatic-reticulum-rough-3d, and nucleus by Servier are licensed under CC-BY 3.0 Unported.

https://www.proteomaps.net/download.html
https://bioicons.com/
https://smart.servier.com/
https://creativecommons.org/licenses/by/3.0/
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forms around half of the cell’s dry mass. When we divide the proteome into functional groups, we find that

the biggest fractions belong to translation, central carbon metabolism, folding, sorting and degradation, and

biosynthesis. A substantial fraction belongs to proteins that are not mapped (especially in mammalian cells),

illustrating that we still lack knowledge about the function of many proteins (Figure 2.1).

RNA forms 20% of dry cell mass in E. coli, but this number is lower in eukaryotes, such as yeast (11%) or mam-

malian cells (4%). While the total amount of RNA is variable in different organisms, its relative composition

is similar – most of the RNA mass is formed by rRNA (80%), followed by tRNA (15%) and mRNA (5%) (BNID

100258, 100261, 106154). Lipid content is the highest inmammalian cells (13%) compared to yeast and bacte-

ria (4-10%, BNID 111209, Table 2.1). Remarkably, there are cases where engineered yeast cells accumulated

up to 80 % of lipids per cell dry mass [7]. The content of storage carbohydrates varies from around 30% in

yeast to 3% in bacteria (Table 2.1). In bacteria, carbohydrates are stored as the polysaccharide glycogen, while

yeast cells use glycogen and the disaccharide trehalose. Yeast cells also contain structural polysaccharides,

such as mannan and glucan [6]. Bacteria contain the structural molecule peptidoglycan (3% of dry mass) – a

polymer of sugars and amino acids, which forms bacterial cell walls. In addition, some bacteria (e.g. E. coli)

also have lipopolysaccharides on their cell wall (3% of dry mass).

A small fraction of the cell mass (2- 3%) is formed by small molecules (< 1000 Da) such asmetabolites and ions.

This group contains thousands of different molecules with vastly different functions and concentrations. For

illustration, the concentrations of the most abundant metabolites in E. coli range from 10−1 to 10−7 moles

per cell, corresponding to a range of 108 to only 100 copies per cell [5]. Possibly, there are metabolites with

even lower concentrations, but these aremuchmore difficult to quantify. Similarly, the concentrations of the

most common inorganic ions (K+, Na+, Mg+, Ca+, Cl – span several orders of magnitude [5].

The quantities of biomass components are usually expressed in relation to other quantities. The most com-

mon units are copy numbers, moles, grams, or fractions which can be expressed per cell, per gram dry mass,

or per cell volume. Membrane components can also be expressed per surface area. Often, experimental

data for these quantities is not readily available, so we need to extract it from literature. Useful sources for

average or “rule of thumb” values include BioNumbers database [4] and the book Cell Biology by the numbers

[5]. Some useful quantities are summarized in Table 2.2 They are organized in increasing order with respect

to the dimensions (1 – mass, size, thickness; 2 – area; 3 – volume, density). Notice how the dimensions in-

fluence the numerical values. For example, while the cell size differs only about 3-fold between bacteria and

yeast, the surface area differs bymore than tenfold and the volume by about 60-fold. Because volume grows

faster than area, the ratio of cell surface area to volume (SA/V) gets smaller and smaller as cells get bigger

(see more in Section 2.4).

% of dry mass Mass per cell [fg] Molecular mass [Da] Copy number
E. c. S. c. E. c. S. c. E.c. S. c. E. c. S. c.

Proteins 55 51 165 7650 40000 55000 3 × 106 108

RNA 20 11 60 1650 104-106 104-106 3 × 105 4 × 106

DNA (chromosomal) 3 0.5 9 75 3 × 109 2.5 × 108 2 16
Lipids 9 6 27 900 800 800 2 × 107 109

Storage carbohydrates 3 0.5 9 75 106 variable 4000 –
Structural polymers 6 23 18 3450 variable variable – –
Metabolites/cofactors 3 2 9 300 < 1000 < 1000 – –
Other 1 6 3 900 – – – –

Table 2.1: Amounts, characteristic molecular masses and copy numbers of the main biomass components
for Escherichia coli (E. c.) and Saccharomyces cerevisiae (S. c.). The composition data is shown for E. c. with
a doubling time of 40 minutes (BNID 104954) and for S. c. with a doubling time of 110 minutes ([8], BNID
111755). The storage carbohydrates include glycogen for E. c. / glycogen and trehalose for S. c.. The structural
carbohydrates include peptidoglycan and lipopolysaccharides for E. c. / mannan and glucan for S. c.. Sources
for molecular masses (BNID 105861, 115091, 101838, 104886, 107678, 109645, 102502, 100459); molecule
copy numbers (BNID 108248, 108197, 114950).

https://bionumbers.hms.harvard.edu/search.aspx
http://book.bionumbers.org/
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Figure 2.2: Growth laws in E. coli. (A) Cell volume grows exponentially with growth rate (data from [14]). (B)
RNA/protein ratio grows linearly with growth rate (data from [15]). In both cases, growth rate was varied by
changing medium composition.

2.3.2 Variability of biomass composition

Table 2.1 shows biomass composition of a typical E. coli and S. cerevisiae cell – these are average values in

certain environmental conditions. However, cell size, mass, and composition vary with growth rate and en-

vironmental conditions. One of the most extensively studied relationships in the literature is the correlation

of growth rate with cell size. The increase of cell mass and volume with growth rate has been observed in

bacteria (Figure 2.2), yeast, andmammalian cells [9, 10, 11, 12] (BNID 107948, 110191, 105103). For example,

the cell mass of E. coli can vary fivefold – 150 to 870 fg per cell for generation times between 100 and 24

minutes [5]. Larger cell mass goes hand in hand with larger amounts of individual biomass components. The

absolute amounts of protein, RNA, and DNA increase with cell size. However, the ratios of the components

do not stay the same and the relative composition changes with growth rate [9, 13].

One of the most consistent observations is that the relative amount of RNA per cell increases with a higher

growth rate [9, 13, 16], (BNID 111460, 111755, 108200). On the other hand, the data for relative protein

content is more variable. For example, in bacteria, protein content decreases with growth rate in some

studies [13, 16] but goes up and down in another (BNID 111460); in yeast, it increases (BNID 108200, 111755).

Nevertheless, when looking at RNA:protein ratio we consistently find a positive correlation with growth rate

across various species of bacteria (see Figure 2.2) and yeast [15, 17]. RNA:protein ratio is ameasure of protein

production capacity since most RNA is dedicated to protein synthesis. 80% is rRNA, which forms 2/3 of the

mass of a bacterial ribosome – themolecularmachine thatmakes proteins, and 15% is tRNAwhich brings new

amino acids to the ribosome (for more details about ribosomes, see Section 2.7). Indeed, we also observe

a correlation between ribosome content and growth rate. The increase of RNA:protein ratio and ribosome

Name Unit E. coli S. cerevisiae BNID/Reference

Surface area/volume (SA/V) µm−1 6 1.2 calculated here
Dry cell mass pg 0.3 15 104954, 108315
Total cell mass (with water) pg 1 60 104954, 108315
Bilayer membrane thickness nm 4 4 [5]
Cell size µm 1 − 2 5 [5], 101796
Cell surface area µm2 6 70 101792, 113854
Cell volume µm3 1 60 101788, 101794
Cell density g mL−1 1.1 1.1 103875, 103876

Table 2.2: Useful quantities for unit conversions. Note that these are average or “rule of thumb” values. In
reality, these values typically cover a broad range and depend on environmental conditions.
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Figure 2.3: Two cells with the same number of molecules per cell but with different concentrations.

content with increasing growth rate reflect higher biosynthetic needs of faster-growing cells. To support

higher growth rate, cells need to reallocate resources according to the growth demands (for example, make

more ribosomes which can then make more proteins) [18, 17, 15, 19]. For more details about resource

allocation and how it is modeled see Chapters 8 and 9.

Similarly to protein content, there is no clear correlation between the relative DNA and lipid content with

growth rate across studies [13] (BNID 111460, 111755, 108196). The content of storage carbohydrates de-

creases at higher growth rates in yeast and bacteria [16] (BNID 111755, 111460).

As we have seen, biomass composition changeswith growth rate, and for some components, we can describe

this relationship with simple mathematical equations [18, 16, 13]. However, the growth rate is a result of

environmental conditions (the amount or the quality of a carbon source, temperature, oxygen concentration,

presence of inhibitors, and so on), and the same growth rate can be achieved in different ways. However,

it may not lead to the same changes in cell physiology [10]. For example, modulation of growth rate by

temperature rather than medium composition does not significantly alter cell size, and composition [9, 13].

The inhibition of ribosomes with an antibiotic decreases growth rate but increases the ribosome content (as

opposed to reduced ribosome content in a medium with a “worse” carbon source) [15].

Conversely, environmental factors can influence cell composition without affecting growth rate. This shows

that cell metabolism is flexible – cells can reach the same growth rate in different ways, depending on the

conditions. For example, in yeast, changes of O2 concentration lead to changes in biomass composition

while keeping the growth constant using a chemostat [20]. In mammalian cells, a change of a cultivation

medium leads to significant changes in lipid composition without having a considerable effect on growth

rate [12]. Genetic background (mutations or a presence of a transgene) can also affect cell characteristics

without changing the growth rate [10, 20].

Interestingly, even though the total protein content is variable, the amino acid composition is roughly con-

stant at different growth rates/conditions in bacteria, yeast, and mammalian cells and can even be predicted

from a genome sequence with reasonable accuracy [20, 21, 12].

2.3.3 Biomass composition is not uniform

In the previous paragraphs, we considered average cells with a homogeneous composition across the cell.

However, we need to keep in mind that cells have an internal structure, and the biomass components are

not uniformly distributed throughout the cell (as illustrated in Figure 2.3). Even though prokaryotic cells do

not have compartments separated by membranes, they have some internal organization. For example, DNA

is not spread across the cytoplasm, but wrapped around proteins and packed in a compact structure called

a nucleoid. Another example is the preferential localization of certain proteins on the poles in rod-shaped

bacteria. Eukaryotes have compartments with distinct compositions, pH, and membrane potential. DNA is

localized only in the nucleus andmitochondria, andmany proteins localize only in a particular compartment.

Small molecules and ions also have different concentrations in the different compartments. Often they can-

not freely diffuse through membranes, but the transport is regulated and requires energy.

These differences in concentrations have implications for cellular functions. Some processes are restricted
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Figure 2.4: Number of molecules per cell in a population (for example protein or mRNA). The red line is the
population mean, which is often the value we use (for modeling). However, the values at a single-cell level
can differ several fold.

only to a particular compartment/area. For example, transcription only happens in the nucleus and mito-

chondria (nucleoid), and some metabolic pathways occur only in a specific compartment (e.g. tricarboxylic

acid cycle in the mitochondria). Even if the same enzyme is present in several compartments, it might work

at a different rate or in the opposite direction because of the different concentrations of substrates or prod-

ucts. In eukaryotes, certain digestive enzymes only work at low pH present in lysosomes (thus preventing a

cell from digesting itself). Sometimes, consecutive enzymes in a metabolic pathway are not freely floating in

a cell but form an assembly or bind to a scaffold, allowing intermediates to be channeled directly from one

enzyme to another. This accelerates metabolic reactions because intermediates do not diffuse away into the

bulk solution and are not consumed by competing reactions.

Finally, we need to zoomout from a single-cell (or average) view of a cell and consider the heterogeneity at the

population level. This heterogeneity is often neglected, and we use a single number to describe a concentra-

tion of amolecule in a cell/compartment – an average value of the population. However, biological processes

are stochastic (noisy), and the actual molecule numbers follow a certain distribution (Figure 2.4), which can

be characterized by mean and variance. The effect of the heterogeneity becomes especially important at low

copy numbers.

The heterogeneity in molecule copy numbers leads to a heterogeneity in cell phenotypes such as genera-

tion time, cell size, stress tolerance and others. Population heterogeneity can impact fitness in a positive

or negative way, depending on conditions. For example, when a cell population encounters an unexpected

environment, a certain subpopulation might be better suited to survive. In a different environment, another

subpopulation might thrive. We can view this as a microbial “bet-hedging” which increases the chances that

at least some part of a population will survive the new conditions. However, when cells try to maximize

growth rate, the variability in the population can decrease fitness because it decreases the average popula-

tion growth rate [22]. This topic is discussed in detail in the Chapter 13.

2.4 Cell size

There is a remarkable variability of cell sizes in nature (Figure 2.5). Figure 2.1 shows the typical sizes of

bacterial, yeast andmammalian cells, which range from1 to 15µm. However, we can easily findmore extreme

values. For example, human egg cell has 100µm (BNID 111184). The smallest known bacteriaMycoplasma has

only 0.2µm in diameter (BNID 104717) while the largest bacteria Thiomargarita magnifica can reach up to 2 cm
[33] which is even more than most mammalian cells. However, this giant bacteria looks very different from

typical bacteria like E. coli – it has hundreds of thousands of genome copies in organelle-like structures. There

are exceptional cases where cells can reach even bigger sizes. The largest known single-celled organism is

the alga Caulerpa taxifolia. It has many nuclei that are not separated by a membrane, and it reaches up to
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Experimental methods 2.B : Experimental quantification of biomass composition

We can measure biomass composition at different levels of detail – from a coarse elemental or macromolecular

composition of an average cell to the quantities of individual molecules in each cellular compartment.

To quantify the main chemical elements (CHNOPS), we can use devices called elemental analyzers. The main macro-

molecular components – the total protein, lipid, carbohydrate, DNA, and RNA content – can be quantified with simple

assays such as detection with fluorescent dyes, chemical reactions that lead to color change or extraction and weigh-

ing of a component. Going into more detail typically requires more sophisticated methods such as liquid or gas

chromatography (LC, GC), mass spectrometry (MS) or nuclear magnetic resonance (NMR). For example, for proteins,

we can measure an average amino acid composition, and for lipids, the main lipid classes (glycerophospholipids,

sphingolipids, sterols, etc.). For comprehensive reviews and protocols, see for example [23, 24, 25].

If we go down to the level of individual molecules, we enter fields of study collectively termed as omics, which aim

to characterize and quantify certain pools of biomolecules. Omics methods typically involve high-throughput mea-

surements of hundreds or thousands of different molecules and require a lot of resources (specialized equipment,

computational resources) and expertise. The classic omics fields include genomics [26], transcriptomics [27] and pro-

teomics [28] and study the components of the central dogma of molecular biology – DNA, RNA and proteins. Other

examples include metabolomics which focuses on small metabolites [29] or fluxomics which measures metabolic

fluxes (for example 13C metabolic flux analysis [30]).

Combinations of different omics can help us obtain other parameters that are difficult to measure. For example,

turnover numbers of enzymes (kcat) are notoriously difficult to quantify because the measurements are error-prone

and low-throughput. With proteomics and fluxomics data we can calculate apparent turnover numbers (kapp) at

various conditions (see Figure 2.8) and use the maximum value (kmax
app ) as an estimate of in vivo kcat [31, 32].

one meter [34]. Another special case is a neuron – its body has a small diameter (100µm), but its axons can

extend to more than a meter (BNID 109548).

For many organisms, cell size changes with environmental conditions. As alreadymentioned in Section 2.3.2,

cell size varies with growth rate, and it depends on how a particular growth rate is reached. More than 60

years ago, Schaechter et al. discovered the nutrient growth law – cell volume increases exponentially with

growth rate (as a result of the nutrient availability in the medium) [9]. Since then, the correlation between

cell size and growth rate was also observed for other organisms [10, 11, 12] (BNID 107948, 110191, 105103).

However, when the growth rate is changed by other means, for example by temperature, this relationship is

not observed [9, 13]. In some cases, even the opposite is observed. For example, for a mammalian culture,

it was observed that cell division stops at the end of the exponential phase, but cell volume continues to

increase threefold [35].

The relationships above refer to an average volume in the population. However, size changes throughout

the cell cycle at the level of single cells. Before cells divide, they need to increase their cell size. Otherwise,

they would get smaller and smaller with each division. However, they also cannot grow too much, or the

average cell size would get bigger and bigger. There are various mechanisms of how cells maintain a cell size

homeostasis, and they are discussed in detail in Chapter 11.

Finally, we need to discuss the importance of cellular shape. Different cell types come in different shapes,

such as spheres, ovals, rods, or spirals. Differently shaped cells may have the same volume but very dif-

Figure 2.5: Variability of cell size across organisms
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Experimental methods 2.C : Examples of biomass quantification methods

Component/parameter Examples of quantification methods

Cell size microscopically

Dry cell mass weighing of a defined amount of dry cells

Buoyant density Percoll gradient

Protein colorimetric (Bradford assay; Lowry assay)

Lipid weighing of extracted and dried lipids

Carbohydrates colorimetric (anthrone assay; phenol-sulphuric acid assay)

RNA fluorimetric (RiboGreen), spectrophotometric

DNA fluorimetric (PicoGreen, Hoechst), spectrophotometric

Amino acids/lipid classes LC/MS, GC/MS

Genomics next-generation sequencing (NGS) - Illumina, PacBio, Nanopore

Transcriptomics NGS (RNA-seq), DNA microarrays

Proteomics/metabolomics LC/MS, GC/MS, NMR

To visualize composition data, consider using Voronoi diagrams instead of the traditional pie charts or

bar plots. An online tool is available at bionic-vis.biologie.uni-greifswald.de for proteomics data, but

there is also a tool that works with any type of input data (GitLab repository on the book website).

ferent surface area and surface area to volume ratio (SA/V). Spheres have the lowest possible SA/V while

more complicated shapes have higher SA/V (e.g. endoplasmic reticulum). What happens to the shape when

a cell changes its volume (for example, in response to environmental conditions)? For many cells, the shape

remains roughly the same – for example E. coli always looks like a rod. As a result, SA/V decreases when cells

get bigger. We see a decreasing linear relationship if we plot SA/V against growth rate. On the other hand,

some cells vary their size and shape but maintain a constant condition-specific SA/V. [36]

2.5 Cell density

Most cellular parameters we discussed so far – cell size, mass, and composition – vary greatly with the cell

type, growth rate, or conditions. However, one quantity does not show such variability – buoyant cell den-

sity. Buoyant density is the ratio of cell mass to volume, usually expressed as g mL−1. For most organisms,

prokaryotic or eukaryotic, the buoyant cell density is around 1.05-1.15 g mL−1 [37, 5]. This range results from

the fact that cells are 70%water which has a density of 1 g mL−1 and thatmost drymass is formed by proteins,

which have a density of 1.2-1.4 relative to water (BNID 111208, 104272, 101502). Other components range

from 1 for lipids (BNID 108142) to 1.4-2 for nucleic acids (BNID 111208). To try the calculation of bacterial

density, see Problem 2.4.

For many organisms (E. coli, the yeast Schizosaccharomyces pombe, Chinese hamster ovary cells, mouse cells),

cell density is constant throughout the cell cycle and at different growth rates when growing exponentially.

However, it was observed to increase in stationary phase for E. coli and S. pombe [37, 38]. On the other

hand, the density of S. cerevisiae fluctuates during the cell cycle, which might be related to a different division

mode. The organisms mentioned earlier divide by binary fission – cells divide in the middle and produce two

(roughly) identical daughter cells. In contrast, S.cerevisiae divides asymmetrically - it grows a bud that breaks

away and becomes a smaller daughter cell.

Nevertheless, despite the variability, the range of the observed values is relatively small and similar for most

organisms, from bacteria to mammalian cells. There are special cases where cell density deviates from the

characteristic values – for example, cells with very high fat content or gas bubbles have lower densities.

http://bionic-vis.biologie.uni-greifswald.de/
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However, assuming the density of 1.1 g mL−1 is probably a good guess unless you work with a particularly

fatty or gassy cell type.

The invariability of cell density suggests that this property is highly regulated and brings us to the next ques-

tion – is there an optimal density? And what are the constraints that (possibly) determine this optimum?

These questions (among others) are discussed in the next section.

2.6 The physical constraints of cell growth

The living cells are constantly subject to a handful of so-called physical constraints, which are directly linked to

the physics and the chemistry of life. Cells cannot override (evolve to bypass) these limits – only try to cope

with them. Thus, sometimes these constraints are also called “hard” constraints. Notice that we consider the

“hardness” of these constraints only in the space where conditions can still sustain life: some of these limita-

tions could be relaxed by changing abiotic conditions, but would result in breakdown of biological systems.

One of the abiotic factors would be temperature; however, increased temperatures cause proteins to dena-

ture (lose their 3D-folded structure, thus functionality) and destabilize biological membranes. Although there

are organisms, which live in extremely high temperatures (so-called thermophiles), as a rule of thumb, we

usually consider the temperature above 393 K (120 ◦C) to be close to the limit of life. There is an organism

known as Strain 121 (Geogemma barossii) which can grow at 121 ◦C (hence the name), currently the highest

temperature known [39]. Next, the suboptimal concentration of inorganic salts (osmolarity) or pH could also

drive similar changes, disfavoring life. Herewewill consider two prominent physical limits in life: the diffusion

and density limits. These two limits describe two aspects of how molecules move in aqueous environments,

in our case – living cells.

The diffusion limit describes the state where enzymatic catalysis is so specific and so fast that the reaction

speed is determined only by the collisions of substrate molecules to the enzymes, which all result in con-

versions (i.e. no futile collisions) [40]. Usually, the number of futile collisions vary between 1 and 104 per

successful conversion, and thus having as little futile collisions as possible greatly enhances the overall rate

of the reaction. Enzymes approaching (operating at) the diffusion limit are also called perfect enzymes. Cur-

rently there are no enzymes reported which are considerably “above” diffusion limit (see [40] for an in-depth

discussion), suggesting the universality of the underlying constraint. Nonetheless, cells do have a strategy to

counter the diffusion limit. Consecutive enzymes from a pathway can be placed on a scaffold, which allows

the product of one reaction to be channeled directly into the next reaction without diffusing away.

Another aspect to consider is the density, or sum concentration of molecules, of the fluid. As described in

previous sections, cell cytosol contains a spectrum of different molecules at different sizes and concentra-

tions. We normally assume that some sort of optimal cell density that maximizes fitness exists, however,

the density is known to fluctuate substantially in time and across conditions [41]. One of the most prevalent

properties, linked to cytosolic density, is macromolecular crowding. As the name suggests, it describes the

concentration of biological macromolecules, mainly proteins, in cytosol (thus in bacteria, the genomic DNA

also contributes to molecular crowding). For example, the macromolecular crowding is suggested to impose

a limit on the protein translation [42], therefore, increased crowding would result in a growth rate decrease.

The state of macromolecular crowding is relevant for the cellular function, and is proposed to be in home-

ostasis (reviewed in [43]): optimal macromolecular crowding corresponds to a state where crowding reduces

the path proteins have to diffuse, yet does not substantially decrease the speed of diffusion. In such a way,

maintaining high macromolecular crowding is suggested to maximize reaction rates in the cytosol [44].

2.7 Macromolecule synthesis and the resources needed

Now that we have explored the diversity of nature and abundance of biological molecules, in this and the

next sectionwewill consider the coordination of cell components in the biosynthesis ofmacromolecules. The
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Economic analogy 2.D : A bakery

The diversity of metabolic intermediates/end products, stemming from small number of nutrients (e.g. minimal min-

eral media for yeast growth, containing glucose, ammonium, phosphate and sulphate salts), can be imagined as a

bakery. Every pastry starts with a small array of ingredients (flour, water, salt, sugar, ...) and using some machinery

(e.g. ovens), one ends up baking bread, pretzels, cookies, muffins etc., which are way diverse in their features, com-

pared to the starting mixture. Likewise, by taking only a handful of compounds, cells, especially microorganisms, can

synthesize most of the molecules they need to eventually replicate.

overall cell growth can be called self-replication: a cell makes a copy of itself by synthesizing macromolecules

by using molecules it either produces or takes up from the environment, all at right amounts and propor-

tions. Three essential types of resources are needed for synthesizing the macromolecules: (1) precursors,

(2) catalysts, and (3) physical space/volume for the process to happen.

As discussed earlier in the chapter, macromolecules, primarily proteins, are essential for operatingmetabolic

networks. As synthesis of different macromolecule species competes for the same classes of resources,

macromolecule synthesis can be altered to change the operational metabolic network - to switch between

metabolic strategies. In different conditions, different strategies are superior in the growth they support and

the best manner to allocate the limited resources will be preferred. We thus will discuss how these resources

are primed and used for macromolecule synthesis, together with different considerations surrounding each

type of these resources.

2.7.1 Precursors of macromolecules

Biosynthesis of the macromolecule precursors (e.g. amino acids, nucleotides, energy equivalents) is a major

part of every metabolic network. Many microorganisms can grow on a very limited number of nutrients

(in the lab context, so-called minimal media), which usually consist of a single source for carbon, nitrogen,

phosphorus, and sulfur. For instance, a minimal growth medium with glucose as the sole carbon source can

fully support growth: glucose enters glycolysis as the main energy harvesting route, however, some of the

glycolytic intermediates serve as substrates for, e.g. amino acid, lipid, or nucleotide biosynthesis.

A particularly interesting fact is that metabolic networks can be described as bow-tie structures [45]: a large

variety of nutrients can be converted into a very small number (usually counted up to 12) essential metabolic

intermediates, which give rise to, again, a diverse set of molecules (for a detailed discussion, see Chapter 3).

This gives two important insights into metabolic networks. First, this plasticity of the metabolic networks,

allows organisms to grow in various environments, where different nutrients are available. Second, due to

this organization, the biosynthesis of macromolecule precursors competes for the same starting molecules,

independently from the initial nutrients.

2.7.2 Catalysts needed for macromolecule synthesis

Many steps of the biosynthesis ofmacromolecules, as discussed previously, need catalysis to proceed. There-

fore, another kind of investment intomacromolecule synthesis is expression of necessary proteins and RNAs

(in the latter case - ribosomal RNA). Expression of proteins, starting from transcription of messenger RNAs,

their translation into proteins, folding, and degradation, involve many steps with energy investment (ATP

hydrolysis) and consume large amounts of precursors (nucleotides, amino acids). Talking in energetic terms

alone, protein expression accounts for ca. 40% of energy investments in yeast S. cerevisiae [46], and the

investments of energy for every stage of protein expression is illustrated in Table 2.3 for typical bacterial

and eukaryotic cells. This concerted action of several systems, as described above, with substantial invest-

ments at every intermediate step, means that these investments thus happen on two levels: investments in

the metabolic machinery and in the machinery, producing proteins themselves. We will consider these two
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Figure 2.6: Distributions of the kcat and KM values (in s−1 and mM , respectively), collected for E. coli, yeast
and human enzymes. The vertical solid line depicts the median of each distribution. Values were collected
from the BRENDA database, release 2022.1 [49].

levels in the following.

Metabolic enzymes. First, metabolic enzymes need to be expressed to convert nutrients into biosynthesis

precursors. Some enzymes are active only in a form of complexes, which also creates a demand to express

proteins at defined ratios. Enzymes and their complexes come in different sizes and flavors, and their activity

can be described (in very coarse-grained way, for more details see Chapter 3) by two kinetic aspects: the

efficacy (represented by the turnover number kcat) and substrate specificity (Michaelis constant KM) of an

enzyme. Importantly, these two parameters are intertwined: high substrate specificity usually comes at the

cost of efficacy and vice versa. Therefore, although some enzymes tend towards extremes in terms of their

specificity or efficacy, most of the enzymes land close to the average/median values of these parameters,

when considering the distribution of enzyme parameters among different organisms [48] (Figure 2.6).

The metabolic networks need to work in a concerted manner, even though different enzymes need to per-

form different amounts of “work” (described as metabolite flux through these enzymes, v). Thus, even given

the similarities in “average” (or “moderate”) enzymeproperties, the expression of proteins and the abundance

of their substrates span several orders of magnitude. Based on the kinetic interpretation of enzyme kinetic

parameters, we can link them to either expression level of the enzyme e (e ∝ v
kcat

) or substrate concentration

s (usually, 0.1KM ≤ s ≤ 10KM). Note that for substrate concentrations, the suggested range (order-of-

Expression stage Bacteria Eukaryotes

DNA synthesis 101 Lg 263 Lg (×2 for diploids)
RNA transcription 2 Nr Lg(23 + δrt) Nr(46 × Lr,mat + 2.17 × δrtLr,pre)
Protein synthesis NpLp[(c̄AA − 1) + 5δpt]

Table 2.3: The estimated energetic costs (units of ATP hydrolysis) of biosynthesis of a gene, as computed
by [47]. The estimates are represented as functions of the following parameters: Lg , gene length; Nr , the
steady-state number of mRNAs; Lr,pre and Lr,mat, the length of precursor and mature mRNA, respectively;
δr , the degradation rate of mRNA; t, division time of a cell;Np, the steady-state number of protein molecules;
Lp, length of the protein chain; c̄AA, average cost of an amino acid; δp, the degradation rate of proteins.
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(A) Methionine dropout (B) Complete medium

Figure 2.7: Proteome composition of E. coli, grown on the growth medium with full amino acid supplement
(right) or its version without amino acid methionine (left). Proteome composition data from [50].

magnitude difference from the KM to each side) is arbitrary, yet supported by empirical observations. On

the higher end, the benefit from high substrate concentration becomes negligible (saturation kinetics) as the

concentrationmoves from the order of magnitude ofKM (see Exercises for an example). The lower bound of

concentrations is defined through high demand of enzymes: in order to sustain flux, a lot of enzyme would

have to be produced. As cells have a finite volume to accommodate proteins, such a strategy works only for

a very small number of enzymes. Taken together the limitations on the both sides of the spectrum, enzyme

kinetics set the bounds for the concentrations of metabolites in the cells.

To illustrate the diversity of enzyme turnover values kcat and the condition-dependent expression of enzymes

(dictated by the flux v these enzymes have to sustain), we can consider the proteome composition of E. coli

under two conditions: growth medium with the complete supplement of amino acids (all 20 proteogenic

amino acids present in medium), in contrast to the supplement with a single amino acid missing (a “dropout”

medium) (Figure 2.7). The growth of E. coli in a nutrient-rich medium (glucose + amino acid supplement)

is indeed a very fast one (with doubling time of τd,rich = 21.5 ± 0.4 vs. τd,minimal = 56.3 ± 0.5 minutes).

The omission of methionine from the amino acid supplement does increase the doubling time (τd,−Met =
26.5±1.1 minutes), yet the growth rate remains high, and so is the methionine biosynthesis demand in these

conditions.

Methionine is an amino acid that is energetically the most expensive to make [51], and the final enzymatic

reaction in the methionine synthesis pathway is so-called rate-limiting, or the reaction which dictates the flux

through the whole pathway. Moreover, the enzyme methionine synthase (MetE) is a very slow enzyme (Fig-

ure 2.7, table on the bottom), thus required at large quantities to provide enoughmethionine for protein syn-

thesis at high growth. Consequently, it was observed thatMetE alone could occupy up to ca. 7.5% of the total

proteome (by mass) in medium lacking methionine, and growth on a medium, containing methionine, would

reduce the proteome fraction by ca. 800-fold, to 0.009% [50]. To contrast this highly condition-dependent

expression of MetE, we considered a protein in the lower glycolysis, called enolase Eno (Table 2.4). The ex-

pression of glycolytic proteins, including Eno, was determined to be similar, as both the complete- and the

methionine-free media contained glucose as the main carbon source. A noticeable contrast of Eno vs. MetE
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kapp → kcatlow kapp increasing kapp

Figure 2.8: The relation between the apparent and measured turnover value(kapp and kcat, respectively).
Factors, leading to low net rate of reaction per unit of protein (e.g. low substrate concentration) lead to kapp
being significantly lower than the measured kcat value, latter of which corresponds to the maximal rate of
the reaction.

is also a ca. 3 orders-of-magnitude higher kcat value compared to the one of MetE: having to invest less (per

mass) into this enzyme contributes to the ability to sustain a very high flux through enolase when cells grow

fast on glucose [50] (see Chapter 6 for a more detailed discussion).

The variable concentrations of metabolic substrates, and their relation to the enzyme parameters (KM in

this case), also bring additional kinetic considerations. The above-introduced turnover value kcat represents

the highest possible efficacy of the enzyme, where all substrates are accessible in concentration needed to

sustain this efficacy (also called saturating concentrations). Turnover values are usually measured in vitro,

with all the substrates highly in excess, thus deliberately minimizing many kinetic effects (enzyme saturation,

reversibility of reactions etc.) that are prevalent in more physiological conditions (see Chapter 3 for details).

Therefore, what we usually observe in living cells is not the enzyme efficacy in terms of the kcat, but rather

their apparent turnover value kapp (Figure 2.8). The ratio of these values (
kapp
kcat

) is then called the enzyme ef-

ficiency and can be used to infer how far away the enzyme is from its optimal working conditions. The kapp

value of an enzyme in vivo can be computed as follows: knowing the kcat value, the flux through the reaction,

one can compute the minimal demand (in moles) of the enzyme to sustain that flux. Then, the kapp value can

be computed by taking the ratio of predicted minimal enzyme demand and the enzyme abundance in the

cells.

Macromolecule polymerization. Moving from the metabolic enzymes to the macromolecular synthesis ma-

chinery, the polymerization of the macromolecules (DNA replication, RNA transcription and protein trans-

lation) are catalyzed by large enzyme (and RNA, in the case of ribosomes) complexes: DNA and RNA poly-

merases (DNAP, RNAP) and ribosomes. Resources, needed for expressing them also significantly contribute

to the total costs of macromolecule biosynthesis. For instance, the molecular weight of an intact ribosome in

E. coli is ca. 2.3 MDa (BNID 111560), and the E. coli ribosome consists of 62% RNA and 38% protein (in mass %,

BNID 109047). Meanwhile, eukaryal ribosomes are even larger, ca. 3.3 MDa for S. cerevisiae and ca. 4.3 MDa

for human H. sapiens (BNID 111560), and have higher protein content [52]. For a comparison, the average

length of a protein in E. coli is ca. 300 amino acids (BNID 100017) and average amino acid weight is ca. 109

Da (BNID 104877). By multiplying these numbers, the molecular mass of an average protein is ca. 32.7 kDa,

roughly 70× lower than the ribosome that synthesizes this protein.

Pathway Enzyme Proteome mass fraction (%) kcat (s
−1)

Met dropout Complete

Glycolysis Enolase (Eno) 0.53 0.53 192.95
Amino acid biosynthesis Methionine synthase (MetE) 7.45 0.009 0.12

Table 2.4: Abundance and kcat values of two selected proteins from Figure 2.7: enolase (independent on
amino acid supplementation) and methionine synthase (dependent on amino acid supplementation).
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The nature of these large complexes requires an exceptional coordination of resources. The first consider-

ation is the number of individual proteins that form these complexes: the RNA polymerases of S. cerevisiae

contain up to 17 subunits (BNID 111568), and 79 ribosomal proteins form a fully functional ribosome [53].

Therefore, the assembly of these complexes must be fast and robust: thus cells contain a number of as-

sembly factors for facilitating these processes. Next, the coordination also has to be temporal, especially for

prokaryotes, where both messenger RNA transcription and protein translation can happen simultaneously.

In E. coli, this is well illustrated by the 3-fold difference between elongation rates of mRNAs and proteins, ca.

62 nt s−1 and 21 aa s−1, respectively (BNID 103021, 107868). This coordination is essential for coordinated

transcription and translation happening at the same time [54], as translation happens in steps, 3 nt each (so-

called triplets). Even in eukaryote S. cerevisiae we observe a similar pattern: mRNA elongation rate of ca. 30

nt s−1 (BNID 103016) and protein chain elongation rate of ca. 10.5 aa s−1 [55], nearly a 3× difference. Also,

the polymerization of macromolecules is very tightly connected to the metabolism: different kinds of growth

limitations (limiting amounts of nutrients) were shown to create bottlenecks at different stages of protein

expression [56], and the optimal regulation of these processes were selected for by the evolution [57, 58].

2.7.3 Physical proteome space

A final type of asset required for macromolecule synthesis is the physical volume in the cell. As the cells are,

again, “bags of things”, they possess a finite volume, thus different processes compete for available proteome

volume (also called “proteome space” interchangeably). A general trend across microorganisms is that ribo-

somes occupy larger proteomemass fraction (in the range of 10-40% total proteome) with increasing growth

rate [15, 59], with an estimated maximum in E. coli of ca. 55% of total proteome mass [15]. Alongside ribo-

somes, biosynthetic pathways also occupy a substantial share of total proteome (e.g. enzymes, required for

amino acid biosynthesis occupy up to 15% of the proteome space in S. cerevisiae [59]). Experimentally, the op-

timal allocation of proteome space can be challenged by, e.g. varying expression of an unneeded (gratuitous)

protein. Both for E. coli and S. cerevisiae it was shown that increasing gratuitous protein expression directly

affects the maximal growth rate on both minimal and rich media [60, 56], suggesting that the decrease in

growth rate is not dependent on the nutrient status of the cell.

Numbers provided above were measured for cells, grown in minimal medium, and some of the costs we

discussed - not only proteome space, but also precursors and enzymes - could be alleviated by growth in

rich medium. Uptake of biosynthetic precursors usually is less costly than biosynthesis, as expression of a

single type of transporter can substitute the need of expressing a biosynthetic pathway with tens of enzymes

associated. Indeed, transfer of S. cerevisiae cells to a amino acid-rich growth medium resulted in an increase

of growth rate, caused by increased proteome allocation to ribosomes, in place of the proteins of de novo

amino acid biosynthesis [61]. In conclusion, the physical space that proteins can occupy is also an asset that

the proteins are competing for, and thus the optimal allocation of the available space is key for the cells to

grow in the most favorable way under specific conditions.

2.8 Concluding remarks

In this chapter, we discussed the properties and the quantities of the main cellular components, how the

composition changes in different environmental conditions, and what resources are needed for a cell to

replicate itself. It may seem that we already have a vast amount of data, but a lot is still missing. Most

available data comes from model organisms such as E. coli, S. cerevisiae, or humans, but the data for other

organisms is still limited. Single-cell data (ideally with subcellular resolution) is also not widely available. Even

though we can sequence a genome within a few hours or days, we still do not know the functions of many

genes. Many experiments still need to be done, and new high-throughput experimental methods developed

to fill the gaps in our knowledge.

Nevertheless, with the basic knowledge from this chapter, we can dive deeper into studying cellular eco-

nomics and resource allocation with mathematical modeling. How is biomass represented in mathematical
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models? Often, models only focus on proteome as it is a cell’s most abundant and expensive component.

However, some models also include other major components (RNA, DNA, lipids, carbohydrates, cofactors,

etc.). The components can be modeled at different levels of detail. For example, the cell proteome can be

represented simply as a total proteome, divided into protein subgroups (e.g. metabolic, ribosomal, other), or

modeled as individual proteins. Finally, there are two contrasting ways to include biomass in mathematical

models. On the one hand, some models consider a fixed biomass composition based on measurements or

literature (see Chapters 4 and 5). On the other hand, somemodels predict the biomass composition (i.e. they

calculate optimal resource allocation or enumerate all possible compositions, see Chapter 9).

Apart from biomass composition, we can include other cellular properties as constraints or parameters in

the models, depending on the type of a model and how detailed it is. For example, we can constrain the

transcription/translation rates, enzyme turnover rates, cell surface area or volume,

In conclusion, this chapter introduced the basic building blocks of a cell, processes that make them, how they

are coordinated and how they depend on environmental conditions. In the next chapters you will learn how

to translate this information into mathematical models and how to use them to gain deeper knowledge of

cell biology.

Recommended readings
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◦ Milo, R., & Phillips, R. (2015). Cell biology by the numbers. Garland Science.

Problems

Problem 2.1 Intuition for biological numbers. Try to answer the following questions, and only then look up

the results:

◦ What is the volume of a cell?

◦ What is the size of a protein?

◦ What is bigger, a protein or the mRNA that encoded it?

◦ How many protein molecules are there in a cell?

◦ What is the number of genes in a genome?

◦ How long does it take to transcribe a gene?

◦ How long does it take to produce a protein molecule?

◦ What is the minimal doubling time of a cell?

◦ What other questions come to your mind?

Precise values do not matter here – think about orders of magnitude.

Problem 2.2 Proteins per cell - estimate one. Howmany proteins are there in a bacterial/yeast/mammalian

cell [5]? Use data from the following table:

Protein mass per volume 0.2 g mL−1

Molecular mass of a protein 40000 g mol−1

Avogadro’s number 6 · 1023 1/mol
E. coli volume 1 µm3

S. cerevisiae volume 60 µm3

Mammalian cell volume 3000 µm3
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Problem 2.3 Proteins/ribosomes per cell - estimate two. A typical protein has a volume of 25 nm3 (BNID

101828) and a ribosome 3400 nm3 (BNID 104919). Given that 70% of a cell volume is water, what is the maxi-

mum number of protein/ribosome molecules that fit into a typical E. coli cell (see Table 2.2)? Compare your

answers with the previous problem/values in BioNumbers database.

Problem 2.4 Buoyant cell density. Calculate the buoyant density of a typical bacteria using the following

data:

Component Density (g mL−1) Mass fraction per cell

Water 1 0.7
Proteins 1.3 0.18
Nucleic acids 1.7 0.08
Lipids 1 0.03
Carbohydrates 1.5 0.01

Problem 2.5 Concentrations enzymes and substrates. Dourado et al. [62] suggested that there is a relation-

ship between the concentrations of enzymes and their substrates in E. coli, which is a result of a constraint

on the biomass density. They showed that the reaction flux is maximal when the dry mass of each substrate

is equal to the dry mass of the unsaturated (free) enzyme. What is the concentration of one enzyme per cell

for E. coli (in mol L−1)? What would be the optimal concentration of its substrate? Use protein mass and cell

volume from Problem 2.2 and the mass of glucose as substrate.

Problem 2.6 Cell size in different dimensions. Imagine a spherical cell that increases its diameter from 1 to

2 um. How much do the surface area, volume, and SA/V change? Think about how this could influence the

import of nutrients and the diffusion across the cell.

Problem 2.7 Alien lifeforms. Imagine alien lifeforms. Would they be composed of cells? Why? What features

of cells could be completely different? What features are so much dictated by physics that they could not be

different in any type of alien cell?

Problem 2.8 Substrate demand to saturate an enzyme. Take the following rate law: v = vmax
S

KM+S
(also

known as irreversible Michaelis-Menten rate law, see Chapter 3), where vmax is themaximal reaction velocity.

Plug in the values for v and compare the substrate concentration needed for the reaction rate to increase

from (i) 10% to (ii) 90% of the maximal rate vmax. Hint: express the S in terms ofKM and take the ratio.
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The dynamics of metabolic systems

Elad Noor, Hadrien Delattre, Herbert M. Sauro, Orkun S. Soyer, Robert West

Chapter overview

This chapter introduces cell metabolism as a dynamical system. While the previous chapter gave an

overview of the constituents of this system, i.e. enzymes, metabolites, etc., this chapter focuses on con-

ceptual abstraction of the metabolic system as a whole and how to model its dynamics over time. The

key areas introduced are:

◦ Conceptualizing cell metabolism as a dynamical system (section 3.1)

◦ Dynamics and regulation of metabolism (section 3.2)

◦ Toolbox formodeling dynamics of metabolism - Biochemical reaction rate equations and their deriva-

tions (section 3.3)

◦ Dynamics ofmetabolism: Examples of experimental evidence andmodel-based explanations (section

3.4)

◦ Mathematical derivations and example models (appendix sections A.1 and A.2)

This chapter links to the rest of this book by introducing dynamic of metabolism and highlighting possible

dynamical features as constraints or self-regulation mechanisms on metabolic fluxes. Exploring the latter

possibility is challenging, requiring both theoretical and experimental efforts. The understanding of dynamics

is at the forefront of the study of cell metabolism and physiology and we hope that this chapter provides a

notion in the reader to explore this area of research further.

In this chapter we will switch back-and-forth between a high-level view on metabolism, considering all of

it, and a more focused, low-level view focusing on modeling individual reactions or small sets of reaction

systems (e.g. pathways or motifs). These two viewpoints constitute two ends of a wide spectrum, and our

aim in jumping back-and-forth between them is to allow the reader to obtain the skills to model dynamics of

reaction systems that make up metabolism, while at the same time to invite them to think about the overall

function of the metabolic system.

3.1 Conceptualizing cell metabolism as a dynamical system

Cellmetabolism is a dynamical process that converts availablemetabolites from the environment into biomass

andother products. Themetabolismof a typical cell involves thousands of biochemical reactions andmetabo-

lites. What would be a useful way to think about such a complex, dynamical system? We need a conceptual

27
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Economic analogy 3.A

We can make an analogy that presents metabolism as an assembly line in a factory. Metabolites enter the line from

outside the cell and are processed – i.e. acted upon by enzymes – to create new metabolites that are ultimately

incorporated into cellular biomass. This picture is reinforced by the common textbook illustration of metabolism as

a set of isolated pathways that are placed ‘upstream’ or ‘downstream’ of each other, and that ‘produce’ or ‘consume’

outputs for each other. A key shortcoming of this analogy is that it conveys a picture in which events are strictly linear

and progressive in their nature, ignoring the cyclic and inter-connected nature of metabolism (Fig. 3.1). Despite this

shortcoming, this analogy captures the point that the flux ofmaterials through the system can attain a ‘steady-state’ of

equal in- and out-flux across individual reactions (see further discussion of the steady-state concept in themain text).

One important difference however between an assembly line and metabolism is that the rate at a given assembly

stage in a factory is not a function of how many units are waiting to be processed because factory machines tend

run at fixed rates. In metabolism, the rate of a reaction is a function of the substrate concentration until saturated.

This leads to distinctive behavior not found in factory assembly lines. Another important difference with a factory

assembly line is that unlike an assembly line, metabolism in some cases is able to in both directions along the line.

The most well known of these is the bidirectionality of the glycolytic and gluconeogenic pathways.

picture of metabolism to help us formulate more specific ideas about how it functions, how it can be manip-

ulated, or even how it has evolved. Here, we first highlight a few such ‘pictures’, or ways of thinking about

metabolism.

3.1.1 Metabolism as a collection of pathways

The common and historical view of a ‘metabolic system’ stems from pioneering biochemical studies from the

1930s onwards, which identified collections of reactions as so-called ‘pathways’ [63]. Known mostly through

the names of their discoverers, these include the Entner–Doudoroff (ED), Embden–Meyerhof–Parnas (EMP)

and pentose-phosphate (PP) pathways involved in glucose uptake and conversion into pyruvate, and the

Krebs pathway (a.k.a. tricarboxylic acid cycle, TCA) involved in the conversion of pyruvate into amino acid,

nucleotides, and biomass precursors [64]. This ‘pathway-centric’ view of cell metabolism lends itself readily

to an assembly line analogy and the notion of (linearly) connected pathways (see Economic analogy 3.A).

Pathways, yes, but not so linear! The identification of well-established pathways and the subsequent focus

upon them gives the false impression that cell metabolism consists of a series of neatly organized and serially

connected pathways. This impression is facilitated by pictures of isolated linear pathways, common in text-

books and even research papers. In reality, these pathways are highly interconnected with other pathways

(Fig. 3.1).

Part of these interconnections within metabolism arise from co-substrates and specific metabolite pairs

that participate in many reactions. For example, co-substrates such as ATP and NADH link many parts of

metabolism through reactions in which they are generated or consumed (Fig. 3.2), while the glutamate - α-

ketoglutarate pair is involved in the TCA cycle as well as acting as a group donor in all amino acid biosynthesis

pathways.

The pathway view provides a useful starting point to think about metabolism, but a complete understanding

of metabolism dynamics and metabolic phenotypes requires us to come to terms with the highly connected

nature of these pathways (see below, Philosophical Remarks Box 3.C).

3.1.2 Metabolism - coarse grained views

The highly connected nature of metabolismmakes it difficult to understand its overall dynamics just from in-

dividual pathways. It also makes it hard to conceptualize metabolism as a single, linear process, or as serially

connected pathways. Here, a coarse-grained viewpoint, focusing on the overall function of cell metabolism,

might prove helpful. There have been several such views developed, with two highlighted here.
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Figure 3.1: Metabolic pathways and complexity. (A and B) Upper glycolysis pathway as a linear pathway,
with or without co-substrates. Note that the co-substrates ’connect’ this pathway to a large number of other
reactions that also use these same co-substrates. (C) Upper glycolysis pathway, together with the pentose-
phosphate pathway. Notice metabolites participating in both.

Metabolism as biomass generator. A widely applied coarse-grained view of metabolism considers it as a

vehicle to biomass production. In this view, metabolism is considered as two coupled processes, one pro-

ducing energy and compounds that can act as building blocks (e.g. amino acids), and one that uses these to

create larger macro molecules (e.g. proteins and lipids) needed to make a new cell. These two processes are

called catabolic and anabolic metabolism respectively, and their coupling presents the whole cell metabolism

(Fig. 3.3 A). This coarse-grained model is widely used (e.g. [64, 65]. However, it is not always clear how to par-

tition various pathways and reactions as anabolic and catabolic, and the notion of metabolism organized

solely to satisfy for biomass production does not capture certain metabolic phenotypes, such as no-growth

states or excretion of high-energy metabolites (i.e. metabolic overflow).

Metabolism as electron flow. An alternative coarse-grained view of metabolism is obtained from a more

chemical standpoint. When one writes down an overall reaction for cellular metabolism, considering com-

pounds taken up from the environment and created at the end of various metabolic processes, one realizes
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Figure 3.2: A simplifiedmapof centralmetabolism, particularly highlighting interconnections amongdifferent
processes (i.e. pathways) through the NAD(P)+ / NAD(P)H co-substrate pair.

that this is a redox reaction, a type of reaction where electrons are exchanged between participating reac-

tants (see Fig. 3.3B and Box 3.B). This means that the actual reactions within metabolism that enable this

overall reaction must compose also of some redox reactions. In other words, we can argue that metabolism

consists of (besides other reactions) a series of redox reactions that enable flow of electrons. Metabolism is

thus an inter-connected system of reactions that allows flow of electrons from readily oxidized compounds

(electron rich compounds with low or negative reduction potentials) towards readily reduced compounds

(electron poor compounds with positive reduction potentials) [66, 67]. (Fig. 3.3B). As the Nobel laureate Al-

bert Szent-Györgyi (1893 – 1986), who studied the TCA cycle and discovered vitamin C biosynthesis pathways,

once said, “Life is an electron looking for a place to rest.”.

Emphasizing its redox reactions, themetabolic system can be visualized on a reduction potential chart, which

is sometimes called a ‘redox ladder’ (Fig. 3.4 and box 3.B). This potential chart shows reduction potential of

redox half reactions (usually in reduction direction) and allows us to readily visualize the thermodynamic

feasibility of redox reaction pairs. The chart is ordered in such a way that any reduction half reaction can

be paired with any other placed below it, resulting in a thermodynamically feasible redox reaction, but not

with those above it. We notice that cell metabolism, in order to maintain electron flows, needs to maintain

thermodynamic feasibility of the overall and all intermediate reactions. The key requirement for this is to

have access to electron donors (e.g. carbohydrates) and terminal electron acceptors (e.g. oxygen). One must

also note that the redox ladder depicted in Fig. 3.4 is derived for standard concentrations of metabolites,

whereas the reduction potentials would depend on actual concentrations in the cell.

3.1.3 Keeping flows in a system of interconnected fluxes

It is noticeable that both coarse-grained views presented above involve interconnected fluxes that are ulti-

mately enabling an overall flux. In the biomass-based view, the flux between catabolism and anabolism is

connected to enable flux into biomass. In the electron-flow based view, there is again a set of interconnected

flows to enable the overall electron flow from initial donors (e.g. glucose) to final acceptors (e.g. oxygen).

The interconnection of fluxes in metabolism is most clearly visible in reactions involving co-substrates, such
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Figure 3.3: Coarse-grained models of cell metabolism. (A) A conceptual drawing of cell metabolism as
provider of precursors (catabolism) and generator of biomass from those (anabolism). (B) A conceptual
drawing of cell metabolism as enabling an abstract redox reaction between a pair of electron donors and
acceptors. The electron donor can at the same time be the carbon source for biomass generation, or there
can be a separate ‘carbon-donor’. This overall redox reaction is an abstraction, in the sense that in real
metabolism electrons are not directly transferred from the original donor to biomass precursors but rather
there are many intermediary redox reactions such as those involving key carrier co-substrate metabolite
pairs NAD(P)+/NAD(P)H.

Box 3.B : The redox ladder in metabolism

We can highlight the overall redox reaction implemented by the cellular metabolism further, by writing it as two

separate reactions consisting of an oxidation reaction (involving a molecule releasing electrons) and a reduction

reaction (involving a molecule accepting electrons) (see Fig. 3.3). The feasibility of the paired, overall redox reaction

can be measured by the Gibbs’ free energy, or the closely related reduction potential, where a positive reduction

potential (or a negative Gibbs’ free energy) indicates a thermodynamically feasible reaction. Thus, a redox reaction

with a positive reduction potential implies electrons ‘flowing’ from a molecule with high reduction potential towards

that with a low reduction potential – a point that can be visualized using a “reduction ladder”, a chart of reduction

potentials (Fig. 3.4). Notice that considering redox reactions as composed of individual reduction and oxidation

reactions is merely a conceptualization, however, this provides a useful analogy in which we can view a metabolic

system as enabling the flux of electrons across many reactions, and between an initial electron donor and a final

electron acceptor [63]. While glucose and oxygen are possibly the most well-known electron donor and acceptor

pairs, cells, especially microbial cells, can use a wide-range of donors and acceptors, including nitrogen and sulfur

containing compounds, thereby contributing significantly to biogeochemical cycles of these compounds [68].

as NAD(P)+ / NAD(P)H and ADP/ATP pairs (see below, philosophical remarks box 3.C). The NAD(P)+/NAD(P)H

pair form either the oxidation or reduction half-reaction in various redox reactions thereby enabling the

aforementioned electron flows within the metabolic system. The ATP+/ADP pair forms an energy carrier,

providing driving energy to reactions that would be thermodynamically infeasible (see section 3.2.1 below on

what we mean by this). This pair is seen as forming the flux connection between catabolism and anabolism,

where the former is considered to result in ATP production, and the latter is considered to consume this.

Co-substrates are thus essential in connecting different fluxes, and therefore processes, within metabolism

and their dynamics must be important to keep overall metabolic flow. It is tempting to speculate that key co-

substratesmight be an evolutionary outcome that ensures stable electron flows in the face of changing condi-

tions. While this possibility is difficult to prove or disprove, it is interesting to note that the NAD(P)H/NAD(P)+

pairs can attain a broad range of reduction potentials that could enable their redox partnering with many of
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Figure 3.4: Metabolism on a redox ladder. Cartoon representation highlighting the role of electron flows
through redox reactions for a functioning metabolism, and a reduction potential chart listing key redox re-
actions found in cellular metabolism. Notice that the reduction potential chart shows reduction potentials
of half-reactions in the reduction direction and using metabolite concentrations under standard conditions,
hence the actual potentials would be different and dynamically changing within the cells. A thermodynam-
ically feasible reaction would need to combine one half reaction (run in reverse, oxidation direction) with
another one lying below it (i.e. at a higher reduction potential). Two example feasible redox pairs are shown
with the blue and red data points.

the different reaction types found in cell metabolism [69] - in other words, these two redox pairs seem to be

a versatile tool to connect a wide range of redox reactions to each other and ensure electron flows.

3.1.4 Metabolic system and recurring motifs

Within the highly inter-connected system that is metabolism, specific reaction arrangements seem to recur

frequently, so-called “reaction motifs”. We have already mentioned the cyclic reaction systems, involving

co-substrates as one such motif. Other reaction motifs that have been highlighted include autocatalytic cy-

cles [70] and branch points [71]. As we will discuss below, these reaction motifs can give rise to specific

nonlinear dynamics and act in auto-regulatory capacity or create constraints on the metabolic system. In

general, however, it is difficult to ascertain the evolutionary significance of reaction motifs. While automated

approaches, involving graph theoretical analysis of metabolic systems represented as networks, highlighted

certain metabolic motifs as significant compared to random networks, it was subsequently shown that this

result is dependent both on the original network representation used and the randomized networks used

for comparison [72].

3.2 Dynamics and regulation of metabolism

Independent of our conceptual views on metabolism, the fact remains that the metabolic system involves

flux of matter. A myriad of metabolites are combined, converted, broken apart, and re-assembled. These

biochemical reactions are catalyzed by enzymes so to improve kinetic rates, and the entire systemmust obey

the laws of thermodynamics (more on these later in section 3.2.1). In summary, metabolism constitutes a

‘system’ of metabolites and their reactions, together with enzymes. Its dynamics over time ensures fluxes of
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Philosophical remarks 3.C

The involvement of co-substrate and keymetabolites results in the coupling ofmanydifferent parts of themetabolism

and in the emergence of cyclic reaction systems - for example, by connecting different parts of the metabolism, the

NAD(P)H/NAD(P)+ pairs result in cycling between their different forms. This means that in order to capture the

concentration of all the other molecules involved in these reactions, we need to consider dynamics of a series of

intertwined cyclic reaction systems, rather than linear pathways akin to an assembly line. Indeed, it has been argued

that cyclic reaction motifs should form the basis of developing a dynamic understanding of cell metabolism [73]. It

must also be noted that co-substrates, and possibly other key metabolites, can have ‘conserved’ concentrations in

the time scales of metabolic flux dynamics. In other words, these metabolites form ‘conserved moieties’ within the

system, similar to enzymes, such that altering of the total pool size of these co-substrates or the ratio of their dif-

ferent forms (e.g. the NAD+/NADH ratio) can possibly affect the flux distribution across different pathways that they

are connected to [74, 75, 70, 76, 73, 77].

matter.

3.2.1 Biochemical reactions and thermodynamics

Metabolism consists of individual biochemical reactions of the form:

νaA + νbB −−⇀↽−− νcC + νdD (3.1)

where νi are the so-called stoichiometric coefficients, determining the number of molecules of the i’th chem-

ical species taking part in the reaction (Box 3.D). While these reactions are catalyzed by enzymes, they still

need to obey thermodynamic laws. We will not provide a full treatise of the thermodynamics of chemical

reactions here - we refer the reader to excellent books on physical chemistry for this (e.g. [78]) and also to

books for a conceptual introduction to thermodynamics (e.g. [79]). Here, it suffices for us to define the key

thermodynamic equation, the Gibbs free energy of reaction, involving the chemical potential of substrates

and products. Chemical potentials are related to concentrations, where the relation depends on the ionic

strength of the solution. Assuming an ideal solution, we will write here the Gibbs free energy of reaction

directly in terms of concentrations:

∆Gr = ∆G◦
r +R · T · ln c

νc · dνd

aνa · bνb
, (3.2)

where the small letters indicate the concentrations of the substrates and products as given in the above

reaction. Notice that specifying ‘products’ and ‘substrates’ automatically specifies a ‘forward’ direction to the

reaction (Box 3.D). In the above expression, the term in the natural logarithm is the ratio of the concentration

of the products to the concentration of the substrates (considering the forward direction of the reaction) and

is commonly denoted as the mass action ratio, Γ. The term ∆G◦
r is the difference between the standard

Gibbs free energy of formation of products and substrates.

The Gibbs free energy of a reaction is the key thermodynamic equation we introduce here, as it is this equa-

tion that determines whether a reaction would run in the forward direction or not. If the Gibbs free energy

of reaction, for a given set of substrates and products concentration, is negative (∆G◦
r < 0), the reaction will

be spontaneous in the forward direction as it is written (i.e. in the way the ‘substrates’ and ‘products’ are

defined). In other words, chemical reactions proceed in the direction of lower energy - they minimize the

internal energy of the system. We will see later (in section 3.3.2) that Gibbs free energy will also feature in

rate equations for biochemical reactions.

It is important to introduce here the concept of thermodynamic equilibrium, which is attainedwhen∆Gr = 0.
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Re-arranging equation 3.2 under this condition, we can obtain:

∆G◦
r = −R · T · ln

cνc
eq · dνd

eq

aνa
eq · bνb

eq
, (3.3)

where the subscript “eq” denotes the concentrations of each species at the thermodynamic equilibrium. The

ensuing ratio is known as the equilibrium constant, Keq = c
νc
eq ·dνd

eq
a

νa
eq ·bνb

eq
. Re-arranging equation 3.3, we can derive

an expression forKeq as follows:

Keq = e
−∆G◦

r
R·T (3.4)

Notice that Keq depends only on ∆G◦
r , which is the difference between the standard Gibbs free energy of

formation of products and substrates involved in a reaction, and which can be calculated from tabulated

values (where available). A good source ofKeq values of many biochemical reactions is the eQuilibrator tool

(equilibrator.weizmann.ac.il) [80, 81].

This thermodynamic treatment, showing that the equilibrium state of a reaction is captured by a constant

relating to the ratios of product and substrate concentrations at that state, is fully supported by seminal

experimental works from the second half of 1800s conducted on chemical reactions by Peter Waage (1833

- 1900) and Cato Guldberg (1836 - 1902), and their contemporaries. These works were concerned with the

equilibrium, or steady-state, of chemical reactions attained under different conditions and when initiated

from various starting concentrations of substrates. The key contribution of these studies was the finding

that the equilibrium state in a reaction, that is the ratio of the concentration of substrates and products at

steady-state, is characterized by a constant [82].

This finding, referred to as the “mass action law”, later gave rise to the notion (rather erroneously) that reac-

tion rate of a chemical reaction at constant temperature is ‘proportional to the product of the concentrations

of the reacting substances’ [83]. This derived statement actually is not a law but presents a possible rate

model that would be compatible with the experimentally observed equilibrium state (i.e. with the mass ac-

tion law of equilibrium) [82, 83] (see Box 3.D and the Appendix A.1).

3.2.2 Stoichiometric matrix and ordinary differential equations

As mentioned above, metabolic systems consists of many reactions. When describing multiple reactions in

a biochemical ‘system’, it is convenient to represent the stoichiometries of individual reactions in a compact

form called the stoichiometric matrix, N. The rows and columns of this matrix corresponds to m species

(i.e. the metabolites), and to n reactions, found in the system respectively:

N is am× n matrix

The intersection of a row and column in the matrix indicates whether the species represented by that row

takes part in the particular reaction represented by that column, or not. The sign of the element determines

whether there is a net loss or gain of substance, and the magnitude describes the relative quantity of sub-

stance taking part in the reaction. It is important to appreciate that the elements of the stoichiometry matrix

do not concern themselves with the rate of reaction, and just indicate the quantities taking part in the reac-

tion.

A full description of a biochemical network, including the time-varying, dynamical behavior ofmetabolite con-

centrations, will augment the stoichiometry matrix with a rate vector, v, forming a so-called system equation:

ds
dt = N v(s) (3.5)

This equation represents a system of ordinary differential equations (ODEs) that describe the time evolution

of the species, s. In other words, the ODE for species s describes the rate of change in the concentration of s

with a given (infinitesimal) change in time. The ODEs can be solved numerically (i.e. simulated) by computer

https://equilibrator.weizmann.ac.il
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Mathematical details 3.D : Mass action law for chemical reactions

νa A + νb B︸ ︷︷ ︸
substrates

k+−−⇀↽−−
k−

νc C + νd D︸ ︷︷ ︸
products
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Thermodynamic interpretation

Gibbs free energy of reaction:

∆Gr = ∆G◦
r + R · T · ln

cνc · dνd

aνa · bνb

At equilibrium:

∆G◦
r = −R · T · ln

cνc
eq · d

νd
eq

aνa
eq · b

νb
eq

e
−∆G◦

r
R·T =

cνc
eq · d

νd
eq

aµa
eq · b

νb
eq

= Keq

Kinetic interpretation

Backward reaction rate:

k− · cνc · dνd

Forward reaction rate:

k+ · aνa · bνb

At equilibrium:

k+ · aνa
eq · b

νb
eq = k− · cνc

eq · d
νd
eq

k+

k−
=

cνc
eq · d

νd
eq

aµa
eq · b

νb
eq

= Keq

Cartoon representation of Gibbs free energy of reaction and the thermodynamic equilibrium. As a chemical reaction

proceeds, the concentrations of substrates and products change, which in turn affects the ‘energy in the chemical

system’. We can, thus, capture the reaction advancement in a graph, where the x-axis represents the reaction ad-

vancement (i.e. the concentrations of substrates and products at different times in the reaction course) and the y-axis

the internal energy of the system. The Gibbs free energy of reaction, in a way, indicates the position of the system in

this graphical representation, where the thermodynamic equilibrium would be the energy minima. At equilibrium,

reaction Gibbs free energy would be zero, allowing us to derive the relation between substrate and product con-

centrations at that point and their free energy of formation. This relation is known as the equilibrium constant of

the reaction. The same relation can be derived using a rate model to describe the forward and backward reactions

that make up the overall reaction. The thermodynamic result (or derivation) shows that a given reaction (under a

given temperature) would always have the same substrate and product concentrations at equilibrium, a point that is

empirically verified by experiments and that is known as the “mass action law”. The rate-based interpretation of this

thermodynamic result (or law) is known as the “mass action rate model” and assumes that rate of a given reaction is

proportional to the concentrations of substrates and products to the power of their stoichiometry, and adjusted by

a rate constant (shown as k+ and k− above).

or studied analytically.

Notice that in mathematics, the time varying entities in a dynamical systems - in our context, the concen-

trations of chemical species - are known as ‘variables’, while any elements of the system that stay constant

over time are known as ‘parameters’. For an insightful and accessible mathematical treatment of differen-

tial equations and system dynamics, the reader is referred to these two excellent books [84, 85], while for a

metabolic view of variables and parameters, the article on the Control of Flux, by Kacser and Burns, offers a

valuable perspective [86].
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(A) Thermodynamic steady state
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(B) Dynamic steady states – non-equilibrium thermodynamics
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Figure 3.5: Illustration of thermodynamic equilibrium and dynamical steady state. (A) Thermodynamic steady
state. (B) Dynamic steady states – non-equilibrium thermodynamics. While the former happens only at
chemical equilibrium, the latter can arise in systems that are far from chemical equilibrium. A cartoon of a
flowing water through a tank and a reaction involving co-substrate cycling are shown as examples of systems
that can attain dynamical steady states.

3.2.3 Dynamic steady state

As stated above, the ODEs describe the time evolution of all variables s in the system. An informative ap-

proach to any dynamical system is to consider its steady state, a state where consuming and generating

processes on each variable would have the same rate, i.e. the ODEs are equal to zero, and there would be

no change in the variable amounts. For example, a water tank filling at a constant rate but emptying at a

rate proportional to the height of water in the tank will eventually reach a steady-state where the output flow

equals the inflow of water (Fig. 3.5). Under these conditions the height of water remains constant, or at a

steady state.

It is important to note that the thermodynamic equilibrium mentioned above is also a type of steady-state,

but this does not mean that steady-state is only attained at thermodynamic equilibrium. In other words,

there can be a steady-state where the system is out of thermodynamic equilibrium but the concentrations

of metabolites are not changing. An example of this would be a linear metabolic pathway of connected

reactions, with influx and outflux of an initial and endpoint metabolite (as seen in Fig. 3.5). In such a system,

we can readily consider a scenario where there is influx of the first metabolite, outflux of the last metabolite,

and forward flux through each of the reactions in the pathway. Thus, we would have a situation where all

reactions are out of thermodynamic equilibrium, but all metabolite concentrations in the pathway attain a

dynamic steady-state, where their influx and outflux are equal (Fig. 3.5). The distinction between systems

that are both at steady-state and thermodynamic equilibrium, and those that are at steady-state but out

of thermodynamic equilibrium, is an important one. It has been shown that complex dynamics, such as

bistability and oscillations (as discussed below) are only possible in the latter case [87, 88, 89].

Mathematically speaking, the steady-state is defined when the ODE system, i.e. the system equation, is set
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x
v1 v2

Figure 3.6: Cartoon of a simple pathway that features allosteric enzyme regulation and that can show mul-
tiple steady-state solutions (see Appendix A.1). The metabolite ‘x’ positively regulates the first step, v1. The
resulting positive feedback can result in a bistable system under a certain parameter regime.

to zero:
ds
dt = N v(s) = 0 (3.6)

For simple systems, such as a tank of water filling and emptying, there is only one unique steady-state. This

is perhaps better illustrated with a simple biochemical example. Consider a two step pathway where the first

step has a constant rate k1 and the second step a variable rate determined by a first-order reaction rate, k2.

v0 = k1−−−−−→ S v1 = k2·s−−−−−−→ (3.7)

The differential equation describing this system is given by:

ds
dt = k1 − k2 · s (3.8)

Setting this equation to zero and solving for s yields the steady-state level of S:

s = k1

k2
(3.9)

This solution indicates there is only a single steady-state for this system dependent on the parameters k1 and

k2.

3.2.4 Multiple steady-states and oscillations

In the previous section it was shown that a simple two step pathway admitted a single steady-state. There

can be, however, metabolic systems that can showmultiple steady states. As a simple example, consider the

system shown in Figure 3.6. This shows a linear pathway of two reactions, with the first reaction activated by

the species x.

Under certain parameter andmodel choices, such a system can admit three steady-states. Details of amodel

that can be simulated can be found in Appendix A.2). Other examples of metabolic systems with multiple

steady-states will be given below. In bi-, or multi-stable systems, there can be multiple sets of steady state

concentrations and flux rates that the system can settle at. Which set of steady-states is realized is usually

determined by initial concentrations or can be caused by a change in one of the concentrations or parame-

ters. Thus, the system can change its steady-state value abruptly at a threshold value of a specific parameter

of the system. For a metabolic system displaying bistability, we can expect a rapid switch in multiple fluxes

with changes in the concentration of one or fewmetabolites [85]. Furthermore, when bistability is combined

with noise in some parameters (e.g. enzyme expression level) there can be a multi-modal distribution of flux

states across genetically identical cells (e.g. see [90, 91] and section 3.4).

3.2.5 Regulation of fluxes

How does the cell ‘regulate’ the flux of matter in metabolism? How does it decide, for example, to makemore

of an amino acid or rather more of a lipid? Or do these decisions happen automatically, through system dy-

namics of themetabolic system? The question of regulation ofmetabolism is amajor research area in its own

right. Several hypotheses have been formulated and some have been supported by experimental measure-

ments. It is highly likely thatmany of these hypotheses are true under some conditions, and actual regulation

of metabolism involves multiple mechanisms. Two of the key mechanisms we can highlight here and that we
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Figure 3.7: Enzymes and flux regulation. (A) Schematic representation of a biochemical reaction, highlighting
the involvement of a catalyzing enzyme. For such enzyme-catalyzed reactions, the flux has an upper limit
relating to total enzyme concentration and kinetic parameters of the enzyme (see section 3.3 and Appendix
A.2 for enzyme catalyzed reaction ratemodels). (B) Cartoon representation of enzyme structure and possible
mechanisms of allosteric or competitive regulation. Such regulation can emerge either by the substrate of
the enzyme or other metabolites binding the enzyme and altering its overall reaction rate (either through
competition with the substrate or by altering the enzyme structure and affecting its kinetic parameters).

will touch upon in this and other chapters are: flux regulation through control of enzyme levels or enzyme

activity. The former is achieved via control of an enzymes’ expression level, while the latter can be achieved

via substrate-level allosteric regulation (Fig. 3.7). Notice that the latter case involves regulation of enzyme

activity by metabolites, thereby providing a ‘dynamical regulation’ that does not require additional elements

(such as gene regulatory factors). Additional examples of such dynamical regulation, which is sometimes re-

ferred to as ‘self-regulation’, can also emerge from specific pathway structures and are being proposed and

explored continually, e.g. [70, 76, 73, 77]. We will discuss this topic further in the section 3.4.

3.3 Toolbox for modeling dynamics of metabolism

As explained so far in this chapter, cell metabolism involves biochemical reactions involving metabolites (and

often catalyzed by enzymes). Thus, understanding metabolism involves studying the dynamics of this sys-

tem, trying to predict how metabolite levels will go up or down, or settle to a steady state as cell physiology

changes in response to external or internal processes (e.g. cells encountering glucose or undergoing division).

Obtaining such understanding requires us to develop models of biochemical reaction systems and predict

the ‘dynamics’ of those systems. In this section, we will learn how to model one biochemical reaction, and

how we can readily expand these models to capture multi-reaction systems. The ‘art’ of developing and ana-

lyzing dynamical models falls under the branch of mathematics known as calculus and nonlinear dynamics.

Many introductory books to these subjects are available, but we find that two particularly useful ones are

those by Silvanus Thompson on calculus [84] and by Steven Strogatz on nonlinear dynamics [85]. Here, we

will not re-introduce these topics but focus solely on various reaction rate models for metabolic systems that

have been developed based on ODEs. We will highlight relations between these models and reaction ther-

modynamics and explore their possible limitations and applications in different cases. There are also books

that are solely dedicated to models of biochemical reaction kinetics and enzyme kinetics more broadly - the

reader is advised to further explore the topic with the help of such books, particularly [92, 93, 94]
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3.3.1 Enzymes - a brief note

Wementioned many biochemical reactions to be catalyzed by enzymes. It is therefore worth briefly explain-

ing enzymes. Enzymes are proteins, chains of amino acids, that fold in the cell in various 3D structures. For

our purposes, we do not need to understand all the intricacies of how enzymes are made or how they fold

into their structures (the reader is directed to excellent books on these subjects [92, 95]). Suffice to say that

in their folded-state, enzymes can bind a set of target metabolites in such a way that puts these metabolites

in a specific physio-chemical environment and physical orientation, where their specific biochemical reac-

tion is facilitated. Thus, enzymes are catalysts that facilitate a chemical reaction among metabolites. As we

will discuss further below, modeling of biochemical reactions catalyzed by enzymes requires developing a

‘mechanistic’ picture of how enzymes function. Such models can be developed based on numerous studies

on enzyme structure and function. Here, we will only state that a generally accepted model involves en-

zymes binding their substrates - thereby forming a enzyme-substrate complex - and then transitioning to

a state enabling catalysis. We can expand this model by also considering so-called allosteric binding sites,

where specific molecules (including sometimes the enzyme’s own substrate or product) can bind and alter

the kinetics of either enzyme-substrate binding or catalytic activity. These allosteric sites, thus, provide a

mechanism for regulation of enzymatic reactions (Fig. 3.7).

3.3.2 Modeling reaction fluxes - reaction rate models

Metabolic reactions can involve diverse biophysical mechanisms (uncatalyzed, enzyme-catalyzed, etc.) and

can take place under diverse biophysical conditions inside a cell (membrane-bound, cytosolic, extracellu-

lar, coupled across membranes, etc.). As such, mechanistically complete, biophysical representation of all

metabolic reactions in dynamic, mathematical models might never be possible [96]. Dynamical models of

metabolic systems, as with all mathematical models, must therefore balance abstraction of real mechanistic

features of a system with achieving a still useful and insight-providing model. At the core of all dynamical

metabolic models are rate equations that aim to capture the kinetics of biochemical reactions.

Non-enzymatic reactions - The reversible and irreversible mass action rate models All rate models used

in metabolic modeling are based on the so-called ‘mass action law’ described in Box 3.D above. As discussed

in that section, the “mass action law”, which is derived from thermodynamic principles, is compatible with a

rate model that assumes reaction rate of a chemical reaction at constant temperature to be ‘proportional to

the product of the concentrations of the reacting substances’ [83, 82] (see Box 3.D). This ‘mass action rate

model’ is commonly used, especially in the context of elementary reactions (i.e. reactions involving one single

step), and has been shown empirically to apply in the case of some non-elementary reactions [82]. According

to the mass action model, the net rate of any reaction of the form given in Eq. (3.1) is given by;

v = k+ · aνa · bνb − k− · cνc · dνd , (3.10)

where small letters denote concentration of the relevant species of the same letter, νi denote the stoichio-

metric coefficient for species i (as introduced above), and k+ and k− denote kinetic rate constants relating

substrate concentrations to reaction rate.

The mass action rate expression is such that if the first term is larger than the second then v > 0, and more

reactantwill convert to product than product converting to reactant (Box 3.D). This situationwill continue until

some point, where the second term will be larger than the first, and the opposite will occur. Consequently,

this expression makes the system converge towards an equilibrium point, or steady-state, where v = 0. As
long as the reagents are free tomove, they will collide and interconvert (in both directions) at themicroscopic

level, even when the equilibrium is reached. However, at equilibrium, the amount of reactant converting to

product equals the amount of product converting to reactant per unit of time, therefore there is no net

consumption and production of metabolites (Box 3.D). When we have the concentrations that lead to the
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thermodynamic equilibrium of the reaction, i.e. equilibrium concentrations, we will have;

v = 0 = k+ · aνa · bνb − k− · cνc · dνd

k+

k−
= cνc · dνd

aνa · bνb

This ratio is known as the reaction’s equilibrium constant Keq and hence the ‘mass action rate model’ is

consistent with the empirical observations of Waage and Guldberg. As we have shown in Eq. (3.4) above, the

equilibrium constant is equivalent to the reaction’s Gibbs free energy under standard conditions. Note that

when considering a biochemical system (rather than a chemical one), it is customary to report Gibbs free

energies for standard conditions adjusted for a pH of 7, and denoted with superscript ◦′. Thus, we can write;

k+

k−
= Keq = e− ∆G′◦

R·T (3.11)

where ∆G′◦ is the Gibbs free energy under biological standard conditions, andR and T denote themolar gas

constant1 and temperature (in Kelvin) respectively (see Box 3.D). It is important to note here that, given Keq

is a constant determined by thermodynamics, the parameters k+ and k− cannot be chosen independently,

i..e k− = Keq/k+.

Following on from this last point, it is important to consider a reaction with largeKeq, i.e. a reaction for which

∆G′◦ is highly negative. In this case, the value of k− can become small to the extent that the reverse reaction

can be negligible. In this case the reaction could be considered as effectively irreversible and the rate model

can be approximated by;

v = k+ · aνa · bνb (3.12)

Enzymatic reactions The mass action rate discussed above forms also the basis of modeling enzymatic re-

actions. This approach is justified by considering each enzymatic reaction as a series of ‘elementary steps’,

each obeying themass action ratemodel. To this end, many alternative elementary steps, or ‘enzymemecha-

nisms’, can be considered to ‘capture’ an enzymatic reaction and subsequentlymany alternative assumptions

can be made to simplify the resulting system of steps. It is also possible to include allosteric regulation or

other types of inhibition or activation steps within these elementary steps, allowing generation of a rich vari-

ety of enzymatic models and rate equations. Here, we will cover some of the most common of such models,

noticing that the construction of these models follows the same general principles of (i) drawing up elemen-

tary reactions, (ii) writing downmass action based kinetic rates for the system, and (iii) simplifying the system

with assumptions on kinetic parameters (see Appendix A.1). The reader can consult additional books (e.g.

[93]) for more specific, elaborate enzymatic reaction schemes, or can attempt them as a exercise.

Single substrate, irreversible enzymatic rate model (Michaelis-Menten model) A possible representation

of an enzyme mediated reaction consisting in the conversion of a reactant S to a product P could be the

following reaction scheme:

S + E
k1−−⇀↽−−k2

ES kcat−−→ P + E.

This reaction scheme is rather specific, for example, it ignores the possibility that substrate bound enzyme

can be converted into product, while remaining bound on the enzyme. Thus, the above reaction scheme is

derived from a more complete and more complex reaction scheme through application of several assump-

tions relating to individual reactions. The resulting rate model from the above scheme is usually known as

the Michaelis-Menten model, named after the biochemists Leonor Michaelis and Maud Menten who stud-

ied enzyme kinetics in the early 1900’s, but several studies of that time and afterwards arrived at a similar

model using different assumptions. Implementation of the specific assumptions, as we detailed in Appendix

A.2, allows one to arrive at the above reaction system, which can be represented by a reduced ODE system,

1The molar gas constant (also known simply as the gas constant) is the molar equivalent to the Boltzmann constant,
expressed in units of energy per temperature increment per amount of substance (quantified in moles rather than single
particles). Its value is about 8.31 J · K−1 · mol−1.
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Figure 3.8: Michaelis-Menten rate law. The x- and y-axis show the substrate concentration (normalized by
KM) and reaction flux (normalized by vmax) respectively. The dashed horizontal line corresponds to vmax,
i.e. εtot · kcat.

compared to the full system. In this reduced ODE system, the ODE describing the rate of formation of the

product, which is equivalent to reaction rate, becomes:

v = s · εtot · kcat

KM + s
(3.13)

where εtot represents the total enzyme concentration, kcat is known as the catalytic rate of an enzyme, and

KM is known as the Michaelis-Menten coefficient of the enzyme and is equal to (k2 + kcat)/k1 (we note that

depending on the assumptions used, the expression for KM can vary). Plotting the above rate of formation

of product against increasing substrate concentration (see Figure 3.8) shows that the rate is a ‘saturating

function’ of substrate, i.e. the rate approaches a threshold point - given by vmax = εtot · kcat as substrate

concentration increases. Thus, we can see that the enzymatic nature of the reaction introduces a limiting

factor on the reaction rate that depends on vmax, i.e. total enzyme concentration and enzyme’s catalytic rate.

This fact underpins the regulation of metabolic flux through regulation of enzyme levels or enzyme’s catalytic

rate, and is a key conceptual point for the constraint-based methods discussed later in this book.

Single substrate, reversible enzymatic rate model (Haldane model) Considering that all chemical reactions

are — at least, in theory — reversible, it is also possible to express the rate of an enzyme-mediated reaction

as a function of the concentration of both substrate and product. A method to do so has been introduced

by Haldane [97]. It considers the following reaction scheme:

S + E
k1−−⇀↽−−k2

ES
k3−−⇀↽−−k4

EP
k5−−⇀↽−−k6

P + E.

Deriving the rate equation for this reaction scheme is slightly more involved, but it follows the same strategy

as explained above, of creating elementary steps, treating them as obeying mass action rate, and making

additional simplifying assumptions. As shown in Appendix A.1, we can follow this strategy to derive the

reversible rate equation as follows:

v = εtot · k
+
cat
KS

·
s− p · k

−
cat/KP

k+
cat/KS

1 + p

KP
+ s

KS

(3.14)

whereKS andKP are composite constants relating to the substrate and product binding to the enzyme, and

k+
cat and k

−
cat are Haldane coefficients (again, composite parameters of other kinetic constants) describing
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catalytic rate of the enzyme (see Appendix A.1 for further details of these parameters).

As done in the above section on kinetics of the non-enzymatic reversible reaction, we can consider the equi-

librium condition for this enzymatic reversible reaction. This would allow us to derive the corresponding rela-

tion betweenKeq and reaction Gibbs free energy. Recognizing the relation between the Haldane composite

parameters andKeq (see Appendix A.1) and the flux-force relation (see below), we can then re-formulate the

reversible rate equation as:

v = εtot · k+
cat · s/KS

1 + p/KP + s/KS
·
(

1 − e
∆G′

r
R·T

)
(3.15)

where ∆G′
r is the Gibbs free energy of reaction for a given substrate and product levels under biological

conditions and considering the forward direction of the reaction. This rate equation shows that forward

reaction rate will be independent of thermodynamics, when the reaction free energy is highly negative (i.e.

when the reaction is far from thermodynamic equilibrium, ∆G′
r � 0). However, as the reaction Gibbs free

energy gets close to zero, the reaction rate will decrease, and as such, there will be a dependency of reaction

rate to reaction free energy.

Another way of writing equation 3.15 is this one:

v = εtot · k+
cat ·

s/KS ·
(

1 − e
∆G′

r
R·T

)
1 + s/KS ·

(
1 + k+

cat

k−
cat

· e
∆G′

r
R·T

) (3.16)

where we replace p/KP with an expression that depends on s and ∆G′
r. This alternative expression, de-

veloped in the context of modeling microbial metabolism [98, 99], can be useful because it shows us that

when the reaction is far from equilibrium (∆G′
r � 0), the term e∆G′

r/(R·T ) will approach zero and the above

formula can be approximated by the irreversible Michaelis-Menten rate law (Equation 3.13). In this case, we

further notice that the Haldane coefficientKs becomes equivalent toKM introduced above in the irreversible

reaction scheme (see section 3.3.2).

It is important to note that many reactions within cell metabolism are experimentally shown to be reversible,

indicating that they operate close to thermodynamic equilibrium [8, 100, 80].

Ratemodels for representing allosteric effects Ratemodels for representing allosteric effects, i.e. binding of

additional molecules - or their own substrates - on the enzyme and affecting the enzyme-mediated reaction

rate, can be created either by adjusting the rate laws given above empirically, or by considering the additional

binding events at ‘allosteric sites’ of the enzyme and deriving a new ‘mechanistic’ rate model. To give an

example of the former strategy, we can consider a Michaelis-Menten rate model adjusted for an inhibitory

effect of the substrate on the enzymatic reaction rate. This adjusted rate model can be expressed as:

v = vmax · s
KM + s+ s2/KI

(3.17)

whereKI represents the saturation coefficient for the binding of the substrate at an allosteric site on the en-

zyme. Notice that we used such a model in the small multi-stable system example introduced above (section

3.2.4) and discussed in Appendix A.2.

For the same example, the alternative approach (the latter case mentioned above) would be to develop a

mechanistic model involving multiple binding reaction on an enzyme. The resulting elementary reactions

and their mass action implementation can be then carried out. This process would result in a set of ODEs,

which can then be further simplified to draw a rate model for the proposed allosteric regulation. An example

of this type model is developed in the context of multi-substrate binding enzymes, and shown to lead to

multi-stability under certain parameter conditions [101].
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Figure 3.9: The ratio of net forward flux (J) to forward reaction rate (v+) as a function of the negative reaction
Gibbs free energy

Flux-force relationship All chemical reactions, including biochemical reactions, must obey thermodynamic

laws. This fact manifests itself in several ways in dynamical modeling. Firstly, reaction direction (or, rather,

feasibility) is determined by the sign of the reaction Gibbs free energy. Second, the kinetic constants asso-

ciated with the elemental reaction steps are constrained by thermodynamics (section 3.3). To see the third

relation arising from thermodynamics, we consider again the simple non-enzymatic mass action model we

used above – reaction schematic given in Eq. (3.1) and the reaction Gibbs free energy given by Eq. (3.2).

We now re-consider the net rate of reaction as given above in Eq. (3.10), and break this into its components

of forward reaction rate (or flux) and reverse reaction rate (or flux), which are given by;

v+ = k+ · aνa · bνb

v− = k− · cνc · dνd

and then, we can express the net forward flux (J) as:

J = v+ − v− = v+ ·
(

1 − v−

v+

)
= v+ ·

(
1 − k− · cνc · dνd

k+ · aνa · bνb

)
= v+ ·

(
1 − k−

k+
· Γ
)

In this re-organized form of the net forward flux, we notice that the expression in parentheses on the right

hand side can be re-expressed in terms of reaction free energy (using Eq. (3.11)) as follows:

J = v+ ·
(

1 − k−

k+
· Γ
)

= v+ ·
(

1 − Γ
Keq

)
= v+ ·

(
1 − e

∆G′
r

R·T

)
Thus, we find that the net forward flux of the reaction is given by the forward reaction rate multiplied by a

thermodynamic factor. When the reaction is energetically favored, i.e. has large negative Gibbs free energy,

the thermodynamic factor diminishes and the net forward flux is fully determined by forward reaction rate

alone (see Figure 3.9). When the reaction is closer to equilibrium, i.e. small negative or near-zero Gibbs free

energy, then the net forward flux will be determined by a combination of forward and reverse flux rates. This

relation between net forward flux and thermodynamics is referred to as the flux-force relation [88, 102] and

holds also for the enzymatic reversible reaction model described above (see section 3.3.2).

A note on choosing a reaction rate model In the above sections, we have introduced several biochemical

reaction rate models. These models fall into two main categories, namely those that model enzyme action

(i.e. enzymatic models) and those that ignore the enzyme action (i.e. non-enzymatic models). Notice that
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derivation of both categories of models rely on the mass action law. In the non-enzymatic case, we model

reactions as single-step forward and backward reactions using mass action, while in the enzymatic case, we

considermulti-step reactionmechanisms, but still use themass action for each individual step. For each cate-

gory, we can consider the reaction thermodynamics andmodel reactions as reversible, but – as we discussed

above – we can also choose to approximate reactions as ‘irreversible’ when the overall reaction’s Gibbs free

energy is very negative (i.e. whenKeq is large).

In a given modeling context and metabolic system, it would be a valid question to ask – which model should

one use? This question can be answered in parts. In the first instance, we can make a decision about the use

of reversible or irreversible rate models. As alreadymentioned, this decision should be based on the value of

Keq – a reaction with a very large Keq can be modeled as irreversible, as long as the product concentrations

are known not to reach very high levels (in a cell). However, to represent ametabolic reaction as irreversible is

not without consequences even if the reaction always runs in the same direction (notice that the assumption

of irreversible reaction means that the reaction rate cannot go negative). Reversible kinetics can capture

the negative feedback of reaction products on reaction rate, and irreversible reaction models would lose this

feature [103]. A recent study by Shen et al [104] showed how important it can be to include product inhibition

to create a predictive metabolic model.

In the case of lowerKeq value – in combination with a consideration of possible product concentration – the

modeler should opt for the reversible rate models, which are thermodynamically consistent. The decision

about use of enzymatic or non-enzymatic reaction models can be made in a practical manner. If the enzyme

associated with the modeled reaction has measured kinetic rates, it would be sensible to opt for a enzymatic

model (noting that in vivo enzyme kinetics might differ from those measured in vitro and that many enzyme

kinetics studies use parameter derivations assuming an irreversibleMichaelis-Mentenmodel). Consequently,

it may not be possible to find all the required parameters in the literature, so to model a reaction using

reversible rate model. In the absence of measured enzyme parameters, the modeler can use ‘guesstimated’

parameters, based – for example – on the distribution of known enzyme kinetic parameters, or alternatively,

use the non-enzymatic model.

Given the discussion in the preceding paragraph, it is a useful exercise to consider when the non-enzymatic

and enzymatic models might behave in the same way. We have introduced above the concept of flux-force

relationship, where we have shown that the net flux in a reversible reaction would be given by the forward

flux multiplied by a thermodynamic factor:

J = v+ ·
(

1 − Γ
Keq

)
If we consider this equation for the reversible non-enzymatic and enzymatic models, we would notice that

the thermodynamic factor would show the same behavior for both models, depending only on reactionKeq

value and substrate and product concentrations. Where the models would differ, would be in the behavior

of the v+ term, which takes the form:

For the reversible enzymatic case:

v+ = εtot · k+
cat · (s/KS)/(1 + s/KS + p/KP)

And, for the reversible non-enzymatic case:

v+ = s · k+

Where kcat, KS, and KP are the enzyme kinetic parameters for the enzymatic model and k+ is the forward

reaction rate coefficient for the non-enzymatic model. Thus, the two models would behave in a similar way,

when there is correspondence between these two terms, which are sometimes referred to as “saturation

terms” [102]. By re-arranging the above terms, we can show that correspondence between the two models
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can be expressed as:

εtot · k+
cat · (1/KS)/(1 + s/KS + p/KP) ≈ k+

We can see that in the regime, where s � KS and p � KP, both models would behave in a linear fashion and

their behavior would correspond exactly with the right choice of parameters (i.e. assuming (εtot · k+
cat/KS) =

k+). Outside of this regime, correspondence would be dependent on both parameters and concentration of

S and P . One interesting case to consider is when total amount of S and P would be conserved, for example,

with cycling reaction schemes. In this case, we can introduce a new parameter C to describe the total pool

of the cycled metabolite (e.g. C = S + P ) and the correspondence would be expressed as:

(εtot · k+
cat/KS)/(1 + (s ·KS − s ·KP)/(KS ·KP) + C/KP) ≈ k+

Thus, in this case of the sum of substrate and product concentrations being conserved, we can have corre-

spondence between the non-enzymatic and enzymatic models when S is small or whenKS = KP.

3.4 Dynamics ofmetabolism: experimental evidence andmodel-

based explanations

The high-level of connectivity among reactions, together with the plurality of molecular level mechanisms

that can arise in enzyme-mediated reactions, gives metabolic systems the capacity to display rich dynamic

behaviors [73, 89]. Here, we highlight some of the illustrative experimental observations on these metabolic

dynamics, and their possible model-based explanations.

3.4.1 Flux switching / regulation

We have introduced above the redox-based, electron flow view of metabolism. A common electron donor in

metabolism is glucose, while a commonelectron acceptor is oxygen togetherwith the associated,membrane-

bound electron transport chain (ETC). The ensuing metabolic pathway linking glucose oxidation to oxygen

reduction is termed as ‘respiration’, resulting in formation of CO2 (from full oxidation of glucose) and water

(from reduction of oxygen, cf. Fig. 3.1). However, it is possible for cell metabolism to stop the sequential

oxidation of glucose (or other sugars) at an intermediate level. In this case, the ensuingmetabolism is termed

as ‘fermentation’ due to production of partially oxidized carbon compounds such as acetate and ethanol

(Fig. 3.10) [63].

One of the earliest observation on metabolic dynamics is a shift from pure respiration into fermentation or

respiro-fermentation with changing conditions. This shift, known as contre-Pasteur, Warburg, or, Crabtree

effect, is described initially in yeast and mammalian cells, especially cancerous cells [105]. The respiration

to fermentation shift happens under lack of electron acceptors or with increasing growth rate [105, 106,

107, 108, 109, 110, 111]. While a shift into fermentative pathways due to lack of electron acceptors can

be intuitively understood as the only route to sustain electron flow, a similar shift due to increased carbon

availability or growth rate are non-intuitive as they occur under the continued presence of strong electron

acceptors such as oxygen.

A dominant concept to explain the switch to respiro-fermentation has been the idea of ‘overflowmetabolism’.

It postulates that this switch should be seen as an overflow, arising due to limitations in respiration not being

sufficient in sustaining metabolic fluxes in the face of increasing substrate availability [112]. The dynamic

regulation and origin of this respiro-fermentation switch is still a focus of significant systems biology research.

Hence, this topic is discussed further in other chapters of this book with several alternativemodels presented

for its underlying causes.

Itmust also benoted that, while respiro-fermentation switch is commonly referred to as ‘overflowmetabolism’
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Figure 3.10: Respiration-fermentation switch. Cartoon representation of the respiration and fermentation
pathways. There is an observed switch of metabolic fluxes between these pathways, from full respiration to
fermentation or a combination of respiration and fermentation, as glucose levels (and consequently growth
rate) increases. It is postulated that this relates to a limitation in the respiration and ETC system, but the
molecular basis of the switch is not fully clear with several, equally plausible hypotheses postulated.

(due to excretion of fermentation products such as acetate, lactate and ethanol), the phenomenon of over-

flow, i.e. excretion of energy rich compounds is not limited to fermentation. Excretion of amino acids and vita-

mins seem particularly common [113, 114, 115, 116], and it is not clear in these cases what type of metabolic

flux switching happens or how it happens.

Flux switching / regulation - flux sensors, branch point dynamics and dynamical flux regulation How can

we understand cells switching their metabolic fluxes with changing external or internal conditions. As dis-

cussed above, one possibility is that cells alter the expression levels of their various enzymes, so to achieve

a re-distribution of fluxes (given that enzyme levels are directly involved in the determination of fluxes, see

Eq. (3.13)). This kind of enzyme-level regulation can be mediated through regulation of transcription factors

by specific signaling molecules, including metabolites [117]. The latter case is explored in models of central

metabolism [118], and it was shown that fructose-1,6-bisphosphate could act as a ”flux sensor”, conveying

information about glycolsyis flux onto key transcription factors regulating glycolytic enzymes [119].

While regulation of enzyme levels can alter flux levels, this type of regulation can be made more sensitive

if the coupling between enzyme and flux levels can be made more nonlinear. It has been shown that such

nonlinear coupling of flux and enzyme levels can arise at branching points in metabolism [71]. In particular,

branch points (as a metabolic motif) have been shown to give rise to ultrasensitivity - a system dynamics fea-

ture that describes the situation when a given input to a system results in more than a proportional change

in its output. When enzymes at the two branches of a branching point have highly differing affinities for the

substrate (i.e. different Km values, see Eq. (3.13)), then alterations of the maximal rate of one enzyme with

higher affinity to the substrate can result in a nonlinear effect on the flux into the other branch of the branch-

ing point [71]. Thus, branching points can be one structural motif that can result in switch-like, nonlinear flux

changes within metabolism.

It is clear that changing of enzyme levels can regulate fluxes, and can do so in an abrupt, switch-like fashion

through structural motifs such as branching points. However, regulation of enzyme levels via transcription

factors is found to not capture all observed flux changes in experiments (e.g. [120, 121]). This suggests that

cells might be able to regulate fluxes by other means as well. Recently, one such possible mechanisms is pro-

posed to be the co-substrate pools [77]. For example, in a metabolic branch point, where the two branches
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involve different co-substrates, regulating the pool sizes of those two co-substrates can induce flux switching

at the branch point.

3.4.2 Bistability

Bistability is introduced above, and refers to a dynamical system having three steady state, two of which

are dynamically stable and can be attained by the system. When bistable systems exist in cell metabolism,

their combination with population level variance (i.e. noise) in enzyme levels or activity can lead to bimodal

distribution of metabolic fluxes (i.e phenotypes) in isogenic population of cells. In this context, it is notable

that significant level of variance is seen in several metabolic parameters, including sugar uptake [122, 123],

ATP levels [124], and expression levels of the enzymes involved in glycolysis and the TCA cycle [91].

Bistability in metabolic responses is experimentally implicated in the context of respiration to fermentation

switch [125], and when carbon metabolism is initiated on glucose [126] or when it switches from glucose to

other carbon sources [127, 90, 128]. In particular, the latter studies found sub-populations, within isogenic

populations (i.e. nomutations), that showdifferentmetabolic responses to changing conditions. Experiments

with isotope labeled carbon indicated that these sub-populations emerged at the time of the shift in carbon

source is induced, i.e. in response to changing conditions, and in a manner dependent on the concentration

of the new carbon source [127]. This suggests that themetabolic system implements bistable dynamics, such

that changes in external glucose concentrations can lead some cells to shift to a new metabolic steady-state

flux distribution, while others remain at their original steady state.

Bistability - negative feedback via substrate inhibition There have beenmany theoretical studies indicating

the possibility of bistability within simple enzymatic reaction systems. Bistability is shown to be possible even

in a single enzymatic reaction, involving allosteric regulation, or in a system of few coupled enzymatic reac-

tions [73, 89]. A particular ‘reaction motif’ that has been studied extensively is a two-enzyme cyclic reaction

system, where a substrate is converted into a product and then back again, with both forward and back-

ward reactions usually involving different enzymes (see Fig. 3.11). It is common, in these models, that the

enzyme catalyzing the forward reaction is assumed to be regulated by substrate inhibition, or by substrate

inhibition coupled with product activation [129, 130, 131, 132, 133]. This motif is found in several locations

within metabolism, particularly around dehydrogenases, such as lactate dehydrogenase [131], and kinase/

phosphatase pairs, such as those involved around fructose-6-phosphate [134], that can convert different

metabolites back and forth, using the NAD+/NADH or ADP/ATP pairs as reaction partners.

These theoretical findings are supported by several in vitro re-constitution experiments that confirmed bista-

bility experimentally using enzymepreparations of pyruvate kinase, lactate dehydrogenase, and isocitrate de-

hydrogenase enzymes and their corresponding partners resulting in cyclic reaction schemes [130, 131, 135].

It is notable thatmany of thesemodels incorporated negative feedback via empirical alteration of aMichaelis-

Menten type reaction rate model (i.e. one of the approaches we mentioned in the paragraph above on al-

losteric rate models, see 3.17). This raises the question about the actual biochemical mechanisms that can

lead to bistability in a enzyme-mediated reaction model. In a recent study, it was shown that the presence

of multiple enzyme-substrate complexes, as would be the case in an enzyme with multiple substrate binding

sites, creates a potential in the reaction system for bistability [101] (see Fig. 3.11). Thus, multi-site enzymes

could be points of multistability generation in metabolic systems and any larger models featuring such en-

zymes or inherently including feedback regulation can demonstrate bistability (e.g [136]).

3.4.3 Oscillations

Sustained and damped oscillations are common dynamics in nonlinear systems and can arise from a com-

bination of positive and negative feedbacks [85]. In metabolic systems both types of oscillations are seen in

vivo or in situ, with cell extracts, where concentrations of all observed metabolites are found to oscillate over

time [137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147]. In the case of experiments involving cell extracts,
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(A) Allosteric enzyme model
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Figure 3.11: Cartoon representations and brief analysis results of two enzymaticmodels capable of bistability.
(A) Allosteric enzyme model. The first model considers an enzyme that can convert a substrate (S) into a
product (P) and that is allosterically regulated by its own substrate. This regulation takes the formof inhibition
and is implemented mathematically in the rate of the enzyme - black colored equation. This model results in
a nonlinear curve for the relation between rate of production of P at steady state and the total concentration
of substrate and product in the system, Stot (black curve on the top right panel). The intersections of this
curve with the linear curve for the relation between rate of consumption of P at steady state and Stot (red
curve on top right panel). We can see that the model is capable of resulting in three intersections, i.e. three
steady states of the system. (B) Multi-site enzyme model. The second model considers instead of allostery,
an enzyme that bindsmultiple substrates. This results in several enzyme-substrate complexes depending on
the number of binding sites - 3 sites in the model shown. The resulting model can be solved for the steady
state values of flux through each enzyme complex against Stot (shown in red and blue colors on the bottom
right panel). The sum of these gives the rate of production of P at steady state (black curve on the bottom
right panel). This model can also result in a non-linear production curve and three steady states. For further
discussion of these models, see relevant citations.

thesemetabolite oscillations had a period ranging from few to tens ofminutes [145, 146, 147]. In these exper-

iments, oscillations are verified not to be due to artificial changes in ATP dynamics arising in the cell extract

preparations [146], and oscillations could be entrained by controlled glucose additions [145]. This shows that

there is an inherent ability for oscillatory dynamics in the underpinning enzymatic reaction system. This abil-

ity is suggested to be linked to the enzyme phosphofructokinase (PFK), which catalyzes the phosphorylation

of fructose-6-phosphate into fructose-diphosphate in the glycolysis pathway and is allosterically regulated
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[134].

In vivo, oscillatory dynamics are observed to occur within the central carbon pathways and displaying a phase

of tens ofminutes [137] up to several hours [142, 144]. Metabolic oscillationswere demonstrated at single cell

level and are found to be autonomous of, but coupled with, the cell cycle oscillations [144]. Additional studies

across cell populations found that cells can synchronize metabolic oscillations under some conditions [137,

138], and proposed several possible mediators for such synchronization, including acetaldehyde, hydrogen

sulphide, carbon dioxide, and media pH [139, 140, 141, 143].

Oscillations - intertwined negative and positive feedbacks Several mathematical models of the reaction

catalyzed by the enzyme phosphofructokinase (PFK) in the glycolysis pathway has shown that oscillations are

possible to arise from the dynamics of this reaction alone. These models incorporate some of the observed

allosteric regulation of PFK both by its substrates and products, resulting in intertwined negative and positive

feedbacks [148, 149, 150].

It must be noted that some of these models, and others, use the same basic models that show bistable

behavior (as discussed above) and extend them with in- and out-fluxes of involved metabolites, to display

oscillations [148, 149, 132, 151, 152]. While these theoretical demonstrations of specific enzymatic schemes

leading to oscillations have not been explored in detail experimentally, metabolic oscillations are readily

observed both in vivo and in vitro, as discussed above. Models, involving some of these proposed synchro-

nization molecules, were also developed [153, 154, 155] and could reproduce experimental findings.

3.5 Concluding remarks

In this chapter, we set out to introduce cellular metabolism as a dynamical system. We have seen that

metabolism comprises many biochemical reactions, that are historically cataloged and described into path-

ways. These pathways are usually not linear, composing of serial conversions of metabolites, but rather

display branching points and inter-connections through metabolites participating in many reactions. This

inter-connected nature of metabolic systems, together with the large numbers of participating metabolites

and reactions, makes them a complex system to study and conceptualize.

We have introduced both simplified, coarse-grained viewpoints for describing metabolism, and mechanistic

approaches for detailed dynamical modeling of it at the level of single reactions. The former can be used

to guide specific ideas on how to study metabolism, or to develop analogies to other disciplines, while the

latter can provide a toolbox for constructing dynamical models of small or large metabolic systems. We have

provided specific examples of such dynamical models and shown how they can allow us to relate system

behavior - steady state or temporal behavior - to specific reaction mechanisms or parameters (e.g. allosteric

interactions between metabolites and enzymes, cyclic reaction schemes, branching points).

There are many challenges remaining in the analysis and understanding of metabolism as a dynamical sys-

tem. Recent studies found for example that many fluxes, where measured, are lower than predicted from a

enzymatic irreversible reaction rate model (introduced in Eq. (3.13)) [31], and changes in flux patterns with

changing conditions cannot be explained by enzyme levels alone [121]. These findings lead to the question

on what determines/limits reaction fluxes and how reaction fluxes are regulated besides regulation of en-

zyme levels. There are several possible answers, including effects relating to allosteric interactions between

metabolites and enzymes, reaction thermodynamics, and substrate-related effects. The experimental study

and model incorporation of these possibilities is ongoing in systems biology, with increasing interest to in-

clude also more of the physico-chemical aspects of the cellular environment into the study of metabolism -

such as diffusion of molecules, involvement of radical chemistry (especially generation of oxygen radicals in

respiration) and membrane potential [156, 96]. As such, we are increasingly hoping to move frommetabolic

reactions studied in isolation, to cell-scale models and physico-chemical concepts that unite cell metabolism

and physiology. Some of this emerging movement is captured in subsequent chapters of this book.
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◦ “Enzymes” by J. B. S. Haldane [97]. Historically important book on enzyme kinetics and enzymatic reaction

models.
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◦ “Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering” by S.

Strogatz [85]. As it says on the tin - an excellent book introducing nonlinear dynamics within the applied

sciences context. A brilliant book. If you don’t read anything else, read the introduction chapter and be

inspired!

Thermodynamics and physical chemistry

◦ “Understanding thermodynamics” by H. C. van Ness [79]. An excellent book that de-mystifies thermody-

namics. It provides a conceptual treatise, leaving themathematics to the side and focusing onwhat actually

the thermodynamic laws mean.

◦ “Principles and Problems in Physical Chemistry for Biochemists” by N. C. Price [78]. An introductory book

on thermodynamics, physical chemistry, and biochemistry.

Problems

Problem 3.1 An irreversible reaction with simultaneous binding

1. Write the reaction scheme for an irreversible enzymatic reaction with two substrates. Assume both sub-

strates bind the enzyme simultaneously (forming one complex ES1S2), and both products are released

simultaneously from this complex (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system.

Problem 3.2 A reversible reaction

1. Write the reaction scheme for a reversible enzymatic reactionwith two substrates. Assumeboth substrates



Concluding remarks 51

bind the enzyme simultaneously (forming one complex ES1S2), and both products are released/absorbed

simultaneously from/into this complex (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system.

Problem 3.3 An irreversible reaction with sequential binding

1. Write the reaction scheme for an irreversible enzymatic reaction with two substrates. Assume the sub-

strates bind sequentially (forming complexes ES1 and ES1S2), and both products are released simultane-

ously from ES1S2 (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system.

Problem 3.4 An irreversible reaction with random-order binding

1. Write the reaction scheme for an irreversible enzymatic reaction with two substrates. Assume the sub-

strates bind the enzyme in any order (forming complexes ES1, ES2 and ES1S2), and both products are

released simultaneously from this ES1S2 (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system. Note that symbolic math tools such as Mathematica,

Maple or the SymPy Python library will be helpful for this question (though not essential).
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Chapter 4

The space of metabolic flux

distributions

Daan de Groot, David Tourigny, and Felipe Scott

Chapter overview

◦ The metabolic capabilities of an organism can be related to the individual chemical reactions it can

catalyze

◦ Elementary fluxmodes areminimal metabolic strategies that together span all metabolic capabilities.

◦ When the analysis of elementary flux modes is prohibited by computational limits, alternatives could

be used, such as elementary conversion modes, flux sampling and minimal cut sets.

4.1 Modeling metabolic fluxes in cells

In the previous chapters we have seen that cells can convert substances from their environment into building

blocks for cell components: theirmetabolismallows cells to grow, reproduce, repair themselves, and produce

compounds needed to resist environmental stresses. But how does a cell manage this in detail, and does it

have alternative metabolic strategies in case one does not function properly?

The overall metabolic conversion, for example from nutrients and oxygen to all necessary cell components

and carbon dioxide, that a cell can use to grow and reproduce is in fact the consequence of many smaller

chemical reactionsworking in concert. All chemical reactions that a cell can catalyze by expressing its enzymes

form a very versatile ‘metabolic network’, which enables a cell to survive and grow, even when the availability

of nutrients in its environment changes. There are various (semi-)automatized methods available that can

be used to reconstruct this metabolic network from an organism’s genome sequence, see Mendoza et al. for

a review of the various methods [158]. In this chapter we will zoom in on this metabolic network and study

the fluxes (reaction rates) through all individual reactions.

We call the combination of all reaction rates in a cell a ‘metabolic flux distribution’, and this flux distribution

determines if and how a cell succeeds in taking up and converting the right nutrients to sustain itself. For a

growing cell, we may ask: what will its flux distribution be, and how does this distribution change when its

environment changes? Modeling metabolic fluxes allows us to answer specific questions, for instance about

the change of a cell’s metabolism after a gene is deleted: will it survive, and if so, will it take up different

nutrients or produce different products? In contrast to the previous chapters, in the current and following
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chapters we are not satisfied with verbal descriptions, but seek predictive models that allow us to compute

the state of a cell.

So how can we model metabolism in detail? Our main task is to describe and predict the uptake, conversion,

and production of metabolites, as described by the metabolic fluxes. The rate at which a chemical reaction

runs depends (through kinetics and thermodynamics) on metabolite concentrations and enzyme activities.

Since enzymes are synthesized by the cell itself, the reaction rates are not only controlled by external nu-

trient supply, but also by gene expression. These dependencies make this a complicated field of study: the

metabolic fluxes depend on the enzyme levels and metabolite concentrations, while the metabolite concen-

trations are again determined by the balance of fluxes through reactions that produce and consume the

metabolites. In turn, enzyme levels are determined by gene expression, which is dependent on both exter-

nal conditions and internal needs (e.g. the enzyme expression may change when different macromolecules

need to be made in different phases of the cell cycle). To make matters even less transparent, most of the

parameters (e.g. enzyme kinetic constants and details of enzyme regulation) are unknown.

For the moment, we therefore make some simplifying assumptions in order to obtain tractable models:

1. Focus on small moleculesWe focus on a subsystem of the cell, the metabolism of small molecules, which

generates macromolecular precursors and energy carriers. All other processes (such as macromolecule

synthesis) that happen “outside” our metabolic network are ignored.

2. Ignore spatial structure We largely ignore the spatial structure of cells: metabolite concentrations and

reaction rates are assumed to be homogeneous across the cell. The exception to this rule occurs when

there are cell compartments, in which case we describe the metabolites in both compartments as if they

were separate compounds (e.g. cytosolic ATP vs mitochondrial ATP), which can be converted in each other

through transport “reactions”.

3. Focus on fluxes as the only variables Instead of considering metabolite concentrations, enzyme levels

and metabolic fluxes together, we will only focus on metabolic fluxes. This has important consequences

for the mathematical models that we will construct: many variables, and the corresponding equations,

will be ignored. Additionally, fluxes cannot be computed through enzyme kinetics, so that we need to find

other, non-mechanistic ways to compute the fluxes!

4. Focus on steady-statemetabolism In a simplified picture of balanced growth (see the chapter on Balanced

Growth), all metabolic processes are balanced: the rate at which material flows into the cell matches the

rate at which it is converted, which again matches the production rate of macromolecule precursors. In

addition, we assume that these fluxes are constant, such that the whole metabolic network is in a ‘steady-

state’. Taken together, we thus assume that the metabolic network can take up and produce external

metabolites (e.g. extracellular metabolites and macromolecular precursors), but that all internal metabo-

lites (“inside” the metabolic network) are mass-balanced, that is, for each of these metabolites, production

and consumption cancel out.

5. Describe precursor demand by a “biomass reaction” We assume that cell growth (or: biomass produc-

tion) requires a fixed set of macromolecule precursors in fixed proportions, corresponding to the average

mixture of cell components that are necessary tomake a cell. For metabolism, this means that the produc-

tion ofmoremacromolecule precursors only leads tomore biomass production when the production of all

precursors is scaled up proportionally. We formally express this by a hypothetical “biomass reaction” that

consumes a mix of precursors and energy carriers in the predefined proportions. Hence, in the metabolic

models we will describe the term “biomass” has a special meaning: while it usually means “the totality of

compounds in a cell”, here we use it for “the totality of compounds outside our metabolic model, which

metabolism needs to produce”.
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6. Ignore dilution of small moleculesWhen a cell doubles its size but does not produce a certain metabolite,

the concentration of this metabolite will halve. This basic principle is called ‘dilution by growth’, and in prin-

ciple affects all compounds in the cell. During balanced growth, the production of macromolecules that

are produced but not degraded should balance dilution, i.e. the number of each macromolecule should

double when the cell doubles its size. This requires the rate of precursor supply to match the dilution

rate, and hence the cell’s growth rate. Similarly, small molecules are diluted, but since these are also de-

graded by consuming reactions, the rate of dilution is usually negligible compared to the production and

consumption by metabolic reactions. Therefore, the models below will usually ignore the dilution of such

metabolites.

7. Constrain solutions by modeling limited resources Since each enzyme has a maximal catalytic rate (the

kcat value), a reaction flux will require a certain (minimal) amount of enzyme, which takes up cellular space;

since cellular space is limited, fluxes cannot increase infinitely since there is always an upper bound on a

weighted sum of reaction fluxes. This constraint implies compromises between different reaction fluxes:

one flux can only be increased at the expense of others.

With these assumptions, we are converging on a mathematical model: we know which variables to describe

(the metabolic fluxes in steady-state metabolism), which constraints to apply (the balance of production and

consumption of all internal metabolites) and what main input information we need (the metabolic network,

described by a list of chemical reaction equations). Importantly, the model will be able to describe compro-

mise: for example, with a given carbon influx and assuming mass balance, the carbon atoms can either be

used to generate energy or biomass; if one function increases, the other one goes down. To obtain realistic

predictions, we may introduce additional constraints, for example known flux directions or experimentally

measured uptake rates. All this information will not suffice to predict metabolic fluxes precisely, but it allows

us to narrow down the possible flux distributions. Importantly, all formulae in thesemodels are linear, which

makes them tractable even for very large model sizes (with thousands or even hundreds of thousands of

variables).

Notably, all these assumptions depend only on the list of chemical reaction equations (the stoichiometry

of the metabolic network), and nothing needs to be known about enzyme kinetics. So if the networks are

already known, what do we gain from this kind of modeling? Even if a metabolic network structure is known

reaction by reaction, this does not mean that we understand the network-wide behavior, i.e. which overall

flux distributions are possible, and what overall flux distributions are useful for the cell. Our aim here is

to make the step from structural information (about the network) to physiological insights about how the

network can be used. We can learn, for example, how much biomass can be made from a certain amount of

glucose, andwhether an enzyme deletion is lethal because a certain precursor cannot be produced anymore.

Metabolic network structures (in the form of stoichiometric matrices) are approximately known for manymi-

crobial species, and to some extent for higher organisms. Together with the constraints outlined above, this

network determines a range (or “space”) of possible flux distributions. In this chapter we will characterize this

space of possible flux distributions according to our assumptions, and since we characterize fluxes entirely

by constraints the models will be called “constraint-based models”. We will get to know mathematical tools

to characterize this space in a simple way: for instance, to describe all possibilities that a metabolic network

provides we can use Elementary Flux Modes (EFMs).

In the next chapter, we will combine such constraint-based models with optimality principles: out of the

space of possible flux distributions, specific “optimal” flux distributions will be selected because these are

supposedly “most profitable”, either for the cell or for metabolic engineering purposes. Some of the flux

predictionmethods that wewill describe refer also to concentrations; for instance, metabolite concentrations

play a role in thermodynamic constraints that exclude certain flux directions, and enzyme concentrations

come into play inmodels that associate fluxes with an enzyme demand. However, in all cases, the connection
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between fluxes and concentrations is very simple, and real enzyme kinetics are ignored. In later chapters, we

will then see how themodels changewhenmore andmore of the complex details are added aboutmetabolite

concentrations, enzyme kinetics, and thermodynamics.

4.2 The flux cone

4.2.1 Mass-balance constraints

As described in the introduction, our models will be built on the metabolic network of all chemical reactions

that an organism can catalyze. We can conveniently summarize all these chemical reactions as an (m × n)-
dimensional stoichiometric matrix N where each of them rows corresponds to a metabolite at steady state

and each of the n columns to a given reaction. The entry Nij is the coefficient of the i-th metabolite in the

j-th chemical reaction equation. Then, we can gather all n reaction rates in an n-dimensional flux vector:

v = (v1, . . . , vn)T . This is convenient because the multiplication Nv now captures the net production and

consumption of allmmetabolites at this flux distribution, and is therefore equal to the time derivative of the

metabolite concentrations: ċ = Nv. Therefore, the steady-state assumption combined with the assumption

that dilution of metabolites due to growth is negligible, can be mathematically captured in a set of linear

equations that we call themass-balance constraints on v:

ċ = Nv = 0. (4.1)

Since in a typical metabolic reaction network the number of metabolites is smaller than the number of reac-

tions (m < n), the equations for v are under-determined. This means that there are infinitely many solutions,

v, that satisfy the mass-balance constraints. The space of all such v is called the null space of N.

In the absence of any additional constraints on v, each vi can take on both positive and negative values,

where a negative value would mean that the reaction runs in the reverse direction. However, it will often

be more intuitive to think of reaction rates as positive quantities, for example when we want to deduce

necessary enzyme levels from the reaction rates by assuming that enzyme levels are directly proportional to

the catalyzed reaction rate: vi ∝ ei. Therefore it is often convenient to replace each reversible reaction by a

forward irreversible reaction v+
i and a backward irreversible reaction v−

i . Mathematically, we thus introduce

non-negative variables v+
i , v

−
i ≥ 0 such that vi = v+

i − v−
i . The mass-balance constraints in these new

variables become

0 = Nv = Nv+ − Nv− =
(

N −N
)(v+

v−

)
(4.2)

where v+ = (v+
1 , . . . , v

+
n )T and v− = (v−

1 , . . . , v
−
n )T , respectively. The mass-balance constraints (4.2) com-

bined with the property that v+
i , v

−
i ≥ 0 can be expressed in the form

A

(
v+

v−

)
≥ 0 (4.3)

where

A =


N −N

−N N
I 0
0 I

 .

In this form the set of constraints on (v+,v−)T define a polyhedral cone and from the condition v+
i ,v

−
i ≥ 0we

see that the cone is also pointed, meaning it contains no complete line and the zero vector is the only vertex

(extreme point) of the cone (see Figure 4.1 for an illustration). The space of solutions that satisfies (4.3) is

called the flux cone. It is important to remember that we only get a pointed polyhedral cone because we have

chosen a representation where all reactions are irreversible; it is certainly possible to do useful analyses in
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Figure 4.1: A pointed polyhedral cone,

the original spacewith reversible reactions v. In what follows however, wewill simplify notation by identifying

v with v = (v+,v−)T and use N in place of (N,−N) with the implicit understanding that all components of

v are non-negative and N accounts for all forward and reverse reactions that exist in the network. In this

notation the flux cone is defined as the space

FC = {v | Nv = 0, v ≥ 0} (4.4)

where notation v ≥ 0 demands that each component of v is non-negative.

To provide a concrete example, we consider the simple representation of central carbon metabolism pre-

sented in Figure 4.2. In this example there are four external metabolites, Gex, O, P1, P2 and two internal

metabolites: Gin and P . In our model we only require mass-balance for internal metabolites, such that the

steady-state constraint can be written as

Nv =

(
1 −1 0 0 0
0 2 −1 −1 1

)
v0
...

v4

 = 0, (4.5)

where each column thus corresponds to one of the five reactions and where the rows correspond to Gin

and P respectively. The 1 in the first row of the first column thus corresponds to the import of one glucose

moleculeGin. In a small example like this, it is still tractable to write out all separate steady-state equations:

0 = v0 − v1, 0 = 2v1 − v2 − v3 + v4. (4.6)

These twomass-balance constraints combine with the non-negativity conditions v0, v1, v2, v3, v4 ≥ 0 to define
the flux cone as the space of all flux vectors, v, that satisfy all of these constraints simultaneously.

4.2.2 Elementary flux modes

Although (4.4) already gives a mathematical description of the flux cone, we will here derive a more useful

characterization of this space. One of themain problems of the description in (4.4) is that it does not give us a

method to generate (or express inmathematical terms) a steady-state flux distribution, even though it makes

it easy to check that any v is in FC. Below, we will instead introduce an exhaustive set of generators: minimal

flux distributions that can be combined to make all possible flux distributions in FC, called elementary flux

modes (EFMs). One can think of these EFMs as minimal building blocks that generate the flux cone, similar
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to how basis vectors generate a linear space, but with a particular rule for combining them as we describe

below.

An important property of pointed polyhedral cones such as FC is that there exists a unique minimal set of

n-dimensional generators {e1, . . . , eK} such that FC can also be represented as

FC =

{
v
∣∣∣∣ v =

K∑
k=1

λkek, λk ≥ 0 ∀k

}
. (4.7)

We must remark here that the generators ek are only defined up to scalar multiplication, i.e. any αek with

α > 0 could replace ek in the set of generators. Each generator ek represents one of the K extreme rays or

“edges” of the pointed cone, and for metabolic reaction networks they turn out to have a particularly useful

biological interpretation, which we shall see shortly. In essence, property (4.7) says that any flux vector v in

the space FC can be expressed as a conical combination of generators {e1, . . . , eK}.

To illustrate the concept of EFMs, we return to the simple representation of central carbon metabolism pre-

sented in Figure 4.2 that is associated with the stoichiometric matrix

N =

(
1 −1 0 0 0
0 2 −1 −1 1

)
(4.8)

and corresponding flux vector v with components v0, v1, v2, v3, v4 ≥ 0. A set of EFMs that serve as generators

for the resulting flux cone is given by

e1 =


1
1
2
0
0

 , e2 =


0
0
0
1
1

 , e3 =


1
1
0
2
0

 , (4.9)

and these are depicted in Figure 4.3. In fact, because we split the reversible reactions into a forward and

backward reaction, the combination of reactions v2 and v4 would also be an EFM, but we discard such cycles

created by splitting reversible reactions. We see from our understanding of central carbon metabolism that

these three EFMs represent the fundamental metabolic pathways of glycolytic fermentation (e1), oxidative

metabolism of the fermentation product (e2), and oxidative metabolism of glucose (e3). The definition of

the flux cone in terms of EFMs as in (4.7) is in this example equivalent to the statement that any flux vector

v in our toy carbon metabolism network can be viewed as a (non-negative) weighted combination of these

three minimal metabolic pathways. This interpretation remains true for any metabolic reaction network:

elementary fluxmodes represent theminimalmetabolic pathways through themetabolic reaction network at steady

state.

We can make this more precise with a mathematical definition. First, let us introduce the support of a vector

as supp(v) = {i | vi 6= 0}, i.e. the support of a flux vector is the set of reactions that have a non-zero rate.

Definition 1. A vector v is an EFM if and only if it satisfies the following two properties:

1. v ∈ FC,
2. for all v′ ∈ FC, if supp(v′) ⊆ supp(v) then either v′ = 0 or v′ = αv for some α > 0.

This means that v is an EFM only if there is no non-zero flux vector in the flux cone that uses only a subset

of the reactions that are active in v. This also means that if any of the flux-carrying reactions in an EFM is

deleted, the flux through the resulting reactionsmust violate themass-balance constraints and can therefore

not occur in steady-state metabolism; the EFMs are thus minimal in the sense that they cannot be reduced

further.



The flux cone 59

Figure 4.2: A simple representation of the metabolic reaction network for central carbon metabolism. Extra-
cellular glucose,Gex, is imported into the cell via reaction with flux v0 and converted via intracellular glucose,
Gin, to pyruvate, P , via the reaction with flux v1 that has a stochiometry coefficient of two pyruvatemolecules
to each glucose molecule. Pyruvate can then either be converted to a fermentation product, P1, via the re-
action with flux v2 or, in the presence of oxygen, O, converted to an oxidative phosphorylation (OXPHOS)
terminal product P2 via the reaction with flux v3. The fermentation product P1 can also be converted back to
pyruvate via the reaction with flux v4.

Figure 4.3: EFMs e1, e2, e3 overlaid on the simplemetabolic reaction network in Figure 4.2 with concentrations
of intracellular glucose and pyruvate assumed to be at steady state. It can be seen from our understand-
ing of central carbon metabolism that e1 represents the glycolytic fermentation pathway, e2 the oxidative
metabolism of the fermentation product, and e3 the oxidative metabolism of glucose.

Onemay nowwonder how it is possible that we have seen two definitions of EFMs. First, we introduced them

as the extreme rays of the flux cone; then, we introduced them as support-minimal metabolic subnetworks.

Indeed, the beautiful thing about EFMs is that these two characterizations are equivalent (see the Mathe-

matical details-box for a proof). These two definitions of EFMs are complementary. Understanding EFMs as

minimal metabolic subnetworks enables us to interpret an EFM in terms of its biological function; an EFM

can be seen as a metabolic strategy that a cell can use to obtain steady-state metabolism, and which it can

combine with other strategies to reach its purpose. The extreme ray-interpretation on the other hand, allows

us to write an arbitrary flux vector v ∈ FC as a combination of EFMs, as is done in (4.7). This also means that

we can learn something about all flux vectors v by learning something about all EFMs. For example, if we

know that there is no EFM that produces compound Y without using reaction r, this immediately implies

that there is no flux vector at all that can do this, and that reaction r is thus essential for the production of Y .

In addition, as we will discuss below, the identification of EFMs as extreme rays enables the use of efficient

computational algorithms to enumerate them.

We note that there is currently no limit on the amount of flux that a particular EFM may carry, since λek is

also an EFM for any λ > 0 when ek is an EFM, and consequently the absolute value of any flux vector v in FC
remains unbounded. However, we will see in the next section that this is not necessarily true when additional

constraints are introduced.

4.2.3 Irreversibility constraints

In principle, all reactions in a metabolic reaction network are able to run in both directions, but in many

practical examples certain thermodynamic arguments can be used to justify treating a subset of reactions
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Mathematical details 4.A : Characterizations of EFMs

In this box wewill prove (following Gagneur and Klamt [159]) that the two characterizations of elementary fluxmodes

that we gave in this chapter are equivalent. To prove this, we should firstmake precise what wemeanwhenwe define

EFMs as ‘extreme rays’ of the flux cone. Let us start generally: a pointed polyhedral cone P is defined by a full rank

matrix A such that

P = {x ∈ Rn : Ax ≥ 0},

(as illustrated in Figure 4.1). Such a cone is thus defined as all points that satisfy a certain set of linear inequalities,

which can be seen as a region bounded off by halfspaces. Note that the definition of the flux cone as given in (4.4) can

be written in this form by taking A = [N, −N, In×n]T , where In×n is the identity matrix, so FC is indeed a pointed

polyhedral cone.

A vector, r, is a ray of P if αr 6= 0 and for all α > 0 we have r ∈ P . Each ray r ∈ P has a zero set defined as

Z(r) = {i : Ai•r = 0}. Thus, the zero set is the index set of inequalities that are met with equality by the ray r.
We call r an extreme ray when for all r′ ∈ P if Z(r) ⊆ Z(r′) then r′ = αr for some α > 0. In other words, a ray is

called extreme if the set of inequalities that it satisfies with equality cannot be increased. With this we are ready for

specifying our second definition of EFMs, after which we can prove the equivalency of the two definitions.

Definition 2. A vector v is called an elementary flux mode if it is an extreme ray of the flux cone FC.

Lemma 1. In a metabolic network captured by stoichiometric matrix N in which all reactions are irreversible, the def-

initions of elementary flux modes as the extreme rays of the flux cone (Def. 2) and as support-minimal steady-state flux

vectors (Def. 1) are equivalent.

Proof. Let v be an elementary flux mode according to Definition 1. The first requirement in this definition immedi-

ately implies that v is a ray of the flux cone, where we can define the flux cone as all x ∈ Rn such that Ax ≥ 0 with:

A = [N, −N, In×n]T . To show that it is also an extreme ray, let us assume that there is another ray v′ such that

Z(v) ⊆ Z(v′). Since all rays of FC must satisfy the first 2m inequalities, this specificially means that whenever vi = 0
for some 1 < i < n, also v′

i = 0, i.e. supp(v′) ⊆ supp(v), but according to Property 2 of Definition 1 we must then

have v′ = αv. This implies that v is indeed an extreme ray, so it is also an EFM according to Definition 2.

For the converse, let v be an EFM according to Definition 2. Again, this immediately shows that v ∈ FC, so we should
now show that it is support-minimal. For that, let v′ ∈ FC such that supp(v′) ⊆ supp(v). This means that whenever

v′
i = 0, also vi = 0. Since v and v′ both satisfy the first 2m inequalities of Av ≥ 0 with equality, and this shows that

whenever v′ saturates one of the last n inequalities, then also v does this, we conclude that Z(v) ⊆ Z(v′). Using
Definition 2 this implies that v′ = αv for some α > 0. This shows that v is indeed support-minimal, and is thus an

EFM according to Definition 1.

as irreversible, meaning that for all modeling purposes they can only run in one direction. This stems from

their activation energy being so large for realistic levels of products and substrates that the rate of the reverse

reaction is effectively negligible compared to the rate of the forward. The choice of which reactions to assume

irreversible is a decision to be taken by themodeler andmay affect the results of the downstream constraint-

based analysis. Returning to the simple model for central carbon metabolism provided in Figure 4.2, the

reactions importing glucose into the cell, converting it to pyruvate, and the production of product P2 are

assumed to be irreversible. A more detailed representation of central carbon metabolism may allow for the

first two reactions to be reversible such that ‘gluconeogenesis’ becomes possible. This would result in the

introduction of a fourth EFM associated with the conversion, via pyruvate, of the fermentation product to

glucose that is then exported out of the cell.

More generally, in our mathematical description of the metabolic network (4.4), we decomposed each re-

action into a forward and a reverse reaction, treating each as individual degrees of freedom, and imposing

additional irreversibility constraints is thus as simple as removing a reverse reaction from the network. When

this is done, the EFMs of the resulting network do not need to be re-calculated, but can be obtained by simply

removing all the EFMs that use the removed directions. This nicely shows the complementarity of Defini-

tions 1 and 2 of EFMs: although it is not easy to see that the set of extreme rays of the new flux cone will

be a subset of the previous set of extreme rays, it is easy to see that each vector that is a support-minimal
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flux vector after the removal of some reactions, must have been a support-minimal flux vector before that.

The new flux cone is therefore made up of all flux vectors that are expressed as conical combinations of the

remaining EFMs, and remains non-bounded.

4.2.4 Practical uses of elementary flux modes

EFMs represent the full set of possible metabolic capacities of an organism, which can therefore make EFM

analysis a useful tool for biology. To this end, application of EFM analysis to bioengineering has been pro-

posed to guide the geneticmanipulation ofmicroorganisms to performdesirable properties such as synthesis

of a bio-compound or efficient production of a recombinant protein (e.g. [160, 161]). From a more theoret-

ical point of view, EFMs have also been used in attempts to quantify cellular robustness [162], in particular

regarding robustness under genetic perturbations [163]. The relevance of elementary flux mode analysis to

cellular robustness stems from the fact that there is rarely a unique conical combination of elementary flux

modes for any given flux vector, which implies there are multiple combinations of minimal metabolic path-

ways to achieve the same desired effect. This redundancy can be interpreted as a measure for the metabolic

robustness of an organism, in terms of preserving essential metabolic functionalities under loss of a gene,

for example.

There have also been several ways that EFM analysis has been incorporated into analysis of multi-omics data.

For example, on the basis of transcriptomic profiling of microorganisms, metabolic pathways associated with

elementary flux modes have been scored according to their probability of carrying flux [164]. The principle

here is that, although levels of RNA often serve as a poor proxy for flux through the reaction associated with

that particular enzyme’s gene, by creating a gene set associated with an entire EFM there might be a better

chance of concretely assessing whether the metabolic pathway as a whole is likely to carry flux. The study

[164] suggested that the integration of EFM analysis with gene expression data enabled the identification of

certain metabolic pathways activated during stress conditions, and that the organization of elementary flux

mode utilization in Saccharomyces cerevisiae involves a disparate combination of highly specialized andmulti-

tasking roles. Beyond transcriptomic profiling, isotope tracing experiments in principle provide amuchmore

direct insight into quantifying metabolic flux. To interpret isotope tracing data, an extension of the concept

of an EFM was introduced in [165].

4.2.5 Computational challenges for elementary flux mode analysis

Enumerating EFMs for large networks can be computationally challenging if not impossible. In principle,

EFMs can be found by removing one reaction at a time and solving the resulting mass-balance constraint

problem until it is no longer possible to remove a reaction and still obtain a flux vector that satisfies the

steady state conditions. However, the one-to-one identification of EFMs with extreme rays of the flux cone

that we described before enables the use of algorithms that are specialized in the efficient enumeration of

extreme rays of polyhedral cones, such as the double description method [166]. Various tools have been

developed for elementary flux mode enumeration based on this algorithm (e.g. EFMTOOL [167] or Meta-

Tool [168]). However, when the size of the metabolic reaction network grows, the number of EFMs scales

disproportionately, leading to a combinatorial explosion that effectively makes enumeration impossible for

genome-scale networks containing several thousands of reactions [169]. Currently, EFM analysis is therefore

restricted to medium-scale reconstructions containing on the order of several hundreds of reactions, and

results in the identification of several hundred million EFMs (e.g. enumeration based on the Escherichia coli

core model results in approximately 272 million EFMs).

Approaches to reduce the complexity of dealing with so many EFMs even for metabolic reaction networks of

modest size have also been proposed. These include invoking transcriptional regulatory constraints to elim-

inate most of the EFMs to be considered in downstream analysis. Imposing additional constraints based on

thermodynamic conditions similarly reduces the set of EFMs considerably. A problemwith these approaches

is evidently that they do still depend on an initial calculation of all EFMs, and so do not solve the problem of
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enumeration complexity. A rigorous study of the complexity of EFM mode enumeration was performed by

Acuña and colleagues [170]. They showed that the decision problem if there exists an EFM containing two

specific reactions is NP-complete whilst the complexity of enumerating all EFMs remains open.

Later in this chapter we will explore some alternatives to EFM enumeration that reduce the difficulty of enu-

meration, cf. Section 4.4.

4.3 Additional constraints and flux polyhedra

4.3.1 Inhomogeneous linear flux constraints

We have so far been working exclusively with mass-conservation and irreversiblity constraints, which are

captured entirely by the stochiometricmatrixwhere each row is associatedwith ametabolite concentration at

steady state. Wealso saw that these considerations alone result in a flux cone that is by definition unbounded,

meaning that a flux vector in this space is allowed to take on any absolute value (i.e. multiplying a flux vector

in the flux cone by an arbitrarily large positive number again returns a flux vector in the flux cone). However,

there are physical constraints limiting the magnitude of flux vectors, especially on the values of flux through

exchange reactions that may depend on concentrations of extracellular substrates, numbers of transporter

molecules in the membrane, or for which we might have direct experimental measurements. Typically, such

bounds on flux values are imposed using inequality constraints of the form vlb
i ≤ vi ≤ vub

i where vlb
i and vub

i

are lower and upper bounds, respectively, for the flux through the ith reaction. When reactions have been

decomposed into forward and reverse directions, both upper and lower bounds are non-negative where the

latter is usually zero.

In the example from Figure 4.2 one may impose an upper bound on the flux value v0, suggesting that there

is a maximal rate at which the cell or organism can import glucose from the extracellular environment. In

this case the total set of constraints on the flux vector v take the form

Nv = 0, v ≥ 0, v0 ≤ vub
0 (4.10)

where vub
0 is the maximal glucose uptake rate. It is important to note that the new constraint is of a different

kind than the mass-balance and irreversibility constraints: the right-hand side of the constraint is non-zero.

Constraints that involve a non-zero are called inhomogeneous constraints. We can write these constraints in

matrix form as

Av ≥ b (4.11)

with

A =


N

−N
I
G

 , b =


0
0
0
h

 , (4.12)

where in this particular case

G =
(

−1 0 0 0 0
)
, h =

(
−vub

0

)
. (4.13)

In general, the matrix G will have P rows corresponding to P linear, inhomogeneous constraints of the form∑
i

wp
i vi ≤ hp, p = 1, . . . P (4.14)

where each hp corresponds to a component of the P -dimensional vector h and nweightswp
i (i = 1, . . . , n) are

supplied for each constraint. Many constraints can be written in this general form, for example, one might

imagine modeling a bound on the total flux that a cell can catalyze, which would be captured by setting all

weights equal to 1. In this form the set of constraints on v define a general polyhedron that is necessarily

contained within the flux cone which was based only on the homogeneous constraints: Nv = 0 and v ≥ 0.
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Figure 4.4: Representation of the bounded convex plane within which a flux vector satisfying the mass-
balance and maximal glucose uptake constraints must lie. The possible combinations of EFM weights λ1
and λ3 are contained within or on the line in blue given by the equation λ1 + λ3 = vub

0 .

The additional inhomogeneous constraints serve to sequentially close up the cone such that various (if not

all) dimensions become bounded, thus bounding the total magnitude of the flux vector v.

In the example described above, bounding the extracellular glucose uptake rate puts an upper bound on

the weights of EFMs e1, e3 illustrated in Figure 4.3, whose support includes the glucose transport reaction.

However, the weight of the EFM associated with uptake and oxidation of the fermentation product (e2) can

remain unbounded. In short, this restricts the values of weights λ1, λ2, λ3 in the representation (4.7) to satisfy

λ1, λ2, λ3 ≥ 0, λ1 + λ3 ≤ vub
0 .

Recalling that each EFM is associated with an extreme ray of the flux cone coming from mass-balance con-

straints, for this simple example it is quite straightforward to interpret the geometric consequences of the

maximal glucose uptake rate. Any flux vector v in the resulting flux polytope is now constrained to lie within

the bounded convex plane represented in Figure 4.4, but remains free to take on any value along the re-

maining extreme ray parameterized by λ2. The maximal glucose uptake has therefore closed up the flux

cone along two directions while leaving the third untouched, and the geometry of the resulting flux polytope

is represented in Figure 4.5. Imposing an upper bound on the uptake rate of the fermentation product, of

the form v4 ≤ vub
4 , will serve to bound this remaining direction of the polytope such that weights of the EFMs

are then restricted to the space defined by

λ1, λ2, λ3 ≥ 0, λ1 + λ3 ≤ vub
0 , λ2 ≤ vub

4 . (4.15)

More general constraints, for larger metabolic reaction networks will bemore difficult to interpret and visual-

ize in such simple geometric terms. Quite quickly the combinatorial complexity associatedwith combinations

of multiple constraints and EFMs will become unmanageable. The intuitive treatment of inhomogeneous lin-

ear constraints is partially assisted using the concept of elementary flux vectors onwhichwewill add a section

in a later version of this book, but both geometrically and biologically these objects are nowhere near as easy

to interpret as their EFM counterparts. We shall see that alternative computational methods for exploring

flux space therefore become imperative.

As a final remark, we clarify once more that the general form of constraints (4.14) is by no means restricted

to sums on the left hand side that involve just a single reaction and can of course include constraints on

weighted sums of flux values for different reactions. These weighted sums are often associated with particu-

lar biological interpretations: for example, in the metabolic reaction network from Figure 4.2 we might want

to restrict our search of flux space to those flux vectors v that produce adenosine triphosphate (ATP) at a

rate of at least vAT P . Although a more elaborate model would of course include ATP as one of the metabo-
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Figure 4.5: Geometry of the flux polytope (blue) containing any flux vector that satisfies the mass-balance
and maximal glucose uptake rate constraints. While bounded in the directions parameterized by λ1, λ3, it
remains unbounded in the direction parameterized by λ2.

lites, in this example we can use our biological understanding of central carbon metabolism to see that ATP

is produced in reactions v1 and v3. A lower bound on ATP production would thus be a lower bound on a

combination of v1 and v3 with weights determined by stoichiometry which depends on the organism under

investigation. We could write such a constraint as

w1v1 + w3v3 ≥ vAT P (4.16)

with appropriate weights w1, w3. Such a constraint forms an additional row of the matrix G and we leave it

as an exercise for the reader to explore how this affects the geometry of the flux polytope for various values

of the weights, minimal ATP production rate and maximal glucose and fermentation product uptake rates.

Particular combinations of constraints will be impossible to satisfy simultaneously (i.e. when theminimal rate

of ATP production is impossible to achieve under the given bounds on glucose and fermentation product

uptake rates), resulting in a flux polytope that is empty. In such cases the set of constraints on v are called

infeasible.

4.3.2 Thermodynamic constraints

In Chapter 3 the basic concepts of chemical thermodynamics were introduced, in particular, the Gibbs free

energy of a metabolic reaction was defined in terms of the concentrations of its products and substrates. For

a metabolic reaction network with stochiometric matrix N, the vector of Gibbs free energies (one for each

reaction in the network) ∆rG′ can be written in matrix form as

∆rG′ = ∆rG′o +RT · NT · ln(c) (4.17)

where R is the gas constant (see section 3.3.2), T the temperature and c the vector of metabolite concentra-

tions at steady state. The components of the vector ∆rG′o are the changes in standard Gibbs free energy

for each corresponding reaction. Typically, these values are not known precisely for reactions in the net-

work, but can be estimated or approximated from experimental data using methods beyond the scope of

this chapter. Similarly, although it is often difficult to accurately measure all metabolite concentrations, in

principle the vector c can be obtained experimentally. However, in practice experimental data on c and

∆rG′o are almost never available. Various methods have therefore been developed to combine estimation

of ∆rG′o (sometimes with partial measurements of c) with advanced computational techniques that allow

simultaneous optimization (see next chapter) or sampling (see below) of v and c (or equivalently: ∆rG′).

The second law of thermodynamics applied to chemical reaction networks can be summarized by saying that

every component of the metabolic flux vector v must satisfy the condition

sign(vi) = −sign(∆rG
′
i) (4.18)

where vi and ∆rG
′
i are the ith components of v and ∆rG′, respectively, and sign(x) denotes the sign of a
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variable x, and sign(0) = 0. It is important to point out that this notation is different to that used previously,

where we had assumed all vi to be non-negative by decomposing each reaction into irreversible forward and

backward reactions. Returning to this reversible notation simplifies the inclusion of thermodynamic con-

straints into constraint-based models and also their interpretation. According to the second law, a reaction

can only proceed in a direction where the change in Gibbs free energy is negative. Thus, to be consistent with

mass-balance and the second law of thermodynamics, a flux vector v must simultaneously satisfy both (4.1)

and (4.18), with ∆rG′ defined in (4.17). The consequence of these additional constraints on the geometry of

the space of metabolic flux distributions is to exclude quadrants incompatible with the signs of ∆rG′. Equiv-

alently, imposing the second law of thermodynamics on metabolic flux distributions removes regions of the

space that are associated with combinations of thermodynamically-infeasible reaction directionalities.

The resulting space of feasible flux vectors is almost always non-convex, which means more advanced com-

putational methods are required to explore it efficiently. The intuitive reason for this is that imposing ther-

modynamic constraints on top of the mass-balance constraint is usually done in terms of Boolean variables,

which breaks the linearity of the problem that we had and exploited so far. Relating this to the EFMs that were

discussed previously, it for example becomes clear that any EFM representing an internal cycle –not includ-

ing any exchange reactions– will never be thermodynamically feasible. Thus, thermodynamic constraints

also reduce the set of EFMs that are possible in a metabolic network. Interestingly, it turns out that any

thermodynamically-feasible metabolic flux vector can be expressed solely in terms of thermodynamically-

feasible EFMs [171], but the converse statement is not true: a linear combination of thermodynamically-

feasible elementary flux mode does not necessarily satisfy the thermodynamic constraints. This shows how

the workable properties of convex spaces break down as the mathematical models become more complex,

in this case by accounting for thermodynamics.

4.4 Alternative methods for flux space exploration

As we described above, exploration of all possible flux distributions using EFMs can become very complex

for larger models. A genome-scale model, which comprises all metabolic reactions that an organism can

catalyze, typically contains thousands of reactions, which prohibits the enumeration of EFMs. At themoment,

it is unclear whether, even if we would have an enormously fast computer that could compute all EFMs,

the number of EFMs would not be so large that we cannot store the EFMs anywhere, nor analyze it in any

meaningful way. Here we discuss several alternatives for exploring the metabolic capabilities of a cell that

try to avoid the combinatorial complexity that hinders EFM analysis.

4.4.1 Elementary conversion modes

If we are interested in the metabolic capabilities of an organism, is it always necessary to know all possible

flux vectors? For example, what if we want to lab-culture an organism of which we have a reconstructed

metabolic network, but no idea what nutrients it needs to grow. Then we only need to know from what

combinations of nutrients it can make all its cell components. Or, what if we want to model the possible

cross-feeding interactions between several microbial species? Then we are mostly interested in what each of

them can consume and produce, and not really in how they do that. Elementary conversion modes (ECMs),

introduced in 2005 by Urbanczik and Wagner [172], capture all possible overall conversions from nutrients

to products that an organism can catalyze, while ignoring which individual reactions are used for this.

ECMs focus on the net results of metabolism, i.e. on the uptake and production of compounds external to

the metabolic network, such as sugars, nitrogen sources, fermentation products but also ‘biomass’. To get

information about these compounds we need to extend our metabolic network by including the external

compounds as rows in the stoichiometry matrix; this is in general easy to do since we already had exchange

reactions (reactions where an external compound was imported or exported) so we only have to find the

stoichiometric coefficient in which the external compound was involved in these reactions. Let us denote the

original stoichiometry matrix by Nint and the submatrix that we add by Next; together they form Ntot. We can
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Figure 4.6: (A) Small toy network with three ECMs shown in blue, yellow and red. Note that the red mode
can be decomposed as a positive combination of the blue and yellow elementary conversionmodes, but that
would cancel the production of B so this is not allowed. (B) The conversion cone is shown in gray, and the
blue and yellow arrow correspond to the blue and yellow ECMs are the extreme rays. The red ECM needs to
be added because it is on the intersection with the Ḃ = 0-plane.

then define the conversion cone:

C = {ċ = Nextv | Nintv = 0,v ≥ 0} . (4.19)

If we look carefully at this definition we can see that the flux vectors v need to satisfy exactly the same

constraints as in the flux cone (Eq. (4.4)). The only difference between flux and conversion cones is that we

are either interested in the fluxes themselves, or rather in the conversions that they induce: ċ = Nextv.

Definition 3. The set of ECMs is the minimal set of conversions {ecm1, . . . ecmK} (where ecmi
k is the amount of

metabolite k produced in the ith elementary conversion mode), such that

1. all conversions ċ ∈ C can be written as a positive sum of these elementary conversion modes: ċ =
∑

i
λiecm

i,

with λi ≥ 0,
2. without the production of any metabolite being canceled in that sum, i.e. for all metabolites k we either have for

all λi > 0 that ecmi
k ≥ 0 or for all λi > 0 that ecmi

k ≤ 0.

We will explain both parts of this definition below, but let us first remark that the definition is in fact per-

fectly analogous to the definition of EFMs: EFMs are the elementary vectors (or precisely: conformally non-

decomposable vectors) of the flux cone, and ECMs of the conversion cone. The reason that the definition of

ECMs has an additional requirement (2.) is just that the analogous requirement was automatically satisfied

for EFMs because we assumed all reactions to be irreversible.

In Figure 4.6A we show a small metabolic network with external metabolites A, B and BM , and internal

metabolites C, D and E. We can find 9 EFMs in this network: one that goes from A to B, four that produce

BM starting fromA and four that produceBM fromB. We get four EFMs to go fromA toBM because there

are two ways of going from C to D and again two for converting D into E. This makes clear that having a

number of modules of alternative reactions can quickly give rise to large numbers of EFMs, even though the

overall conversion from nutrients to products remains the same. In contrast, we will explain that we only get

three ECMs.

In Figure 4.6B we see the conversion cone in gray. Note that this cone does not live in flux space, but rather

in the space of external metabolite changes, or conversions. We recognize that the cone can be spanned by

two extreme rays, which correspond to converting A into B (blue) and to using 2B to produce BM (yellow),

so these rays correspond to elementary conversion modes following the first part of Definition 3. Now why

do we have a third ECM, when the blue and yellow one already span the whole conversion cone? Indeed,
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the third vector in Figure 4.6B can be obtained by summing the yellow vector and two times the blue vector:

2(−1, 1, 0) + (0,−2, 1) = (−2, 0, 1). However, note that the production of metabolite B would cancel in this

sum, which is not allowed according to the second part of Definition 3. The reason that this second part of

the definition is important, is that the elementary conversion modes are intended to capture all metabolic

capabilities of an organism, so taking only the first twomodes would not be enough: we also want to account

for the possibility of making BM from A even if we decide that the elementary conversion mode from B to

BM is not possible in the current environment, for example because B is not present as a nutrient in the

medium.

Because many EFMs result in the same overall conversion, the exploration of metabolic capabilities can now

be done in larger networks, at the cost of ignoring information about which reactions are used [173]. This

way of thinking can be pushed even further: what if one is not interested in the conversions between all

nutrients and products, but only between a subset of these? In that case, one would want to compute the

ECMs only between the externalmetabolites of themost interest. This can be donewith a small trick. Say that

we are not interested in the production of external metaboliteX. Before we start the enumeration algorithm

we add a virtual reaction to the network that consumes and produces X from nothing, i.e. we add X � ∅,
and then we change X from an external metabolite to an internal metabolite. Consequently, it now has to

satisfy the mass-balance constraint (which can always be done trivially using the added virtual reaction), and

will thus never show up in the computed elementary conversions. In this way it was possible to compute all

ECMs between glucose, oxygen and biomass for a real genome-scale network of E. coli.

4.4.2 Flux sampling

In addition to the computational complexity of EFM enumeration for large metabolic networks, these objects

are not necessarily related to experimentally-derived flux measurements. This is because when a vector

of experimentally-measured flux values v would be decomposed into EFMs, this generally does not give a

unique solutions because it can be done in many ways. Flux sampling methods can be employed to solve

both the computational and interpretability problems simultaneously, exploring the set of flux vectors (i.e.

directly measurable in principle) by computationally sampling from the flux space. The goal of flux sampling

in general terms is to produce a sequence of flux vectors that satisfy the steady state constraints until enough

samples have been generated to provide an approximate representation of the entire flux space. The flux

polyhedra defined by mass-balance and additional inhomogenous linear constraints are convex, and there-

fore uniform sampling of these flux spaces can be achieved using variants of an algorithm developed for

convex analysis called the coordinate hit-and-run (CHR) algorithm [174]. Briefly, the most basic implementa-

tion of the CHR algorithm generates a Markov chain of flux vectors by starting in a random position within

the flux polytope, picking a direction at random (uniform), and moving a random distance (uniform) in that

direction from the current point. The resulting point is returned as a flux vector instance and the process

repeats from there. It has been proven that the CHR algorithm converges to a stationary distribution of the

Markov chain that is a uniform distribution in the flux space. Alternatives to uniform sampling (i.e. alternative

distributions across the flux polytope) can also be achieved using variants of the CHR algorithm.

As highlighted previously in Section 4.3.2, mass-balance and inhomogeneous linear constraints alone often

do not contain enough information to sufficiently reduce the space of biologically-feasible flux vectors. For

example, thermodynamic constraints on flux vectors are important for ruling out a large proportion of the

sampled flux vectors as infeasible, but this may disproportionately dominate the resulting sampling distribu-

tions. Unfortunately, for mathematical reasons too deep to go into here, simply removing these infeasible

flux distributions post-sampling will not result in a uniform distribution over the thermodynamically-feasible

portion of flux space. In fact, this relevant subset of flux space cannot be defined explicitly, and is usually

neither convex nor connected meaning that no Markov chain methods exist for sampling. As an alternative,

a recent method [175] has been developed to combine thermodynamic constraints, physiological observa-

tions and estimated thermodynamic parameters, with mass-balance and inhomogeneous linear constraints
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to provide a probabilistic thermodynamic analysis of metabolic reaction networks. Advances such as these

will almost certainly aid a more complete characterization of flux space as data and methods become avail-

able.

4.4.3 Minimal cut sets

A minimal cut set (MCS) is a set of reactions that, when disabled, disables a set of modes, which in turn can

represent a biological function, such as the secretion of a side product. This enables the prediction of gene

deletion targets, given that the genes coding for the involved reactions are known. A cut set is minimal if the

removal of one ormore reactions from the set leads to at least one of the targetedmodes not being disabled.

In order to avoid also disabling desired functionalities, such as product secretion and growth, the concept of

constrained minimal cut sets (cMCSs) has been developed. cMCSs enable targeting a set of modes while at

the same time making sure that some elements of another set of modes will remain active.

Motivation for (constrained) Minimal Cut Sets The concept of MCSs was introduced by Klamt and Gilles in

2004 [176] and subsequently generalized and improved [177, 178, 179]. As briefly outlined above, the idea

is to define a set of EFMs which should be disabled, for example because they generate an unwanted side

product or because they don’t generate the product of interest with a sufficiently high yield. Since EFMs are

minimal, removing a single reaction will disable it. A cut set is a set of reactions of which at least one is active

in each of the EFMs in the targeted group. Thus, disabling the reactions contained in the cut set will disable all

of the targeted EFMs, and each cut set therefore represents the prediction of a set of gene deletions. Since it

would be pointless to remove reactions which only target EFMs that were already targeted by other reactions,

cut sets are required to be minimal. This means that removing a single reaction from the cut set would lead

to one or more of the targeted EFMs to survive the intervention and also that adding a single reaction to the

cut set would have no additional effect on the set of target EFMs.

The pitfall when using MCSs is that while they guarantee the elimination of the targeted EFMs, all other EFMs

may be affected as well. This means that modes with desired phenotypes, such as high growth and/or high

product yield, may become impossible. Therefore, cMCSs were developed [180]. In this extension of the

concept of MCSs it is now possible to additionally define a set of EFMs which are desired, i.e. which can not

be disabled by the cMCSs. This is usually implemented by the requirement that at least a specified minimum

number of EFMs of the desired set need to remain active. Summarizing, cMCSs are sets of reactions which

guarantee that (i) the full set of target EFMs is disabled and (ii) a certain minimum of desired EFMs has to

remain unaffected. The drawback, with both MCSs and cMCSs, is that the target (and desired) EFMs need

to be defined. This is generally achieved by defining cut-offs in terms of product yield and growth, which is,

however, ultimately arbitrary.

Calculation of (constrained) Minimal Cut Sets Since minimal cut sets in a metabolic network are EFMs in

a dual network [181], methods used for calculating EFMs can be used to calculate MCSs. Among other ap-

proaches [182] one based on binary integer programming has been developed [183, 184]. While it requires

that the EFMs are calculated before it can be applied, the advantage is that the algorithm is very intuitive.

After having calculated the modes, each is represented as a binary vector which is zero for reactions with

zero flux and one otherwise. The EFMs are then divided into either targeted or desired. A binary vector,

corresponding to the cMCSs being calculated is introduced. It will have a one if the corresponding reaction

remains active and zero if the reaction is disabled. The first requirement is that cMCS needs to disable all

target modes and thus the vector must have zero elements such that each target EFM must have at least

one corresponding non-zero element. The second requirement is that at least a defined minimum of de-

sired modes must remain active. This is achieved by introducing a second binary vector. This vector has an

element for each EFM and is calculated so that it has a zero when the mode is disabled by the cMCS and one

otherwise. By adding the constraint that the number of ones in this vector must at least equal the previously

defined minimum, the second requirement is met. Maximizing the vector corresponding to the cMCS yields

the first solution. The next solution can be found by adding constraints to make sure that the current one is
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excluded.

4.5 Concluding remarks

In this chapter we studied how the individual reactions that an organism can catalyze together give rise to the

overall conversion of nutrients into cell components and secretion products. For that, we studied the cell’s

metabolismunder a number of simplifying assumptions,most notably, wemodelmetabolism in steady-state.

Given this steady-state constraint, we explained how all feasible flux distributions form a space of a specific

type: a pointed polyhedral cone. By exploring this ‘flux cone’ we can chart the metabolic capabilities of an

organism.

We have seen that an exhaustive charting of these metabolic capabilities is the computation of all elementary

fluxmodes: minimal subnetworks that can individually give rise to steady-state flux distributions, and thatmay

be interpreted as minimal metabolic strategies. An especially important use of EFM analysis can be found

in the prediction of the effect of gene knockouts: when all EFMs that produce compound Y use reaction r,

then the organism cannot make this compound when the gene is knocked out that codes for the enzyme

that catalyzes r. And conversely, sometimes gene knockouts can be found such that the cell cannot grow

anymore without producing a certain compound of interest. Clearly, these analyses can be very useful for

the design of organisms in bio-industry.

On the other hand, we also saw that for large models the computation of all EFMs becomes impossible.

There are simply toomany of theseminimal subnetworks. We presented several alternatives. One could use

elementary conversion modes if one still desires an exhaustive list of the metabolic capabilities of the cell. The

ECMs are easier to enumerate because one can choose to focus only on all possible conversions between (a

subset of) the nutrients and products, instead of requiring all information about which reactions are used to

get these conversions. For the design of gene knockouts specifically,minimal cut setsmay be used. Finally, we

discussed that the flux cone can be sampled randomly to characterize the flux cone, if this characterization

does not need to be exhaustive.

In many cases we have additional information that determines that part of the flux cone is infeasible. For

example, some metabolic fluxes may have been measured so that these reaction rates can be fixed to their

observed value. In other cases, one may want to use thermodynamic properties to prohibit reactions from

occurring thatwould violate the second lawof thermodynamics. These additional constraints can be imposed

on top of themass-balance constraint to further bound the space of feasible flux distributions; each correctly-

imposed constraint narrows down the space of feasible fluxes, and thus increases our knowledge of the

metabolic state of the cell.

All explorations of the space of feasible flux distributions show one unavoidable conclusion: the metabolic

network is incredibly flexible. Even when several constraints are imposed, a genome-scale metabolic model

will allow for an almost incomprehensible number of modes in which the metabolic network can function.

Consequently, to predict the metabolic state of a cell in more detail we need to make an additional assump-

tion. In the following chapter, wewill studywhat predictionswe canmakewhenweassume that themetabolic

state is optimized to perform a certain function.

Recommended readings

Elementary flux modes A nice paper that gives an understandable introduction of elementary flux mode

analysis and its applications: Jürgen Zanghellini, David E. Ruckerbauer, Michael Hanscho, Christian Jungreuth-

mayer (2013). Elementary flux modes in a nutshell: Properties, calculation and applications. Biotechnology

Journal 8 (9), 1009. doi: doi.org/10.1002/biot.201200269

Elementary Flux Vectors were introduced as an analog of Elementary Flux Modes in the case that the flux

mode is further bound by at least one inhomogeneous constraint. A nice review of these EFVs is can be

https://doi.org/10.1002/biot.201200269
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Figure 4.7: Spirallus insilicus network, adapted from [185]

found in: Steffen Klamt, Georg Regensburger, Matthias P Gerstl, Christian Jungreuthmayer, Stefan Schuster,

Radhakrishnan Mahadevan, Jürgen Zanghellini, and Stefan Müller (2017). From elementary flux modes to el-

ementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints. PLoS Computational

Biology, 13(4):e1005409, doi: doi.org/10.1371/journal.pcbi.1005409.

Problems

Problem4.1 A smallmetabolic network (2) Spirallus insilicus, a completely fictional organism [186], is charac-

terized by the the metabolic network depicted in Figure 4.7X , S and P represent the biomass, one substrate

and one product, while metabolites A to E denote intracellular metabolites. One directional arrows indicate

irreversible reactions (all but v4)

1. How many intracellular metabolites, intracellular reactions and transport reactions are involved in the

model?

2. Obtain the stoichiometric matrix (N) and the vector of fluxes. How many elements are in the product Nv
and what do they represent?

3. Is the matrix N of full rank? How many fluxes should be specified to have a unique solution?

4. Transform the set of constraints so that they define a pointed cone. Determine the number of variables

(fluxes) and constraints.

Problem 4.2 A small metabolic network (2) Consider the following small metabolic network:

Se
v0−−→ Sc

Sc
v1−−→ Pc

Pc
v2−−→ Cc

Pc
v3−−→ Dc

Pc + 2 Cc
v4−−→ X

Metabolites with a c subscript are located in the cytosol (intracellular) while e stands for extracellular and X

represent biomass. All fluxes are positive.

1. Represent the model as a reaction network (a sketch with metabolites and reactions)

2. Obtain the stoichiometric matrix (N) and list the variables of the metabolic model (v)
3. Show that there is no solution to the mass balance equation Nv = 0 producing metabolite D. Identify why

https://doi.org/10.1371/journal.pcbi.1005409
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this is so and modify the model so the production of D is allowed (v3 > 0)

Problem 4.3 Elementary Flux Modes (1) Assume reaction v4 is irreversible from A to D in Spirallus insilicus

(Problem 4.1). Calculate all the Elementary Flux Modes.

1. By hand.

2. Using a software of your choice (e.g. https://pypi.org/project/efmtool/)

Problem 4.4 Elementary Flux Modes (2) Consider the following metabolic network

A B

C

D N =


1 −2 0 0 0 0 −2
0 1 −2 1 0 0 0
0 2 0 −1 −2 0 0
0 0 1 0 1 −1 1



Please note that some stoichiometric coefficients in N are different from 1 (not shown in the graphics).

1. In the network drawing, grey dots denote carbon atoms. Check that carbon atoms are conserved in all

reactions. What’s the carbon content of the byproduct (not shown) of the reaction from A to D?

2. All metabolites are treated as internal, that is, they need to be mass-balanced. Find all EFMs (by pure

reasoning or by using a software). Determine all EFMs in which all fluxes are in forward direction, i.e. along

the “conventional directions” indicated by arrows.

3. Which of the EFMs are thermodynamically realizable? Explain why.
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Chapter 5

Optimal metabolic fluxes in

constraint-based models

Daan de Groot, David Tourigny, Felipe Scott, and Jan-Pilipp Dapprich

Chapter overview

◦ Anoptimization objective canbe added to constraint-basedmodels tomakemore specific predictions.

◦ Different purposes can be served by choosing different optimization objectives and constraints

◦ The optimal solutions can be understood in terms of elementary flux modes

5.1 Can we use an optimality assumption to predict metabolic

behavior?

In the previous chapter, we characterized an organism’s metabolism by listing all the biochemical reactions

that can be catalyzed by the enzymes encoded within the organism’s genome. To understand how the

genome constrains patterns of metabolic flux we needed to make several simplifying assumptions. The

first important assumption was that intracellular metabolism is at steady-state, i.e., that the production and

consumption of all metabolites is balanced such that their concentrations are constant in time. These re-

sulted in the mass-balance constraints on the flux vector v. The flux cone of all flux vectors satisfying the

mass-balance constraints could be further reduced by additional constraints on v, based on extra physical

and biological assumptions about the magnitude and directionality of certain reactions within the network.

We introduced several ways in which the entire flux space could be explored.

When applied to very large metabolic networks, the flux space will often contain an infinite number of flux

vectors v that simultaneously satisfy all constraints. From a mathematical perspective, this implies that the

constraints do not include enough information to uniquely specify a flux vector v. This makes sense bio-

logically, since if we imagine constraints are related to experimental observations it is very unlikely that we

will ever be able to make enough to fully account for every reaction encoded within the entire genome of an

organism (no matter how simple it might be). Often, however, researchers do want to further narrow down

the set of flux vectors that they think biologically relevant to the organism and conditions they are studying,

perhaps even to a unique v imagined to describe the metabolic state of an organism at a given moment in

time. One popular approach for doing so is to provide an additional assumption (or set thereof) in the form

of an objective function: it is assumed that the metabolic state of an organism is such that some function of

73
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v (e.g. growth rate) is maximized to satisfy some criteria (e.g. evolutionary selective advantage). The compu-

tational problem then becomes one of constrained-optimization: find a flux vector v that is optimal in terms

of the objective function(s) that simultaneously satisfies all constraints. The resulting space of optimal flux

vectors (sometimes containing just one unique vector) is often considerably smaller than the space of those

that satisfy only the constraints.

In this chapter, we will study metabolic models based on constrained-optimization. We will introduce a se-

lection of commonly used objective functions and the computational methods used to solve the associated

constrained-optimization problem. We will also characterize optimal solutions that we get in terms of the

minimal metabolic strategies that we identified in the previous chapter: elementary flux modes. Finally, we

will explain how we can handle the cases where the solutions are, even after optimization, not unique.

5.2 Metabolic models based on linear optimization problems

In the previous chapter, we described how linear homogeneous and inhomogeneous constraints arising from

biological and physical knowledge can be combined into matrix and vector notation and written in the gen-

eral form presented in Equations (4.11) and (4.12). The resulting space of all flux vectors v satisfying these

constraints is called the flux polyhedron. The flux polyhedron can remain high-dimensional and, as explained

above, an objective function f can be used to narrow down the set of flux vectors to only those that are op-

timal (i.e., maximize the objective function). The general form in which we can write the resulting constraint-

based optimization problem is therefore:

max
v

f(v), such that Av ≥ b, (5.1)

with

A =


N

−N
I
G

 , b =


0
0
0
h

 . (5.2)

Recall that Nv = 0 models the steady-state assumption, while the multiplication with the identity matrix

(In×nv ≥ 0) captures the fact that we forced all reactions to be irreversible by splitting reversible reactions

into a forward and a backward reaction. Finally, Gv ≥ h can be used to impose additional ‘inhomogeneous’

constraints that can be used to input additional biological knowledge such as an experimentally measured

upper bound on the uptake rate of a certain nutrient.

In many cases, the objective function is chosen to be a linear function of the fluxes, i.e.,

f(v) =
∑

i

civi, (5.3)

where coefficients ci weigh the relevance of the different reaction rates in the objective function. Problems

of the form (5.1), (5.2), and (5.3) in general are called linear programming problems and as the name suggests

can be solved using linear programming. Applied to metabolic models, linear programming is called Flux

Balance Analysis (FBA). Linear programming problems are well studied, such that FBA is perhaps the most

popular approach to genome-scale metabolic models [187, 188]. FBA problems are relatively easy to solve

using specialized optimization software, which have been highly developed due to the general applicability

of linear programming in economics, logistics, and many other fields also. In the following subsections we

will briefly describe various choices that can be made for the linear objective function f(v) in FBA.

As an example FBA problem, in Figure 5.1 we have extended the minimal example from the previous chap-

ter to include ATP and biomass (X) production, assuming the latter is produced from pyruvate using a

single reaction that consumes sX molecules of ATP with flux value vX . We also introduce as a linear ob-

jective function the total rate of ATP production, vAT P . Since in this example, reactions v1 and v3 pro-
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Figure 5.1: A simple representation of the metabolic reaction network for central carbon metabolism. Extra-
cellular glucose is imported into the cell via a reaction with flux v0 and converted via intracellular glucose, G,
to pyruvate, P , via the reaction with flux v1 that has a stoichiometric coefficient of two pyruvate molecules to
each glucosemolecule. Pyruvate can then either be converted to a fermentation product, P1, via the reaction
with flux v2 or, in the presence of oxygen, O2 imported via vO2 , converted to an oxidative phosphorylation
(OXPHOS) terminal product P2 via the reaction with flux v3. It can also be converted to biomass X with rate
vX . The reactions with flux values v1 and v3 produce ATP from ADP (in red) with stoichiometry s1 and s3,
respectively, which can vary between species. The production of 1.0 grams of new cells, in a dry weight basis,
requires one molecule of pyruvate and sX molecules of ATP.

duce ATP with stoichiometric coefficients s1 and s3, respectively, the total rate of ATP production is given

by vAT P = s1v1 + s3v3 − sXvX . The FBA problem is then given by simply maximizing vAT P subject to

v0, vO2 , v1, v2, v3, v4, vX satisfying the mass-balance constraints but, as we will see in the next subsection,

this would result in a problem that is unbounded: the flux vectors and resulting optimal value of vAT P could

be indefinitely large. Biologically, this is because there are no bounds on the uptake rates of glucose vub
0 and

the fermentation product vub
4 . Thus, if we re-impose these bounds as in the last chapter, the result is an FBA

problem that is bounded and therefore has a finite objective value:

max
v

vAT P = s1v1 + s3v3 − sXvX , such that :

0 = v0 − v1,

0 = vO2 − v3,

0 = 2v1 − v2 − v3 + v4 − vX ,

vub
0 ≥ v0,

vub
4 ≥ v4,

v0, v1, v2, v3, v4 ≥ 0.

(5.4)

To illustrate a particular instance of this FBA problem, we consider the very simple case where vub
4 = 0,

vub
0 > 0 and s3 = s1 = 1. It can be checked by hand that an optimal solution is given by v0 = v1 = v2/2 = vub

0 ,

with v2 = v4 = vX = 0. The optimal objective value is given by vAT P = 3vub
0 .

5.2.1 Types of linear objective functions used in FBA

Solving the constraint-based optimization problem of (5.1) will reduce the set of flux vectors to those that

are optimal (maximize the objective function), but the biological validity of this prediction is critically depen-

dent on the particular choice of f . Consequently, there has been a lot of consideration and debate among

researchers working on FBA about the appropriate objective functions to use in different contexts and how

best interpret the results. Below, we will provide some popular examples, but for a more systematic com-

parison of different objective functions we refer the reader to [192, 193, 194].
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Economic analogy 5.A : Linear programming and economic planning in the Soviet Union

Linear programming as an algorithmic approach to solving constrained linear optimization problems was first devel-

oped by soviet mathematician and economist Leonid Kantorovich in the 1930s [189, 190]. Kantorovich was tasked

with helping to optimize production in the soviet plywood industry, but soon discovered that the underlying prob-

lems could not be solved using analytical methods. He instead developed a method for solving linear optimization

problems using an iterative process through which a solution is continuously improved until an optimum is reached.

Kantorovich argued that this could be used to make soviet economic planning more efficient.

Soviet planning was primarily based on material balancing, which aimed to create a consistent plan with regards

to the inputs and outputs of various industries. For example, the input requirement of steel consuming industries

ought not to exceed steel production targets. In a balanced plan the input requirements for steel would match the

production of steel. But a balanced plan is not necessarily an optimal one. There can well be several consistent

plans of which some lead to higher overall production output than others. Kantorovich observed that productive

resources were often not used where they could yield the greatest benefit. By using linear programming, planners

could in principle calculate a plan that made the best use of economic resources and maximized production output.

One of the problems that needed to be overcome by Kantorovich was that optimization always aims to optimize

a singular objective function. However, there was no obvious way of measuring the output of qualitatively distinct

products on a single scale. Without prior valuation of the products (for example through market prices) it is not clear

whether 3 tanks and 10 trucks should be counted as more than 4 tanks and 8 trucks. Kantorovich circumvented this

problem by assuming that outputs ought to be produced at given proportions. For example, it might be specified

that 2 trucks ought to be produced for every tank. Linear programming can then be used to calculate the plan that

maximizes output at these proportions. Unlike most contemporary economic applications of linear programming,

this does not depend on a monetary objective function. So, what’s being maximized is not monetary value. Instead,

the objective function measures purely physical quantities (such as number of trucks or tons of steel).

In the context of economic planning, constraints are used to represent limits to available economic resources (such

as fertile land). A plan that uses more resources than are available will not be feasible and must thus be excluded.

Constraints can also be used to fix the proportions at which distinct outputs ought to be produced [191]. While it

was first developed for economic planning, the fundamental principles of linear programming can also be applied to

other problems (for example in biology).

Evolutionary justifications for objective functions: the rate of biomass production Objective functions are

often based on evolutionary arguments: the objective is chosen to capture some proxy for the evolutionary

fitness of an organism. The motivation behind this is that cells with a metabolic state that scores well on this

fitness-proxy would come to dominate the cell-population because they outgrow their competitors. Proxies

for fitness are in principle very hard to choose since evolutionary fitness is mostly related to the average

net reproduction rate of a cell over a very long time[195]. Therefore, to know the metabolic objective that

aligns with the maximization of fitness would require us to know what the cell has been selected for in its

evolutionary history. This is a non-trivial question, for example, is an E. coli cell growing in the human gut

selected for the same metabolic objective as a muscle cell in your body?

An objective that is used very often is the maximization of a biomass production rate, because this is used as

a proxy for maximizing growth rate. It is indeed arguable that unicellular organisms with high growth rates

are selected, since in stationary conditions these cells will come to dominate the population. Indeed, FBA

models in which the biomass production rate is optimized seem to predict metabolic states reasonably well

[196, 197, 198].

But what exactly do we mean by “biomass”? This is extensively discussed in the Chapter 2, but for our pur-

poses it is sufficient to say that it is the entirety of all components that constitute a new cell. In metabolic

models, however, “biomass” refers to all precursors that are outputs of the model and that are needed to

produce a new cell. This has two consequences. First, biomass in our model does not only consist of the

components of which the cell is built, but also of components needed to do the building itself, such as a cer-

tain amount of ATP. Second, what is contained in biomass will depend on where we draw a line around the

metabolic network - all necessary cell components that are not inside are regarded as biomass. In practice,
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biomass appears in metabolic networks in the form of a virtual biomass reaction that consumes all necessary

precursor molecules in the right proportions and produces one unit of “standard biomass”. Maximizing the

biomass production rate thus takes the very simple form of just maximizing the rate through the biomass

reaction.

The use of such a fixed biomass reaction represents an important assumption, because in reality the biomass

composition will be condition dependent. For example, if a cell grows faster and contains more ribosomes,

this increases the cellular fraction of proteins and polynucleotides, and hence the need for the respective

precursors (amino acids and nucleotides). Moreover, biomass composition can even depend on the choice

of metabolic strategy. If a pathway includes enzymes that contain a lot of iron, then depending on the flux

solution (which uses this pathway or not), more or less iron will be contained in the biomass. So, the flux

solutionmust be known to know the biomass composition, but the biomass compositionmust also be known

to get to a flux solution. To resolve this, we would need a model of the entire cell, including the synthesis

reactions of all enzymes. Such models will be discussed later, in the Chapter 9 on large cell models.

Evolutionary justifications for objective functions: alternative fitness-proxies In some cases, modeling the

maximization of the instantaneous growth rate through the biomass reaction is an unrealistic proxy of the

evolutionary fitness. For example, inmulticellular organisms each cell performs a task that contributes to the

fitness of the whole organism, but this is not related to the reproduction rate of the individual cells. In those

cases, we may still try to capture an evolutionary objective when we know the main task of the cell-type. For

example, beta-cells in the pancreas have as their main task to produce insulin, and we may thus model their

metabolism by maximizing the production of insulin.

In other cases, our metabolic model is focused only on a very small part of the true metabolic network, and

therefore does not model the production of all biomass precursors. In such cases, energy production rate in

the form of ATP production rate is often maximised. Yet other objective functions that are sometimes used

and have a (somewhat vague) evolutionary motivation are the minimization of overall ATP usage and the

minimization of overall fluxes.

Synthetic design-oriented objective functions Metabolic modeling can also be used to identify metabolic

states that lead to a certain desired behavior of a microorganism. For example, we may seek to genetically

perturb a microbe such that it produces a certain compound of industrial or medicinal interest, while it also

retains a certain minimal growth rate [199]. Indeed, it is often desired to retain a certain minimal ability to

grow such that the genetically engineered organisms can be lab-grown after which the produced compound

of interest can be harvested. In that case, we can combine maximizing the production rate of the compound

while imposing an inhomogeneous constraint that sets a lower bound on the biomass production rate. This

can even be combined with a calculation in which we solely maximize the biomass production rate: maxi-

mizing the biomass production rate is a model for the wild-type cell, whereas maximizing the generation of

the compound models the desired phenotype. By comparing the flux distributions between these ‘strains’,

we can search for target genes that should be up- or downregulated.

5.3 Optimal metabolism in terms of elementary flux modes

In the previous chapter we introduced elementary fluxmodes (EFMs) and identified them as the fundamental

metabolic pathways that carry flux through the metabolic reaction network. Here, we will show how elemen-

tary flux modes also can be very useful for describing optimal metabolic states. We briefly recapitulate the

notion of elementary flux modes. All metabolic flux vectors v that satisfy both the mass-balance and irre-

versibility constraints form a pointed polyhedral cone, called the flux cone. The EFMs are the extreme rays

of this cone, so that they can be used to decompose all steady-state flux vectors:

v =
∑

i

λiei,
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Figure 5.2: We show a cartoon of the solution space of a metabolic network, the so-called flux cone, with
respectively zero, one and two constraints. With one constraint, the optimal solution for any linear objec-
tive can be attained in a vertex of the space, which means that it can be attained in a single EFM. With two
constraints, we need to combine at most two EFMs to describe the optimal solution.

where λi ≥ 0 and ei is the i-th EFM. Moreover, the EFMs turn out to be the minimal metabolic subnetworks

that a cell can use in steady-state without needing any other reaction, so that we can view EFMs as minimal

metabolic strategies.

In Figure 5.2 we depict the EFMs as black lines, and the region in-between these lines is the steady-state

solution space that is spanned by the EFMs. Note that this illustration is great simplification, usually the flux

cone is a high-dimensional object that can only be visualized in trivial toy examples. In fact, the flux cone

is a subspace of Rn where n (the number of reactions) can be in the thousands for a typical genome-scale

metabolic network. Moreover, the number of extreme rays of the cone would be overwhelming, due to the

complexity issues associated with EFM enumeration as described in the previous chapter.

Figure 5.2a also shows that there is a direction in which the objective increases fastest. This direction is de-

termined by the choice of objective function, to be specific: the direction of maximal increase of the objective

is given by the vector of coefficients, [c1 · · · cn]T , appearing in the linear objective function (5.3). However, as

long as we do not impose an inhomogeneous constraint, the flux cone is unbounded, so that we can usually

reach infinite values. This makes sense when we think of the metabolic states in terms of elementary flux

modes: when we have an EFM that reaches some nonzero objective value, we can always multiply it by any

positive scalar. This multiplication will increase the objective value, while the steady-state and irreversibility

constraints will not be affected.

Metabolism, however, is never unconstrained, so wewill always have at least one inhomogeneous constraint.

In the previous chapter, inhomogeneous constraint were written in the general form∑
i

wp
i vi ≤ hp, p = 1, . . . P (5.5)

where each hp corresponds to a component of the P -dimensional vector h and nweightswp
i (i = 1, . . . , n) are

supplied for each of the P constraints. The second panel of Figure 5.2 shows how a single inhomogeneous

constraint (i.e. the case P = 1) can constrain the flux cone and theory dictates an optimal flux vector is

found at a vertex of the resulting flux polyhedron, which geometrically corresponds to the intersection of the

flux cone and the hyperplane of the inhomogeneous constraint. One particular biological argument for such

a constraint is related to resource allocation[200, 201]: only a limited number of macromolecules (proteins,

ribosomes, etcetera) fit inside a cell. Since thesemolecules catalyze reactions, reaction rates are proportional

to their concentrations:

vi = eigi(xmetab), (5.6)

where ei is the concentration of the enzyme that catalyzes reaction i, and gi(xmetab) is a function that describes
enzyme kinetics in a non-linear way that is for most reactions unknown. The resource-allocation constraint
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then takes the form ∑
i

wiei ≤ 1, (5.7)

where wi are weights that determine howmuch of the resources are taken up by one unit of the ith enzyme;

these weights can for example be proportional to the volume, the mass, or the number of amino acids of the

enzyme. Making a change of variables to express the constraint in terms of fluxes gives:∑
i

wi

gi
vi ≤ 1, (5.8)

such that these resource-allocation constraints again fit the form presented in Equation (5.5). A well-known

example of a modeling framework that uses such a constraint is FBA with macromolecular crowding (FBAwMC,

[202]) where such a constraint arises due to a physical limitation on the number of enzymes contained within

the cell.

It is not necessarily always the case that an inhomogenous constraint applies to all EFMs. For example,

in a metabolic model of an organism able to grow on multiple carbon sources, many EFMs may remain

unbounded. For treatment of these cases, the reader is referred to [203]. Moreover, we may have multiple

inhomogenous constraints on flux values as Equation (5.5) suggests. The third panel of Figure 5.2 illustrates

how a second inhomogenous constraint can further constrain the solution space where theory implies an

optimal flux vector is found on a vertex lying on the edge between two EFMs (as shown in the example

in the figure). Imposing additional inhomogenous constraints can therefore lead to the superposition of

additional EFMs in the solution. In general, if we consider a constraint-based model withK inhomogeneous

constraints it can be proved that an optimal flux vector will be built out of atmostK EFMs [203]. We therefore

see another important property of EFMs: not only do they form the minimal building blocks that span all

metabolic capabilities of the cell, they are also optimal building blocks. When metabolism is optimized, only

few of these EFMs are used. As a result, solutions to linear constraint-based optimizations can usually be

rationalized in terms of the properties of the available EFMs [204], for example, a flux balance analysis with

only one constraint on a nutrient uptake will just return the EFM with the highest ‘yield’, i.e. the highest

efficiency of making biomass per nutrient.

5.4 Phenotypic phase plane analysis

The analysis of the metabolic response to environmental changes is often sought assuming that there is

only one substrate limiting growth (or other metabolic reaction). For example, we could be interested in the

growth and ethanol production by S. cerevisiae under oxygen limitation in a chemostat. In this experimental

setup, every other substrate should be provided in excess, including the carbon and energy source. If no

oxygen is supplied, ATPmust be produced only using oxidative phosphorylation reactions and a fermentation

product, such as ethanol, will be produced. On the other extreme, if enough oxygen is available, a fraction

of the carbon source will be completely oxidized, producing ATP via respiration. In both cases, the fraction

of the carbon and energy source not used for energy generation will be used for the production of biomass

at an specific growth rate equal to the dilution rate of the chemostat.

This behavior can be analyzed using the phenotypic phase plane analysis. To calculate a phenotypic phase

plane (PPhP), the uptake fluxes values under analysis, typically the uptakes of oxygen and the carbon source

are discretized between their upper and lower values and used to construct a meshgrid containing the 2-D

grid coordinates based on the coordinates contained in the discretized vectors of oxygen and carbon uptake

fluxes. At each tuple in the 2-D grid a FBA problem is solved after fixing the lower and upper bounds of

the corresponding fluxes to the values in the tuple. Figure 5.3.A shows the PPhP of the metabolic network

presented in Figure 5.1 with sX = 10, s1 = 1, s3 = 4, v4 = 0, vUB
0 = 10, and vUB

O2 = 15 mmolg−1
CDWh−1.

At zero oxygen uptake, Figure 5.3.A shows that growth is possible reaching a specific growth rate of 1h−1 at

the maximum glucose uptake. Notice that the slope of the line connecting the origin of coordinates and the
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Figure 5.3: Phenotypic phase plane of the metabolic model shown in Figure 5.1, calculated as a function of
the uptakes of oxygen and glucose

.

point of the highest growth rate at a glucose uptake of 10 mmolg−1
CDWh−1 is 0.1 gCDW(mmol)−1. Biologically,

this slope corresponds to the biomass yield on glucose under anaerobic conditions, and in terms of linear

programming to the negative of the shadow price defined as:

γi = −dz
dbv

i

, (5.9)

where z is the objective function optimal value (specific growth rate in this case) and bv
i corresponds to the

violation of a mass balance constraint and is equivalent to the uptake reaction of the i-th metabolite (glucose

in this example)[205]. Figure 5.3.C shows that the glucose shadow price is equal to -0.1 at every point in the

feasible region of the problem. Figure 5.3.D shows the shadow price values for oxygen uptake. For every unit

increase in the oxygen uptake flux, the biomass specific growth rate increases by 0.4 h−1. Thus, the plane of

increasing growth rate values in Figure 5.3.A can be described by the equation 0.1vG +0.4vO2 . Concomitantly,

as the oxygen uptake increases, the flux of product P1 decreases asmore ATP is generated in reaction v3. For

every constant glucose uptake flux, the specific growth rate increases and the production of P1 decreases

until the optimally line (red line) is reached in Figure 5.3.A. This line represents the optimal relation between

the twometabolic fluxes in the PhPP [205]. In this example, the optimally line represents the combinations of

glucose and oxygen uptake fluxes leading to a complete oxidation of the substrate, and thus supporting the

maximal biomass yield. Finally, increasing the oxygen consumption beyond the optimally line, at a constant

glucose uptake, leads to an infeasible problem since there is no further glucose to be oxidized.
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5.5 Non-uniqueness of the optimal metabolic state

Although the optimization of some objective function strongly reduces the number of solutions, it is still pos-

sible that many different metabolic states satisfy the constraints and reach the same maximal value for the

objective. In that case, we are again undecided on which of the solutions gives the most useful information

about the biological problem. This non-uniqueness of the optimum can be explained in terms of the elemen-

tary flux modes. In the second panel of Figure 5.2 we saw that the optimal solution was located on the vertex

that was as far as possible in the optimization direction. One can imagine, however, that the flux cone can

be located in the space such that there are two vertices that both reach out equally far into that direction. In

that case, the two corresponding elementary flux modes perform equally well, and consequently, all convex

combinations of these elementary flux modes also reach the same objective value. In metabolic modeling

we often work in a high-dimensional space with constraints that concern only few of those dimensions (for

example a bound only on a nutrient uptake rate). In such cases it is very likely that many elementary flux

modes perform equally well, so that there is a whole subspace of equivalent solutions.

5.5.1 Flux Variability Analysis

The equality and inequality constraints of the FBA problem form a polytope where the problem is feasible, a

cone if the problem is written in canonical form. The optimal solutions of the LP problem can lay on a vertex

of the polytope, and be unique, or be non-unique solutions if the objective function hyperplane is parallel

to a facet of the constraint polytope at the solution. This means that one or several variables can change

their values without affecting the value of the objective function. These variables can be identified using flux

variability analysis (FVA), where each flux of the reactions in the metabolic network (the set of J reactions

with N elements and I metabolites) maximized and minimized, one at a time, while fixing the value of the

objective function to a fraction of the optimal value obtained in the original FBA problem.

max
v

vj(ormin
v
vj), such that :∑

j∈J

Si,jvj = 0, ∀i ∈ I,

LBj ≤ vj ≤ UBj ,

vbiomass = f · v∗
biomass,

vj ∈ R, ∀j ∈ J.

(5.10)

Hence, 2N optimization problems need to be solved if there are N unconstrained fluxes. The results of the

VFA analysis should be carefully interpreted. Since the maximum and minimum fluxes are calculated one

at a time, and although changes in this flux might not affect the objective function, this typically requires

changes in the remaining fluxes. Therefore, the polytope that describes all alternate optimal solutions is not

captured by VFA. Instead, FVA inscribes this polytope in the smallest possible “box” [206]. Besides being useful

for the identification of alternative solutions, FVA can be utilized to identify blocked reactions under a given

growth condition. These reactions are characterized by minimum and maximum flux values (as calculated

by VFA) equal to zero and arise due to regulatory constraints imposed to the FBA or due to network gaps, for

example, metabolites lacking a consumption or production pathways for whom a steady-state mass balance

is impossible. Thus VFA, could help in the identification of dead-end metabolites, and in the long run, in

model improvement.
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5.6 Limitations of constraint-based metabolic models

In this and the previous chapter, we have introduced constraint-based analysis of genome-scale metabolic

models. We started by pointing out many of the simplifying assumptions that are associated with the study

of large metabolic reaction networks. For example, we only considered systems in chemical steady state

with their environment, we ignored the effects of metabolite dilution, and we made semi-informed choices

for which intracellular molecules are contained in our model or summarized in a biomass reaction. All these

assumptions can be relaxed, at the cost of making models more complex. Although it is tempting to think

that the more complex a model the more realistic it will be, there is not much use to adding additional com-

plexity if we don’t have the data to support it. Constraint-based analysis therefore provides one way to study

metabolismat genome-scalewhendata are limited. In the following chapters wewill study the consequences

of lifting one or more of these simplifying assumptions.

In constraint-based analysis, one considers reaction rates (fluxes) as the variables in the model, giving the

illusion that these are directly set by the cell to regulate its metabolic state. In reality, however, the reaction

fluxes are the combined consequences of enzyme expression, regulation and metabolite concentrations. If

we wish to model metabolism in more detail, we we should build models that incorporate gene expression

andmetabolite concentrations systematically. Some of the next chapters attempt this, but we have described

that FBA is useful when experimental data are limited. Certain extensions of FBA discussed in later chapters

alsomove beyond the steady state assumption, allowing the environment to change with time. One example

is the method dynamic FBA, which will also be discussed in a later chapter.

Philosophical remarks 5.B : Qualities of a model

When have we made a good model? Is the quality of a model determined by whether it fits all experimental obser-

vations? What is the ideal size of a model? Is the purpose of a model that it predicts, or rather that it provides insight

into the biological processes?

The answers to these questions are as common as it is unsatisfying: ‘it depends’. Sometimes a model can be very

useful if it just predicts, and does not explain, as witnessed by the undebatable success thatmachine learningmodels

have across the sciences. However, only true understanding of the studied process can lead to hypotheses and

predictions on phenomena that are far away from the currently available data. The more a model is fitted to a

specific dataset, the less we are able to extrapolate it beyond this dataset.

These questions are very relevant in the context of metabolic modeling. Metabolic models have many unknown

parameters, stemming from our ignorance of the biological process: What is the true objective? What constraints

are relevant for determining metabolism? It is a deceptive trap to view the success of the model in reproducing the

observed data as a validation that the right parameters, objective and constraints were chosen. A successful model

only indicates that the modeled mechanism can be similar to the true biological mechanism, but it does not show

it actually is. The problem is that, since we have many different parameters to choose from, many different models

can explain the same metabolic observations [207].

An especially important question is whether metabolism is truly optimized for some evolutionary function. It is now

an attractive option to view the success of optimization-basedmodels as proof that the cells are indeed optimized, but

this would be wrong because we can also explain the data with models that do not require optimization. To really

quantify whether metabolism is optimized we should therefore devise quantitative tests that distinguish between

randomly chosen and optimized metabolic states. An interesting approach for describing the metabolic outcome of

cells, relying on statistical mechanics rather than on a selected objective function, has already been introduced [208].

5.7 Concluding remarks

In this chapter we built upon the exploration of flux spaces derived from constraints by imposing optimality

criteria in terms of an objective function. The choice of the objective function(s) and the constraints depend

on themodeling purpose. We will summarize some of the possible choices by listing three purposes that this

type of models can have.
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First, constraint-based optimization can be used to collect, integrate and extrapolate data on themetabolism

of a specific organism. In this case, as much experimental information as possible can be used to refine the

model. For example, measured fluxes can be fixed with constraints, measured metabolite concentrations

can be used to determine the thermodynamically feasible direction of reactions, and transcriptome infor-

mation can be used to exclude some reactions because the corresponding genes are not expressed. One

of the applications is then that unknown variables can be inferred such that they are in accordance with the

metabolic network and all the measured variables.

Second, hypotheses can be tested on why the studied organism attains its metabolic state. By choosing

an objective function we can propose what drives the metabolic behavior and by choosing the constraints

we propose what limits the metabolic behavior. If the model is then in accordance with the experimental

observations, we know that at least the hypotheses were not proven wrong. On the other hand, we must

be careful not to conclude from this that the hypotheses must be right, as we discussed in the box with

philosophical remarks.

Third, we may use these models to search for a metabolic state that results in a certain desired behavior,

for example in the secretion of a product that is useful for industrial or medicinal reasons. In this case, the

objective function is picked such that exactly the desired behavior is maximized, often while requiring that

some biomass production is still possible because the cells need to be able to grow before the harvesting of

the product can start.

Despite these useful purposes, we have also identified several limitations of the FBA-type models that we

described here, such as ignoring metabolite concentrations, enzyme kinetics, and the assumption of a sta-

tionary metabolic state. The reason that these models are still very popular is their computational simplic-

ity: as long as the objective function and constraints are linear in the reaction rates, the optimal solution is

relatively easy to find using linear programming. This makes it feasible to make and run these models on

genome-scale metabolic networks, which are networks that comprise all the metabolic enzymes for which

the genome encodes, and can include thousands of reactions.

Understanding the solutions of such large models can also be very difficult due to their dimensionality. This

is made easier when one uses elementary flux modes: we have seen that a solution is always a combination

of a relatively small number of EFMs. More precisely, the number of EFMs that are active in the optimal

solution cannot exceed the number of imposed constraints. This means that to understand the solution, we

only need to understand which EFMs are selected and why. As such, we can interpret optimal solutions in

terms of the EFMs, i.e. the minimal metabolic strategies, that are used.

Recommended readings and tools

Escher FBA Escher FBA (https://sbrg.github.io/escher-fba/) is nicely illustrative. It does FBA on an E. coli

core model. Bounds on all reactions can be changed and different objectives can be explored. The resulting

flux distribution is shown graphically.

Problems

Problem5.1Augment themetabolic network of Spirallus insilicus (Problem4.1) by adding the in-homogeneous

constraint vupt ≤ 10 mmol
gDWh and calculate the flux distribution if biomass is the objective function (maximize

v5).

1. Using a spreadsheet and its associated linear programming optimizer.

2. Using an LP solver in Python such as linprog available in scipy.optimize.

3. Is the flux distribution unique? Calculate the maximum and minimum values of each flux (except for the

uptake of substrate and biomass production) if v5 should be equal to its optimal value (v∗
5 ) and if this

constraint is relaxed to v5 ≥ 0.9 v∗
5 .

https://sbrg.github.io/escher-fba/


84 Fluxes in constraint-based metabolic models

Problem 5.2 The metabolic network illustrated in Figure 5.1, adapted from [205], was designed to include

four phenotypes that can be reached depending on the ratios of the oxygen and carbon source (A) uptake,

defining zones of single nutrient and dual nutrient limitation.

1. If the uptake of the carbon sourceA is bounded between 0 and 10 mmol
gDWh and no restrictions on the oxygen

uptake are imposed, prepare a plot showing the biomass, C, D and E fluxes attained at different uptakes

of A.

2. Repeat the preceding analysis, but limit the maximum uptake rate of oxygen to 10 mmol
gDWh .

3. If substrates uptakes are bounded between 0 and 10 mmol
gDWh for A and 0 and 20 mmol

gDWh for oxygen, calcu-

late the phenotype phase plane. In each region of the phase plane (defined by a different slope), pick a

combination of A and oxygen uptakes and analyze the fluxes of C, D and E.

Table 5.1: Stoichiometry of the metabolic network for problem 5.2. Adapted from [209] after [205].

qA−−→ A ATP Rft−−→
A + ATP R1−−→ B C + 10 ATP Rz−−→ Biomass
B R2−−→ 2 ATP + 3 NADH + C

qO2−−→ O2

0.2 C R3−−→ 2 NADH C Cout−−−→
C R4−−→ ATP + 3 D D Dout−−−→
C + 2 NADH R5−−→ 3 E E Eout−−−→
NADH + O2

RRes−−−→ 2 ATP



Chapter 6

Rating metabolic pathways by

enzyme efficiency

Wolfram Liebermeister and Elad Noor

Chapter overview

◦ In this chapter we discuss why certain pathway designs have been selected by evolution, by hypothe-

sizing that some aremore beneficial than others – based on several possible criteria and optimization

goals: minimizing the number of reactions, maximizing product yield, increasing reaction turnover

rates, and avoiding small thermodynamic driving forces.

◦ It turns out that all these criteria are related to a single objective: minimizing enzyme demand per

product production rate or, equivalently, maximizing “enzyme productivity”.

◦ We first focus on simple unbranched pathways with predefined flux distributions. We discuss sev-

eral feasibility and optimality problems where metabolite concentrations are independent variables

and solve for the minimal enzyme demand. In this setting, we see how enzyme productivity can be

assessed or predicted and how it depends on different system parameters such as kinetics, thermo-

dynamics, and concentrations of enzymes and metabolites.

◦ We discuss the difference between growth rate and yield. We then illustrate it by comparing between

pathway options for glycolysis.

6.1 What guides evolution to select one pathway over another?

In the previous chapters, we asked what flux distributions are possible in a network, and which are most

profitable for a certain task. Now we shall ask, more specifically, what led to the choice of existing pathways,

or what makes a pathway variant favorable over another one that exists, or may have existed, in evolution.

Of course, the same question plays also an important role in metabolic engineering, when new pathways are

added to an organism, typically with the goal of achieving a maximal production, while imposing the smallest

possible burden on the cell.

The chemical space is vast and many options exist for the same process, even if we consider only reactions

with known enzyme mechanisms and impose thermodynamic constraints. Hence, while evolution had a

choice between many pathway variants, only a tiny fraction of these possible variants is actually realized

in nature, and a core part of central metabolism almost always follows the exact same design. The few

exceptions that exist actually prove the rule, such the two natural variants of glycolysis discussed later in

85
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Philosophical remarks 6.A : What do we mean by a pathway?

The notion of “pathways” is common in cell biology to describe a set of reactions, proteins, or processes that form a

functional unit. However, there is no general definition: in practice, a pathway is often just a subregion of interest

within a larger network. In metabolism, “pathways” often lead from some important substrate to some important

product, with a simple and predefined flux distribution that consumes substrate(s), generates product(s), and may

or may not make use of co-factors. Considering fluxes in specific pathways (instead of flux distributions in the entire

network) is often a practical choice and, importantly, a choice that assumes that we can model, understand, manip-

ulate, or engineer such a pathway without strongly affecting the rest of the cell. This has a number of benefits: (i)

Instead of studying a huge network, we can look at pathways separately; (ii) there are reasons to believe that the flux

distributions in enzyme-efficient metabolic states must be elementary flux modes (see Chapter 4). Since EFMs often

entail discrete choices between different pathways, it can make sense to study these pathways separately (iii) once

we understand the costs and benefits of single pathways (with a single, scalable flux mode), we can apply the same

thinking to analysing flux distribution on the entire metabolic network. Thus, in the rest of this chapter, all results

about “pathways” will also hold generally for entire networks, as long as a (scalable) flux mode is given. Instead of

comparing alternative pathways, we can compare alternative flux modes. In the following chapter, we use this for

optimizing over the set of all possible flux modes that a given network can support.

this chapter. How can we understand why a certain variant is used in a certain organism or situation? And

why are many variants not used at all? Moreover, some very successful pathways show features that might

appear strange at first glance [210]: in glycolysis, an initial investment of ATP is required, and only later it is

recovered in higher amounts leading to a net gain. Is this just an evolutionary accident, i.e. a case where

the pathway that evolved first is the one that stuck around although it is not necessarily better than all the

alternatives? Or, rather, evolution did manage to find the optimal solution and therefore we should try to

explain what the advantages of these “engineered” features are?

In this chapter, we assume that it was a selection for functional features, not chance, that determined these

pathway “choices”, and ask: what guides evolution to select one pathway over another? What are the criteria

thatmake pathways “efficient” or “profitable” for a cell or, alternatively, for ametabolic engineer? To compare

pathways, we assume that each pathway comes with a predefined flux distribution, and therefore a prede-

fined product yield, and alternative pathways (yielding the same product) are compared at equal product

production rates.

When people talk about natural ecosystems, diversity is usually the first topic discussed. Indeed, evolution

through natural selection is almost guaranteed to create diversity where species evolve to occupy biological

niches while exploring the vast space of possible phenotypes. Similarly, the world of biochemistry is a vast

space of possible reactions. Metabolic enzymes participate in a network of pathways that supply cells with

energy, and building blocks for biomass. Scientists have been studying these biochemical reactions for nearly

300 years [211] – so far tens of thousands such reactions have been classified; certainly many more exist

in nature. Here are a few online databases where biochemical reaction data are collected or predicted:

MetaNetX, KEGG, MetaCyc, BiGG, ModelSEED, ATLAS of biochemistry.

To study the choice between pathways variants, we consider alternative pathways leading from A to B (or

having a certain net sum formula) and their respective advantages and disadvantages. For simplicity, let

us focus on biosynthesis pathways whose main task is more or less clear: producing a precursor molecule.

Thus, the theoretical question would be: if a cell needs to make B from A, which pathway should it use? More

specifically, how should themetabolic reactions be chosen and in what order? What should their kinetics and

how should they be regulated?

If the pathway variant found in nature is due to selection for “good functioning”, then what are the features

that make existing pathway designs successful? In short, what are criteria for “good” pathways? One possible

criterion seems to be simplicity, that is, choosing a short route from pathway substrate and pathway product.

https://www.metanetx.org/
https://www.kegg.jp/
https://metacyc.org/
http://bigg.ucsd.edu/
https://modelseed.org/
https://lcsb-databases.epfl.ch/pathways/atlas/
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Figure 6.1: Two natural variants of the glycolysis pathway, named after their discoverers: Embden-Meyerhof-
Parnas (EMP) and Entner-Doudoroff (ED)

In contrast to the huge diversity that is allowed by the catalytic capabilities of enzymes, a few metabolic

pathways are extremely ubiquitous and exist virtually in every living cell. For example, glycolysis is a general

term for pathways that convert glucose to pyruvate while producing ATP [210]. One variant of glycolysis,

named after Gustav Embden, Otto Fritz Meyerhof, and Karol Parnas (or the EMP pathway for short, see Figure

6.1), was the first metabolic pathway to be discovered by scientists [211]. Often, the pyruvate is reduced to

lactate or ethanol, which makes the pathway redox balanced. Therefore, it one of the most common way for

producing ATP anaerobically (i.e. without oxygen to serve as an electron acceptor). Another common variant

was discovered in 1952 by Nathan Entner and Michael Doudoroff [212] (ED for short). For example, E. coli is

capable of metabolizing glucose through both the EMP or the ED variants, and often does so simultaneously

[121].

More generally, the overall reaction describing glycolysis is:

Glucose + 2 NAD(P)+ + nADP + nPhosphate −−→ 2 Pyruvate + 2 NAD(P)H + nATP + nH2O (6.1)

where the value ofn for the EMPpathway is 2. Ng et al. [213] explored the space of all possible glycolyses (with

different values of n), by exhaustively enumerating all glycolytic pathway variants. In order to generate the

variants, they adapted a computationalmethod first introduced by Bar-Even et al. [214] for finding alternative

carbon fixation cycles – metabolic cycles whose net reaction converts CO2 into organic compounds. You

start by collecting a database of known biochemical reactions (e.g. from a database such as KEGG [215])

and then use a linear-programming algorithm to identify the set of reactions with the minimal sum of fluxes

that conform to the predefined net reaction (e.g. 6.1). The objective is somewhat arbitrary, but since solving

the LP requires setting an objective, we chose the min-flux as a reasonable proxy for the simplicity of the
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Mathematical details 6.B : Integer cuts can be used for iterating all possible solutions

The linear problem can be described by:

minimize
∑

i

vi

subject to Nv = 0

∀i 0 ≤ vi ≤ β

vglycolysis = −1

(6.2)

where v is the flux variable, and N is comprised of the universal stoichiometric matrix , and in addition one reaction

(whose flux is denoted vglycolysis) which has the stoichiometry of Eq. (6.1). The constraint vglycolysis = −1 ensures that

the sum of all active reactions except for vglycolysis will together form a full glycolysis pathway, since their net reaction

has to balance the stoichiometry of vglycolysis given the mass balance constraint Nv = 0. β given the upper bound

on the flux for all reactions. For simplicity, we assume that all fluxes are positive and that reversible reactions are

split into their two opposing directionalities . β is a tunable parameter that is an upper bound on all the fluxes in the

solution pathways. Setting it too low would exclude solutions with complex stoichiometries. On the other hand, a

very high value would increase the complexity of the search and lead to very long run-times. Typically, we choose

β = 10 which is a good balance between the two extremes. Finally, we set the objective function (
∑

i
vi) to minimize

the sum of fluxes. As we will explain shortly, we can iterate through all possible solutions and therefore the objective

will only determine the order at which we find them.

To find all possible glycolysis pathways comprising known enzymatic reactions, Ng et al. [213] iteratively introduced

constraints in order to exclude all previous solutions and find the next optimal one [216]: to exclude a solution, they

add an integer cut, which is an inequality constraint ensuring that the number of active reactions is strictly larger than

the sum over their indicator variables (boolean variables that are equal to 1 if the reaction is active, i.e. carries a

nonzero flux). Therefore, at least one of those reactions must be inactive in all future solutions. This is quite similar

to constrained Minimal Cut Sets (cMCS) which were introduced in Chapter 4.4 as a way of exploring the flux space.

Formally, if {P0, P1 . . . Pm} are the set of solutions already discovered by our algorithm (where ∀j Pj ⊆ {0, . . . , n},
i.e. each solution is a set of integers which correspond to indices of active reactions) then the added constraints will

be:

∀i zi ∈ {0, 1}

∀i vi − βzi ≤ 0

∀j
∑
i∈Pj

zi < ‖Pj‖
(6.3)

where ‖Pj‖ is the length of pathway j (i.e. the number of reactions). The zi are boolean reaction indicators, i.e. zi

must be equal to 1 if a reaction is active (vi > 0). The final set of constrains eliminate Pj and any pathway which

is a superset of Pj from the solution space. Using this extra set of constraints iteratively, each time generating the

next pathway and adding it to the excluded list, will eventually go through all possible solutions (by increasing order

of their sum of fluxes). It is important to note that using integer cuts requires switching to an MILP (Mixed-Integer

Linear Program) solver, which is computationally muchmore demanding and typically requires a commercial license.

pathway. In any case, we will soon see how one can iterate through all possible solutions. Ng et al. [213]

used this algorithmwith the stoichiometry from 6.1 to find all possible glycolysis pathways comprising known

enzymatic reactions (see Mathematical Details Box 6.B).

The objective set by the linear problem (6.2) is minimizing the sum of fluxes, which corresponds to pathways

with fewer reactions and low fluxes in each one. As discussed in 5.2, this objective is only a crude proxy for

the efficiency of a pathway, and its only purpose is to get the pathway solutions in a relatively logical order.

Althoughwe have discussed global enzyme constraints in previous chapters (such asmolecular crowding and

proteome allocation), when comparing pathways we will focus only on the efficiency of the pathway itself.

This will allow us to compare pathways without thinking about the rest of the cell or a specific metabolic

context. But how can one quantify the efficiency of a pathway? The next section will be dedicated to exactly

this question.
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6.2 Pathway efficiency - some basic notions and thoughts

For glycolysis alone, Ng et al. [213] found 11,916 alternatives that produce at least one mole of ATP per mole

of glucose. These include, of course, the EMP pathway. Although evolution can explore these options, natural

selection typically converges on one or a few efficient variants. This does not mean that every single pathway

observed in nature must be optimal, but we generally expect cells hosting highly inefficient pathways to

eventually become extinct. Iacometti et al. [217] tested this experimentally by knocking out the EMP pathway

from E. coli and forcing the cells to use the alternatives that naturally exist in this bacterium. In all cases,

growth rates were slower than in the wild-type.

Before we discuss other examples for metabolic pathways, we need to define what we mean by “efficiency”.

There are several criteria one should consider:

◦ Low consumption rate of the substrate

◦ High generation rate of the product

◦ High regeneration rate or low consumption rate of the co-factor

◦ Small number of steps [218]

◦ Higher thermodynamic forces [219, 220]

◦ High enzyme turnover numbers

◦ High enzyme saturation levels

Some of these criteria refer to the cost (or investment) of the pathway, while others reflect the benefit (or

profit) to the cell. By considering two common scenarios – single nutrient limitation or exponential growth in

rich media – we can focus on two simple criteria which provide good measures of efficiency.

When the availability of a single nutrient is limiting growth, maximizing the molar yield (i.e. the number of

moles of product generated for each mole of the nutrient) becomes the important feature. Yield is rather

straightforward to calculate, as it is a direct outcome of the stoichiometry of the pathway. For example,

anaerobic fermentation is often compared to respiration and deemed inefficient since it yields two moles of

ATP per glucose, instead of ≈30 [221].

On the other hand, when conditions are good, such as during exponential growth in rich media, minimizing

the total number of proteins required is often the objective which determines growth rate. . Here, we will

be using the enzyme demand (e.g. in grams of protein) per unit of flux (typically, in mmol per hour per gram

of cell dry weight). In fact, the enzyme demand per flux, as an objective, takes into consideration both the

cost (protein) and the benefit (flux). Importantly, these two criteria scale linearly with respect to each other:

doubling the amount of all enzymes without changing any of the metabolite concentrations would directly

double the flux in the pathway. Therefore, this measure of efficiency is independent of the magnitude of the

flux in the pathway. But, as we will see shortly, enzyme demand is a non-linear function, making it trickier to

compute compared to other constraint-based problems such as ones we’ve seen in previous chapters.

Notably, these twomeasures of efficiency are not only useful for evolutionary processes, but for bioengineer-

ing as well. Obviously, the molar yield has economical implications when, for example, producing ethanol

from sugar. However, the rate of a bioprocess is important aswell due to the costs involved, e.g. formaintain-

ing an operational bioreactor. One can imagine a computational model that accurately predicts the enzyme

demand per flux of a pathway. Choosing the pathways with the lowest demand would be a good strategy for

increasing the overall rate of bioproduction [222].

We define the enzyme demand per unit flux as the total amount of enzyme (in grams of protein) that is

required to catalyze all of the pathway reactions at their required rates. We start by deriving a formula for

the demand of a single enzymatic reaction. Consider an enzyme-catalyzed reaction:

S −−⇀↽−− P (6.4)
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Figure 6.2: Enzyme cost in metabolism. (A) Enzyme-specific flux depends on a number of physical factors.
Under ideal conditions, an enzyme molecule catalyses its reaction at a maximal rate given by the enzyme’s
forward catalytic constant (blue). The rate is reduced by microscopic reverse fluxes (magenta) and by incom-
plete saturation with substrate, causing waiting times between reaction events, or by enzyme inhibition or
incomplete activation (red). (B-C) On a logarithmic scale, catalytic rates and enzyme demand can be split into
sums of efficiency terms. With lower catalytic rates, larger amounts of enzyme are required for realizing the
same metabolic flux.

where s and p will be the concentrations of the substrate (S) and product (P) respectively, and E the concen-

tration of the enzyme which catalyzes this reaction (for simplicity, we drop the tot subscript from Etot). Here,

we will be using the factorized rate law (Eq. 3.15), but other kinetic rate laws would produce similar results.

The rate of a reaction is given by:

v = E · k+
cat · s/KS

1 + p/KP + s/KS
·
(

1 − e∆G′
r/RT

)
(6.5)

where k+
cat is the forward turnover rate,Ks andKp are the Michaelis-Menten constants for the S and product

P, and ∆G′
r is the Gibbs free energy. So, the minimal amount of enzyme that is required for reaching a given

rate v is:

q ≡ v · h · 1
k+

cat
· 1 + p/KP + s/KS

s/KS
·
(

1 − e∆G′
r/RT

)−1
, (6.6)

where h is a number converting enzyme concentration e into enzyme amount q (for example, the enzyme

molecular mass). For an illustration, see Figure 6.2 . Summing up the demand across all the reactions in the

pathway (each with its own rate, kinetic parameters, and substrate/product concentrations) will produce the

total enzyme demand. Looking at this function, we can already make some interesting observations. First,

the kinetic parameters (k+
cat, Kp, and Ks) can be treated as constants since they change only in evolutionary

timescales, and we often assume that existing enzymes already have near-optimal kinetics (although that’s

not always the case). Since we care about the demand per pathway flux one can, without loss of generality,

set v to 1. However, if the pathway requires a non-trivial ratio between some reactions, the value of v can be

different based on the stoichiometry. Finally, the thermodynamic term, i.e. 1−e∆G′
r/RT (which wewill discuss

in more detail in the following section, 6.3), is a function of the metabolite concentrations and theKeq, which

is another constant. So, generally speaking, enzyme demand is defined by a set of constants that are unique

to each pathway, and variables that represent themetabolite concentrations. Since these concentrations are

subject to change depending on the growth conditions, we often treat them as optimization variables and try

to find the minimal demand possible within certain constraints. In Section 6.4, we will see a general method

for finding the minimal value using convex optimization.
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Mathematical details 6.C : Factorized rate laws and enzyme cost function

According to Eq. (6.13), reversible rate laws can be factorized into five terms that depend on metabolite concentra-

tions in different ways [102]. For a reaction S
 P with reversible Michaelis-Menten kinetics Eq. (6.11), a driving force

θ = −∆rG′/RT , and a prefactor for non-competitive inhibition, the rate law can be written as

v = E · k+
cat · [1 − e−θ]︸ ︷︷ ︸

ηfor

·
s/KS

1 + s/KS + p/KP︸ ︷︷ ︸
ηsat

·
1

1 + x/KI︸ ︷︷ ︸
ηreg

Rate = enzyme · forward catalytic · thermodynamic · saturation · regulation

level constant factor factor factor

with inhibitor concentration x. The product of the first two terms, E and k+
cat, represents the maximal velocity, i.e.

the rate at full substrate-saturation without backward flux and without enzyme inhibition. The following factors

decrease this velocity for different reasons: ηfor describes a decrease due to backward fluxes, ηsat – the decrease

due to incomplete substrate saturation, and ηreg – the decrease due to small-molecule regulation (see Figure b).

While k+
cat is an enzyme-specific constant (yet, dependent on conditions such as pH, ionic strength, or molecular

crowding in cells), the efficiency factors are concentration-dependent, unitless, and can vary between 0 and 1. The

thermodynamic factor ηfor depends on the driving force (and thus, indirectly, on metabolite concentrations), and the

equilibrium constant is required for its calculation. The saturation factor ηsat depends directly on metabolite levels

and contains the KM values as parameters. Enzyme regulation by small molecules yields additive or multiplicative

terms in the rate law denominator, which in our example and can be captured by a separate factor ηreg. The enzyme

cost for a flux v, with an enzyme burden he, can be written as

q = he · E = he · v ·
1

k+
cat

·
1

[1 − e−θ]︸ ︷︷ ︸
1/ηfor

·
1 + s/KS + p/KP

s/KS︸ ︷︷ ︸
1/ηsat

· [1 + x/KI]︸ ︷︷ ︸
1/ηreg

and contains the terms from the rate law in inverse form. The first factors, he v/k+
cat, define a minimum enzyme

cost, which is then increased by the following efficiency factors. By omitting some of these factors, one can construct

simplified enzyme cost functions with higher specific rates, or lower enzyme demands (compare Figure 6.2b). For a

closer approximation, the factors may be substituted with constant numbers between 0 and 1.

Most of the proposed criteria for good pathways have either to do with material investments (such as sub-

strate, cofactor, or energy demand) or with “machine investments”, that is, enzyme demands. Enzyme de-

mands, in turn, depend on pathway length, enzyme masses, and enzyme efficiency, and therefore on rate

laws (where kcat values, thermodynamic forces, andmetabolite concentrations come into play). In fact, many

criteria which we discussed earlier as indicators of efficiency are actually an approximation of the enzyme

demand under certain assumptions. For example, the number of steps is proportional to the total demand if

all enzymes have exactly the same k+
cat, saturation, and thermodynamics. Therefore, it is quite a useful rule-

of-thumb in case not much else is known about the enzymes themselves. A better approximation, denoted

Pathway Specific Activity, was used by [214] to compare CO2 fixation cycles. If we assume that all enzymes

are fully saturated and irreversible, the demand would be a direct function of the individual enzyme specific

activities (specifically, proportional to the sum of all their reciprocal values). But even if we know nothing

about the enzyme kinetic parameters, thermodynamics alone can provide us with useful information with

which to grade pathways. Specifically, the Keq of a reaction is a universal constant that is not affected by

enzymes, but rather determined solely by the chemical structures of the substrates and products.

In the following sections, we will focus on enzyme use efficiency as a main objective and consider a thermo-

dynamic approximation, relating enzyme demands to thermodynamic forces. For linearmetabolic pathways,

optimal enzyme profiles (and the associated metabolite profiles and enzyme costs) can be computed with

closed formulae. We will also discuss a way to compute optimal enzyme profiles numerically, for networks

of any shape and size, as long as the flux mode is known.
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6.3 The role of thermodynamics

In general, when considering larger metabolic networks, thermodynamic feasibility can play an important

or even crucial role in determining which pathways are used. In this section we will discuss this role more

explicitly and see how thermodynamics can still give us useful insights about pathway efficiency even when

no other kinetic data is available.

Why are thermodynamic driving forces a meaningful criterion for good pathways? In brief, the driving forces,

defined as θ ≡ −∆G′/RT , play a double role: first, they determinewhether or not a pathway flux is feasible at

all, given themetabolite concentrations at the pathway boundary (i.e. the metabolites that form connections

to the broader metabolic network); and second, in case the pathway is feasible, driving forces can affect

enzyme efficiency and, consequently, the enzyme demand for a given desired pathway flux. In Chapter 3,

we learned that ∆G′, and hence the driving force θ, depends on the equilibrium constantKeq of the reaction

and on the substrate and product concentrations. We also learned that for a flux in forward direction, the

driving force must be positive. Beyond that, the efficiency of an enzyme is proportional to ηfor(θ) = 1 − e−θ ,

a function that ranges between 0 (for θ = 0, reactions in thermodynamic equilibrium) and 1 (θ � 1, reactions
far from equilibrium). Let us now see how this non-equilibrium relation affects pathway efficiency.

6.3.1 Kinetics and driving forces

We should remind ourselves some of the lessons learned in Chapter 3. Specifically, recall the factorized rate

law [102] with a reversibility term that is an explicit function of the Gibbs energy (Eq. 3.15):

v = E · k+
cat ·

∏
i
sνi

i /Ks

1 +
∏

j
p

νj

j /Kp +
∏

i
sνi

i /Ks

· (1 − e∆G′
r/RT ) . (6.7)

The enzyme mechanism behind this formula assumes fast binding and unbinding of substrate and product,

and a slow reversible conversion step (of bound substrate into bound product). Note that here we generalize

the rate law for cases with more than one substrate and one product, where νi and νj are the stoichiometric

coefficients of substrates and products, respectively1. This generalization is one out of many, and corre-

sponds to the assumption that all reactants bind independently to the enzyme (and at random order). We

focus on this rate law because it is one of the simplest, but the theoretical results in this chapter apply to

most other generalizations as well (e.g. convenience kinetics [223]).

According to the definition of k+
cat, and also by noticing that the middle and rightmost terms in Eq. (6.7) are

each smaller than 1, the rate of an enzymatic reaction is bounded by v ≤ E · k+
cat (see Mathematical Details

Box 6.C for a detailed explanation). However, the additional terms are oftenmuch lower than 1, whichmeans

that the rate does not reach its maximum. If we try to measure the apparent catalytic rate by dividing the

rate by the enzyme abundance (kapp = v/E) we would typically get a value that is lower than k+
cat, while only

in rare “ideal” cases, kapp would approach the k+
cat. In fact, this reasoning was used by Davidi et al. [31] to

estimate the k+
cat values of more than 100 enzymes in E. coli, where they sampled many growth conditions

and took the maximum kapp as the estimate.

As discussed in Section 3.3.2, the factorized rate law has a thermodynamic perspective based on the flux-

force relationship, where we view the reversibility term as a “penalty” for the fact that by lowering the energy

barrier, enzymes must catalyze reactions in both directions. When the driving force (θ) is low, the reverse

reaction flux can become significant and lower the net flux. On the other hand, if the driving force is large

enough, this term can be ignored and the rate law resembles irreversible kinetics .

1In general, reaction stoichiometries can be arbitrarily scaled. For example, instead of a reaction 2 A → B, we may
write A → 1

2 B for convenience, which will only lead to a scaling factor in the reaction rate. However, this holds only if
reaction stoichiometries are used to describe mass-balance. In cases like Eq. (6.7), where stoichiometries appear in kinetic
rate laws or in thermodynamic balances, we do not have this choice. In these cases, the stoichiometries must reflect the
molecularities, that is, the actual number of reactant molecules involved in the enzymatic reaction.
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Figure 6.3: The thermodynamic efficiency term ηfor and some approximations. (A) In a given reaction, the
thermodynamic efficiency term ηfor = 1 − e−θ (solid line) can vary between 0 and 1 depending on the driving
force θ. Small driving forces make the enzyme inefficient, since ηfor → 0, while for large forces, thermody-
namics does not play a role as ηfor → 1. The dashed lines show two linear approximation that hold always as
bounds, but can also be used as good approximations for small or large θ values, respectively: (1 − e−θ) < θ
and (1 − e−θ) < 1. (B) The reciprocal value 1/ηfor is one of the factors determining enzyme demand. The
solid line shows the thermodynamic demand factor 1/ηfor, while the dashed lines show the resulting approx-
imations 1/ηfor > 1/θ and 1/ηfor > 1, corresponding respectively to the enzyme demand approximations
E ≥ v

kcatθ
and E ≥ v

kcat
.

So far we’ve seen that increasing the driving force of a single reaction translates to a better enzyme efficiency

and lower demand. If we consider whole pathways, ones whose overall driving force is larger have more

of it to distribute among the reactions and therefore should also have higher efficiencies overall. However,

using “too much” driving force can also have downsides. Using a larger amount of the Gibbs energy to drive

the pathway reactions means that less of that energy would go for building biomass or currency metabolites

such as ATP. An example for this trade-off between the efficiency of single enzymes (in terms of backward

rates) and the overall pathway efficiency (in terms of ATP yield) was demonstrated by Flamholz et al. [224]

who analyzed two versions of the famous glycolytic pathway (see Figure 6.1 below).

6.3.2 Small driving forces should be avoided

With the factorized rate law 6.7, we can approximate the reaction rates by v ≤ E kcat (1 − e−θ) (where we

assume positive fluxes by convention). The thermodynamic efficiency ηfor = 1 − e−θ plays a prominent role.

As shown in Figure 6.3, this formula yields two important approximations: for small forces θ, that is, close

to equilibrium, we obtain ηfor ≈ θ, while for large forces, that is, for strongly forward-driving reactions, we

obtain ηfor ≈ 1. In fact, both approximations also serve as upper bounds across all θ values. What does this

mean? Far from equilibrium, the thermodynamic term does not play a role and can be ignored. Close to

equilibrium, in contrast we obtain a simple approximation for fluxes

v < E · k+
cat · (1 − e−θ) < E · k+

cat · θ (6.8)

and hence for the enzyme demand

E >
v

k+
cat · (1 − e−θ)

>
v

k+
cat · θ

. (6.9)

As θ goes to zero, the enzyme demand (for a given desired flux) goes to infinity. We already know the reason

from Chapter 3: the driving force determines the ratio of forward and reverse one-way fluxes,
v+
v−

= eθ. If

θ comes close to zero, their relative difference becomes very small, and in order to obtain a given net flux

v = v+ − v−, both v+ and v− must grow enormously, which would require an a large amount of enzyme.
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Figure 6.4: Thermodynamic forces, enzyme efficiency, and enzyme demand in a linear chain of reactions.
The plot in the center represent two possible profiles of the thermodynamic driving forces (blue and red).
The curves describe the cumulative ∆G′ values: while the total ∆G′ is fixed (and determined by external
metabolite concentrations), the shape of the profile can vary. In the optimal profile (in red), small driving
forces are avoided. The driving forces determine the ratios of forward and backward one-way fluxes (red
arrows), and at a given net flux (black arrows) the enzyme demands. In the suboptimal blue curve, in contrast,
the last three reactions show lower forces, and therefore relatively high reverse fluxes (blue arrows); to obtain
the same net flux, forward and backward fluxes have to be strongly increased, which increases the enzyme
demand.

This effect concerns only very small θ values - for θmuch larger than 1 (or ∆G′ much smaller than -RT), it can

be neglected. Therefore, redistributing driving forces between reactions, to avoid very small forces, can save

enzyme costs. The relation between driving forces, enzyme efficiency enzyme demand is shown in more

detail in Figure 6.4.

If small driving forces should be avoided to prevent enzyme costs from going infinity, how can this happen

in practice? The driving forces themselves depend on metabolite levels, which can vary over several orders

of magnitude. While the true metabolite concentrations are usually unknown, we hypothesize that selection

favors concentration profiles that prohibit very small driving forces, in order to escape the ensuing large

enzyme demands. Of course, completely avoiding small driving forcesmay be impossible, as there is always a

trade-off: if ametabolite concentration decreases, the driving forces of all reactions producing it will increase,

but the driving forces of all reactions consuming it will decrease simultaneously. So, all else being equal, the

optimal metabolite profile is one that distributes its driving forces as evenly as possible.

6.3.3 Max-Min Driving Force method

Previously in Chapter 4.3.2, we discussed adding thermodynamic constraints to constraint-based models in

order to complywith the second law of thermodynamics. We can extend that approach in order to implement

the idea of avoiding small driving forces. When we talk about the thermodynamic profile of a metabolic

pathway, weusually try to visualize it by the cumulativeGibbs energy of reaction: we start at 0 and at each step

add the ∆rG
′ of the next reaction, which, assuming the pathway is feasible, is a negative number. The profile

therefore has a shape of a downhill slope. The end point represents the total Gibbs energy and depends only

on the concentrations of the metabolites that are part of the net reaction. Intermediate metabolites do not

affect it, but they do determine the shape of the profile itself (see Figure 6.4). Specifically, each intermediate

metabolite typically affects the driving force of two reactions – the one producing it and the one consuming it

– with opposite signs. Therefore, changing the concentration of an intermediate can help increase the driving

force of one reaction, but always at the expense of another reaction. This strong coupling between ∆rG
′ is
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why it is not trivial to find the optimal thermodynamic profile of a pathway.

The Max-Min driving force method (MDF) [225] is a method for predicting metabolite concentrations, based

on the principle of evenly distributed driving forces. All fluxes are fixed and given, and assumed to be posi-

tive. It assumes that eachmetabolite concentrationmust remain in a predefined range, converts each choice

of metabolite concentrations into the corresponding pattern of driving forces, and determines the smallest

resulting driving force in the network. If this smallest driving force is negative, the flux distribution cannot be

realized thermodynamically. Otherwise, the larger this smallest driving force, the better the overall metabo-

lite profile. Hence, among all possible metabolite profiles, MDF predicts the one that maximizes the value of

the minimal driving force across the network. Mathematically, this leads to a linear optimization problem:

in the space of logarithmic metabolite concentrations, a lower bound on all driving forces (denoted B) is

maximized (Eq. 6.10). An illustrative example is shown in Figure 6.5.

Maximizex,B B

Subject to − (∆rG′◦ +RT · N>x) ≥ B

ln(Cmin) ≤ x ≤ ln(Cmax)

(6.10)

MDF is easy to apply: it is based on a simple Linear Programming problem and requires only the following

input data: (i) the stoichiometric network; (ii) the flux directions; (iii)) the known equilibrium constants (or

equivalently, the standard reaction Gibbs free energies); (iv) physiological ranges for metabolite concentra-

tions. Based on these data alone, metabolite concentrations and driving forces (or∆G′ values) are predicted.

An example application can be found in Hädicke et al. [226], where the potential of CO2 fixation in E. coli via

endogenous pathways was analyzed using MDF.

A theoretical insight fromMDF is the notion of distributed bottlenecks. A simple bottleneck would consist of a

single reaction whose driving force cannot be increased because the substrates are at their upper concentra-

tion bounds and the products are at their lower concentration bounds. Given the fixed equilibrium constant,

nothing can be done to increase the driving force in this reaction. A distributed bottleneck is more compli-

cated: it consists of a series of reactions that all share the same low driving force, which, because of all the

concentration constraints in the system, cannot be further increased (e.g. as in Figure 6.4). Even though each

single reaction looks “harmless” because its own driving force could still be increased, this increase would

happen at the expense of other driving forces.

6.3.4 The roles of thermodynamics for metabolic states

In summary, thermodynamics provides important clues both about the feasibility of pathways fluxes and

about their enzyme demand. To use this knowledge, fluxes need to be considered together with metabo-

lite concentrations (to obtain the possible driving forces), but no detailed knowledge of enzyme kinetics is

required. Thermodynamics alone yields an upper bound on fluxes (and hence, a lower bound on enzyme

demands) that holds for any kinetic rate laws. The only required data (except for themetabolic network itself)

are equilibrium constants (or equivalently, standard Gibbs free energies of reactions ∆G′◦), which can be ob-

tained from the eQuilibrator tool (equilibrator.weizmann.ac.il) [227, 80, 81] as well as physiological bounds on

metabolite concentrations. Given this information, and given a feasible choice of metabolite concentrations,

we can compute the driving forces of all reactions, and from the factorized rate law (and assuming positive

fluxes by convention) we can then approximate the reaction rates by v ≤ E kcat (1 − e−θ).

We also recall from Chapter 3 that driving forces are not independent between reactions, but depend on

the metabolite concentrations, which creates trade-offs: in a chain A
R1→ B

R2→ C, a lower concentration of B

will increase the driving force in R1, but decrease the driving force in R2. For high enzyme efficiency (low

enzyme demand), all driving forces should in principle be high, but this is most important for low θ values

https://equilibrator.weizmann.ac.il
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Figure 6.5: Max-Min Driving force method (MDF): an optimality problem in metabolite space. (A) Example
pathway with given equilibrium constants and fixed concentrations of the external metabolites X and Y .
What are themost favorable concentrations of the internalmetabolitesA andB? Assuming that small driving
forces should be avoided in all reactions, MDF determines the metabolite profile that optimizes a worst case:
itmaximizes theworst (that is, smallest) driving force among all three reactions. (B) Driving force in reaction 1,
as a function of the logarithmic concentrations ofA andB, called ln a and ln b. Higher concentrations ofA (the
reaction product) lead to smaller driving forces. Above a critical value (whereX andA are in equilibrium), the
driving force becomes negative, and a forward flux is impossible (grey region). The concentration ofB, which
does not participate in the reaction, does not play a role. (C) Driving force for reaction 2. Here, it is the ratio
b/a that counts. The lower the ratio (lower right), the higher the driving force. If the ratio is higher than the
equilibrium constant, the driving force becomes negative (grey region). (C) Driving force for reaction 3. (E) By
overlaying the contours in (B), (C), and (D) and taking theminimum value, we obtain theminimal driving force
θmin among all three reactions. θmin is a piecewise linear function of ln a and ln b within the feasible range,
yielding positive forces in all three reactions. The maximum point of this function is the optimummetabolite
profile predicted by MDF. In the example shown, the feasible concentration space is entirely defined by the
driving forces themselves, given the external concentrations. In general, physiological concentration ranges
for all metabolites could further decrease the solution space and shift the optimum point (not shown).

(while for θ � 1 it does not even matter). Therefore we may conclude that, to save enzyme, a cell should

rearrange its metabolite levels within physiological bounds such that small θ are avoided. Implementing this

as an optimality problem, we obtain MDF.

In conclusion, we described (i) a general rule of thumb that poor thermodynamics makes reactions costly; (ii)

simple approximations of enzyme cost; and (iii) practical methods (MDF) to obtain metabolite profiles with

favorable thermodynamic properties.

6.4 Enzyme cost minimization

6.4.1 Enzyme cost minimization

The problem of minimizing the total enzyme demand (or cost) for a given pathway can be solved numerically,

thanks to the fact that they are always convex [228]. Finding the minimum of the convex objective (the total

enzyme cost) in a convex set (the set of admissible metabolite profiles, a convex polytope in log-metabolite

space) can be done efficiently. In contrast to general optimality problems, such problems have a unique local

optimum, which can be found by simple numerical methods. In this section, we demonstrate it with a simple
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example, the same three-reaction pathway that you already saw in Section 6.3 above.

6.4.2 Enzyme cost landscape of a metabolic pathway

Given the fluxes, kinetics, and concentration bounds in a metabolic pathway model, one can predict the

enzyme demand by assuming that cells minimize the enzyme cost in that pathway. In the Enzyme Cost

Minimization method A reaction rate v = e · f(c) depends on enzyme level e and metabolite concentrations

ci through the enzymatic rate law, f(c). If the metabolite concentrations were known, we could directly

compute enzyme demands e = v/f(c) from fluxes, and similarly calculate the flux-specific enzyme demand

e/v = 1/f(c). However, metabolite concentrations are usually unknown and vary between experimental

conditions. Therefore, there can bemany solutions for e and c realizing one flux distribution. To select one of
them, we employ an optimality principle: we define an enzyme cost function (for instance, total enzymemass)

and choose the enzyme profile with the lowest cost while restricting the metabolite levels to physiological

ranges and imposing some thermodynamic constraints. As we shall see below, the solution is in many cases

unique.

Let us demonstrate this procedure with a simple example (Figure 6.6 (a)). In the pathway X 
 A 
 B 
 Y ,

the external metabolite levels [X] and [Y] are fixed and given, while the intermediate levels [A] and [B] need

to be found. As rate laws for each of the three reactions, we use reversible Michaelis-Menten (MM) kinetics

v = E
k+

cat s/KS − k−
cat p/KP

1 + s/KS + p/KP
(6.11)

with enzyme level E, substrate and product levels s and p, turnover rates k+
cat and k

−
cat, and Michaelis con-

stants KS and KP. In kinetic modeling, steady-state concentrations would usually be obtained from given

enzyme levels and initial conditions through numerical integration. Here, instead, we fix a desired pathway

flux v and compute the enzyme demand as a function of metabolite concentrations:

E(s, p, v) = v
1 + s/KS + p/KP

k+
cat s/KS − k−

cat p/KP
. (6.12)

Figure 6.6 shows how the enzyme demand in each reaction depends on the logarithmic reactant concentra-

tions. To obtain a positive flux, substrate levels s and product levels p must be restricted: for instance, to

allow for a positive flux in reaction 2, the rate law numerator k+
cat [A]/KS − k−

cat [B]/KP must be positive. This

implies that [B]/[A] < Keq where the reaction’s equilibrium constantKeq is determined by the Haldane rela-

tionship,Keq = (k+
cat/k

−
cat)·(KP/KS). With all model parameters set to 1, we obtain the constraint [B]/[A] < 1,

i.e. ln[B] − ln[A] < 0, putting a straight boundary on the feasible region (Figure 6.6 (c)). Close to chemical

equilibrium ([B]/[A] ≈ Keq), the enzyme demand e2 approaches infinity. Beyond that ratio ([B]/[A] > Keq) no

positive flux can be achieved (grey region). Such a threshold exists for each reaction (see Figure 6.6 (b)-(d)).

The remaining feasible metabolite profiles form a triangle in log-concentration space, which we callmetabo-

lite polytopeP (Figure 6.6 (e)), and Eq. (6.12) yields the total enzyme demandEtot = E1 +E2 +E3, as a function

on the metabolite polytope. The demand increases steeply towards the edges and becomes minimal in the

center. The minimum point marks the optimal metabolite profile, and via Eq. (6.12) we obtain the resulting

optimal enzyme profile.

Themetabolite polytope and the large enzyme demand at its boundaries follow directly from thermodynam-

ics. To see this, we consider the unitless thermodynamic driving force Θ = −∆rG
′/RT [88] derived from the

reaction Gibbs free energy ∆rG
′. The thermodynamic force can be written as Θ = ln Keq

[B]/[A] , i.e. the driving

force is positive whenever [B]/[A] is smaller than Keq, and it vanishes if [B]/[A] = Keq. How is this force

related to enzyme cost? A reaction’s net flux is given by the difference v = v+ − v− of forward and backward

fluxes, and the ratio v+/v− depends on the driving force as v+/v− = eΘ. Thus, only a fraction v/v+ = 1−e−Θ

of the forward flux acts as a net flux, while the remaining forward flux is partially canceled by the backward

flux. Close to chemical equilibrium, where the mass-action ratio [B]/[A] approaches the equilibrium con-
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Figure 6.6: Enzyme demand in a metabolic pathway. (A) Pathway with reversible Michaelis-Menten kinetics
(equilibrium constants, catalytic constants, and KM values are set to values of 1, [A] and [B] denote the
variable concentrations of intermediates A and B in mM). The external metabolite concentrations [X] and
[Y ] are fixed. Plots (B)-(D) show the enzyme demand of reactions 1, 2, and 3 at given flux v = 1 according to
Eq. (6.12). Grey regions represent infeasible metabolite profiles. At the edges of the feasible region (where
A and B are close to chemical equilibrium), the thermodynamic driving force goes to zero. Since small
forces must be compensated by high enzyme levels, edges of the feasible region are always dark blue. For
example, in reaction 1 (panel (B)), enzyme demand increases with the level of A (x-axis) and goes to infinity
as the mass-action ratio [A]/[X] approaches the equilibrium constant (where the driving force vanishes). (E)
Total enzyme demand, obtained by summing all enzyme levels. The metabolite polytope – the intersection
of feasible regions for all reactions – is a triangle, and enzyme demand is a cup-shaped function on this
triangle. The minimum point defines the optimal metabolite concentrations and optimal enzyme levels. (F)
As the kcat value of the first reaction is lowered by a factor of 5, states close to the triangle edge of reaction
1 become more expensive and the optimum point is shifted away from the edge. (G) The same model with a
physiological upper bound on the concentration [A]. The bound defines a new triangle edge. Since this edge
is not caused by thermodynamics, it can contain an optimum point, in which driving forces are far from zero
and enzyme costs are kept low. Please note the resemblance to the MDF problem for the same pathway,
shown in Figure 6.5.

stant Keq, the driving force goes to zero, the reaction’s backward flux increases, and the flux per enzyme

level drops. This is what happens at the triangle edges in Figure 6.6: a reaction approaches chemical equilib-

rium, the driving force Θ goes to zero, and large enzyme amounts are needed for compensation. Exactly on

the edge, the driving force vanishes and no enzyme level, no matter how large, can support a positive flux.

The quantitative cost depends on model parameters: for example, by lowering a kcat value, the increase in

enzyme cost at the boundary becomes steeper and the optimum point is shifted away from the boundary

(see Figure 6.6 (f)).

6.4.3 Enzyme cost as a function of metabolite profiles

The prediction of optimal metabolite and enzyme levels can be extended to models with general rate laws

and complex network structures. In general, enzyme demand depends not only on driving forces and kcat

values, but also on the kinetic rate law, which includes KM values and small-molecule regulation. We can

conveniently model or approximate these factors by using factorized rate laws. Let us write this rate laws

here again in a general form to see the different factors at play. As we learned in Section 6.2, the rate of a

reaction depends on enzyme level e, forward catalytic constant k+
cat (i.e. the maximal possible forward rate
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per unit of enzyme, in s−1), driving force (i.e. the ratio of forward and backward fluxes), and on kinetic effects

such as substrate saturation or small-molecule regulation. If all active fluxes are positive, reversible rate laws

like the Michaelis-Menten kinetics in Eq. (6.11) can be factorized as [102]:

v = E · k+
cat · ηfor · ηsat · ηreg. (6.13)

Negative fluxes, which would complicate our formulae, can be avoided by orienting the reactions in the di-

rection of fluxes.

Enzymedemand canbe quantified as a concentration (e.g. enzymemolecules per volume) ormass concentra-

tion (where enzyme molecules are weighted by their molecular weights). If rate laws, fluxes, and metabolite

concentrations are known, the enzyme demand of a single reaction l follows from Eq. (6.13) as

El(c, vl) = vl · 1
k+

cat,l

· 1
ηfor

l (Θ(c))
· 1
ηsat

l (c) · 1
ηreg

l (c) . (6.14)

To determine the enzyme demand of an entire pathway, we sum over all reactions: Epath
tot =

∑
l
el. Based on

its enzyme demands El, we can associate each metabolic flux with an enzyme cost q =
∑

l
hEl El, describing

the effort of maintaining the enzymes. The burdens hEl of different enzymes represent, e.g. differences in

molecular mass, post-translational modifications, enzyme maintenance, overhead costs for ribosomes, as

well as effects of misfolding and non-specific catalysis. The enzyme burdens hEl can be chosen heuristically,

for instance, depending on enzyme sizes, amino acid composition, and lifetimes. Setting hEl = ml (protein

mass in grams per mole), q will be in gram protein per gram cell dry weight. Considering the specific amino

acid composition of enzymes, we can also assign specific costs to the different amino acids. Alternatively,

an empirical cost per protein amount can be established by the level of growth impairment that an artificial

induction of protein would cause [60, 229]. Thus, each reaction flux vl is associated with an enzyme cost ql,

which can be written as a function ql(vl, c) ≡ hEl El(c, vl) of flux and metabolite concentrations. From now

on, we refer to log-scale metabolite concentrations si = ln ci to obtain simple optimality problems below.

From the factorized rate law Eq. (6.14), we obtain the enzyme cost function

q(s,v) ≡
∑

l

hEl El(vl, s) =
∑

l

hEl · vl · 1
k+

cat,l

· 1
ηfor

l (s)
· 1
ηsat

l (s) · 1
ηreg(s) (6.15)

for a given pathway flux v. If the fluxes are fixed and given, our enzyme cost becomes, at least formally,

a function of the metabolite levels. The cost function is defined on the metabolite polytope P , a convex

polytope in log-concentration space containing the feasible metabolite profiles. Like the triangle in Figure

6.6, the polytope is defined by physiological and thermodynamic constraints.

Beyond minimizing the total enzyme cost, one can also use Enzyme Cost Minimization to analyze the individ-

ual enzymedemands. When themetabolite levels are known, the demand can be directly calculated and each

efficiency factor (η) in Eq. (6.15). By omitting some factors or replacing them by constant numbers 0 < η ≤ 1,
simplified enzyme cost functions with fewer parameters can be obtained. For example, ηfor = 1 would imply

an infinite driving force Θ → ∞ and a vanishing backward flux, ηsat = 1 implies full substrate saturation, and

ηreg = 1 implies full enzyme activation and no enzyme inhibition (or no small-molecule regulation at all). In

these limiting cases, enzyme activity will not be reduced, and enzyme demand will be given by the capacity-

based estimate v/k+
cat, a lower estimate of the actual demand. Instead of omitting an efficiency factor, it can

also be set to a constant value between 0 and 1. Such simplifications and the resulting enzyme cost functions

with fewer parameters can be practical if kinetic constants are unknown.

6.4.4 General lessons from Enzyme Cost Minimization

Enzyme cost minimization not only provides numerical solutions, but also some general insights.

◦ Convexity Enzyme Cost Minimization shows again the importance of the metabolite polytope. The usage
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of logarithmicmetabolite concentrations not only leads to a good search space for feasiblemetabolite pro-

files (as inMDF), but also facilitates optimization because enzyme cost is a convex function of themetabolite

log-concentrations [230]. Convexity makes this optimization tractable and scalable – unlike a direct opti-

mization in enzyme space. Convexity holds for a wide range of rate laws and for extended versions of the

problem, e.g. including bounds on the sum of (non-logarithmic) metabolite concentrations or bounds on

weighted sums of enzyme fractions.

◦ Factorized rate laws disentangle individual enzyme cost effects To see howmetabolic states are shaped

by different physical factors, we considered factorized rate laws. The different terms in these functions rep-

resent specific physical factors and require different kinetic and thermodynamic data for their calculation.

By neglecting some terms, one obtains different approximations of the true enzyme cost. By comparing

the different scores, we can estimate the enzyme cost that cells “pay” for running reactions at small driving

forces (to save Gibbs free energy) or for keeping enzymes beneath substrate-saturation (e.g., to dampen

fluctuations in metabolite levels ).

◦ Relationship to other optimality approaches Beyond their practical advantages, factorized enzyme cost

functions also allow us to easily compare our method to earlier modeling and optimization approaches.

These approaches typically focused on only one or two of the factors that are taken into account in Enzyme

Cost Minimization, and many of them can be reformulated as approximations of this method [225, 231,

219].

◦ Enzyme cost is related to thermodynamics In FBA, thermodynamic constraints and flux costs appear as

completely unrelated aspects of metabolism (as is explained in Chapter 5). Thermodynamics is used to

restrict flux directions, and to relate them to metabolite bounds, while flux costs are used to suppress

unnecessary fluxes. In Enzyme Cost Minimization, thermodynamics and flux cost appear as two sides

of the same coin. Like in FBA, flux profiles are thermodynamically feasible if they lead to a non-empty

metabolite polytope, allowing for positive forces in all reactions. However, the values of these forces also

play a role in shaping the enzyme cost function on that polytope. Together, metabolite polytope and

enzyme cost function (as in Figure 6.6) summarize all relevant information about flux cost.

Many pathways are regulated, for instance by feedback inhibition of enzymes via the end product. While

this may stabilise the dynamics and adapt it to current demands, such enzyme regulation comes at a cost,

which we can estimate by following the logic of Enzyme Cost Minimization. Many enzymes are regulated by

small molecules that act as competitive or allosteric inhibitors [232], an effective way to implement feedback

control, for example to adapt the flux in biosynthesis pathways to current needs. In order for such a regu-

lation to work, the enzyme needs to be partially inhibited on average (because only then, its activity can be

increased on demand, by alleviating the inhibition). Therefore, the enzyme efficiency goes down, and the cell

needs to provide more enzyme to catalyze the same flux than without the inhibition.

How much will this regulation cost the cell as part of the enzyme budget? From the perspective of Enzyme

Cost Minimization, where we start from desired fluxes and compute the enzyme demand, this question is

easy to answer: in the inhibited enzyme case, the lower efficiency will be described by a factor ηreg ∈ [0, 1]
(Mathematical Details Box 6.C). In the same reaction, the enzyme demand increases by a factor 1/ηreg, so

the extra cost is simply 1/ηreg − 1 times the “baseline” cost of this enzyme (without inhibition). Specifically, a

non-competitive inhibitor, with efficiency factor ηreg = 1
1 + c/KI

yields a cost factor 1+c/KI . If the metabolite

concentrations are fixed, this corresponds to an extra enzyme demand ∆El = El ci
KI,li

. Similarly, an enzyme

activation with efficiency factor ηreg = c/KA
1+c/KA

in the rate laws yields a cost factor 1+c/KA
c/KA

= 1 + KA/c in

the formulae for enzyme demands. If the metabolite concentrations are fixed, this corresponds to an extra

enzyme demand ∆El = El KA,li

ci
(where l and i denote the regulated reaction and the regulating metabolite,

respectively). As usually in Enzyme Cost Minimization, an optimal rearrangement of enzyme and metabolite

concentrations must be taken into account, which will then slightly reduce the overall cost.
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The predictions of optimal states by Enzyme Cost Minimization rely on two main inputs: a metabolic model

that relates metabolite concentrations, enzyme levels, and fluxes, and an optimality principle based on the

assumption that cells realize their production fluxes at a minimal total enzyme cost. To test whether this

optimality principle holds at all, Noor et al. [228] compared the predictions from Enzyme Cost Minimization

to predictions from the same metabolic model and the same flux distribution, but with randomly sampled

metabolite profiles (and the corresponding enzyme profiles). In comparison, metabolite profiles sampled

close to the Enzyme Cost Minimization optimum yielded significantly better enzyme level predictions than

metabolite profiles sampled more broadly. This strongly supports the idea that E. coli metabolism, in the

conditions studied, is at least partially optimized for low enzyme cost, and thus supports cost-optimality as a

principle in living cells.

6.5 Comparison of alternative pathways

Having clarified our main functional criteria for pathways (substrate productivity and enzyme productivity)

and how they depend on pathway details (including outer concentrations), we can now compare alternative

pathways by their substrate and enzyme demand per production flux (an example of “cost per benefit”) and

see which one scores better.

6.5.1 A tale of two glycolyses

One of the canonical examples discussed throughout this book is how cells choose between respiration and

fermentation for making their ATP. However, having a precise kinetic model for respiration is difficult, since

it involves electron transfer and membrane-bound reactions. Therefore, it is challenging to calculate the en-

zyme cost of respiration using models like those discussed in this chapter. Flamholz et al. [224] analyzed a

similar but simpler case by comparing between the EMP and ED variants of glycolysis, since all the required

enzymes are soluble and expressed in the cytoplasm and/or the periplasm and many of their kinetic param-

eters are measured. The common description of glycolysis ends in pyruvate (e.g., as depicted in Figure 6.1).

This means that the pathway is not neutral in terms of redox, since the oxidation state of pyruvate is higher

than glucose. In order to simplify the comparison and focus only on ATP yield (rather than NADH), the EMP

and ED pathways were extended to end in lactate by including lactate dehydrogenase (ldh) as an extra step,

making them redox neutral. These could be thought of as the more relevant versions of the pathways in

anaerobic conditions.

Although EMP-based fermentation is usually described in textbooks as less efficient than respiration, since it

produces only 2 moles of ATP per mole glucose instead of ≈ 30, the ED pathway has an even lower yield – 1

mole of ATP. Nevertheless, the ED pathway is quite common among the bacteria. For example, Zymomonas

mobilis – the bacterium used in fermenting pulque (a.k.a., agave wine [233]) and a promising platform for

bio-production [234] – lacks key enzymes from the EMP pathway and uses the ED pathway exclusively to

metabolize sugars. These bacteria don’t seem to be bothered by the low ATP yield and can achieve high

growth rates [235]. This already suggests to us that the ED pathway is probably superior to EMP in other

aspects, such as the enzyme demand. Another cluewas provided by a studywhich found that the ED pathway

improves E. coli growth during glucose up-shifts and that the flux through it increases by 130% [236] (see

Economic Analogy Box 6.D)

To see if indeed themodels provide predictions that are consistent with the experimental evidence, Flamholz

et al. [224] first used the MDF method to compare the two pathways. The ED pathway was found to be

substantiallymore thermodynamically favorable, with amuch higher score than the EMP pathway (8.0 versus

4.8 kJ/mol, see Figure 6.7 upper row).

Although the EMP pathway is clearly more favorable, we can still argue that an MDF of 4.8 kJ/mol is good

enough, as it means θ > 1.9 for each one of the pathway reactions. In this case, ηfor > 0.85 (see Figure

6.3) and therefore it might be a small price to pay for double the ATP yield. But, as discussed earlier, the
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Figure 6.7: Comparing two metabolic pathways using the MDF and the Enzyme Cost Minimization methods.
For the MDF analysis (top row), the dashed green line represents the cumulative Gibbs energy along the
pathway if all metabolite concentrations were 1 mM. The MDF solution is presented as a grey line, where
the bottleneck reactions are marked in red. For the Enzyme Cost Minimization analysis (bottom row), we
used the same kinetic parameters for all enzymes in both pathways (kcat = 200 s−1, KM = 200 µM, same as
in [224]). However, here we used an updated version of Enzyme Cost Minimization with the factorized rate
law, therefore the results are not identical. A Jupyter notebook for generating the figure can be found on the
book website.

efficiency of a pathway is affected by other factors besides the thermodynamics. Flamholz et al. [224] tried

to see whether ED is superior to EMP also in terms of the enzyme cost using the Enzyme Cost Minimization

method. Indeed, they found that the ED pathway would require ≈5 times less protein compared to EMP for

catalyzing the same flux (see Figure 6.7 bottom row). So, although the ATP yield of the ED pathways is half

that of EMP, one can still generate ATP at a higher rate using the same amount of protein, according to the

model.

The comparison of EMP and ED provided some insight as to a trade-off that can exists between the yield of

a pathway and its cost, or enzyme burden. However, one can expand the question and ask if there are any

other theoretically possible glycolysis pathways that might be able to break this trade-off and be more ef-

ficient than EMP and ED in both aspects. Ng et al. [213] tried to address this question with an algorithm they

called optStoic that generates all biochemically feasible routes between glucose and pyruvate, with various

ATP/glucose yields. They then ran pathway analysis on all 11,916 options and found that indeed both EMP

and ED are both (nearly) Pareto-optimal. This suggests that evolution may indeed select for features such

as high yield and low enzyme cost, where one might be more important than the other depending on the

context.

https://gitlab.com/principlescellphysiology/book-economic-principles-in-cell-biology/-/blob/master/book-manuscript/latex/chapters/PAT/jupyter/plot_figures.ipynb


Concluding remarks 103

6.5.2 Metabolic engineering

Besides the quest for understanding the evolution of existing biochemical pathways, pathway analysis meth-

ods like MDF and Enzyme Cost Minimization have also been used by metabolic engineers in order to rank

and prioritize different alternative designs. For example, Volpers et al. [237] used the MDF algorithm and the

Pathway Specific Activity measure to compare between designs of photo-electro-autotrophic strains. Simi-

larly, Löwe and Kremling [238] used the Enzyme Cost Minimization algorithm to predict the enzyme demand

of both natural and synthetic carbon fixation cycles.

6.5.3 Predicting the metabolite concentrations

So far, the examples given in this section focused on analyzing and comparing pathway alternatives in iso-

lation, outside of the context of actual living organisms. However, we should not forget that the motivation

for optimization goals such as enzyme demand are derived from physiological and evolutionary principles.

Therefore, the optimal solutions coming fromMDF and Enzyme Cost Minimizationmight be good predictions

for the actual metabolic state that exists in naturally evolved organisms.

For example, a few years after the in silico analysis of the ED pathway [224], Jacobson et al. [239]measured the

intracellular concentrations ED intermediates in Z. mobilis, and used them to calculate the Gibbs energies of

the pathway’s reactions. Indeed, they found that they closely fit the predicted values from the MDF solution.

Similarly, measured values of enzyme andmetabolite concentrations in E. coli correlate with predicted values

fromEnzymeCostMinimization (when empricial reaction fluxeswere obtained from 13C-MFAmeasurements,

Figure 6.8) [228]. In a related paper, Wortel et al. [240] expanded the idea of this method to explore the entire

flux polytope.

These results suggest that indeed the optimization process that occurs throughout evolution is somewhat

similar to the (much simplified) models presented here. Of course, improving the accuracy of the inputs and

accounting for other effects that impact fitness could improve the predictions further. On the other hand,

it might be naïve to expect natural systems to be optimal, which would mean that using basic principles to

precisely predict phenotypes is an impossible task.

Economic analogy 6.D : The push for fast growth

The ED pathway seems to be useful as a quick response to a sudden increase in abundance of resources (glucose),

but less efficient than EMP when the environment is steady. This is somewhat analogous to start-up companies,

which burn large amounts of venture capital in order to grow rapidly. However, after reaching a certain scale, the

dynamic nature of start-ups often becomes a burden, where overhead costs pile up and signal that it is time to join

a larger corporation.

6.6 Concluding remarks

Coming back to our initial question, what have we learned from theory about the choice between possible

pathways? The “choice between pathways” in a larger network is actually a choice between (network-wide)

flux distributions that use different alternative pathways. Here we discussed how to score the usefulness of

given flux distributions, which can also be used to score single pathways.

Importantly, flux distributions are scalable (by scaling all enzyme levels proportionally, and keeping allmetabo-

lite levels constant). If we scale the fluxes, this will scale both the flux benefit (for instance, the production of

a desired product or biomass) and the required resources (substrates consumed, enzyme budget invested,

or toxic byproducts produced). Because of this scaling property, our “quality criteria” mostly have the form

of ratios between an output flux (as the benefit) and some (limited) resource (the cost). Such ratios are called

“productivities”, where in Chapter 4-5 we focusedmostly on substrate productivity (or yield on substrate) and
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(A) (B) (C)

Figure 6.8: Validation of metabolite and enzyme concentrations, predicted by Enzyme Costs Minimization,
in E. coli’s central carbon metabolism. (A) Comparing predicted and measured metabolic concentrations.
The dashed line marks x = y, i.e. where the predictions match the measurements. Blue points represent co-
factorswhose concentration is fixes in the analysis and therefore are not actually predicted. Redpoints are for
all other metabolites whose allowed concentration range was set to 1µM − 10mM . The Root Mean Squared
Error (RMSE), r2 (Pearson correlation), and p-value refer only to the red points. (B) Comparing predicted and
measured enzyme concentrations. (C) A pie chart showing the distribution of the predicted absolute mass-
concentrations for both enzymes (green) and metabolites (blue) together. Note that aconitase (catalyzing the
reactions acn1 and acn2) has a lower specific activity than glyceraldehyde-3P dehydrogenase (catalyzing gap),
and therefore occupies a higher fraction of the mass-concentration even though the required concentration
of the latter enzyme is higher.

Economic analogy 6.E : Two important assumptions: homogeneity and stationarity

In the models described in this chapter, we generally assume that our system (for example, a metabolic pathway in a

cell) is spatially and temporally homogeneous, and that it shows stable stationary states. This is clearly a simplifica-

tion: in reality, cells are inhomogeneous, with compartments, with enzymes unequally distributed across the cell, and

with enzymes forming complexes or dedicated compartments like the glycosome (an organelle in some organisms

that contains the glycolytic enzymes), which changes (average) enzyme kinetics. Cells are also dynamic on various

time scales (chemical noise, metabolic dynamics, protein expression dynamics), which also may change (average)

enzyme kinetics. If we ignore this in our models – assuming a timeless steady state – this will not only cause approxi-

mation errors in our metabolic model, but muchmore importantly, we ignore the fact that the cell can exploit spatial

inhomogeneity (e.g. compartments or channeling) and non-steady states (e.g. metabolic oscillations, or adaptation

to fluctuations in the environment) to further improve its fitness (as compared to a steady-state, constant enzyme

model).

Interestingly, classical economic theorymakes similar assumptions – e.g. aboutmarkets in equilibrium– which ignore

the spatio-temporal, dynamic side of real economic systems, which – as in the case of metabolic models – is likely to

lead to wrong results.

in this chapter on enzyme productivity (or enzyme-specific rate) as important criteria. Why these criteria? On

the one hand, they are closely related to some big objectives of the entire cell – depending on the type of

competition it is facing. On the other hand, they are easy to link to some concrete criteria about metabolic

pathways such as product yield, pathway length, kcat values, thermodynamic forces, etc.

Since yield on substrate depends only on the shape of the flux distribution, it can be studied by methods like

FBA (see chapters 4 and 5). In this chapter, we focused on themore difficult case, enzyme productivity, where

thermodynamics, enzyme kinetics, and the arrangement ofmetabolite and enzyme concentrations come into

play. The factorized law in Eq. (6.7) shows us how the enzyme demand of a flux distribution can be computed

if metabolite concentrations are known, and how the demand depends on forward kcat, the thermodynamic

force, and enzyme saturation. The only difficulty is that the thermodynamic forces and metabolite concen-
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trations are usually not known. Here we considered some best-case scenarios, assuming that the cell will

realize the concentration arrangements that optimize pathway performance. When considering thermody-

namics alone (and making some further simplifications), this led to the MDF method. For the full problem,

the solution is provided by Enzyme Costs Minimization. This method is directly related to the different path-

way criteria we discussed initially (including pathway length, thermodynamic forces, and kcat values) and thus

shows how these different factors determine enzyme demand. As a numerical method, it is relatively easy to

use because it is a convex optimization problem. But if little data is available, simpler methods such as MDF,

with their lower demand for parameters, may be useful tools to predict pathway usage.

Recommended readings

A search for efficient pathways, based on different criteria: Arren Bar-Even, EladNoor, Nathan E. Lewis, and

Ron Milo. Design and analysis of synthetic carbon fixation pathways. Proceedings of the National Academy

of Sciences, 107(19):8889–8894, 2010. doi: 10.1073/pnas.0907176107.

The max-min driving force method: Elad Noor, Arren Bar-Even, Avi Flamholz, Ed Reznik, Wolfram Lieber-

meister, and Ron Milo. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS

Comput. Biol., 10(2):e1003483, 2014. doi: 10.1371/journal.pcbi.1003483.

Enzyme cost minimization: Elad Noor, Avi Flamholz, Arren Bar-Even, Dan Davidi, Ron Milo, and Wolfram

Liebermeister. The protein cost of metabolic fluxes: Prediction from enzymatic rate laws and cost minimiza-

tion. PLoS Comput. Biol., 12(11):e1005167, 2016. doi: 10.1371/journal.pcbi.1005167.

Problems

Problem 6.1 Pathway efficiencies Estimate pathway efficiencies (i.e. product production rates per total en-

zyme concentration) from simple back-of the envelope calculations and plausible numbers (refer to the BioN-

umbers database for realistic values). (a) From pathway length (assuming reasonable apparent kcat values);

(b) from given apparent kapp values (or given kcat values and ∆G). (c) Convert the results into growth rates

(assuming realistic estimates of the total protein density; the proteome fraction of metabolic enzymes; the

biomass production rate etc). Assume plausible numbers in all cases.

Problem 6.2 Efficiency – dependence on substrate Compute the reduction of pathway efficiency in a linear

chain when decreasing the external substrate concentration (no constraints on metabolite levels)

Problem 6.3 ATP yield in glycolysis Derive the optimal ATP yield in a glycolysis model with a linear flux-force

relationship

Problem 6.4 MDF method Implement the MDF method in a programming language of your choice.

Problem 6.5 MDF and enzyme cost The optimality principle of MDF (avoiding small thermodynamic driving

forces) can be justified by assuming that lowdriving forceswould entail high enzymedemands. Do you expect

that MDF solutions are also Enzyme Costs Minimization solutions (or vice versa)? Otherwise, can you think of

an approximation of the Enzyme Costs Minimization problem, such that MDF provides the correct solution?

Show how the Enzyme Costs Minimization objective could be approximated step by step, and illustrate this

with an example.

Problem 6.6 Cycle of chemical reactions Assume a cycle of chemical reactions A ↔ B ↔ C ↔ A with-

out co-factors or external inputs/outputs. (a) Show that there is no stationary, thermodynamically feasible

flux distribution except for the (trivial) vanishing flux. (b) Explain why, if there were a flux, this would be a

perpetuum mobile.

Problem 6.7 Optimal enzyme levels in two-reaction chain Consider a chain of two reactions S ↔ X ↔ P

with enzymes E1 and E2, v1 = E1(k+1S − k−1X), v2 = E2(k+2X − k−2P ). Compute the steady state flux

given E1, E2. Let E1 + E2 = Epath
tot be fixed. Determine E1, E2 such that the flux is maximal. Use Lagrange

https://doi.org/10.1073/pnas.0907176107
https://doi.org/10.1371/journal.pcbi.1003483
https://doi.org/10.1371/journal.pcbi.1005167
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multipliers. Hint: Assume forward flux where P/S < (k+1k+2)/(k−1k−2) = q1q2.

Problem 6.8 Flux maximization in a linear pathway Prove that the function:

f(E) = 1∑
i
(AiEi)−1 (6.16)

for a fixed A and under the constraint
∑

i
Ei = Etot, is at its maximum when:

Ei = Etot · A
−1/2
i∑

i
A

−1/2
i

Problem 6.9 Haldane kinetic rate law Haldane described an enzyme-catalyzed reaction by three steps, each

following a mass-action rate law:

S + E
k1−−⇀↽−−k2

ES
k3−−⇀↽−−k4

EP
k5−−⇀↽−−k6

P + E . (6.17)

The ODE system describing the change in time of each species is:

d[ES]
dt

= [E] · [S] · k1 + [EP ] · k4 − [ES] · (k2 + k3)

d[EP ]
dt

= [E] · [P ] · k6 + [ES] · k3 − [EP ] · (k4 + k5)

d[E]
dt

= −[E] · [S] · k1 + [ES] · k2 + [EP ] · k5 − [E] · [P ] · k6 (6.18)

Prove that at quasy-steady-state (where the total enzyme concentration is fixed, and the concentration of

each species doesn’t change over time), the rate in which [S] is converted to [P ] is governed by the following

rate law:

v = [E0]k
+
cat[S]/KS − k−

cat[P ]/KP

1 + [S]/KS + [P ]/KP
(6.19)

where:

KS = k2k4 + k2k5 + k3k5

k1(k3 + k4 + k5) ; KP = k2k4 + k2k5 + k3k5

k6(k2 + k3 + k4) ; k+
cat = k3k5

k3 + k4 + k5
; k−

cat = k2k4

k2 + k3 + k4

Problem 6.10 The factorized rate law Use the Haldane relationship:

k+
cat

k−
cat

KP

KS
= k1k3k5

k2k4k6
= Keq (6.20)

and the definition of Gibbs free energy:

∆G′◦
r = −R · T · lnKeq

∆G′
r = ∆G′◦

r +R · T · ln ([P ]/[S])
(6.21)

to prove that Eq. (6.19) is equivalent to the following factorized rate law:

v = [E0]k+
cat ·

(
1 − e∆rG′/RT

)
· [S]/KS

1 + [S]/KS + [P ]/KP
. (6.22)



Chapter 7

Metabolism in states of maximal

enzyme efficiency

Andreas Kremling, Wolfram Liebermeister, Elad Noor and Meike T. Wortel

Chapter overview

◦ Enzyme-efficient states are metabolic states that realize a given flux objective at a minimal enzyme

cost.

◦ In models without further constraints, enzyme-efficient states are Elementary Flux Modes (EFMs).

◦ Elementary Flux Modes can be used to find enzyme-efficient states in networks that would be too

large to optimize metabolic states ”by brute force”.

◦ Biomass per enzyme efficiency can be converted to into cell growth rate.

◦ As growth conditions are changing, the flux profile either changes continuously (and metabolite and

enzyme concentrations as well) or fluxes change discontinuously together with metabolite and en-

zyme concentrations.

7.1 Introduction

In a simple economic picture of cells, we assume that cells adjust their metabolic state in each environment

to obtain a maximal fitness advantage. This may be impossible in reality, but it remains an interesting ques-

tion what this best metabolic state would look like, according to our knowledge of cells. So what is the best

metabolic state overall (comprising metabolic fluxes, metabolite concentrations and enzyme levels)? What

pathways should a cell use, which enzymes should be induced or repressed, and how should this change in

a new environment? To answer this, we need to remember that all metabolic variables (fluxes, metabolite

levels, enzyme levels, and enzyme efficiencies) depend on each other. Physically, fluxes depend on metabo-

lite concentrations through kinetics and enzyme regulation (e.g. competitive inhibition) and metabolites are

produced and consumed by the fluxes until a steady state is reached. Hence, if we think in terms of cellular

economics (treating enzymes as control variables), then all metabolic variables must be optimized together.

In the previous chapters we saw some ways to predict optimal metabolic fluxes, metabolite concentrations

and enzyme levels separately: in Flux Balance Analysis (FBA, Chapter 5), we optimized fluxes (while ignoring

kinetics or assuming constant enzyme efficiencies); in Enzyme Costs Minimization (Chapter 6), in contrast,

fluxes were fixed and given and concentrations (and enzyme efficiencies) were optimized. Each of these

methods is based on a strong assumption: FBA requires measured flux ranges and/or apparent catalytic

107



108 Metabolism in states of maximal enzyme efficiency

rates and assumes enzyme saturation effects can be neglected, while enzyme cost minimization requires a

given flux distribution. But what if we don’t know any of the variables in advance? How can we predict all of

them from first principles?

Before thinking about this, let us briefly step back: what do we actually mean by an ”optimal state”? What

quantity should bemaximized in metabolism? There could be very different aims (e.g. production in biotech-

nology, vs offspring and survival in a wild-type cell). However, in both cases an important aim is cell growth –

or at least, avoiding strong growth deficits. Below we will see that cell growth depends, to a good approxima-

tion, on biomass/enzyme efficiency, that is, biomass production per total enzyme invested. Hence, whenever

fast growth is important, cells should maximize this efficiency.

Thus, we will consider the following optimality problem: maximize biomass/enzyme efficiency, defined as

the production flux per invested enzyme with respect to all metabolic variables (metabolites, enzymes and

fluxes ) and under all constraints (steady state, enzyme kinetics, etc). Solutions to this problemare considered

optimal states.

7.2 The enzyme-efficient metabolic states are elementary flux

modes

The optimization problem in this chapter is to reach amaximal flux objective at aminimal enzyme investment.

The biological interpretation is that this would lead to the highest growth rate, because it optimizes the ratio

between gains (fluxes) and costs (enzymes). When we solve this optimization problem with mathematical

tools, it is convenient to either find the minimal enzyme investment for a certain flux, or the maximum flux

for a fixed enzyme investment. Although one could think of different biological explanations for those two

ways to state the optimization problem, mathematically they are equivalent. For the outline of the proof that

optimal states are elementary flux modes, it is convenient to fix the objective flux to an arbitrary value (we

choose 1) and then minimize the enzyme investment. This leads to the following optimization problem:

minimize
v,e,c

r∑
i=1

hiei (7.1)

subject to: N · v = 0 steady state

∀i : vi = eifi(c) enzyme kinetics

e, c ≥ 0 positive concentrations

vr = 1 fixed objective flux

c ≤ cmax metabolite bounds

where ∀imeans for all reactions i, r is the number of reactions (with the last the objective), hi are the weights,

and bold face items denote vectors. This optimization problem states that by adjusting the fluxes (v), metabo-

lite concentrations (c) and enzyme concentrations (e), the cost (sum of the costs (hiei) for every reaction) is

minimized, while keeping the objective flux constant. The weights (hi) can be thought of as the size or pro-

duction costs of the enzymes (measured in e.g. molecular weight or gene length), which might be different

for different enzymes. We need certain constraints to be met for this solution: (i) the metabolic network

needs to be in steady state to avoid built-up of intermediates, (ii) enzyme kinetics: the flux of each reaction

(vi) has to be equal to the enzyme concentration (ei) times a metabolite dependent term (fi(c)), (iii) all en-
zyme metabolite concentrations have to be positive, and (iv) the objective flux is equal to 1. Optionally, we

can add bounds on the metabolite levels, which is mostly necessary with irreversible kinetics. Reversible

kinetics usually lead to bounded metabolite levels, because very high concentrations of products will inhibit

the reaction forming the products.

In this section we will explain why the optimal state is reached at an Elementary Flux Mode (EFM). One im-
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Figure 7.1: Translation from flux to enzyme space retains EFMs as extreme rays. The top left panel shows the
feasible flux space with the steady state constraints, all fluxes postive (using splitting of fluxes, as explained in
the text, if necessary) and a fixed objective flux. The extreme points here are points where one flux becomes
0 and are elementary flux modes (see Chapter 5). Here we show that when we have assumed metabolite
concentrations, such as when we keep them at an optimal solution, we get a linear transformation and the
extreme rays are maintained. Different metabolite levels, for example solutions to different environmental
conditions, can lead to different transformations and therefore different optima (miminal total enzyme), but
those are always located at an EFM.

portant starting point is that, as we have seen before in Chapter 4, convex optimization problems with only

positivity or equality constraints (no other inequalities) lead to an optimal solution at an extreme points of

the feasible solution space, and those extreme points are elementary flux modes. However, the optimiza-

tion problem (7.1) is not convex, mainly due to the hyperbolic dependency of reaction rates on themetabolite

concentrations (fi(c) is usually not linear).

There are several ways to prove that the solution of this optimization problem is an EFM, of which some are

outlined in the papers by Wortel et al. [241] and Müller et al. [242]. Here we will outline a proof by assuming

a solution that is an EFM and showing that this leads to a contradiction. Assume we have some optimal

state that is not an EFM. Any optimal solution is associated with a set of fluxes, and enzyme and metabolite

concentrations. Now we set the metabolite concentrations to the concentrations of the assumed optimal

state. Then all metabolite dependent terms (fi(c)) become constants and we return to a convex problem. As

explained in Chapter 9 and Figure 7.1, the optimum of this problem (now in terms of enzyme concentrations

and fluxes) is a flux distribution that is an EFM. But this contradicts our initial assumption that the optimal

state fromwhichwe took the set of enzyme concentrationswas not an EFM. The proof by contradiction shows

that the optimal state must be an EFM.

7.3 Illustration with an example network

To illustrate the proof, we study a simple network that we have seen previously in Chapter 5 (Figure 7.2),

in which we will now include enzyme kinetics. We will use the factorized rate law as in Chapter 6, but then
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generalized for ns substrates and np products (also compare Eq. (3.15) in Chapter 3):

v = e · k+
cat ·

∏j=1
ns

sj/KS,j

1 +
∏k=1

np
pk/KP,k +

∏j=1
ns

sj/KS,j

·
(

1 − e∆G′
r/RT

)
(7.2)

See Box ?? for all detailed rate laws of the example networks. We can simplify this equation by combining

the forward catalytic constant, the thermodynamic efficiency factor, the saturation efficiency factor, and the

regulation efficiency factor (if that exists) in a function f(c), which only depends on the metabolites, and not

on the enzyme concentrations. We will below write f for f(c).

vi = ei · fi (7.3)

Now we take vBM = 1 and optimize all fluxes, enzymes concentrations and metabolite concentrations to

minimize the enzyme costs, while satisfying the constraints posed in Equations (7.1), for different levels of

external glucose and standard levels of the other external metabolites. We see that for different external

glucose concentrations, we get different optimal fluxes, enzyme levels and metabolite levels (Table 7.1).

We notice that the total enzyme needed for the biomass flux of one decreases with the increasing glucose

levels, as we expect. Also, the optimal level of internal glucose increases with increasing external glucose.

Moreover, the fluxes of the solutions do follow an EFM (see Figure 7.2b). We cannow reformulate the problem

for only the flux and enzyme levels, while keeping the metabolite levels as they are in the table. With the

metabolite levels in the first row of the table, we can linearly relate the enzyme and flux levels (with the

factors fi), and thereby the extreme rays of the enzyme and flux space will be equal and EFMs, as pointed

out above (see also Chapter 5, Figure 7.1 ). Optimization in this spacewill lead to the optimal flux distributions

following an EFM. If the fluxes in the table would not follow an EFM, this will lead to an inconsistency; if there

is an optimum, this should still be the outcome if we keep some variables in the optimum constant and

optimize over the rest of the variables.

We point out two important aspects, using the network (Figure 7.2) as an example. First, it is convenient to

split reversible reactions, such that fluxes are always positive. In this case that means that the reversible

reaction from P to P1 is split into the forward reaction v2 and the reverse reaction v4, which both can have

only positive flux. This splitting makes sure that EFMs are the extreme rays of the flux space (see Chapter 5).

This splitting is purely a mathematical conveniency, we still assume this to be one reaction in the biological

sense, and therefore the kinetic equations of both the forward and the backward reaction will be exactly

the same. Only, depending on in which direction the flux goes, either one of the reactions will be positive.

Any solution with both reactions positive is infeasible, but minimizing enzyme levels will never lead to such a

solution, therefore we do not need to set additional constrains. Second, the feasibility of EFMs can depend

on external concentrations. In this network the biomass reaction (vBM) is the objective flux and there are

three EFMs leading to the production of biomass: EFM1 consisting of v0, v1, v2 and vBM, EFM2 consisting of

v0, v1, v3 and vBM and EFM3 consisting of v4, v3 and vBM. However, if P1 is absent in the environment, the

uptake flux v4 will always be 0 and therefore EFM3 will not be feasible.

[Gex] Etot v0 v1 v2 v3 v4 vBM e0 e1 e2 e3 e4 eBM [G] [P] [ATP] [ADP]
0.01 156.2 5 5 0 9 0 1 54.4 4.4 0 94.4 0 2.9 0.08 15.14 0.05 20.09
0.1 91.3 50 50 99 0 0 1 61.3 11.3 14.2 0 0 4.4 0.13 4.55 0.11 20.09
1 36.2 50 50 99 0 0 1 13.0 8.0 12.5 0 0 2.7 0.60 7.65 0.11 20.09

Table 7.1: Outcomes of the optimization of the example network with standard kinetics, parameter values
and external concentrations (see Box ??) for varying levels of [Gex].



Computation of the optimal state 111

(a) (b)

(c) (d)

10−1 101 103

Gext

0

250

500

750

1000

1250

1500

1750

E
to
t d
ef

au
lt

va
lu

e

EFM

1

2

10−2 10−1 100 101

Gext

10−2

10−1

100

F
lu
x

rates

v0

v1

v2

v3

vBM

Figure 7.2: States ofmaximal efficiency in an examplemodel. (a) Example network fromChapter 5with added
stoichiometry. (b) Three elementary flux modes of this network. (c) Calculated enzyme investment needed
for a biomass flux of 1. There is a single concentration ofGex for which the optimal EFM switches from EFM2
to EFM1. (d) Specific fluxes (flux divided by total enzyme) associated with the optimal EFM for different levels
of Gex. The rates show a discontinuity when the optimital EFM switches form EFM1 to EFM2.

7.4 Computation of the optimal state

We can now use the result that states of maximal enzyme efficiency are reached at an elementary flux mode

to calculate these states. We can follow the following steps to calculate these states:

1. Enumerate the elementary flux modes

2. Calculate the minimal enzyme for each EFM scaled to an objective flux of 1

3. Compare the EFMs and select the one with minimal enzyme demands

Step 2 is a convex optimization problem as we have seen in Chapter 6. Step 1 is possible for relatively large

networks, although usually not for genome scale metabolic networks. The method of these three steps is

called Enzyme Flux Cost Minimization, because it is similar to Enzyme Cost Minimization, but while that is

focussed on fixes fluxes, Enzyme Flux Cost Minimization simultaneously finds the optimal fluxes. In this

section we will show the method on the example network of Figure 7.2.
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Box 7.A : Kinetics of the example network

The detailed kinetic equations for the example model (Figure 7.2) using the factorized rate law (see Equation (7.2)

and Chapters 3 and 6) are:

v0 = e0 · k
+
cat,0 ·

[Gex]/KGex
1 + [G]/KG + [Gex]/KGex

·

(
1 − e

∆G′
r,0/RT

)
v1 = e1 · k

+
cat,1 ·

([G]/KG)([ADP]/KADP)

1 + ([P]/KP)([P]/KP)([ATP]/KATP) + ([G]/KG)([ADP]/KADP)
·

(
1 − e

∆G′
r,1/RT

)
v2 = e2 · k

+
cat,2 ·

[P]/KP
1 + [P1]/KP1 + [P]/Kp

·

(
1 − e

∆G′
r,2/RT

)
v3 = e3 · k

+
cat,3 ·

([P]/KP)([ADP]/KADP)([O2]/KO2 )

1 + ([CO2]/KCO2 )([ATP]/KATP) + ([P]/KP)([ADP]/KADP)([O2]/KO2 )
·

(
1 − e

∆G′
r,3/RT

)
v4 = e4 · k

+
cat,4 ·

[P1]/KP1
1 + [P1]/KP1 + [P]/KP

·

(
1 − e

∆G′
r,4/RT

)
vBM = eBM · k

+
cat,BM ·

([P]/KP)([ATP]/KATP)

1 + ([BM]/KBM)([ADP]/KADP) + ([P]/KP)(ATP/KATP)
·

(
1 − e

∆G′
r,0/RT

)
(7.7)

Note that P is a product twice in v1, as v1 produces 2P. Note that v2 and v4 have a very similar rate equation, but in

the different direction, and both should only be used in the positive direction. The standard set of parameters we

used for the toy model is all kcat,i = 10 except kcat,3 = 0.1, all ∆G′
r,i = −1000, R = 8.3, T = 293 and all KM = 1. For

the external metabolites [P1] = 1, [Gex] = 0.05, [O2] = 0.1, [BM] = 1 and [CO2] = 10 unless mentioned otherwise.

First, we describe the network with the toichiometric matrix (N) and the concentration vector (c):

N =


1 −1 0 0 0 0
0 2 −1 −1 1 −1
0 2 0 10 0 −100
0 −2 0 −10 0 100

 , c ≡


[G]
[P]

[ATP]
[ADP]

 (7.4)

And with the stoichiometric matrix we can describe the steady state constraints:

d
dtc = N v =


1 −1 0 0 0 0
0 2 −1 −1 1 −1
0 2 0 10 0 −100
0 −2 0 −10 0 100





v0

v1

v2

v3

v4

vBM


=


0
0
0
0

 (7.5)

Now we find the EFMs (for example with EFMtool [243]). It can easily be checked that the following EFMs are

in the nullspace of the stoichiometric matrix:

EFM1 =



5
5
0
9
0
1


, EFM2 =



50
50
99
0
0
1


, EFM3 =



0
0
0
10
11
1


(7.6)

The next step is to perform the convex optimization over the metabolite levels for all three EFMs. Therefore

we convert the enzyme levels to ratio of the flux and the function f(c), using Equation 7.3. By taking the
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(A) (B)

Figure 7.3: Translation of enzyme-specific biomass rate to growth rate. (A) Both from experimental data
and a cell-optimization point of view, the ribosomal fraction of the proteome increases with the growth rate,
while the metabolic fraction decreases. (B) This leads to a hyperbolic dependency of the growth rate on the
biomass production rate.

sum of those we make a function for the total enzyme as a function of fluxes, metabolite concentrations and

parameters. We use the standard parameters (Box ??) and for each EFM input the fluxes. We are then left

with a convex optimization over the metabolite levels, an Enzyme Cost Minimization problem as in Chapter

6. For [Gex] = 0.05 we obtain a total enzyme of 111.1 for EFM1 and of 146.3 for EFM2. That means that for

this conditions we will conclude that EFM1 is optimal, and we obtain the metabolite concentrations from the

optimization of [G] = 0.08, [P] = 3.93, [ATP] = 0.11 and [ADP] = 20.09. We can next use the rate equations to

calculate the enzyme levels from the fluxes and metabolite levels, using the values for the parameters and

external concentrations.

We can repeat this procedure for different levels of external concentrations and see that the optimal EFM

can change depending on the external concentration (Figure 7.2c). When the optimum shifts to using a dif-

ferent EFM, there is a discontinuity in the fluxes at the external metabolite concentration (Figure 7.2d). Many

cells show shifts in metabolic strategies depending on the external conditions and with Enzyme Flux Cost

Minimization those shift could be explained.

In conclusion, we now found the metabolic state of maximum enzyme efficiency. Even though in our calcu-

lation we obtained the enzyme concentrations last, it is by enzyme concentrations that the cell controls the

system. If the cells produces enzymes in the concentrations we calculated and reaches a steady state, this

state will realize the fluxes and metabolite levels that lead to our optimal state.

7.5 Translating enzyme efficiency into cell growth rate

In the section above, we learned how to optimize metabolic states for a maximal overall enzyme efficiency.

Why is this quantity relevant? One reason is that overall enzyme efficiency, according to some simple reason-

ing, determines the cell growth rates. If microbes compete by growing fast, their fitness is largely determined

by their momentary growth rate in their respective environment. In such environments, the biomass/en-

zyme efficiency will be under selection, which makes it one of the important objective functions in this book.

If higher enzyme efficiency means higher growth rate, and if we have a conversion formula for this, we can

put “growth rate” instead of “overall enzyme efficiency” on the axes of our plots.

Enzyme-efficient metabolic states allow us to compute specific biomass production rates, i.e. the rate of

biomass production permetabolic enzyme invested. If biomass consisted only of enzymes, the ratio ”enzyme

production rate / enzyme concentration” would give us directly the growth rate. However, biomass does not

only consist ofmetabolic enzymes, but includes ribosomal enzymes, RNA, DNA, lipids, and other compounds.

Therefore we need a formula for converting biomass/enzyme efficiency into cellular growth rate.

Mathematically, a cell’s growth rate is given by µ = vBM/cBM, where vBM is the biomass production rate

(biomass produced per cell volume and time) and cBM is the biomass amount per cell volume. If a cell con-

sisted only of metabolic enzymes (more precisely, of the enzymes described in our model) the biomass/en-
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Figure 7.4: Optimal growth rates of the two EFMs for different levels of the external metabolite Gex (using
Equation 7.8)

zyme efficiency KBM = vBM/henz would directly describe the cellular growth rate. Since that is not the case,

we need to convert between henz and cBM. The metabolic protein fraction decreases with the growth rate,

leading to a hyperbolic dependency of the growth rate on the biomass production rate (Figure 7.3). We may

use the empirical approximation henz/cBM = fprot(a − b µ), where fprot = 0.5 is the fraction of protein mass

within the cell dry mass and the parameters a = 0.27 and b = 0.2 h were fitted to describe the metabolic

enzyme fraction in proteomics data, assuming a linear dependence on growth rate [15]. This yields the con-

version formula (see also [240]):

µ = a fprot vBM

henz + b fprot vBM
. (7.8)

This formula has been used to convert the minimal enzyme cost per biomass flux for different external con-

centrations in the toy model (Figure 7.2c) to the maximal growth for each EFM (Figure 7.4).

7.6 Concluding remarks

In this chapter we considered themetabolic network of a cell - and enzyme levels, metabolite concentrations,

and fluxes as the state variables - and studied itsmaximally efficient states. Finding such states can be difficult

because fluxes, metabolite concentrations, and enzyme levels are tightly coupled: metabolite concentrations

determine enzyme efficiencies, enzyme efficiencies determine optimal enzyme levels, and enzyme levels

determine fluxes and metabolite concentrations, which in turn determine enzyme efficiencies. To find an

optimal state, all variables need to be optimized at the same time, which is a non-linear optimality problem

with (possibly) many local optima. In small toy models, solutions can be found numerically, but for large

detailed models, the computational effort becomes enormous. Instead of simplifying the problem (as in the

previous chapters) we here used the insight that (in models without extra flux bounds) the optimal solutions

must be EFMs. Biologically, it is enzyme levels rather than fluxes that are regulated directly (by transcriptional

regulation), while metabolite concentrations and fluxes respond dynamically. But from a functional point of

view, we may see this differently: we may first think of a task (a flux to be realized) and then ask how this flux

can be performed optimally.
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Problems

Problem 7.1 Consider the model in Figure 7.2. What would be the qualitative effect of a change in oxygen

concentration on the enzyme cost of the three EFMs and on the choice of the optimal strategy?
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Chapter 8

Models of growing cells

Ohad Golan, Hollie J. Hindley, Hidde de Jong, Markus Köbis, Elena Pascual Garcia, and Andrea Weiße

Chapter overview

◦ A comprehensive description of fundamental growth laws in microbial growth, elucidating the core

principles that govern biological growth patterns.

◦ A detailed exploration of the contrasts between coarse-grained and fine-grained modeling is pre-

sented, offering insights into the varying levels of detail that each approach encompasses.

◦ A thorough breakdown of the key assumptions in the modeling of metabolic systems is provided, un-

derlining the foundational premises that are crucial for accurately representing these complex sys-

tems.

◦ Theprocess of deriving fundamental growth lawsbymodeling key assumptions ismeticulously demon-

strated, enabling a clear understanding of how theoretical constructs translate into biological realities.

8.1 Introduction

A key feature of living systems is that they are able to grow and reproduce. The reproductive success in

a given environment defines the fitness of a living system. The study of the growth of bacteria and other

microorganisms is crucial for better understanding their capacity to cause diseases in humans or for better

exploiting their use in biotechnological or environmental processes. Beyond their interest for a variety of ap-

plications, bacteria and other microorganisms have shown themselves ideal model systems for investigating

fundamental questions on the relation between growth, fitness and characteristics of the environment.

One of the first to systematically and quantitatively study the growth of bacterial cultures was JacquesMonod

in the 1940s. He performed so-called diauxic growth experiments, in which bacteria were cultured in a

medium containing two different limiting carbon sources. He showed that the bacteria first deplete one

carbon source before starting to assimilate the second carbon source. The order in which the primary and

secondary carbon source were consumed was determined by the growth rate they support: the preferred

carbon source allows the culture to grow at a higher rate. Further work on the molecular basis of diauxic

growth led to the discovery that cells inhibit the expression and activity of functions for the use of secondary

carbon sources when a preferred carbon source is present, a global regulatory mechanism known as carbon

catabolite repression [244, 245].

Monod characterizedbacterial growthbymeans of batch culture experiments in awell-defined growthmedium

allowing bacteria to reach a state of balanced growth, where the accumulation of biomass can be described

117
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Figure 8.1: Growth laws of bacterial growth. A. Monod growth law: growth rate dependency on nutrient
availability [Data from [249]]. B. Correlation between growth rate and nutrient uptake rate [Data from [255]].
C. Correlation between growth rate and cellular composition [Data from [253]]

by a single constant, the exponential growth rate. Together with the chemostat, a device allowing continu-

ous culture of microorganisms at a predefined growth rate [246], these methods have become standard in

microbial physiology. They notably underlie the discovery of a number of so-called growth laws, relating the

growth rate to a variety of properties of the physiology of growing bacteria. The growth laws are conserved

across different organisms and a broad range of experimental conditions. Here, we list three well-known

growth laws [247, 248]:

1. Dependency of the growth rate on nutrient availability [249]: In his characterization of bacterial growth,

Monod discovered the first growth law. He observed that the growth rate of bacteria depends upon the

nutrient concentration in the medium in a hyperbolic fashion (Fig. 8.1A).

2. Correlation between growth rate and nutrient uptake rate [250]: In continuous cultures, the growth rate was

shown to vary linearly with the nutrient uptake rate (Fig. 8.1B). The slope of this linear relation is called

the biomass yield and the offset the ‘maintenance energy’, as it is assumed to be derived from the energy

spent on processes required to maintain the basic processes of the cell, in the absence of growth [251].

3. Correlation between growth rate and cellular composition [252, 253]: In 1959, Schaechter, Maaløe andKjeldgaard

showed that RNA, DNA and the number of nuclei in Salmonella typhimurium linearly correlate with the

growth rate. Later, it was further shown that other physiological parameters, such as the mass fraction of

ribosomes in growing populations, also linearly correlate with the growth rate [253] (Fig. 8.1C). Initially, it

was believed that the correlation between ribosomal mass fraction and growth was strictly positive, how-

ever, Scott et al. [254] showed that when growth is inhibited through translation-inhibiting drugs, growth

rate and ribosomal mass fraction exhibit a negative (near-)linear relation.

The conserved nature of the growth laws has led scientists to ask whether there are fundamental principles

governing bacterial growth. To answer this question, different types of mathematical models have been de-

veloped. One approach aims at integrating all known molecular constituents of the cell and the reactions

involving these constituents into a big model, an in-silico copy, or ‘digital twin’, of the cell. Such models,

known as fine-grained models, can be useful to predict emergent phenotypes, but they are difficult to con-

struct and maintain, and their complexity makes it hard to grasp certain principles that underpin growth. In

this chapter, we will focus on coarse-grained models of bacterial growth. Rather than assembling individual

reactions in a bottom-upmanner, these models are based on the top-down definition of a limited number of

basic cellular functions or processes involved in growth, described by appropriate macro-reactions (Fig. 8.2).

Coarse-grained models are smaller and therefore easier to construct and analyze. The lack of molecular de-

tail canmake their predictions less accurate, but their simplicity allows a focus on how basic cellular functions

and their interactions shape bacterial growth. How much detail is included in a model depends on the spe-

cific scientific question asked, and similarly, models may vary in their underlying assumptions. Oftentimes,

assumptions are based on biochemical principles governing intracellular reactions, on physical limitations

faced by cells, on optimality principles, or on a combination of these.
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Figure 8.2: Coarse grained modelling of cellular growth. Compared to genome-scale FBA and whole-cell
models (Chapters 4, 5, 9, coarse grainedmodels zoomout of themolecular detail and focus on key processes.

In this chapter, we showhow to understand and, ultimately, how to develop coarse-grainedmodels of cellular

growth. We present a number of coarse-grained models with increasing levels of granularity. The models

have been chosen to also represent a variety of commonly used assumptions, for example, based on growth

rate maximization or on phenomenological or mechanistic constraints. Despite these differences, however,

models we discuss generally recover the basic growth laws, and we show how the latter can be derived from

solving two of the simplest coarse-grained models. The goals of this chapter are:

1. To enable the reader to understand and analyze any model of microbial growth from the literature.

2. To enable the reader to develop their own coarse-grained model of a metabolic system that is directed at

their specific scientific question.

3. To provide the reader with a new perspective on modeling of complex systems and specifically the biolog-

ical cell.

8.2 Fundamental modeling assumptions of microbial growth

The models of microbial growth we consider here are based on fundamental assumptions that follow from

biochemical and biophysical constraints. In this section, we discuss and mathematically define assumptions

that are found, explicitly or implicitly, in most coarse-grained models of microbial growth. The assumptions

are formulated in an abstract manner to hold for any self-replicating biological system, irrespective of the

specifics of the underlying molecular mechanisms. In the next section, we use these assumptions to con-

struct increasingly complex models of microbial growth and show how the latter can be used to derive the

experimentally observed growth laws presented in the introduction of this chapter.

The growth of microorganisms consists of the uptake of nutrients from the environment and the conversion

of these nutrients into new microbial cells through a number of coupled metabolic processes (Fig. 8.2). This

description brings out the self-replicating or autocatalytic nature of microbial growth: cells transform nutri-

ents from the environment into new cells. In what follows, we consider growth on the population level, that

is, an increase in the total amount of cells or, equivalently in many situations, an increase of the biomass of

the population. This leads to the well-known model of microbial growth, where the change in biomass over

time is proportional to the amount of biomass (Fig. 8.3A):

dB
dt = λB, (8.1)

where t [h] denotes time, B in gram dry weight [gDW] the biomass and λ [1/h] the population growth rate.
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Figure 8.3: Coarse grained models of metabolic systems with increasing complexity. A. A self replicating
system. B. The simplest description of a metabolic system: coupled catabolic and anabolic reactions. C. A
metabolic system that can catabolize two different nutrient sources. D. A catabolic system requiring two
substrates to grow: x and E.

If the growth rate is constant, the solution to Eq. (8.1) describes exponential growth of the biomass:

B = B0eλt, (8.2)

where B0 [gDW] is the initial biomass at t = 0.

The growth rate is a key parameter that is often used as a proxy for the fitness of microorganisms. It is

dependent on the metabolic processes, that is, how a cell utilizes the nutrients to synthesize new biomass

(self-replication). The simplest description of metabolism is that it takes up a nutrient, breaks it down into

metabolites (catabolism), and then utilizes thesemetabolites to produce new biomass (anabolism) (Fig. 8.3B).

Catabolic and anabolic processes comprise a variety of biochemical reactions that are carried out by dif-

ferent sets of proteins and enzymes. The reaction rates of these processes are limited biochemically and

biophysically. We formulate these limitations as modeling assumptions and define them as mathematical

constraints, four of which we briefly review below.

8.2.1 Conservation of mass and quasi-steady-state assumption

Dry biomass is often a more readily measurable quantity than cell volume. The latter relates absolute abun-

dances of cell components to their intracellular concentrations. Yet, because bacterial cells have been ob-

served to maintain approximately constant cell density across various growth conditions [256, 257] (though

transient exceptions have been observed at the single-cell level [258]), biomass can be regarded a proxy

for volume and is therefore assumed to be proportional to cell volume in many growth models. All mod-

els considered in this chapter are based on the assumption of constant cell density and approximate the

concentration x of a cellular component x (we use normal font for cell components and italic font for their

concentrations) by its absolute abundance divided by the cell mass.

According to the law of mass conservation, the change of mass is equal to the inflow minus the outflow of

mass. As a consequence, the change in concentration of a cell component, for example a metabolite pool, is

determined by the sum of the rates of the reactions consuming and producing this cell component (Fig. 8.4A).



Fundamental modeling assumptions of microbial growth 121

The mass balance for any cell component x is given by the following equation:

dx
dt =

∑
y

ry→x −
∑

k

rx→k, (8.3)

where ry→x denotes the rate of the reaction converting cell component y into cell component x (production

of x), and rx→k the rate of the reaction converting cell component x into cell component k (consumption of

x). Typically, cell component concentrations have units mg/gDW or mmol/gDW, so that rates of metabolic

reactions are expressed in units mg/(gDW h) or mmol/(gDW h).

In the simple system shown in Fig. 8.3B, there are two reactions: one converting the nutrient source N into a

metabolite X and one utilizing themetabolite for the synthesis of biomass. According to (8.3), the flux balance

of metabolite pool x is given by dx/dt = rn→x − rx→B .

A key assumption is that intracellular concentrations are in quasi-steady state. This means that cell compo-

nent pools remain constant:
dx
dt = 0, for all cell components x. (8.4)

The quasi-steady-state assumption simplifies themathematical analysis of the system significantly and holds

for balanced growth of the microbial population. In this chapter, we focus mostly on situations in which the

quasi-steady-state assumption applies, but also give an example of a model with metabolic dynamics. In

metabolic modeling, the rates of reactions at steady state are called fluxes, denoted by the symbol J . With

the quasi-steady-state assumption, Eq. (8.3) becomes∑
y

Jy→x =
∑

k

Jx→k (8.5)

that is, for every cell component, the sum of production fluxes equals the sum of consumption fluxes. In the

example system, we have Jn→x = Jx→B .

8.2.2 Proteome allocation assumption

The biochemical reactions breaking down nutrients into intracellular metabolites, and the reactions utilizing

thesemetabolites for the synthesis of new biomass, do not occur spontaneously. The reactions are catalyzed

mostly by proteins complexes, in particular metabolic enzymes and ribosomes. In coarse-grained models,

well-defined sets of biochemical reactions are grouped together into macro-reactions. The cell components

that are necessary to catalyze the individual steps of a macro-reaction are grouped together into a corre-

sponding so-called proteome sector. A proteome sector includes mostly proteins that catalyze metabolic

reactions but also ribosomes catalyzing the reaction of protein biosynthesis. Proteins constitute most of the

biomass of the cell [259]. Therefore, as a first approximation, the sum of the proteome sectors equals the

total biomass of the growing population measured in units of g (Fig. 8.4B):∑
r∈{x→y}

Pr = B, (8.6)

where Px→y is the proteome sector catalyzing the macro-reaction that transforms cell component x into

cell component y. The proteome sectors as defined above are extensive quantities, summed over the entire

growing population, like the total biomassB. For themodels, we are rather interested in intensive quantities,

the amount of a proteome sector relative to the total amount of biomass (protein), corresponding to protein

concentrations or protein fractions. Dividing the left-hand and right-hand sides of Eq. (8.6) by B, we thus

obtain: ∑
r∈{x→y}

pr = 1 (8.7)
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where px→y is the fraction of the proteome converting x into y, defined by px→y = Px→y/B. Proteome

fractions are dimensionless and sum to one.

In the simple example system in Fig. 8.3B, we distinguish two macro-reactions: a catabolic reaction and an

anabolic reaction (biomass synthesis). We therefore define two proteome sectors, corresponding to enzymes

and ribosomes, respectively, with fractions pn→x and px→B , respectively. In later examples in the chapter,

the catabolic and anabolic processes are further broken down into smaller macro-reactions and so are the

proteome sectors.

8.2.3 Mathematical description of reaction fluxes

The rate at which a reaction is converting one cell component, e.g., a metabolite, into another is determined

by the proteome fraction, the concentrations of the substrates of the reaction and possible regulation by

other cell components in the system. While mass-action kinetics provide a principled framework to develop

rate equations for biochemical reactions, in practice, various approximations based on mechanistic assump-

tions are often used to obtain simplified equations [260]. Below there are a fewexamples of rate laws defining

the fluxes in coarse-grained models:

1. Excess substrate and no allosteric interactions. The simplest relation of the flux J to the relevant proteome

sector is linear, such that

Jx→y = px→y βx→y, (8.8)

where βx→y is a parameter describing the efficiency of proteome sector px→y in generating a flux from x to

y. This expression assumes substrate x is in excess and disregards any regulation of the flux by allosteric

interactions of the enzymes and other cell components.

2. Limited substrate and allosteric interactions. A more complex relation is obtained when the substrate is in

excess and allosteric interactions involving a cell component n play a role in themodulation of the flux. The

expression of the flux is multiplied by two regulatory functions f(x) and g(n) describing the modulation of

the flux by the substrate and the allosteric cell component, respectively:

Jx→y = px→y βx→y f(x) g(n). (8.9)

It is important to note that that both f(x) and g(n) return values between 0 and 1, and that the flux re-

mains linear in the proteome fraction. Typically, a Michaelis-Menten relation is taken for the effect of the

concentration of substrate x on the flux, such that f(x) = x/(kx→y +x) (Fig. 8.4D). When the concentration

x is in excess, such that x � kx→y , the function f(x) becomes approximately 1. Other types of regulatory
functions can be used depending on the macroreactions concerned and the growth conditions.

8.2.4 Volume and surface area assumptions

The intracellular volume as well as the surface area of the cell are limited (Fig. 8.4C). Obviously, the total

volume occupied by the components of the cell, in particular proteins, cannot be larger than the cell volume.

As such, the total volume of the cell is larger than the sum of the volume of the proteome sectors that are

functioning inside the cell plus some constant volume taken up by other cell components such as DNA. This

gives the following constraint:

Cell volume ≥
∑

r∈{x→y}

prvr + v0 (8.10)

where vx→y is the volume of proteome sector px→y and v0 is some constant volume filled by other cell com-

ponents. Similarly, the total surface occupied by proteins and lipids making up the cell membrane has to

equal the surface area of the cell. This constraint gives:

Cell surface area ≥
∑

r∈{x→y}

prsr + l0 (8.11)
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Figure 8.4: Fundamental assumptions in the modeling of microbial growth. A. Conservation of mass and
steady-state assumption: The change in concentration of a cell component is equal to the incoming fluxminus
the outgoing flux. At steady state, the concentration of the cell component is constant. B. Proteomeallocation
assumption: the proteome is divided into different proteome sectors. The number of proteome sectors in a
model depends on the model granularity. The sum of all the proteome sectors always equals 1. C. Volume
and surface area assumption: The volume of the cell is limited and is filled with intracellular cell components
such as proteins. The sum of the volumes of the intracellular cell components is equal to the cell volume.
Similarly, the surface area of the cell is limited and contains membrane cell components such as lipids. The
sum of the surface areas of membrane cell components is equal to the cell surface area. D. Example of flux
assumption according to Michaelis-Menten kinetics: the reaction x → y is carried out by proteome sector
px→y. The maximal rate is reached for saturating substrate concentrations and is determined by the size of
the proteome sector.

where sx→y is the surface area of proteome sector px→y and l0 is the surface area of the lipids in the cell

membrane.

8.3 Derivation of growth laws from basic modeling assumptions

In the following section, we will build upon the fundamental assumptions discussed earlier to construct mod-

els of microbial metabolism with increasing complexity. We will introduce additional assumptions as neces-

sary to solve each model, and use them to derive one of the growth laws presented in the introduction of

this chapter that have been experimentally observed in microorganisms.

Example 1 - Basic metabolic system with saturating substrate concentrations

In this example, we will use the basic metabolic model to derive the relationship between the concentration

of ribosomes and the growth rate in microorganisms.The most basic metabolic model involves the uptake of

a single nutrient from the environment, the catabolism of that nutrient into ametabolite x, and the use of this

metabolite in anabolic processes to synthesize biomass (Fig. 8.3B). This model consists of two reactions and

two proteome sectors. According to the proteome allocation constraint, the sum of the proteome sectors

must sum to one (according to Eq. (8.7)):

pn→x + px→B = 1. (8.12)
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For simplicity, we assume that the rate of each reaction is proportional to the allocation of the proteome to

that reaction (according to Eq. (8.8)), so that:

Jn→x = pn→xβn→x; Jx→B = px→Bβx→B . (8.13)

The mass conservation constraint, with the assumption of a steady state for metabolite x, gives (according

to Eq. (8.5)):

Jn→x = Jx→B . (8.14)

Finally, due to conservation of mass, the biomass synthesis flux equals the growth rate:

λ = Jx→B . (8.15)

Solving equations (8.12)-(8.15) gives a prediction for the growth rate:

λ = βx→Bβn→x

βx→B + βn→x
. (8.16)

Solution (8.15) for the growth rate is based solely on mechanistic assumption - that is, assumptions that are

based on the mechanistic properties of the biochemical reactions in the cell. In this case, that is that the

fluxes are linear to the relevant proteome sector. Because we have taken a steady state approximation and

the rates of the two reactions must be equal, the growth rate is determined by the relative values of the

catalytic constants.

Using thismodel, we can nowderive the relationship between the concentration of ribosomes and the growth

rate. Combining Eq. (8.12) and (8.14) gives:

λ = px→Bβx→B (8.17)

This shows that the growth rate is linearly proportional to the anabolic sector. Given that the anabolic sector

is composedmostly of ribosomes, this fits well with the experimentally observed linear relationship between

the concentration of ribosomes and the growth rate, which was first described by Schaechter et al. [252] and

later confirmed by Bremer et al. [253]. It is important to notice that this relation is due to the assumption

that the biomass synthesis flux is linear in the ribosomal proteome sector.

In summary, we have derived the linear relationship between the concentration of ribosomes and the growth

rate using only basic assumptions about the properties of the biochemical reactions in the cell and the con-

servation of mass. This relationship is one of the experimentally observed growth laws in microbial systems.

Example 2 - Growth on two nutrient sources

In this example, we consider a metabolic system that grows on two different nutrient sources, n1 and n2

Fig. 8.3C. We use the fundamental assumptions outlined in Section 1.2 and an additional assumption of

growth-rate maximization to demonstrate how cells may exhibit catabolite repression - a phenomenon in

which cells utilize only one nutrient even when multiple nutrients are available in the environment [245].

The metabolic system in this example catabolizes both nutrient sources to the same metabolite x, but at dif-

ferent efficiencies. The anabolic reaction is the same as in Example 1. There are now three proteome sectors

in this model: two for catabolism of the nutrients and one for anabolism. Thus, according to the proteome

allocation constraint (Eq. 8.7), we have:

pn1→x + pn2→x + px→B = 1. (8.18)

As before, we assume a linear correlation between reaction rates and proteome sector fractions (according

to Eq. (8.8)). The different efficiencies of the catabolic sectors is represented as βn2 > βn1. Applying themass
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conservation assumption for metabolite x, combined with the steady state assumption, gives

Jn1→x + Jn2→x = Jx→B . (8.19)

The growth rate is again equal to biomass synthesis flux, as in Example 1:

λ = Jx→B . (8.20)

Given that there are more variables than constraints in this example, solving Eqs. 8.18 - 8.20 reveals that

there is no unique solution for the growth rate, but rather a solution space with one free variable pn1→x:

λ = βx→Bβn2→x

βx→B + βn2→x
+ pn1→x

(
βn1→x − βn2→x

βx→B + βn2→x

)
βx→B . (8.21)

The solution shows that themetabolic systemhas a decision tomake regarding howmuch of the proteome to

invest in sector pn1→x. To solve this system, we introduce an additional assumption of growth rate maximiza-

tion – that is, to maximize its fitness, the metabolic system maximizes the growth rate in a given condition.

In this example, to maximize the growth rate, the cell uses only the more efficient catabolic system, setting

pn1→x = 0 and the solution for the growth rate is as in example 1. The model predicts that the cells will

only utilize the nutrient source with the higher efficiency, even if both nutrient sources are available in the

environment. This solution fits the catabolic repression experimental result presented in the introduction in

which in which the metabolic system represses the use of a less efficient nutrient source in favor of a more

efficient one.

Example 3 - Multiple energy generating pathways

In this example, we focus on a classic question in cell physiology known as overflow metabolism [261, 262].

Within the cell, two primary energy-generating pathways exist: the oxygen-requiring respiration pathway

and the oxygen-independent fermentation pathway. It is established that, in the presence of oxygen, the

respiration pathway fully oxidizes available nutrients, rendering it more nutrient-efficient in contrast to the

fermentation pathway [263]. Utilization of the fermentation pathway is marked by the secretion of byprod-

ucts, such as acetate in E. coli or ethanol in yeast, making it inherently wasteful. Intriguingly, experimen-

tal observations reveal a counterintuitive phenomenon: even under oxygen-rich conditions, cells often opt

for the less efficient fermentation pathway. Under growth rates surpassing a critical threshold, the secre-

tion rate of byproducts, indicating an increased reliance on the fermentation pathway, exhibits a linear rise

[264, 265, 266]. This counterintuitive preference for fermentation has long presented a profound question

in bacterial physiology.

Based on previous studies [264], we present a coarse-grainedmodel to elucidate this observed phenomenon

(Fig. 8.3D). The model postulates steady-state growth on a single nutrient source, denoted as n. This nutrient

is taken up from the environment, and channeled towards biomass through the proteome sector pn→B .

Additionally, it serves as a precursor for energy generation, either through the respiration pathway catalyzed

by proteome sector pn→r or the fermentation pathway catalyzed by proteome sector pn→f . Thus, according

to the proteome allocation constraint (Eq. 8.7), we have:

pn→B + pn→r + pn→f = 1. (8.22)

Diverging from earlier models presented in this chapter, our model necessitates two precursors for biomass

generation: energy and a carbon precursor. Carbon assimilation is coarse-grained into the biomass genera-

tion pathway n → B, while energy is generated through the energy-producing pathways of respiration n → r

and fermentation n → f . Consequently, two mass balance equations are requisite – one for carbon flux and

another one for energy flux. The carbonmass balance equates the carbon uptake rate coming from nutrient
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uptake JC
in to the carbon fluxes utilized for cell biosynthesis JC

n→B , fermentation JC
n→f and respiration JC

n→r:

JC
in = JC

n→B + JC
n→f + JC

n→r. (8.23)

Similarly, the energy balance equation asserts that the energy generated by fermentation JE
n→f and respira-

tion JE
n→r equals the energy utilized for the biomass synthesis reaction JE

n→B :

JE
n→B = JE

n→f + JE
n→r. (8.24)

Consistent with prior examples in this chapter, we maintain a linear correlation between reaction rates and

proteome sector fractions (as per Eq. 8.8).

Both fermentation and respiration reactions utilize a carbon substrate and produce energy, with a key dis-

tinction lying in their nutrient utilization efficiency. The ratio of carbon utilized in these reactions to energy

generated is expressed as:

JE
n→r = εn→rJ

C
n→r; JE

n→f = εn→fJ
C
n→f . (8.25)

Given that the respiration pathway exhibits higher nutrient efficiency than the fermentation pathway: εn→r >

εn→f .

Concluding the model description, we incorporate the cellular requirements for growth precursors (energy

and carbon) and the proteome. Under carbon limitation, the proteome fraction dedicated to cell biosynthesis

pn→B exhibits a linear growth rate dependence [264, 267, 254, 268]:

pn→B = p0 + σn→Bλ. (8.26)

The growth rate correlates with the flux of growth precursors, adhering to a fixed stoichiometry of the

metabolic network [269, 270]:

JE
n→B = σEλ; JC

n→B = σCλ. (8.27)

Another key assumption of the model posits that, while the respiration pathway is more nutrient-efficient,

utilizing less nutrients per energy unit generated, the fermentation pathway is more proteome-efficient, re-

quiring a smaller proteome fraction per energy unit generated. This assumption is embodied in the efficiency

parameters of the reaction fluxes: βn→f > βn→r.

To validate the efficacy of our model in capturing the experimentally observed linear increase in acetate

secretion with high growth rates, we endeavored to predict acetate secretion as a function of growth rate.

The acetate secretion rate is governed by the flux through the fermentation pathway, represented by Jac =
SacJ

C
n→f , where Sac is determined by the involved stoichiometry. Solving Eqs 8.22 - 8.27 for acetate secretion

yields an expression that increases linearly with the growth rate:

Jac = Sac

εn→f
βE(pE − λ(σx→B + σE

βx→r
)). (8.28)

where βE = βn→rβn→f

βn→r−βn→f
and pE = 1 − p0. The negative value of βE , arising from the higher proteome ef-

ficiency of the fermentation pathway, results in a positive slope and a negative intercept on the Jac-axis. The

model provides a good quantitative fit to the experimental observation [264]. The critical growth rate λcr ,

signifying the growth rate at which the cell activates the fermentation pathway, occurs when Jac = 0, giving
λac = pE

σn→B+σE/βn→r
.
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Figure 8.5: Schematic of the dynamic growth model. The model focuses on key cellular processes: nutrient
uptake, transcription and translation. Enzymes (shown in blue and dark green) import and metabolize extra-
cellular nutrient (shown in orange), which yields energy (yellow). Availability of energy impacts transcription
and translation, however, it is assumed that energy consumption is dominated by translation. The differ-
ent species of mRNA compete for ribosomes (light green), and their translation consumes energy. Assuming
that biomass is dominated by protein, the total rate of translation determines the rate of growth (lower right).
Four classes of proteins are modelled: ribosomes, nutrient transporters, enzymes and other house-keeping
proteins (red).

It is crucial to highlight the key assumption underlying this solution, which lies in the relative efficiencies of

the energy-generating pathways. At high growth rates, the cell encounters inhibition not only in its ability to

rapidly extract energy from the nutrient but, more significantly, it is constrained by the available proteome.

Consequently, the cell shifts to utilize the more efficient fermentation pathway.

It is also noteworthy to identify the assumptions overlooked by the model. For instance, the model excludes

the proteome sector for nutrient uptake, coarsely integrating it into the biomass biosynthesis and energy

generation pathways. While this assumption is reasonable for growth on a single nutrient, a model consid-

ering multiple nutrients with varying uptake efficiencies necessitates the inclusion of proteome sectors for

nutrient uptake. Further analysis of the model can be found in [264, 271].

8.4 Mechanistic links between cellular trade-offs, gene expres-

sion, and growth

This section presents a coarse-grained cell model that describes the dynamic adaptation of global mecha-

nisms driving the growth of bacterial cells. Compared to the models previously described in this chapter,

this model is dynamic, i.e. not based on steady-state assumptions, and it has a higher level of granularity.

It is also based on explicit mechanisms, which allows extension with additional mechanisms of interest, for

example, the effects of antibiotics or of heterologous gene expression on cellular growth.

Energy metabolism and protein production are the main pillars of biomass production and cell growth, and

form the basis of the growth model. A set of ordinary differential equations describes the dynamic interplay

of (i) nutrient internalization and catabolism, (ii) transcription, and (iii) and translation (see Fig. 8.5). A key as-

sumption of themodel is that biomass is dominated by proteins, and so the cellular growth rate corresponds

to the total rate of protein synthesis via translation. All processes are part of a feedback loop in which the

final protein products act as catalyzers of the model reactions, creating a self-replicating system.
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In its basic form, the growthmodel includes 14 intracellular variables: internal nutrient, si; energy molecules,

a; and four types of proteins along with their corresponding free (mx) and ribosome-bound mRNAs (cx).

Of the four types of proteins considered, there are three groups of catalyzing molecules: transporters (et),

metabolic enzymes (em) and ribosomes (r), and one group of housekeeping proteins (q). As the model does

not assume steady state, the different reactions are defined in terms of reaction rates instead of reaction

fluxes. A simplified description of the main reaction rates of the model is shown in Table ??. For details

on all reactions and parameters, readers are referred to the supplementary information of [272]. In what

follows, the focus will be on the conceptual aspects underlying the prediction of cellular growth rate, and

some examples of model applications.

Building on the assumptions of mass balance and proteome allocation described in Section 8.2 of this chap-

ter, the model centers around three fundamental constraints, namely (i) a finite pool of cellular energy that
fuels protein biosynthesis, (ii) a finite pool of ribosomes for whichmRNAs compete for translation, and (iii) a
finite cell mass. As a result, the model predicts the dynamic allocation of internal resources and its emergent

impact on cellular growth rate without the need to assume growth rate maximisation.

Description Reaction Reaction rate

Nutrient internalisation s → si et · vts
(Kt+s)

Nutrient metabolism si → nsa em · vmsi
(Km+si)

Transcription ∅ → mx ωx · a
(θx+a)

Ribosome binding mx + r ↔ cx kb ·mxr, ku · cx

Translation cx + nxa → x+mx + r cx · γ(a)
nx

Table 8.1: Summary ofmainmodel reactions and their accompanying rates. The four proteins represented in
themodel are denoted in the reactions by x, x ∈ r, et, em, q, γ(a) is the rate of translational elongation, defined
as γmaxa

Kγ +a
, and nx is the average length of a protein molecule in amino acids. The parameter ns represents

nutrient quality and determines the yield of energy per catabolized nutrient.

8.4.1 Model definitions

Growth rate and biomass synthesis Based on the assumption that biomass is dominated by protein, and

other contributions are negligible, the biomass B of a cell can be calculated by summing over the coarse-

grained proteome,

B =
∑

x

nxx+ nr

∑
x

cx, x ∈ r, et, em, q, (8.29)

which sums over all proteins (x) and mRNA-bound ribosomes (cx), with nr and nx denoting the lengths of

proteins in terms of amino acids. Equation (8.29) is equivalent to the mass balance assumption described

in section 1.2.1 of this chapter. As a consequence, the proteome allocations, defined by φx = x/B for x ∈
{em, et, r, q} sum to 1, i.e.

∑
x
φx = 1.

Similar to the previous examples in this chapter (Section 8.3), the model correlates the growth rate with

biomass production, which depends on translating ribosomes and their translation elongation rate γ(a).
Importantly, the rate of elongation depends on the energy produced in the catabolic processes described in

themodel, which dynamically couples protein synthesis withmetabolism. Defining the number of translating

ribosomes Rt =
∑

x
cx, the change in cellular biomass over time becomes

dB

dt
= γ(a)Rt − λB. (8.30)

The second term, λB, accounts for dilution via redistribution of mass to daughter cells at division. In home-

ostatic conditions, that is when B is in steady state and so dB
dt

= 0, it then follows that λ∗ is proportional to
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Figure 8.6: Mechanistic derivation of the translational elongation rate. The model assumes that each elon-
gation step consumes a fixed amount of energy. In a first step, energy reversibly binds the mRNA-ribosome
complex, uponwhich elongation takes place. Once the peptide reaches it’s final length, the protein is released
and ribosome and mRNA are freed up.

the rate of protein synthesis. To define growth dynamically,

λ(t) := γ(a)Rt

B0
, B0 > 0. (8.31)

SettingB0 to the typical biomass of a cell inmid-exponential growth ensures that cells will have a steady-state

biomass of B∗ = B0.

Rate of translation In actively growing bacteria, protein synthesis, and in particular translation-associated

processes, account for a major part of the energy budget. The model assumes a simplified mechanism to

derive the dependence of the translation rates on the energy levels of the cell. It is assumed that each elon-

gation step of translation consumes a fixed amount of energy (Figure 8.6),

and further that intermediate reactions are in quasi-steady state. It can then be shown that the net rate of

translation elongation takes the form

γ(a) = γmaxa

Kγ + a
. (8.32)

Here, γmax denotes the maximal rate of translation elongation per ribosome andKγ the energy threshold of

half-maximal elongation. For any protein x, the rate of its translation is then given by

νx(cx, a) = cx
γ(a)
nx

, (8.33)

where cx denotes ribosomes bound to mRNA of type x and division by nx accounts for the number of elon-

gation steps to take place for the production of one px.

Rate of transcription The model assumes that transcription is energy-dependent, but that its consumption

is negligible compared to that of translation. Analogous to translation, under the assumption of fixed energy

consumption per elongation step, the rate of transcription takes the same shape and is defined by

ωx(a) = ωxa

θx + a
, x ∈ r, et, em. (8.34)

Here, the energy threshold of half-maximal transcription, θx, is specific for each proteome sector x, which

dynamically links the proteome allocations φx with different growth conditions. In particular, θr � θx for

x 6= r ensures that the ribosomal sector increases in rich growth conditions (cf. growth laws in Fig. 8.1C).

In addition, the model assumes that the transcription of household genes is negatively auto-regulated to

maintain near constant levels across different conditions. Therefore

ωq(q, a) = wqa

θq + a
· I(q), with I(q) := 1

1 + (q/Kq)hq
, (8.35)

where I is the auto-inhibition function with thresholdKq and Hill-coefficient hq.
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Figure 8.7: Experimental data [coloured circles] and model simulations [lines] depicting the relationship be-
tween growth rate and cellular composition. The data describes the ribosomal fraction of the proteome φr

in different growth conditions. Each colour represents a different media composition, with increasing drug-
free growth going from red to green. The numbers within the circles indicate the addition of the antibiotic
chloramphenicol to the growth media at a certain concentration [in µM ]. Although this antibiotic inhibits
translation, an increase in φr can be observed through all media compositions. The model fit to the ex-
perimental data demonstrates the capacity of this model to describe two of the growth laws. (Inset) Model
simulation. Besides the composition, varying the amount of external nutrient in the growth media increases
the steady-state growth rate up to a saturation point. This reproduces Monod’s growth law.

8.4.2 Model predictions

The model recovers the bacterial growth laws through the automodulation of finite cellular resources in

response to changing environments. It robustly fits empirical data (Fig. 8.7), suggesting the growth laws are

an emerging property of the constraints integrated into the modelling approach.

The model predicts a hyperbolic dependence of the growth rate on nutrient availability as described by

Monod’s law (Fig. 8.7 inset), derived using the conservation of mass assumption and when φr � φq. Energy

is created from the metabolism of internalized nutrients and determines the rates of transcription (ωx(a))
and translation (γ(a)). In the absence of antibiotics, the latter is proportional to the growth rate of the cell as

described in Eq. (8.31). As the nutrient quality is increased, more energy will be available and therefore more

transcription will occur. Due to the relationship between transcription thresholds (θr � θx), the transcription

of ribosomes is increased comparatively more, leading to an increase in the ribosomal mass fraction as seen

in Fig. 8.7.

In a fixed nutrient condition, inhibiting translation by the addition of an antibiotic increases intracellular en-

ergy levels as fewer ribosomes can translate. Again, with θr � θx, this energy increase leads to a proportion-

ally larger increase in transcription of ribosomal mRNAs and so to a larger φR. In contrast to the scenario

without antibiotics, fewer ribosomes can actively translate and therefore the growth rate will be lower. Con-

sequently, a negative dependence of φR and growth rate arises.

8.4.3 Applications

Due the coarse-grainedmodelling ofmechanisms and the use of non-steady state dynamics, themodel lends

itself to modular extension for a range of applications. For example, to reproduce the negative correlation

between growth rate and ribosome content amid translational inhibition (Fig. ??), the model was extended

to account for inhibitory actions of the antibiotic chloramphenicol on ribosomes. Similarly, mechanisms that
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account for drugs with other modes of action could also be included. Further, in [272], it was shown that the

model can be extended to study a number of applications:

Firstly, the model was extended to account for expression of a heterologous gene circuit and predict con-

straints between heterologous circuit expression, circuit function, and the growth of the host. This has appli-

cations in areas such as chemical production in biotechnology, where host-circuit interactions are not under-

stood andwhere synthetic circuits have to operate robustly in different growth conditions. In this context, the

model can serve to quantify host-circuit interactions for a more host-aware design of synthetic gene circuits.

In another application, the model’s ability to dynamically predict growth rate emergently from intracellular

mechanisms was used as a proxy for evolutionary ‘fitness’ to study when gene regulation was evolutionarily

stable. This was done by augmenting the cell model with population growth, assuming that all cells of a

population are identical, and modelling competitive interactions between a resident and mutant strain.

Finally, in [272] it was shown how to use the model to study specific mechanisms within a wider cellular con-

text. With the example of gene-dosage compensation, where the effects of a gene deletion can be reduced

by increasing the expression of a paralogous gene, it was shown how and when global regulatory mecha-

nisms caused compensation. The example showed that the constraints underpinning the growth laws can

also cause global negative feedbacks on proteins affecting growth.

8.5 Concluding remarks

In this chapter, we delved into the intricate world of coarse-grained modeling of microbial growth. We began

by describing key experimental evidence that has led to what is known as bacterial growth laws. These laws

are derived from growth measurements and are deemed to be conserved for various organisms. We then

mathematically described the fundamental assumptions necessary to model bacterial growth. Using basic

modeling systems, we showed how to analyze such a system and derive fundamental conclusions for bacte-

rial growth. These models reproduce the bacterial growth laws, providing a link between theoretical models

and experimental results. Finally, we introduced a more complex model that includes various cell processes

such as translation, transcription, and the cellular growth process. Overall, this chapter highlights the power

of coarse-grained modeling in unraveling the complexities of microbial growth and offers a framework for

exploring a wide range of biological questions.

While this chapter lays a foundation for research on various topics in biology, many areas remain to be ex-

plored. For example, the effects of changing environmental conditions such as dynamic changes in nutrient

availability, acidity, or temperature are not discussed. Furthermore, various cellular processes such as pro-

tein degradation and membrane assembly are not covered in the chapter. Including these processes in a

coarse-grained model could potentially lead to the discovery of other growth laws.

In the next chapter, you will explore models that further refine the biological cell and bridge between coarse-

grained models and genome-scale models. These models incorporate several of the assumptions discussed

here but utilize more knowledge of the metabolic network.

Recommended readings

Growth laws in microbiology:
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the quantitative modeling of microbial growth.
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composition during balanced growth of Salmonella typhimurium, Microbiology, 1958 [252]. Classical article
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◦ Scott, Gunderson, Mateescu, Zhang, and Hwa. Interdependence of cell growth and gene expression: ori-

gins and consequences, Science, 2010 [254]. Article that renewed interest in growth laws for the quantita-
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coarse-grained models.

◦ Weiße et al., Mechanistic links between cellular trade-offs, gene expression, and growth, Proceedings of the

National Academy of Sciences of the USA, 2015 [272]. Article describing how growth laws for ribosomes can

be recovered from coarse-grained model of microbial growth.

◦ Basan et al., Overflow metabolism in Escherichia coli results from efficient proteome allocation, Nature,
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◦ Zavřel et al., Quantitative insights into the cyanobacterial cell economy, eLife, 2019 [278]. Example of the use

of coarse-grained models for explaining physiological principles underlying growth of less-studied (photo-

synthetic) microorganisms.

Problems

Problem 8.1 A linear chain model A system is composed of a set of 2 linear reactions: nutrient -> metabolite

x1 -> metabolite x2 -> biomass. Using the same approximations as in example 1, solve for the growth rate.

What would be the solution for a system composed of N reactions? Show that the least efficient reaction

determines the growth rate.

Problem 8.2 A linear chain model with Michaelis-Menten rate laws Solve example 1 when the nutrients are

not available in excess. Use Michaelis-Menten relations for both reactions. First, derive the concentration of

metabolite x as function of catabolic sector proteome size. What is the minimal size for the catabolic sector?

What happens if the catabolic sector is smaller than that? Next, determine the proteome allocation that

maximizes the growth rate.

Problem 8.3 A linear chainmodel withMichaelis-Menten rate law for the catabolic reaction Solve Example

2 when the nutrients are not available in excess. Use Michaelis-Menten relations for the catabolic reaction.

At what point does the metabolic system switch to use the other nutrient source?

Problem 8.4 A simple model with allosteric regulation of catabolic reaction([279]): A metabolic system

is growing in an environment with one nutrient available. The system allosterically regulates its catabolic

reaction according to the concentration of metabolite x. Assume Michaelis-Menten kinetics for all reactions.

What is the growth rate as function of catabolic sector proteome size? This is a complex solution, don’t solve it
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analytically and plot a numerical solutions instead. What is the catabolic sector proteome size thatmaximizes

the growth rate?

Problem8.5 Growth on a single nutrient that is degraded to both energy and biomass precursors Consider

the model from section 1.3, example 3. Solve the model for the nutrient uptake rate as function of growth

rate for:

1. Growth rates above the onset of acetate secretion.

2. Growth rates below the onset of acetate secretion.

Problem 8.6 Simulating models numerically Simple coarse-grained models can generally be solved analyti-

cally. However, for models with a higher level of granularity, like the one presented in this section, reaching

an analytical solution to the model equations is highly complex. Computational approaches that allow nu-

merically solving high-dimensional systems are of great value.

1. With the help of the provided code and following the detailed description of the ODE system in the SI of

[272], implement and solve the system of ODEs. Using this implementation, reproduce Monod’s law, as

seen in the inset of Figure 8.1.

2. The nutrient composition of the growth media is the main driver of increasing growth rates. Simulate the

model to steady state for different values of nutrient qualities. What model species are most impacted by

an increase in nutrient quality?

3. As seen in Figure 8.1, the addition of a drug that inhibits protein synthesis results in an upregulation of

the ribosomal fraction φR. Reproduce Figure 8.1. How do the observed results relate to your answer in

question 2?
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Chapter 9

Large resource allocation models of

cells

Hugo Dourado, Anne Goelzer, Pranas Grigaitis, Wolfram Liebermeister, and Elad Noor

Chapter overview

◦ Resource balance analysis models are cell models based on three basic constraints formulated at

genome-scale: stationary fluxes (balancing production and consumption fluxes, uptake and excre-

tion fluxes, as well as compound dilution by cell growth); flux coupling constraints relating fluxes to

the amounts of catalyzing enzymes (or other machines); and density constraints, limiting molecule

amounts in cell compartments, or molecule concentrations.

◦ These constraints narrow down the solution space predicted by FBA towards more physiological so-

lutions

◦ Large resource allocation models build on the same principles, and have been implemented as dif-

ferent variations (RBA models, ME-models, and pc-models).

9.1 Overcoming the limitations of FBA in predicting phenotypes

In the previous chapters, we have discussed two principal approaches to modeling biochemical systems. To

keep the number of variables low, but with intention of well-parametrizing the model, one can construct

small, coarse-grained models of growing cells (Chapter 8). On the contrary, Flux Balance Analysis (FBA) mod-

els can accommodate a very large number of variables (Chapter 5), making them an excellent choice tomodel

metabolic networks at genome-scale.

The small, coarse-grained models are a very suitable platform for investigation of base principles of life.

Likely the best example to illustrate this is the work of DouweMolenaar and co. [280], where a self-replicator

model was used to proposed that the low-yield, or substrate-inefficient (”wasteful”) metabolic strategies are

adopted as a consequence of these pathways being more efficient in terms of protein use, compared to the

high-yield pathways. In other terms, the growth output of the ”wasteful” strategy per unit protein is higher

than the ”efficient” one. Thus we now believe that fermentation of glucose, often called under an umbrella

term ”overflow metabolism”, will take place in many organisms if the substrate in their environments is

abundant enough.

However, we know that the chemistry of life is extremely diverse, and even such a familiar concept as fer-

135
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mentation can become complicated. Take three representatives of the tree of life: a bacterium Escherichia

coli, budding yeast Saccharomyces cerevisiae, and mammalian, say, human cells. All three exhibit overflow

metabolism - even when enough oxygen is available in the environment - yet the underlying biochemistry

tells us that E. coli ferments glucose into acetic acid, S. cerevisiae - into ethanol, and human cells - into lactate.

Bringing more contrasts on the table, there might be extreme differences in a single taxon already: some

yeasts, for instance, will never produce ethanol when oxygen is present; some of them have lost the ability

to do respiration at all over the course of evolution. This might sound like playing a trivia game, but in many

cases, meaningful modeling of complex biological systems requires both taking and making biochemical in-

sight. Therefore, when we aim not only to uncover the underlying principles, but also to learn biochemistry,

FBA models have an upper hand.

Yet we already know that the predictions of canonical FBAmodels are limited to substrate-efficient metabolic

states. Continuing with the example of the overflow metabolism, FBA models would predict E. coli or S.

cerevisiae to respire onminimalmediumwith glucose as themain carbon source – irregardless of themaximal

flux of glucose into the cell. Thus the prediction of substrate-inefficient metabolism using FBA over the years

used to rely on introducing additional, mainly empirical (e.g. maximal oxygen uptake), constraints onto the

system [207]. Moreover, we can impose only linear constraints in FBA models, and this greatly reduces our

options.

Overall, we frequently seek to take the advantageous points of both ”schools of modeling”, however, this is

where we need to start doing compromises. In the ideal world, the self-replicator models from the Chap-

ter 8 would have to be extended with explicit kinetics and thermodynamic constraints to obtain a detailed

cell model. However, the number of variables would increase tremendously, and non-linear optimization is

very inefficient already past even small systems. On the contrary, we could try to advance on the FBA-type

models by introducing the concepts of protein economy (Chapter 7) at genome-scale. Following our best

understanding, these, again, would constitute non-linear relationships (e.g. enzyme kinetics), yet large-scale

non-linear programming is not a viable option either. Thus simplifications are currently necessary to keep

linearity (and convexity) to solve optimization problems for large-scale models.

So can we make large-scale models tractable? If we linearize all formulae, then instead of a biconvex or con-

vex/concave problem, we obtain a linear problem (a bit like FBA); more precisely, a system of linear equalities

and inequalities that define a set of feasible states. This set is a polytope, and linear optimality problems on

this set can be solved easily. More specifically, to model metabolism in a growing cell, we need to consider

dilution of metabolites in the growing cell volume, or simply - the growth rate µ of the cell.

9.1.1 Why growth rate?

Under the assumption of the balanced growth, the number of copies of every metabolite in the cell is dou-

bled between two consecutive cell divisions. If metabolites are described by their concentration, dilution

by growth can be effectively modeled of every metabolite by a ”consuming reaction”, with a flux given by

vdil = µ c, the compound concentration multiplied by the growth rate. By adding these hypothetical dilution

reactions to the metabolic network, we obtain a new stationarity condition N v = µ c that connects the vec-

tors of fluxes and compound concentrations, and in which the growth rate µ appears as a parameter. For

each choice of the parameter µ, we can ask whether a feasible steady growth state – i.e. a feasible combi-

nation of v and c exists. Furthermore, the feasible combinations (µ,v, c) form a convex set, with possible

solutions (v, c) for low values of µ and no solutions above a critical value µmax, the maximal possible growth

rate for our model. Finding this critical value as well as the corresponding optimal fluxes v and compound

concentrations c is relatively easy, and can be done by bisection: solving a series of Linear Programming

problems (checking for potential solutions (v, c) for different values of µ).
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9.1.2 Replacing complex kinetics by catalytic constraints

The main downside of this approach is that all relationships betweenmodels variables need to be linearized.

This concerns, most importantly, all catalyzed processes, in which we assume a linear dependence between

catalyzed flux and catalyst (enzyme or machine) concentration, but ignore the dependence on the concen-

trations of substrates, products, cofactors, or additional regulators. What does this mean in practice? As

we know from Chapter 3, typical enzymatic rate laws have the form v = e k(c): the rate v is proportional

to enzyme level e and enzyme efficiency k, which is given by a kinetic rate law k(c), a nonlinear function of

the metabolite concentrations. Depending on the context, k is also called catalytic rate or apparent kcat. The

kinetic rate laws k(c) have typical shapes, as described in Chapter 3.

To linearize the expression for v, while keeping the dependence on e, we need to replace the relationship k =
v/e by a fixed number, and so k becomes a model parameter. If the metabolite concentrations were known

(experimentally, or from kinetic models under optimality assumptions, see Chapter 6), the value of k could

be computed. Otherwise, it can also be determined experimentally, bymeasuring v and e and setting k = v/e

[31], which is feasible for a limited number of enzymes, however. Obviously, in reality, neither c nor k will be
fixed and given, but for our linearizedmodel, we need to assume this. This holds both formetabolic reactions

(with enzymes as catalysts) and for macromolecular reactions (with molecular machines as catalysts). Under

this assumption, we can replace all kinetic constraints by two linear constraints on the enzyme. If we consider

coefficients k and k
′
to approximate enzyme kinetics in the forward and backward direction, respectively,

the flux the enzyme e catalyzes should satisfy −e k
′

≤ v ≤ e k. We set k
′

= 0 for irreversible reactions, and,

for simplicity reasons, we usually assume k = k
′
for reversible reactions, unless kinetic measurements are

available that suggest otherwise. This relationship can be formulated as enzyme capacity constraints in order

to replace the kinetic rate laws in the FBA model. By writing down such constraints for each enzyme in the

model, we can couple the metabolic fluxes with the demand for enzymes, needed to operate these fluxes.

9.1.3 Overview of existing FBA extensions

The linearization approach described above can be successfully used for very large models, making the

genome-scale models of resource allocation possible. What we commonly refer to as ”resource allocation

models” therefore formalize the mathematical relationships defining the interactions and allocation of re-

sources between the cellular processes to describe optimal resource allocation using constraint-based mod-

els. All these relationships take the form of linear, growth-rate dependent equalities and inequalities, and,

when linearized, form a convex feasibility problem [281, 282, 283].

By itself, the idea of constrainingmetabolicmodels to represent limitedmetabolic capacity of cells is not a new

one. There are two ways to approach this budgeting problem: ”protein budgeting”, where a fixed amount

of protein needs to be partitioned in the optimal manner (maximizing growth), and ”resource budgeting”,

where models include both the protein budgeting and the descriptions of demands for protein synthesis.

However, ”protein budgeting” problems assume that investments in protein production follow the budget,

and not vice versa.

Some extensions of FBA account for extra empirical constraints on the total concentration of metabolic en-

zymes (FBAwithmolecular crowding, or FBAwMC [284]), or on proteome sectors (Constrained-Allocation FBA,

or CAFBA [285]). While these can predict metabolic states more reliably, the empirical constraints come as

model assumptions and thus cannot be understood by the models themselves. In these models, the pri-

mary assumption is that the cell phenotype is obtained by genetic regulations, and the main goal and utility

of genetic regulation can be interpreted as ways of saving resources. Thus in many cases when we predict

cell phenotype maximizing growth, we find predictions in good agreement with the experimental observa-

tions. Therefore, resource allocation models extend and embed the ideas of proteome partitioning beyond

frameworks like CAFBA and GECKO [286], or representing metabolic capacity limitations beyond FBAwMC.

Currently, there are three main implementations of large-scale resource allocation models: Resource Bal-
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ance Analysis (RBA) [287], Models of Metabolism and Macromolecular Expression (ME-models) [288] and

proteome-constrained models (pc-models) [59]. All these implementations are formalized as LP feasibility

problems at fixed growth rate. Originally, ME-models were considered as an extension of M-models, by

including predictions for mRNA, protein, and ribosome levels. Importantly, they do not consider density con-

straints that, for instance, RBA does. Therefore, limitations on the capacity of exchange fluxes (as in FBA) are

necessary to obtain a solution.

9.2 Types of constraints in resource allocation models

As indicated above, fine-grained models of resource allocation build on the genome-scale metabolic models

(GEMs) to encompass all the reactions that potentially could happen in a metabolic network. The technical

advance, when constructing such models, is to impose sets of additional constraints onto GEMs to couple

the metabolic fluxes with investment into metabolic pathways (production of enzymes). To the date, dif-

ferent implementations of this concept were proposed to predict optimal resource allocation in different

microorganisms [289].

The general description of these constraints in fact is the same as for small, coarse-grained self-replicator

models, only the number of individual constraints increases. Moreover, every of the constraints described

can be split into a number of constraints, considering only a subset of fluxes in the model (e.g., fluxes taking

place in a certain cell compartment). Although the precise formulations vary, resource allocation models

build on three principal types of constraints (Figure 9.1):

(1) Mass-conservation constraints

(2) Flux coupling constraints

(3) Compartment capacity, or protein density, constraints

Alongside these three major classes there is another set of constraints, which we could call ”environment”

constraints - these correspond to, e.g. the composition of growth medium, biomass composition at at given

growth rate µ, etc. They are implemented by setting target values for amounts and/or fluxes defining a viable

cell in a given (or several) environmental conditions, but they are not structural constraints. These constraints

usually are added ad hoc and do not need to bear any functional meaning per se. We will now expand on the

three types of constraints used in resource allocationmodels; note that the description is not exhaustive and

peculiarities may vary among different formulations.

9.2.1 Mass-conservation constraints

Themass-conservation constraints define themetabolic network (stoichiometry and relation between fluxes).

The initial building blocks of these extendedmodels are GEMs, and thus themetabolic network stoichiometry

is already there; what remains to be defined are the protein turnover processes. We consider 4 types of

protein turnover reactions in fine-grained resource allocationmodels: protein synthesis, folding, degradation

and dilution-by-growth. So, for every protein present in such a model, we add these four reactions: two of

them, translation and degradation, include the stoichiometry of amino acids needed for its translation and

released during degradation based on the protein sequence. The reactions which represent either protein

folding modeled as the conversion of the ”unfolded” protein species into the ”folded” ones, and the dilution-

by-growth is modeled as a sink for the ”folded” protein species (”folded” → ∅).

9.2.2 Flux coupling constraints

Next, the flux coupling constraints couple the metabolic fluxes with protein usage: usually, the usage scales

with the catalytic turnover value kcat of the enzyme. In this step we have to collect the kinetic informa-

tion (in most cases, kcat values), which are used as model parameters. We establish the coupling between

fluxes and protein synthesis by setting v = kcat e η, where e is the enzyme concentration and 0 < η ≤ 1
is an efficiency term summarizing the effects of reaction thermodynamics, enzyme saturation, and possi-
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Figure 9.1: Overview of biological components and mathematical constraints in large-scale resource alloca-
tion models. Here, Resource Balance Analysis (RBA) model is taken as an example. (A) Typically, an RBA
model describes metabolisms and macromolecule production in a growing cell (yellow blocks). Precursors
from metabolism are needed to produce macromolecules, and some macromolecules serve as enzymes to
catalyzemetabolic reactions. In addition, macromolecules are diluted and are localized in cell compartments.
(B) Sets of mathematical constraints. The variables and processes described by an RBA model must satisfy
a number of constraints, include mass-balance constraints (between production, degradation, and dilution
of compounds); capacity constraints (relating process velocities to the concentrations of catalysts); density
constraints (on the total amount of compounds in a cell compartment); and possibly empirical physiological
constraints on any types of ”target variables”, to ensure realistic models.

bly small-molecule regulation. The value for η can be either assumed or fitted from experimental data, and

when η = 1, the enzyme is considered to operate at its maximal rate. Coupling constraints are introduced to

couple both (i) themetabolic reactions with enzyme usage (as described above) and (ii) protein turnover reac-

tions with the respective macromolecular machinery (e.g. sum demand of ribosomes for protein translation,

vtranslation = [Ribosome] × kcat,ribosome). The sheer number of the kinetic parameters needed for formulating

the coupling constraints in the fine-grained models requires the modeller to consider different assumptions

and simplifications when building and parameterizing these models, as briefly discussed below.

The number of processes described in a fine-grained manner directly translates to the number of reactions

and metabolites in the model. For instance, transcription is modelled explicitly in the ME-models [288]. The

modellers’ decision is key here: under assumption that transcription and translation form a linear pathway

with fixed scaling factors (i.e. there is a fixed ratio of peptides translated per mRNA transcribed), the flux

through mRNA translation reaction can be computed post-optimization based on the flux through the pro-

tein translation reaction. Explicit modelling of transcription would require describing processes of mRNA

transcription, processing, export from nucleus, and then cytosolic degradation after the mRNA is translated

– for each of the transcripts, with precise stoichiometry and a new set of coupling constraints.

The next issue is kinetic parametrization of these fine-grained models. We currently can use only very sim-
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Box 9.A : Protein abundance versus concentration in fine-grained resource allocation models

Here we would like to include a relevant note for interpretation of the output of the fine-grained resource allocation

models. Both the classical FBA and these extensions do not consider ”metabolite concentration” as a concept: op-

timization variables are all fluxes. Frameworks discussed in this chapter model protein synthesis from amino acids

and energy equivalents explicitly, with a typical flux dimension of mmol gDW −1 h−1 (as for any other fluxes). To

compute the amount of protein that has to be produced in the steady-state growth, we should consider the flux

balance for the protein e: vsynthesis,e = vdegradation,e + vdilution,e, or, rewritten with the respective parameters,

vsynthesis,e = (kdeg,e + µ) e. Here, kdeg,e is the degradation rate for the protein e, and µ is the specific growth (=

dilution-by-growth) rate. The [e] in the rewritten equation holds dimension of mmol gDW−1, which is protein abun-

dance, rather than concentration.

The predicted amount of protein in cells can be compared to experimental measurements in two ways. First op-

tion is to convert abundance to concentration using the relationship between the cell volume and dry weight (e.g.

VgDW = 1.7 mL gDW −1 in Saccharomyces cerevisiae, [8]). Alternatively, proteome mass fractions are a popular unit

in label-free mass spectrometry-based protein quantification, a popular method in quantitative microbiology. Re-

spectively, predicted proteome mass fractions can be inferred by converting protein abundance in mmol to g, and

scaling to the protein content in dry cell biomass. Here, it is important to consider the conversion factors (protein

content in dry biomass). E. colimaintains rather constant protein content in dry weight across growth rates (ca. 0.55

(g protein) gDW −1) [291, 292]. On the contrary, the protein content is known to vary in S. cerevisiae as a function of

growth rate [8].

plified kinetics in the models (flux coupling v = kcat e η), and simplify such factors as enzyme saturation and

thermodynamic driving force into a single value of factor η. Two approaches are used to deal with this, as

a large fraction of parameters are not even available. First, condition-dependent kinetic parameters (”ap-

parent catalytic constants”, kapp) are fitted from experimental (mostly quantitative proteomics) data (setting

keff = kcat α, where 0 < α ≤ 1) with a value α chosen to match predicted enzyme abundance and experi-

mental measurements. Otherwise, for the enzymes withmeasured kcat values, we can assume that enzymes

work at their maximal rate, i.e. the saturation function η = 1. Then the model computes the minimal pro-

tein requirement to sustain the flux through the metabolic reactions. The comparison of minimal predicted

vs. observed protein abundance can represent the ”apparent saturation”, or ”overcapacity” of enzymes. For

instance, it is common in yeast S. cerevisiae that the flux and not protein expression varies across conditions,

and the relationship between predicted and measured expression can suggest the nature of the observed

protein expression [290].

9.2.3 Protein density constraints

The final layer of information in the fine-grained resource allocation models is a set of protein density con-

straints. These constraints describe the [upper] limit of cellular process(es), e.g. maximal protein capacity of

a compartment. These constraints are formulated as weighted sums of protein abundance, and usual weigh-

ing multipliers are proportional to the molecular weight of the protein. Usually, the density constraints are

expressed in terms of (usually maximal) mass, area, and volume of the compartment (e.g. ”what is the maxi-

mal mass themitochondrial proteins can take up in gDW of cells?”). Based on the biological interpretation of

the constraints, we formulate the weighing multipliers to represent either of the metrics (mass/area/volume)

that every protein occupies.

The capacity constraints can be both equality and inequality constraints: more frequent are the latter (usually

defining the ”upper limit” of, e.g. amount of protein targeted tomitochondria). However, some cell properties

should be described through equality constraints: one of these is the protein density of biomass, defining

the ”target” protein translation per gram dry cell biomass.
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9.2.4 Interpreting the consequences of the additional constraints

Wehave briefly discussedwhat types of additional constraints need to be implemented to extend FBAmodels

to account for cellular resource allocation, and now let us recap onwhat these sets of rulesmean in biological

terms. The constraints described above shall couple the metabolic fluxes with the production of enzymes

that operate these functions, so the model has to produce amino acids and generate ATP in order to use

them for protein translation. Moreover, the enzyme demand will be coupled with the production of the

macromolecular machines required to produce, fold, and degrade these enzymes (ribosomes, chaperones,

and proteases, respectively), requiring the same building blocks (see Chapter 2). These constraints therefore

formalize a self-replicating molecular system in balanced growth subject to different structural constraints:

1. the metabolic network has to produce all metabolic precursors necessary for biomass production and

mass conservationmust hold for all intracellularmolecule species - i.e. intracellularmetabolites andmolec-

ular machines.

2. the capacity of each type of molecular machine must be sufficient to ensure its function, i.e. to catalyze

chemical conversions at a sufficient rate;

3. the intracellular density of compartments and the occupancy of membranes must not exceed the defined

limits.

As highlighted before, the biological interpretation of the additional constraints discussed above is rather

universal for different implementations of resource allocation models, with minor deviations in terminology

and/or formulation. To illustrate how resource allocation models are built from conventional GEMs, and

how the respective models are formalized in mathematical terms, in the following we will consider one of the

popular formulations of resource allocation models in more depth.

9.3 Resource Balance Analysis (RBA) models

Resource Balance Analysis (RBA) has been developed as (and is considered to be) a flexible and generic mod-

eling framework which describes the functioning of an organism using the most relevant set of linear equal-

ity and inequality constraints, described in general terms in Section 9.2. As a consequence, an RBA model

includes all known metabolic reactions coupled to relevant cell processes with major protein investments

(production of biomass precursors; including, but not limited to protein translation, protein folding, protein

transmembrane transport, and protein degradation). Where applicable, circumstantial information can be

included into the model to establish the dependency of enzyme activity on metal ions, vitamins, and/or co-

factors. Which metabolic reactions and cell processes are regarded as relevant may vary between organisms

and is a modeler’s choice.

9.3.1 Building a draft RBA model

The software package RBApy [293] contains all the routines needed to build and simulate RBA models. In

order to build a new RBA model, it takes a genome-scale metabolic network in SBML format [294] as an

input, together with additional information to formulate the additional constraints described in the previous

section. Different types of biological data, are needed to build an RBA model for an organism:

◦ Amino acid sequences for metabolic enzymes and macromolecular machines (e.g. ribosomes and chap-

erones),

◦ If applicable, stoichiometry of known cofactors (e.g. metal ions),

◦ Efficiencies of metabolic enzymes,

◦ Molecular weights and localization of proteins (for density constraints),

◦ Any empirical constraints on concentrations or fluxes (”targets”, see previous section).

The software routine first extends the input GEM to include the description of protein turnover in the cell.

The software extracts information from the input files on (i) protein sequences and cofactors, (ii) the subunit
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stoichiometry of protein complexes, and (iii) protein localization (using information from public databases

such as UniProt). Using this information, reactions corresponding to protein synthesis, folding, degradation,

and dilution by growth are added. Finally, the software maps enzymes to the reactions they catalyze and to

the proteins they consist of, and the output of the routine is a draft (uncalibrated) RBA model.

9.3.2 Mathematical description of a RBA problem

Notation. Below AT refers to the transpose of the matrix A. Rn
>0

∆=
{
x ∈ Rn |xi > 0 for all i ∈ {1, · · · , n}

}
,

R>0
∆= R1

>0, Rn
≥0

∆= {x ∈ Rn |xi ≥ 0 for all i ∈ {1, · · · , n}} and R≥0
∆= R1

≥0.

In a standard RBAmodel, we consider balanced growth (see Chapter ??), that is, the average state of a cell in a

cell bacterial population growing exponentially at the specific (constant) growth rate µ ≥ 0, i.e. the amount of

produced biomass per biomass per cell per unit of time. Our simulated average cell is composed of different

molecule species:

1. ny types of molecular machines, which can be subdivided further into ne enzymes and transporters in-

volved in the metabolic network E ∆= (E1, . . . ,Ene ) at the concentrations e ∆= (e1, . . . , ene )T and metabolic

fluxes ν
∆= (ν1, . . . , νne )T ; and nm macromolecularmachinesM ∆= (M1, . . . ,Mnm ) involved in non-metabolic

cellular processes, such as the translation apparatus, at the concentrations m ∆= (m1, . . . ,mnm )T ;

2. np proteins P
∆= {P1, . . . ,Pnp } belonging to unspecified cellular processes. p ∆= (p1, . . . , pnp )T denotes the

set of concentrations of P;
3. ns intracellular and mass-balanced metabolites S ∆= (S1, . . . , Sns ). Within the set S, we distinguish a sub-

set B ∆= (B1, . . . ,Bnb ) of abundant metabolites which have fixed growth-independent concentrations b̄ ∆=
(b̄1, . . . , b̄nb )T (and usually coincide with biomass macro-components such as DNA, cell wall or plasmic

membrane). We also consider a set of extracellular metabolites Sext
∆= (Sext,1, . . . , Sext,next ) of concentra-

tions sext
∆= (sext,1, . . . , sext,next )T that are not mass-balanced.

Finally, let us introduce the vector yT ∆= (eT ,mT ) of concentrations of molecular machines of size ny. Typical

units of concentrations e, m and p are in millimoles per gram of cell dry weight, and fluxes ν in millimoles

per gram of cell dry weight per unit of time.

For a given cell growth rate µ ≥ 0, the RBA optimization problem (named Prba(µ)) can be formalized mathe-

matically as follows.

For a fixed vector of concentrations p ∈ RNnp

>0 and the given growth rate µ ≥ 0,

find possible cell states y ∈ Rny

≥0, ν ∈ Rne ,

subject to

(C1) −Ων + µ(CS
Y y + CS

B b̄ + CS
P p) = 0

(C2a) µ(CM
Y y + CM

P p) − KT y ≤ 0

(C2b) −K
′
E y ≤ ν ≤ KE y

(C3) CD
Y y + CD

P p − d̄ ≤ 0

where all the inequalities are defined component-wise and:

◦ Ω is the stoichiometry matrix of the metabolic network of size ns × ne, where Ωij corresponds to the stoi-

chiometry of metabolite Si in the j-th enzymatic reaction;

◦ CS
Y (resp. CS

P) is an ns ny (resp. ns np) matrix where each coefficient CS
Yij corresponds to the number of

metabolite Si consumed (or produced) for the synthesis of one machine Yj (resp. Pj); CS
Yij is then positive,

negative or null if Si is produced, consumedor not involved in the the synthesis of onemachineYj (resp.Pj);

◦ CS
B is an ns × nb matrix in which each coefficient CS

Bij corresponds to a metabolite Si consumed (or pro-

duced) for the synthesis of one Bj;
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◦ KT (KE and K
′
E, respectively) are matrices of size nm × ny (ne × ny , respectively) in which each coefficient

kTi (kEi and k
′
Ei , respectively) is positive and corresponds to the efficiency ofmolecularmachineMi , i.e. the

rate of the process per amount of the catalyzing molecular machine, (the efficiency of the enzyme Ei in

forward and backward sense, respectively);

◦ CM
Y (resp. CM

P ) is an nm × ny (resp. nm × np) matrix in which each coefficient CM
Yij typically corresponds to

the length in amino acids of the machine Yj (resp. Pj). In some cases (for instance for the constraints on

protein chaperoning), the length in amino acids can be multiplied by a coefficient, such as the fraction of

the whole proteome that necessitates chaperoning;

◦ d̄ is a vector of size nc, where nc is the number of compartments (compartment membrane and/or com-

partment interior for which density constraints are considered. d̄i is the density ofmolecular entities within

the volume or surface area. Densities are typically expressed as a number of amino-acid residues by vol-

ume or surface area.

◦ CD
Y (resp. CD

P ) is an nc ×Ny (resp. nc ×np) matrix in which each coefficient CD
Yij corresponds to the density

of one machine Yj (resp. Pj) in the compartment i. By construction, we have one unique localization per

machine.

For given growth rate and medium composition, all equalities and inequalities in our RBA problem Prba(µ) is
linear in the decision variables (y, ν) and is proven to be convex [281, 283]. At given µ, Prba(µ) is a feasibility
optimization problem, where constraints (C1-C3) define the feasibility domain. The feasibility domain can be

empty or non-empty. If there exists a solution (y, ν) to Prba(µ) -i.e. the feasibility domain is non-empty-, then

there exists a feasible resource distribution compatible with the given growth rate. In other words, the cell

can grow at this growth rate value. By construction, the feasibility domain of Prba(µ) corresponds to the set

of all possible phenotypes of the cell at a growth rate µ ≥ 0.

We conclude this with some remarks:

1. In practice, the vector b̄ contains non-zero values only for the concentrations of macro-components such

as DNA, cell wall, and lipidmembranes, and for a few set ofmetabolites. These values are usually extracted

from the biomass formation reaction used in FBA models (see Chapter 5).

2. To model reversible enzymes, we introduced two diagonal matrices containing the enzyme efficiencies,

i.e. KE and K
′
E, describing the capacity constraints of enzymes in both directions. If an enzyme Ei is

considered irreversible, k′
Ei is set to 0.

3. In [282, 295], an RBA model was built for Bacillus subtilis. It integrates two macromolecular processes in

constraint C2a, the translation and chaperoning of proteins, and two density constraints, the limitation

of the cytosolic density and of the membrane occupancy. An RBA model can be refined by integrating for

instance other cellular processes andmolecularmachines, such as the transcriptionmachinery, the protein

secretion apparatus (see [295, 293]), or molecule turnover [296], as well as other types of constraints.

9.3.3 Simulation and analysis of RBA models

How to incorporate the medium composition. We represent the medium composition in two aspects,

namely (i) qualitatively, by allowing exchange of the medium metabolites in the model (UBExchange,n > 0).
Note that somemetabolites, although not explicitly represented by the growth media, should also adhere to

this rule (e.g. oxygen, water, and protons). The (ii) quantitative composition of the growth medium is deter-

mined by extracellular concentrations, which, in turn, dictate the efficiencies of metabolic transporters via

Michaelis-Menten-like rate laws (as nonlinear k(c) functions; see section 9.1.1). For an extracellular nutrient

Sext,i with concentration sext,i ≥ 0, the efficiency of the corresponding metabolic transporter(s) is given by

kE(sext,i) = kcatsext,i
Km+sext,i

, with parameters kcat and Km for the turnover number and the affinity of the trans-

porter, respectively.

Calibration of model parameters. An RBA model may contain a high number of model parameters. First,

the global parameters to be estimated are related to cell composition: (i) the concentrations of bulk biomass

components b̄, which is usually deduced from the biomass reaction of the genome-scale metabolic network
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of the organism. Using quantitative proteomics data [297], one can infer (ii) the protein densities in different

compartments (d̄), and (iii) the abundance of housekeeping (unspecified) proteins (p).

The next set of parameters we need to collect concerns the efficiencies of molecular machines (KE, K
′
E,KT).

As we learned in Chapters 2 and 3, the rate of an enzymatic reaction v depends on the enzyme’s efficiency or

”apparent catalytic rate”, given by v = e kapp, with kapp = f(c) = k+
cat · ηrev(c) · ηsat(c) < k+

cat. The kapp values

are always below the kcat value, but may vary from state to state depending on metabolite concentrations.

Since internal metabolite concentrations c are unknown and difficult tomeasure at genome-scale, we cannot

estimate kapp from the explicit kinetic law f(c). We need to obtain these kapp parameters empirically, for

example by measuring the flux v and the protein abundance e in one condition and taking their ratio.

Hence, for a given environmental condition, efficiency parameters can be estimated using quantitative pro-

teomics in combination with fluxomics [295] or FBA to estimate the flux distribution [293]. To account for

variable enzyme efficiencies, one may make the simplifying assumption that enzyme efficiencies depend

mostly on growth rate. By estimating the enzyme efficiencies at different growth rates and interpolating be-

tween them, one obtains empirical relationships between efficiency and the growth rate [295] to be used in

Prba(µ). For instance, several estimates of enzymatic efficiencies obtained in contrasting growth conditions

will provide a relationship KE(µ) instead of a constant KE value.

Obtaining the RBA solution for a given parameter set. For an RBA problem with given parameters, there

exists a maximal growth rate µ∗ ≥ 0, such that for any µ, Prba(µ) is feasible if and only if µ ≤ µ∗ [281, 283].

For a given medium composition, the maximal growth rate µ∗ can computed by using a bisection algorithm,

in which a series of LP problems are solved to narrow down the exact growth rate at which the problem

becomes infeasible. A real-life example would be simulating growth in glucose-limited chemostat cultures

under different dilution ratesD. With increasingD, the glucose availability increases, and a set of n different

glucose uptake rates qGlc (qGlc,1, qGlc,2, . . . , qGlc, n) can be subjected to an RBA model to obtain a set of

optimal metabolic states (µ∗
1 , µ

∗
2 , . . . , µ

∗
n).

Together with themaximal feasible growth rate one obtains the optimal cell configurationmaximizing growth

(µ∗,y∗, ν∗). The principle of optimal performance, in this case, that a cell phenotype shouldmaximize growth

rate, in fact, coincides with the principle of parsimonious resource allocation between cellular processes.

Exploration of the feasibility domain. Although RBA models inherently reduce the solution space due to

principle of parsimonious resource allocation, the solutions obtained might still contain considerable flux

variability. In the same vein as Flux Variability Analysis ([298], see Chapter 5), the feasibility domain can be

explored at optimal (µ∗) or sub-optimal (µ ≤ µ∗) growth rates. For one decision variable yi (resp. νi), two

LP problems are solved, where (i) constraints C1, C2 and C3 remain unchanged; (ii) the decision variable yi

(resp. νi) is maximized (LP 1) and minimized (LP 2). This operation is repeated for each decision variable to

obtain in fine the feasibility domain of all decision variables.

It was proven that the feasibility domain becomes smaller with increasing growth rate [281, 283], so it might

be worthwhile to probe the solution space at slow-growth regimes. In practice, at the optimum, the cell

configuration (µ∗,y∗, ν∗) is often unique. Indeed, non-unique solutions will exist if two alternative metabolic

pathways have exactly the same cost in resources. Since all enzymes have different amino acid sequences,

use different cofactors, are differently localization, etc, this is highly unlikely. A caricatural example of amodel

with non-unique solutions would be one in which an enzyme pool is arbitrarily split into two, and the two new

”enzyme species” are given different names, although they are physically exactly the same.

9.3.4 Use of -omics data-informed kapp vs. naïve kcat values

The three most popular formalisms of fine-grained resource allocation models, RBA [287], ME-models [288],

and pc-models [59], are variations on the same theme, as shown in the general discussion of the underlying

constraints in Section 9.2. Thus most of the ideas, concepts, and constraints are equivalent (or at least highly

similar) in their biological interpretation. Most of the differences arise from the approach taken towards
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parametrization of these models, and consequently, interpretation of model output. Here we will discuss an

example where implementations differ significantly.

In resource allocation models, two types of constraints define the proteome capacity at given growth rate µ,

the protein density vector b̄, and the fraction of housekeeping proteins p in the proteome. The remaining

proteome space is to be distributed among the proteins that are explicitly defined in the model. The RBA

formalism requires to formulate the function kapp(µ) (or KE(µ) in the RBA problem, Section 9.3.2) for every

protein in the model using -omics data (see Section 9.3.3), and the fraction of the ”housekeeping” proteins in

the proteome is determined from data for each simulation.

Conversely, the formulation of pc-models [59] allows more flexibility to the ”unspecified” protein UP , rep-

resented by a single artificial protein of average size and amino acid composition. Instead of setting a fixed

amount allocated to p which changes across conditions, one can determine theminimal fraction of this pro-

tein in proteome UPmin, and formulate the demand to produce UP as an inequality constraint UP ≥ UPmin.

Interestingly, in Saccharomyces cerevisiae, the proteome mass fraction occupied by non-metabolic proteins

is relatively constant under different glucose-limited conditions, as determined by quantitative proteomics

data (see [59], Fig. S1 for a plot).

This inequality constraint can be interpreted as the upper limit of available protein space, i.e., under fixed

protein density y + p = const., the proteome not occupied by y ∆= e + m is allocated to p. Since now the

model can distribute the proteome among explicitly-defined vs. unspecified protein freely, the procedure

of fitting kapp values is no longer a prerequisite. Using kcat values, collected from literature/databases/own

experimental measurements, rather than apparent kapp values, has consequences both for predictions and

the data use: first, the model prediction on the protein use is the ”demand” of the enzyme and is strictly

coupled to the flux through the enzyme (equivalent to the ECM1 layer of enzyme costs in the Enzyme Cost

Minimization method, Chapter 6). Second, the condition-dependent quantitative proteomics data can be

used as validation dataset for model predictions instead [299], as the predicted protein abundance is not

dependent on these datasets.

Using less data for parameter fitting and redirecting these data-rich datasets towards validation of model

prediction strengthens the argument for using resource allocation models for learning new biology, and

already has real-life examples. For instance, the discrepancies in predicted vs. observed levels of glycolytic

enzymes at glucose-scarce conditions in [59] inspired the same team to revisit the question whether the

high levels of glycolytic enzymes represent the optimal expression given very low thermodynamic driving

force and undersaturation of glycolytic enzymes. Comparing predictions of Enzyme Cost Minimizationmodels

with the results of the pc-model and experimental data, [290] proposed that S. cerevisiae expresses genuine

excess of glycolytic enzymes in glucose-limited conditions, meant to amply consume any glucose as soon as

it appears in the environment.

9.4 Biomass composition: both a constraint and a prediction

Cell models describe, among other things, what a cell is composed of (see Chapter 2). In FBA, specifically,

“biomass” refers to the proportions of different molecule classes (e.g. lipids, protein, DNA, RNA, cofactors)

in 1 gram dry weight of cells, and biomass composition needs to be defined prior to optimization. Since,

at least for FBA models of microbes, biomass production usually is the optimization objective, the literature

frequently refers to the mathematical description of cell composition as ”biomass objective function” (BOF).

In most cases, it is assumed that the proportions of biomass constituents are fixed, only the total production

(flux through BOF) changes.

For the predictions of FBAmodels to be reliable, a high-quality BOF is amust (see Chapter 5). Therefore, there

is a sustained effort to experimental determination biomass composition, even for E. coli [300]; for more

details on the usual experimental measurement methods, see the box in Chapter 2. In case supporting data

are available, the cell composition in the BOF may be described in a more fine-grained manner for individual
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molecule types (e.g., individual lipids, proteins, mRNA species, etc), or even in terms of atomic composition

(which in turn gives clues about the amounts of molecule classes). So, overall, the biomass composition acts

as a global, and one of the most stringent, constraint on the predicted solution space in FBA-based models.

However, cell compositionmay greatly vary not only between (micro-)organisms, or different cell types within

the same organism, but also for a the same organism/cell type across different conditions. Budding yeast

S. cerevisiae, for instance, exhibits rather linear relationships between the proportions of bulk biomass con-

stituents as a function of growth rate in glucose-limited cultures [1]. This variable composition often poses

a challenge for models: just like the uptake rates, the varying biomass composition reflects complex global

rearrangements of resources (for instance, different ribosome content at different growth rates [55] leads

to changes in RNA-to-protein ratio in the cells), and choices between metabolic strategies (e.g. depletion of

storage carbohydrates in glucose-fermenting S. cerevisiae [8]).

A main advance of resource allocation models, compared to conventional FBA models, is that only a part of

the biomass composition is given as input information just like in FBA (b̄ in RBA). The proteome composition,

on the contrary, becomes a genuine prediction of the optimization procedure. Unlike small self-replicator

models (see the models in Chapter 8), this prediction is very detailed, as the the predicted proteome com-

position is represented by the sum of individual protein abundances. Moreover, if proteins require trace

elements or cofactors (e.g. iron in iron-containing proteins) for function, the demand and contribution to the

overall biomass of these metabolites will also be predicted by the model (as it will vary with the expression

level of those proteins).

In theory, the abundance of biomass constituents other than proteome could be formulated in the way they

become predictions of the resource allocation models, rather than hardcoded inputs. Following the idea im-

plemented in the small, coarse-grained models of [280], one could set relationships between, e.g., protein

density in the cells and production of lipids (in [280], the biological interpretation was to maintain the sur-

face area-to-volume ratio constant). Currently this is not widely accepted as a standard practice, and, as we

can see from the example above, requires comprehensive experimental evidence, which, by itself, could be

interpreted still as ”input to the model”.

9.5 Concluding remarks

In this chapter, we have considered the resource allocation models, the extensions of FBA models which

couple metabolic networks with the macromolecular machinery that is required to operate them. These

models append existing FBA models with a large number of additional reactions, metabolites, constraints,

and model parameters, and, overall, offer a fine-grained representation of cellular economy. Many of ki-

netic parameters cannot be accurately measured for individual enzymes, and/or are condition-dependent.

The quantitative nature of the predictions of resource allocation (and the most cellular decisions/phenotype

shifts), however, are largely governed by global constraints: for instance, when the protein density g gDW−1

in a compartment reaches its upper limit (=that compartment is fully packed with protein), the cells switch

from fully-respiratory to respiro-fermentative growth (see [288] for E. coli, or [59] for S. cerevisiae). Unlike the

kinetic parameters, which are rather uncertain, these ”global” constraints are based on more trustworthy

evidence.

Thus these models still retain a reasonable compromise concerning numerical tractability and model com-

plexity, and can accurately predict complex adaptations, which cannot be capturedbyGEMs in an autonomous

way, i.e. without the addition of empirical constraints on fluxes. A successful use case of using resource allo-

cation models is dissecting iron economy, using RBA models: some proteins require iron for their function,

and the cell growth can become iron-limited in some conditions. The RBA model was used to predict cell

behavior under iron starvation, and the predictions suggested couple of scenarios, (i) the cell may increase

the import of iron, but also (ii) avoid using proteins that contain iron (and the pathways in which they operate)

[295, 301].
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As with the biomass composition, another aspect of resource allocation models (and FBA-based models in

general) with some duality in its interpretation is the objective function. Although its validity has been al-

ways debated since conception, maximization of instantaneous growth rate as the optimization objective

has shown incredible success in predictingmicrobial physiology. The current approach we apply for resource

allocationmodels still remains the FBA-based assumption that the desired cell phenotypes are the onesmax-

imizing instantaneous growth rate µ. This time, however, the µ is also a model variable, so we have to apply

bisection to obtain the optimal solution for each parameter set we use in resource allocation models.

It is becoming more and more evident that a lot of phenotypes (and microbial species!) we try to predict

divert from the principle maximization of instantaneous growth rate. For instance, the most experimental

microbial physiology research has been focused on carbon-limited (C-limited) cultures, especially the yeast

work in Delft, the Netherlands (see [1, 8] for examples). It seems that the maximization of growth rate work

very well in C-limited case, and the success of resource allocation models to quantitatively capture these

phenotypes [288, 295, 59] affirms this assumption. But is C-limitation descriptive of natural environments?

Let us continue the argument with yeasts as an example.

Yeasts in the wild, for instance, very frequently are subjected to feast-famine cycles in terms of carbon avail-

ability, and one could argue that these yeasts should act as glucose-limited in the famine phase of the cycle.

Yet the current opinion in the yeast ecology seems to see feast-famine cycles as a continuous, although

reduced, supply of carbon, and steer towards embracing a higher role of nitrogen (N) limitation in natural

environments instead. Currently, our understanding of N-limited growth is not very comprehensive, and

N-limitation is also a case where the instantaneous growth rate maximization breaks down: the pc-models

of S. cerevisiae cannot quantitatively capture the cell behavior under N-limited conditions (Pranas Grigaitis,

unpublished).

So the selection of a suitable optimization objective can be a choice followed by huge success, but also, the

optimal solution might end up contradicting the existing knowledge. How can we try to mitigate that? One

huge advance of resource allocation models is that at any condition, the available solution space is greatly

reduced, compared to conventional FBA. We can argue that we have introduced a whole new set, a whole

new type of constraints into the model by accepting assumptions stemming from the metabolism-molecular

machinery coupling. In theory, we should be able to reason further regarding any additional (even empir-

ical/ad hoc) constraints and/or additional optimization objectives which would bring our model predictions

closer to observed biology. Just remember: fitting models is not a sin; but nontransparent/reckless fitting is!

After all, modeling is an art, and there is no one cookbook that represents the ground truth: we should be

free to explore the secrets of biology, as unrealistic as our assumptions are at times.

A final remark on modeling being an art. In this book, we have explored several types of cell models of dif-

ferent size, detail, and assumptions behind. This whole hierarchy and diversity of different implementations

and formalismsmight seem overcomplicated and unnecessary, although it is a mere reflection that ”one size

does not fit all”. In the following chapters we shall continue discussing further model types, and we invite

(future) modelers to be creative, mix, match, and tailor different models (and modeling types) to advance

biology. The compromise between fine-grained but liner modeling vs. complex kinetics that materialized

into resource allocation models is an inspiring example of how one can push bounds of different methods.

Recommended readings

RBA website Website rba.inrae.fr for further details on RBA. Under Tools, there are example models and

Jupyter notebooks for running them.

Review article on large-scale resource allocation models K. de Becker et al. ”Using resource constraints

derived from genomic and proteomic data in metabolic network models” Curr Opin Syst Biol 2022, 29:100400

rba.inrae.fr
https://rba.inrae.fr/tools.html
https://doi.org/10.1016/j.coisb.2021.100400
https://doi.org/10.1016/j.coisb.2021.100400


148 Large resource allocation models of cells

Problems

Problem 9.1 The role of metabolite concentrations The available cell space for proteins depends on the

assumed space occupied by small metabolites.

1. What if the metabolite content of the cell has been underestimated? Assume that the amount of small

metabolites in cells is currently underestimated. What problems in model predictions would arise from

the fact? In what way would predictions (by FBA or other methods) be distorted?

2. In what way would a cell, in reality, profit from a lower small metabolite content? Can we assume that the

ratio between small metabolites and proteins is optimized? Describe possible aspects of this compromise!

For inspiration, see [302].



Chapter 10

Optimal cell behavior in time

Hidde de Jong, Dafni Giannari, Diego A. Oyarzún, Steffen Waldherr, and Agustín G. Yabo

Chapter overview

◦ Microorganisms live in continually changing environments, which require them to develop adaptation

strategies.

◦ These strategies havebeenprofitably studiedunder the assumption thatmicroorganismshave evolved

to optimize one or several aspects of their adaptive response.

◦ The mathematical formalization of this assumption leads to dynamic optimization problems that can

be solved by means of techniques from optimal control theory.

◦ The chapter discusses three example problems: dynamic optimization of enzymeexpression inmetabolic

pathways, dynamic optimization of coarse-grained models of cellular growth, and dynamic flux bal-

ance analysis.

◦ The results obtained for these problems illustrate the interest of studying adaptation strategies from

the perspective of dynamic optimization, and the strengths and weaknesses of this approach.

10.1 Introduction

The study of microorganisms in the laboratory has often focused on the creation of stable conditions en-

abling balanced, reproducible growth of the population. Such conditions are almost never found in nature.

Microorganisms live in continually changing environments in which nutrients are only intermittently available

and in which the cells are submitted to a variety of other temporally varying stresses (acidity, temperature,

drought, ...). In order to survive in these conditions, microorganisms have developed a range of molecular

mechanisms to detect changes in the environment, or signals announcing such changes, and to adapt their

functioning accordingly.

A well-studied example of the dynamic response of bacteria to changes in their environment is the phe-

nomenon of diauxic growth, discovered by Jacques Monod ([303] (see also Chapter 8). When Escherichia coli

is grown in amedium containing amixture of two carbon sources, e.g., glucose and lactose, the cells generally

first deplete the carbon source supporting the highest growth rate (glucose) before starting to assimilate the

other carbon source (lactose). A variety of mechanisms are involved in this switch from a preferred to a sec-

ondary carbon source, including the release of the repression of enzymes necessary for lactose utilization,

the release of the inhibition of lactose transporters, and the global regulation of a large number of other

genes [304, 305].

149
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In many situations, the precise functioning of the molecular mechanisms regulating the adaptation of micro-

bial physiology to changes in the environment is not or only qualitatively understood. This precludes their

inclusion in quantitative models that accurately predict the dynamic response of the cell in a variety of con-

ditions. The lack of mechanistic, quantitative information can be bypassed by making appropriate assump-

tions about the regulatory systems, in particular that the latter have evolved under the selection pressure

of the environment to optimize the response to external perturbations. More precisely, it is assumed that

microorganisms have developed mechanisms that allocate limiting resources (proteins, fluxes, ...) to cellular

processes so as tomaximize orminimize some objective function, or combination of objective functions, over

the time-interval of environment changes.

The use of an optimality assumption tomake up formissing or incomplete information was already exploited

with success in Chapter 5 of this book. The difference with those approaches is that here we are interested

in cases where the optimality criterion is defined over an interval of time rather than at steady state, and thus

we need to consider dynamic instead of static optimization. Moreover, somemethods take into account that

cells may vary the allocation of limiting resources to cellular processes over the time interval in which the

environmental changes occur, instead of only considering a constant response in a stable environment. This

generalization of the problem enormously increases its complexity. It may also lead to nontrivial dynamical

effects that are not found in the case of static optimization, such as the accumulation of resource buffers to

anticipate future changes in the environment [306].

The classical argument motivating the optimality assumption in the case of microorganisms is that mutants

of genes coding for enzymes in central metabolism often have a lower growth rate than the wild-type strain,

where growth rate is interpreted as indicating fitness [307]. This argument, however, derives from observa-

tions of balanced growth in a stable environment. Is there any evidence that, in the case of changing envi-

ronments, microorganisms have evolved to perform dynamic optimization? Some circumstantial evidence is

provided by the observed capacity of microorganisms to anticipate changes in their environment. For exam-

ple, when moving along the digestive tract, E. coli cells are exposed first to lactose and then to maltose, thus

requiring the ability to switch from growth on lactose to growth on maltose (reminiscent of diauxic growth

in the laboratory) [308]. Interestingly, reporter gene studies found that the enzymes required for maltose

assimilation are expressed at amuch higher level in the presence than in the absence of lactose, in otherwise

identical conditions [309]. This suggests a specific effect of the presence of lactose on the expression of mal-

tose enzymes, preparing the cells for the expected future availability of maltose. This and other examples

of anticipatory behavior are not conclusive in themselves, but they suggest that dynamic optimization is a

plausible working hypothesis that may be useful in practice.

The aimof this chapter is to showhowmicrobial physiology can be studied bymeans of dynamic optimization,

by combining a specific objective function, or combination of objective functions, with models of different

scope and granularity, while taking into account a number of biophysical and biochemical constraints. We

first provide a general definition of dynamic optimization problems in themathematical framework of optimal

control. We then instantiate this general definition for three types of biological problems, each giving rise to a

specific class of models. In particular, we discuss (i) dynamic optimization of enzyme expression in metabolic

pathways, (ii) dynamic optimization of resource allocation in coarse-grained models of cellular growth, and

(iii) dynamic flux balance analysis (dFBA) of metabolic networks. Across the different examples, the scope of

the models varies frommetabolic pathways (i) to metabolic networks (iii) to the entire cell (ii). The increase in

scope is sometimes traded against a lower granularity of the description of cellular process (ii). Some of the

models provide a kinetic description of the rates of the individual reactions (i and ii), whereas other models

only provide constraints on the reaction rates (iii). In every case, different objective functions are tried, for

example the minimization of the time to produce a given compound or the maximization of the amount of

biomass produced.

For each of the biological problems and corresponding models considered, we give the precise definition

of the modeling formalism and the optimization problem, a small example as an illustration, a discussion
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of the solution of the problem, and a brief description of more realistic applications and the insights they

have given into the functioning of cellular networks. The chapter does not give a detailed explanation of

the mathematical methods that are used for solving different classes of optimal control problems, because

this would require knowledge of specialized mathematical concepts with which the average reader of the

book may not be familiar. Moreover, these methods have been the subject of dedicated textbooks [310,

311]. Rather, we focus on the definition of the dynamic optimization problems and the interpretation of the

solutions returned by available numerical solvers of optimal control problems.

10.2 Mathematical formalization of dynamic optimization prob-

lems

The models of cellular processes considered in this chapter have the form of systems of ordinary differential

equations (ODEs) (Chapter 3). Dynamic optimization problems for such systems take the form of so-called

optimal control problems, which have their roots in physics and engineering [310, 311].

Let x(t) be the (time-varying) state of the dynamical system, typically concentrations of (intracellular or ex-

tracellular) metabolites or proteins, and let f(·) describe the (linear or nonlinear) dynamics of the state. u(t)
denotes the (time-varying) control variables, e.g., fluxes allocated to specific reactions or protein fractions

allocated to specific enzymes. The time-points 0 and T > 0 indicate the bounds of the interval over which

the behavior of the system is optimized, with respect to an objective function J . The behavior of the system,

given the control exerted by u(t), is subject to constraints c1(·) and c2(·) on the admissible control inputs at

specific time-points t or over the entire time-interval [t0, te], respectively. The constraints express physical

limitations, such as the intracellular density of molecular constituents (Chapter 2), or biochemical limitations,

such as the maximum protein synthesis rate. Combining the above elements, we obtain the following defi-

nition of dynamic optimization problems:

max
u∈U

J(x(t),u(t), 0, T ), (10.1)

such that

dx
dt

= f(x(t),u(t)), x(0) = x0, (10.2)

0 ≥ c1(x(t),u(t)), (10.3)

0 ≥ c2(x(0),x(T )). (10.4)

In summary, the problem consists in finding controls that, given the dynamics of the system, maximize the

objective function and satisfy the constraints [312].

The above definition makes no specific assumptions about the dynamics of the system under consideration.

Given that we deal with biochemical reaction systems, the dynamics can be refined to

dx
dt

= N v(x(t),u(t)) − µ(t) x(t), x(0) = x0, (10.5)

where N represents the stoichiometry matrix and µ is the (time-varying) growth rate. The principles of de-

scribing the structure of biochemical reactions systems by means of a stoichiometry matrix were described

in Chapter 3 above.

The problem definition assumes that there is only a single objective function to be optimized. This may

not be appropriate, since microorganisms seem to optimize several criteria in parallel, for example growth

rate and survival under stress [313]. In many situations, it is therefore more appropriate to generalize the

above problem to the case where J(. . .) represents a vector of n objective functions J = [J1, . . . , Jn]. Thus
generalized, the problemdoes not usually have a single solution, but rather an infinite set of solutions located
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on a so-called Pareto surface [314]. Solutions on the Pareto surface have the property that every alternative

solution improving the performance with respect to some objective necessarily degrades the performance

with respect to at least one of the other objectives. In the problems developed in the sections below, we

principally consider optimality in the case of a single, possibly composite objective.

Many methods for solving optimal control problems (10.1)-(10.4) exist. While some optimal control prob-

lems can be solved analytically, most of the problems considered in the examples below require numerical

approximations to be solved. All examples developed in the sections below have been solved by means of

freely available solvers.

10.3 Dynamic optimization of enzyme expression in metabolic

pathways

A number of experimental works suggest that metabolic regulation encodes temporal patterns in enzyme

expression that may be beneficial for cell physiology [315, 316]. Since the timing of gene expression can

directly control resource expenditure, several authors have attempted to rationalize such patterns as solu-

tions of optimal control problems defined as in (10.1)-(10.4). The general idea is to optimize the temporal

evolution of enzyme concentrations using objective functions that are representative of cellular goals. This

provides a rationale to reverse-engineer optimality principles that underlie the expression patterns observed

in experiments. In this section, we briefly describe results obtained for unbranched metabolic pathways, the

basic building blocks of the metabolic networks of the cell.

Dynamic optimization of enzymatic concentrations was first considered by Klipp and co-workers [317]. The

problem under study was the minimal-time activation of an unbranched network from an “off” state, where

only the precursor is present, to a state where all substrate has been converted into product. To this end,

the authors considered an unbranched pathway with n enzymes and (n+ 1) metabolites:

dx0

dt = −k1e1x0,

dxi

dt = kieixi−1 − ki+1ei+1xi,

dxn

dt = knenxn−1,

(10.6)

with a given initial condition x0(0) 6= 0 and xi(0) = 0 for i = 1, 2, . . . , n, and where all enzymatic reactions

are assumed to follow mass-action kinetics with rate constant ki. To model the “off” state prior to pathway

activation, the initial conditions can be set to x0(0) = s, where s is the concentration of precursor at t = 0, and
xi(0) = ei(0) = 0 for all i = 1, . . . n. The goal was to determine a vector of optimal enzyme concentrations

e(t) that solve the following problem:

e?(t) = arg min
e∈U

1
s

∫ ∞

0
(s− xn(t)) dt, (10.7)

subject to the dynamic model in (10.6) and constraint set U as in (10.1) defined by a limited overall enzyme

abundance over the optimization horizon:

n∑
i=1

ei(t) = etot, (10.8)

where etot is a constant amount of total enzyme concentration. The objective function in (10.7) is called the

transition time of the pathway and quantifies the time needed to convert all precursor into product. Note that

the optimization problem (10.6)-(10.8) falls within the general class of problems defined by (10.1)-(10.4).

Numerical solutions of the optimization problem reveal that the enzyme profiles have a temporal sequence

that matches the order in which the enzymes appear in the pathway. Crucially, such pattern resembles the
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“just-in-time” strategies widely studies in operations research [318], whereby costly resources are deployed

only when needed in a production line. In the context of cellular metabolism, such a strategy implies that

minimal time activation tends to express biosynthetic enzymes only when their substrates have been built

up to sufficiently high concentrations, and thus avoid wasteful protein expression.

The first experimental demonstration of the just-in-time principle was presented by Zaslaver and colleagues

[315]. This work employed luminescent and fluorescent reporters to measure the temporal adaptation of

Escherichia coli uponwithdrawal of amino acids from the growthmedia. Clear just-in-time patterns of enzyme

expression were found in the serine, methionine and arginine biosynthetic pathways. To better understand

such patterns, the authors studied a model for an unbranched pathway with three enzymatic steps and

Michaelis-Menten kinetics:

dxi

dt = kcat,i ei
xi−1

xi−1 +KM,i
− kcat,i+1 ei+1

xi

xi +KM,i
− µxi, i = 1, . . . , 3, (10.9)

with given initial conditions x1(0) 6= 0, x2(0) = x3(0) = 0, andwhere (kcat,i, KM,i) are the enzyme turnover rate

and Michaelis-Menten constants of each enzyme, respectively. The precursor concentration x0 is assumed

to be constant. The model also includes a dilution term that accounts for dilution by cell growth at rate µ. In

contrast to previous works, this model also includes an explicit description of enzyme expression:

dei

dt = βi

1 + r/κi
− µ ei, i = 1, . . . , 3, (10.10)

where the first term is a lumped model of enzyme expression controlled by a time-varying (active) repressor

concentration r(t), with maximal expression rate βi, and κi being the concentration of (active) repressor

required for half-maximal expression. Moreover, since bacterial amino acid pathways are often subject to

end-product feedback, the model assumed that the repressor gets activated by the pathway product:

r(t) = rT(t) x3(t)
Kr + x3(t) , (10.11)

where rT(t) denotes the total (active and inactive) repressor concentration. Themodel also included negative

autoregulation of the repressor itself:

drT

dt = β0

1 + r/κ0
− µ rT, (10.12)

where β0 andκ0 define the strength of autoregulation similarly as in the lumpedmodel for enzymeexpression

in (10.10).

The authors constructed an optimization problem so as to study the relation between optimality, and the

strength of the regulatory parameters k = (k1, k2, k3) and β = (β1, β2, β3). To this end, they defined the

optimization problem

min
k,β

a ·
3∑

i=1

∫ T

0

β0

1 + r(t)/κ0
dt︸ ︷︷ ︸

total amount of repressor

+
∫ T

0
|F − Fgoal| dt︸ ︷︷ ︸

deviation from steady state

, (10.13)

where a is a scalar weight accounting for the protein costs, T is the optimization horizon, and F is the rate of

product synthesis:

F = kcat,3 e3
x2

x2 +KM,3
. (10.14)

In problem (10.13), the constant Fgoal is a prescribed production flux that the pathway should achieve at

steady state. Minimization of the objective in (10.13) accounts for the activation of the pathway from an

“off” state until it reaches a prescribed flux Fgoal. This formulation differs from the previous example [317]
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in two important ways. First, it accounts for cellular resources in the objective function itself. The first term

of the objective quantifies the total amount of repressor produced through the optimization horizon, and

thus relates to the amount of cellular resources required to activate the pathway. Second, the decision vari-

ables are the regulatory parameters, not the temporal profiles of the molecular species. Therefore, strictly

speaking, this is not an optimal control problem but rather a static optimization problem subject to dynamic

constraints encapsulated by the pathway ODE model. Through numerical solutions for different values of

the protein cost weight a and optimization horizon T , the authors determined conditions under which the

optimal solutions showed two features of the just-in-time property, namely:

τ1 < τ2 < τ3, max
t
e1 > max

t
e2 > max

t
e3, (10.15)

where τi is the response time, i.e. the time to reach 50% of maximal concentration, and maxt ei is the peak

concentration of each enzyme. This theoretical model was designed tomimic the architecture of gene regula-

tion in such pathways, whereby the end product commonly represses the expression of upstream enzymes,

and thus gave both experimental and computational evidence that just-in-time patterns may be the result of

optimality principles underlying the regulation of metabolic pathways.

Further experimental evidence of temporal patterns in enzyme expression have been found in other path-

ways [319] and organisms [316], and number of subsequent works have explored their optimality in more

detail; we refer the reader to the review in [320] for a detailed discusson on such approaches. Oyarzún and

colleagues [321], in particular, gave the first mathematical proof that just-in-time dynamics are a general

property in models of unbranched metabolic pathways. Using a cost-benefit objective function that bal-

ances the speed of response against the cost of expressing pathway enzymes, they showed that the just-in-

time patterns emerge in pathways of arbitrary length and with minimal assumptions on the enzyme kinetics.

Specifically, they considered a general model for an unbranched pathway with n+ 1 reactions:

dxi

dt = gi−1(xi−1) ei−1 − gi(xi) ei, i = 1, . . . , n, (10.16)

with initial conditions xi(0) = 0 for i = 1, 2, . . . n, and the precursor x0 assumed to be at a constant concen-

tration. The functions gi represent a general kinetic turnover rate satisfying the following conditions:

gi(0) = 0,
∂gi(xi)
∂xi

> 0.
(10.17)

The above assumptions are generally satisfied by most enzyme kinetic functions, as catalytic rates are typi-

cally a monotonic function of the substrate concentration. In particular, the assumptions in (10.17) are met

by common kinetics such as mass-action, Michaelis-Menten and Hill equations. The optimization problem

considered in [321] corresponds to a free final-time optimal control problem:

e?(t) = arg min
e∈U

∫ T

0

(
1 + α′ e(t)

)
dt, (10.18)

where e(t) is the vector of enzyme concentration, α is an (n+ 1)−dimensional vector of tuneable weights, T

is a free optimization horizon, and U is a constraint set as in (10.1). The first term in the objective function

(10.18) accounts for the total time taken to activate the pathway from the “off” state up to a steady state flux,

while the second term weighs the cost of pathway activation. To account for limited availability of cellular

resources, the authors also included a temporal constraint on the enzyme concentrations:

n∑
i=0

ei(t) ≤ etot, (10.19)

which is a relaxation of the constraint originally employed by Klipp et al in (10.8), as well as a terminal con-
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Figure 10.1: Example of optimal enzyme expression in an unbranched metabolic pathway. (A) A simple
scheme of the metabolic pathway. (B) Time evolution of the optimal enzyme expression ui and metabo-
lite concentration xi. For the simulations, the functions gi are Michaelis-Menten with constants k = (1, 2, 4, 3)
s−1,K = 1 mM, V = 0.2 mM s−1 and x0 = 5 mM. Enzymatic weights are set to αi = 1 mM−1 s and maximum
enzyme availability Etot = 1 mM. Resulting activation times are t0 = 1.59 s, t1 = 2.2 s and tf = 2.55 s.

straint of the form:

ei(t) =
Fgoal

gi(xi(T )) , for t ≥ T, (10.20)

where Fgoal is a (constant) target pathway flux, similar as in (10.13). The terminal constraint ensures that the

pathway reaches a steady state at the final time T . Using Pontryagin’s Minimum Principle [311], the authors

showed that the optimal enzyme concentrations follow a bang-bang temporal profile that matches the order

in the which they act on the pathway. This result was shown to be independent of the weight α, the number

of enzymatic steps, and valid for a wide range of enzyme kinetics satisfying the assumptions in (10.17), thus

extending the original finding in [317] to a larger class of pathways. Figure 10.1 shows a numerical example

of the optimal activation pattern obtained for an unbranched metabolic pathway of length three (see also

Exercise 10.1).

In this sectionwehave reviewed someoptimal control approaches for the optimization of unbranchedmetabolic

pathways. While differing in their formulations and solution strategies, these approaches provide substantial

computational evidence that some temporal patterns observed in metabolic dynamics can be understood

as the solution of an optimal control problem. In the next section we focus on approaches that go beyond

individual pathways and include additional components and processes of the cellular machinery.

10.4 Dynamic optimizationof resource allocation in coarse-grained

models of cellular growth

In the previous section, we considered models that were essentially limited to metabolic pathways. The

optimization problems were formulated in terms of the allocation of enzymes to the different reactions

in the pathway. In this section, we generalize the perspective by increasing the scope of the models from
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metabolism to protein synthesis and growth. The optimization problems concern the allocation of resources

to the synthesis of enzymes catalyzing different metabolic reactions, but also to the synthesis of ribosomes

in charge of the production of proteins. Growth is explicitly defined in terms of the increase of protein mass,

and leads to growth dilution of all cellular components. The models are very similar to those considered in

Chapter 8, but the optimization problems are dynamic rather than static. That is, instead of searching an

allocation of cellular resources to the synthesis of different classes of proteins that is optimal at steady state,

during balanced growth, we are interested in finding a time-varying resource allocation strategy optimizing

an objective defined over an interval of time, e.g., during a transition between two states of balanced growth.

We consider the class ofmodels with dynamics given by Eq. 10.5, where the inputu is interpreted as the (time-

varying) resource allocation strategy. Among the cellular components x, we distinguish betweenmetabolites

and proteins, with concentrations c and p, respectively. Accordingly, the concentration vector can be written
as x = [c,p]′. We also distinguish between enzymatic reactions and protein synthesis reactions. While

the former have metabolites as substrates and products, the latter convert metabolites (amino acids) into

proteins. An enzymatic reaction i has the following reaction rate function:

vi(t) = ki pj(t)hi(c), (10.21)

where ki is a catalytic constant, pj the concentration of protein j, and hi a function describing enzyme satura-

tion. Enzyme saturation is determined by the substrates, products, and activators/inhibitors of the reaction.

Typical rate functions vi followmass-action kinetics or (ir)reversible Michaelis-Menten kinetics. The synthesis

of protein i is associated with the reaction-rate function

vi(t) = ui(t) vR(t), (10.22)

where vR is the total protein synthesis rate defined by

vR(t) = kR pR(t)hR(c(t)), (10.23)

with kR the maximum protein synthesis rate, pR the concentration of ribosomes, and hR a function describ-

ing the saturation of ribosomes by their substrate, that is, amino acids (ormore precisely, tRNAs chargedwith

amino acids). The function ui in Eq. 10.22 is a time-varying resource allocation function, describing the frac-

tion of the total protein synthesis rate allocated to the synthesis of protein i. The fractions are non-negative

and sum to 1, that is, for every time t,

∑
i

ui(t) = 1, and ui(t) ≥ 0, for all i. (10.24)

In most models, the biomass of a growing cell population is equated with the mass of proteins, the most

abundant cellular component (Chapter 2). Under the further assumption that the biomass density is con-

stant, it follows that the total protein concentration ptot must be constant, where

ptot =
∑

i

pi(t), (10.25)

with the index i running over all proteins. Moreover, the growth rate reduces to the relative (or specific)

increase of the protein mass, which leads to

µ(t) = vR(t)
ptot

= kR pR(t)hR(c(t))
ptot

. (10.26)

The above model couples metabolism, protein synthesis, and growth in a single formalism, in the spirit of
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the small resource allocation models discussed in Chapter 8.

Figure 10.2 gives an example of a resource allocation model, describing a simple self-replicatory microbial

system [322, 323] inspired by the model of Scott et al. [324] (see Chapter ?? related models). The model

divides the proteome into three categories: ribosomes, enzymes, and housekeeping proteins, with concen-

trations pQ, pR, and pM , respectively. In addition to the three categories of protein, we add a metabolite

representing the precursors for protein synthesis, with concentration c. The precursors are produced from

nutrients in the environment at a rate vM , a macroreaction catalyzed by the enzymes. Protein synthesis oc-

curs at a rate vR, catalyzed by the ribosomes. The resource allocation functions uQ, uR, and uM determine

the fraction of the protein synthesis rate assigned to each of the three protein categories, where uQ is as-

sumed to be a constant, growth-rate-independent fraction. The rate equations for the metabolic and protein

synthesis reactions follow irreversible Michaelis-Menten kinetics, where the substrate concentration in the

medium is assumed saturating.

The resource allocation functions in the model are not explicitly specified by regulatory mechanisms, but

assumed to follow a dynamic pattern optimizing an objective criterion. In many cases, the objective criterion

is based on the hypothesis that microorganisms have evolved to maximize growth, that is, the accumulation

of biomass. While this hypothesis can be criticized on theoretical and empirical reasons, it is a reasonable

choice in well-mixed environments and provides an interesting baseline in other environments. In themodel

framework considered here, this gives rise to the following objective function:

max
u∈U

J(x(t), u(t), 0, T ) =
∫ T

0
kR pR(t)hR(c(t)) dt, (10.27)

where like in the general case of Eq. 10.1, U denotes the set of admissible profiles for the resource allocation

functions u. Note that the maximization of growth over the time-interval [0, T ] amounts to taking the inte-

gral of the instantaneous growth rate over that time-interval, defined by Eq. 10.26. This objective does not

generally reduce to maximizing the instantaneous growth rate at every time-point of this interval.

The question can be asked, for the microbial self-replicator in Figure 10.2, how the cells redistribute their

resources over the different protein categories after a change in environment, in particular a shift of the

cells from a poor to a rich carbon source. In the case of E. coli, for example, such as shift might involve a

change from minimal medium with acetate to minimal medium with glucose. Given that E. coli grows faster

on glucose than on acetate, and that a higher growth rate requires an increased proportion of resources to

be allocated to ribosomes according to the growth law (Chapter 10), one expects uR to increase after the shift.

Since uQ is assumed constant, and the resource allocation functions must sum to 1 at every time-point, this

overall increase of uR must be balanced by a decrease of uM . These expectations concern resource allocation

before the shift (balanced growth on acetate) and a long time after the shift (balanced growth on glucose),

but the growth law provides no information on the pattern of adaptation immediately after the shift.

In order to investigate the optimal adaptation pattern of uR immediately after the growth transition, we solve

the dynamic optimization problem specified in Figure 10.2. For the simple example considered here, the op-

timal solution can be characterized analytically [325, 322, 323]. This is not possible for more complicated

examples, however, which require the optimal solution to be constructed numerically, using one of the tools

discussed in Appendix []. Figure 10.2C-D show a typical solution for parameter values estimated from exper-

imental data [323]. Starting from a low value of uR during balanced growth on acetate, the optimal resource

allocation scheme consists of a sequence of switches between uR = 1 (maximal ribosome synthesis) and

uR = 0 (no ribosome synthesis), until an intermediate value of uR for balanced growth on glucose is attained.

The value of uR during balanced growth on glucose is higher than that for balanced growth on acetate, as

expected from the growth law.

The sequence of on-off switches followed by the intermediate steady-state value is called a bang-bang-

singular solution in optimal control theory [322, 323]. The solution reflects a dynamic trade-off between
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Figure 10.2: Example of optimal resource allocation strategy in a coarse-grained model of microbial growth.
(A) Representation of simple self-replicator model of microbial growth. (B) Model and optimization problem
for the self-replicator shown in panel A, as discussed in the text. (C) Optimal dynamic resource allocation
strategy, in terms of the fraction of resources attributed to ribosome synthesis (uR). (D) Time-varying protein
mass fractions corresponding to the optimal solution shown in panel C. The parameter values used for the
simulation are kM = 0.5, kR = 1,KR = 0.5 and uQ = 0.6.

the two different functions contributing to growth: metabolism and protein synthesis. When, due to growth

dilution, the ribosome concentration falls to a level that is limiting for maximal protein synthesis, the syn-

thesis of ribosomal proteins is switched on (uR = 1), leading to an increase of the ribosome concentration.

Switching on the synthesis of ribosomal proteins causes the synthesis of metabolic enzymes to be switched

off. When, due to growth dilution, the concentration of metabolic enzymes next falls to a level that the pre-

cursors produced by the latter become limiting, the synthesis of metabolic enzymes is switched on (uR = 0)
to replenish the precursor pool, and so on (see Exercise 10.2).

Optimal solutions with a similar bang-bang pattern were already encountered in the previous section. They

also occur in a model with a more detailed description of different precursor (amino acid) synthesis path-

ways under the objective under the minimal time of adaptation after a shift from a medium supplemented

with amino acid to a medium lacking amino acids [326]. In a different type of problem, the development of
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intestinal crypts, the minimal time to mature crypts was found to depend on the on-off control of the prolif-

eration of stem and non-stem cells [327]. There is no convincing experimental evidence that the adaptation

of ribosomal synthesis after a nutrient upshift from a poor to a carbon source follows a bang-bang singular

pattern. The interpretation of proteomics data after a nutrient upshift in E. coli shows that the simple upreg-

ulation of ribosomal resource allocation to the steady-state value for growth on the rich nutrient captures

the ribosomal protein expression data well [328].

This example serves to emphasize that, while the optimality assumption may lead to thought-provoking pre-

dictions, these need to be confronted with experimental data. In case the optimal solutions do not agree with

the data, several revisions of the problem could be considered. While growth optimization was chosen as

the objective criterion in the example of Figure 10.2, there is evidence that during balanced growth, microor-

ganisms find a trade-off between maximizing growth rate in a given environment and minimizing necessary

adjustments to other environments [313]. The problem could therefore be generalized to a multi-criteria

optimization problem. An example is the analysis of a model similar to that considered here under the ob-

jectives of biomass maximization and minimal adaptation time after a nutrient shift [329]. The formulation

of the optimization problem in Figure 10.2 does not put any constraints on valid optimal resource alloca-

tion strategies, except that the individual functions ui components need to sum to 1 (Eq. 10.24). Bearing in

mind that the regulatory mechanisms underlying a resource allocation come with a cost, and need to respect

certain physical constraints, the predicted resource allocation strategy may not be feasible. When such con-

straints are taken into account, the optimal solution may no longer be bang-bang singular, but resemble the

observed adaptation pattern [330, 323].

In summary, the dynamical optimization approach for studying microbial growth presented here provides a

way to test the consequences of hypothesized objective functions in combination with simple resource allo-

cation models. The predictions can be confronted with experimental data, but may also inform the redesign

of microbial strains for metabolic engineering purposes [331] (Box 10.A).

10.5 Dynamic fluxbalance analysis (dFBA) ofmetabolic networks

Dynamic Flux Balance Analysis (dFBA) is an extension of Flux Balance Analysis (FBA) as described in Chapter 5,

that can simulate the interactions between the metabolism of an organism and its dynamic environment. In

contrast to the constant, steady-state flux solutions that are generated by classical FBA, dFBA yields flux so-

lutions that may dynamically depend on concentrations of extracellular metabolites, such as sugars or other

carbon sources, dissolved oxygen, or secreted waste metabolites. Applying these fluxes to the concentration

balance of extracellular metabolites also permits to capture dynamic changes in these concentrations due to

the cells’ metabolic activity, and track the resulting overall biomass growth. It is noted that a basic assumption

of dFBA is that organisms rapidly reach intracellular steady state in response to extracellular perturbations,

and on the long run no metabolite can accumulate or deplete.

In general, a dFBAmodel comprises threemain parts as demonstrated in Figure 10.3: the dynamic equations,

in the form of differential equations, for biomass and extracellular metabolites, constraints on the fluxes as

in the FBA model, and an optimization objective that determines how to choose the optimal fluxes.

We first consider the dynamic equations used for dFBA.

The biomass dynamics are given by

Ẋ = µX, (10.28)

where X denotes the biomass concentration, typically measured as dry mass in g/L, and µ denotes the

growth rate, typically measured in 1/h. In principle, this equation follows the equations for balanced growth.
However, instead of using simple models, like a Monod equation for the growth rate, the growth rate is taken

from the value of the biomass reaction in an FBA model (check in Chapter 5!).

Denoting the concentrations of the extracellular metabolites that are modelled dynamically as the vector c,
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Box 10.A : Time-dependent optimization for biotechnological applications and process design

As explained in Section 10.2, time-dependent optimization problems are defined by an objective function, expressing

the criterion thatmicroorganisms presumably optimize. In the case ofmicroorganisms growing in natural conditions,

the choice of a particular objective function is difficult to make and several functions may qualify. For example,

microorganisms could be assumed to maximize their biomass over a given interval of time or minimize the time to

adapt to their new environment after a change in growth conditions. The choice may be somewhat arbitrary and in

many cases it makes sense to consider amulti-criteria optimization problem. Evenmore fundamentally, the idea that

microorganisms have evolved to the point that they optimize one or several objective functions, is controversial.

In bioengineering applications, however, the formulation of an objective function is less problematic. In this con-

text, the objective function is not assumed to have evolved through natural selection, but is rather stipulated by the

metabolic engineer in an a-priorimanner, in agreement with a practical objective. Possible objective functions are the

maximal amount of fermentation product that can be obtained from a given amount of substrate (maximal yield) or

theminimal time to produce a given amount of fermentation product (maximal productivity). The use of optimal con-

trol methods for process design in bioengineering is well-known [332, 333]. Most of these methods, however, treat

microbial growth as a black box and do not provide much detail about the underlying cellular processes, contrary

to the formalisms discussed in this chapter. Opening up the black box of microbial growth allows the use of control

variables that go beyond standard process parameters of the bioreactor and represent directed perturbations of

specific cellular processes.

One example is the use of coarse-grained models of microbial growth for the design of optimal operating conditions

for the so-called growth switch [331]. The growth switch is a synthetic regulatory circuit allowing growth of E. coli

to be arrested in order to passively reorient the resources thus becoming available towards the production of a

metabolite of interest [334]. The maximal production of this metabolite from a given amount of substrate, within a

given interval of time, was formulated as an optimal control problem. Its solution showed that the optimal solution

consists of two phases: a first phase of maximal biomass production followed by a second phase of maximal product

synthesis [331]. The conclusion that this two-phase procedure is optimal corresponds well with established practice

in biotechnology [335]. Very similar conclusions were attained in related work by Jeanne et al. [336].

the dynamics for these metabolites can be formulated as the differential equation

ċ = SexchvX. (10.29)

Here, v is the flux vector for the complete metabolic network, including uptake and production reactions for

exchange metabolites, and Sexch is the stoichiometric matrix that links these reaction fluxes to the metabo-

lite concentrations which are balanced dynamically. Multiplication with the biomass X is necessary, since

the flux values in the FBA model are determined relative to biomass, whereas the concentrations c of the

dynamic metabolites are relative to the system volume. The equations are not yet closed, because the fluxes

v (including the growth rate µ as one element of the flux vector) still need to be determined by optimization.

As constraints, two types of constraints are used in dFBA models. A flux balance constraint as in steady state

FBA models is applied to the concentrations of all metabolites that are not dynamically balanced in (10.29),

e.g., intracellular metabolites. This steady state constraint is given by

Sintv = 0, (10.30)

whereSint is the stoichiometricmatrix that links reaction fluxes in the vector v to the steady statemetabolites.

Further, upper and lower bounds need to be put on the individual reaction fluxes. In contrast to classical FBA,

where these bounds are constant, in dFBA flux bounds can depend on concentrations of metabolites in the

vector c. This is mostly applied to uptake reactions for nutrients, and often as Michelis-Menten kinetics.

For example, if ci is the concentration of a sugar substrate, and vi is the uptake reaction for this substrate

(conventionally negative in FBA models), bounds of the form

− Vi,maxci

KM + ci
≤ vi ≤ 0 (10.31)
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Figure 10.3: Schematic representation of dFBA. As in FBA, the intracellular environment in dFBA is repre-
sented by a linear programming (LP) optimization problem that describes the metabolism of the microor-
ganism based on its genome-scale metabolic model (GSMM). FBA assumes that all intracellular metabolite
concentrations remain constant while the cells optimally distribute their metabolic fluxes to maximize their
growth rate and hence, an LP can calculate the growth rate, as well as the intracellular and exchange fluxes
of the GSMM. The calculated growth rate and exchange fluxes can be used to update the extracellular en-
vironment. The extracellular environment in dFBA is represented by ordinary differential equations (ODEs)
that describe the mass balance equations for biomass and metabolites found outside of the cell. Moreover,
the intracellular GSMM and the extracellular mass balance equations can be linked through kinetic rules for
substrate uptake, like the Michaelis-Menten equations, that can raise concentration-dependent constraints
for exchange fluxes and predict growth rate dependencies on substrate concentrations.

would be used, where Vi,max and KM are the common parameters of the Michealis-Menten kinetics (Chap-

ter 3 [MET]).

In recent years, dFBA is increasingly applied for the simulation of dynamic biological systems, especially due

to the promising use of GSMMs for interpreting cell physiology and evolution, as well as for guidingmetabolic

engineering andbioprocess design andoptimization [337, 338, 339]. The dFBA applications basedonGSMMs

include the bacteria Escherichia coli [340, 341, 342, 343, 344, 345, 346, 347] and Lactococcus lactis [348], as well

as the yeast species Saccharomyces cerevisiae [349, 350, 351, 352, 353, 341, 344, 354, 355, 347] and Scheffer-

somyces (Pichia) stipites [344]. However, the majority of dFBA applications use small-scale metabolic models,

most of which include less than 100 reactions. Such applications include models of bacteria, like Escherichia

coli [356, 357, 358, 344, 359, 360, 361, 362], Corynebacterium glutamicum [363, 343, 364, 346] and Bordetella

pertussis [365], models of yeast for wine fermentation [366] and Saccharomyces cerevisiae [367, 355, 368, 369],

but also plant and animal models, such as a model for the photosynthetic metabolism of C3 plants [370], a

four-tissue (leaf, root, seed, and stem) model of the core metabolism of Arabidopsis thaliana [371], a model

for fatty acidmetabolism and lipid accumulation in rat hepatocytes [372], and amodel for energymetabolism

in myocardial cells [373].

It is noted that most of the dFBA applications for microorganisms simulate microbial fermentations under

batch or fed-batch conditions. Since dFBA can be used for the analysis, control and optimization of biochem-

ical processes, many dFBA applications focus on either dynamic metabolic engineering or optimal control of

bioreactors, or both simultaneously. Dynamic metabolic engineering studies can predict the effect of strain

gene insertion and deletion on the dynamic behavior and productivity of a bioprocess [349, 340, 350, 351],

while optimal control of batch or fed-batch operation of bioreactors is important for the production of desired

chemicals [349, 369]. Finally, dFBA has also been expanded for the study of microbial communities, where

each microorganism is represented by an LP that is solved independently [374, 375, 376]. Co-culture simu-

lations with dFBA can predict possible consortia compositions, as well as metabolic engineering approaches

to improve the productivity of the consortia, but they are out of the scope of this chapter.

Coming to the mathematical formulation of dFBA models, dFBA is an optimization problem coupled with a

system of ordinary differential equations, that can be solved with the help of various mathematical and nu-

merical techniques. Even though dFBA was first introduced in 1994 [356], it was not formalized until 2002
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[357]. The existing formalized solution approaches that are going to be discussed here involve the static op-

timization approach (SOA), the dynamic optimization approach (DOA), and the direct approach (DA). More

recently, reformulation approaches and surrogate models for the optimization problem have also been pro-

posed in order to ease the computational complexity of dFBA simulations. This complexity arises fromseveral

characteristics of dFBA. More specifically, the solution of dFBA problems faces challenges in terms of:

1. problem size and scalability: As the size of the metabolic network increases, the computational cost in-

creases. For this reason, simulations that involve large genome-scale metabolic models or multispecies

microbial communities are limited.

2. stiffness: The stiff behavior of dFBA has been observed inmany cases, such as the simulation of the diauxic

growth in E. coli [357].

3. nonlinearity: The presence of nonlinear constraints or objective functions can significantly increase the

computational cost.

4. feasibility: The intracellular optimization problem can become infeasible and lead to failure of the integra-

tion of the extracellular ODEs.

5. differentiability: The optimal value of the intracellular optimization problem may not be continuously dif-

ferentiable, which poses an obstacle when dFBA is used for optimal control or parameter estimation.

6. non-unique solutions: The solution of the intracellular optimization problem is usually not unique which

can make fluxes unrealistically “jump” between different optimal solutions.

StaticOptimizationApproach (SOA)divides the total time horizon of the dFBA simulation into several smaller

time intervals. The optimization problem is solved to obtain the flux distribution at the beginning of each time

interval, and then the ODEs are integrated over the time interval with this fixed flux distribution. The dynam-

ics calculated from this time step are used to constrain the optimization problem solved at the beginning of

the next time interval, and the process is repeated until the end of the simulation time is reached. SOA can

be implemented easily with the use of an Euler scheme for integrating the system and a suitable existing LP

solver for solving the FBA at each time step. SOA is also implemented in the constraint-based reconstruction

and analysis (COBRA) toolbox for MATLAB [377] which can perform dFBA simulations. Since its implemen-

tation is relatively simple, SOA has been widely used in studies for the diauxic [357, 359, 378], aerobic and

fermentative [356, 379, 380, 340] growth of E. coli, for S. cerevisiae fermentations [367, 351, 352, 353], as well

as for the growth of other bacterial [348] and plant organisms [371]. Many of these applications include

larger-scale or genome-scale metabolic networks, due to the scalability of SOA. However, the main drawback

is that SOA is inefficient and can become computationally expensive because it has to solve the optimization

problem at each time step. This can be challenging for most dFBA problems which are stiff and require small

time steps to ensure accuracy, convergence, and stability of the solution.

Dynamic Optimization Approach (DOA) follows closely the general dynamic optimization framework de-

scribed in Section 10.2: an objective function that depends on the dynamic states of the system over the

complete time horizon of interest is formulated, and the dynamics (10.28)–(10.29) and algebraic constraints

(10.30)–(10.31) are added as optimization constraints. In other words, DOA discretizes the total time horizon

of the dFBA simulation, and then transforms the dynamic optimization problem into a non-linear program-

ming (NLP) problem, which is solved once by simultaneously optimizing over the entire time of the simulation.

In this way, DOA obtains the time profiles of fluxes and metabolite concentrations in the system, and allows

the formulation of a dynamic objective function, which could provide useful information about the design

of genetically modified metabolic networks or the maximization of bioprocess productivity. Because of this

characteristic, DOA is often used in dynamic metabolic engineering, parameter estimation and optimal con-

trol applications. For example, DOA has been used for simulating the diauxic growth of E. coli [357, 381, 382],

as well as the growth of engineered E. coli strains on glucose [383, 384], and the growth of various eukary-

otic organisms, such as S. cerevisiae [368, 385], plant [370] and animal [372, 373] cells under genetic and

environmental perturbations. On the downside, even though the optimization problem does not need to be

repeatedly solved like in SOA, the single NLP of DOA can become easily intractable, as its dimension increases
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Mathematical details 10.B : dFBAlab

In order to address some of the computational challenges of dFBA, Höffner, Harwood, and Barton proposed a sim-

ulator for dFBA, which was initially coded in FORTRAN [391], but gained popularity when implemented in MATLAB

with the name Dynamic Flux Balance Analysis laboratory (DFBAlab) [376], and more recently in Python [392]. It is

noted that the DFBAlab is compatible with the COBRA toolbox [377]. Based on this dFBA simulator, it is not neces-

sary to resolve the LP each time the right-hand side of the ODEs is evaluated and consequently, the solution process

becomes faster. This is possible because the FBA solution at an initial time can be used to compute future optimal

solutions by detecting changes in the active set [346] or by computing the optimal basis [393] of the FBA. Unfortu-

nately, such formulations need to continuously monitor the active set of the LP, which increases with the size of the

metabolic network, or need to choose a basis for the optimal solution that is most likely to remain optimal as the

simulation proceeds [393]. The latter is challenging since the optimal basis can be non-unique even for a unique

optimal solution. Nevertheless, DFBAlab manages to reduce the number of times that the LP is resolved, and also

avoids obtaining infeasible LPs and numerical failure by using the LP feasibility problem and the Karush-Kuhn-Tucker

(KKT) optimality conditions of the FBA problem (see below) [341, 343, 346]. In addition, the differentiability problem

could be solved with the help of non-smooth analysis which provides optimality conditions in terms of sub-gradients

or generalized gradients, for convex and non-convex functions respectively [342]. Furthermore, to tackle the issue

of primal multiplicity of the FBA problem, DFBAlab performs lexicographic optimization [341, 342, 343, 346].

with the fineness of time discretization. Additionally, DOA has been mainly limited to small-scale metabolic

networks, since it cannot be easily applied to genome-scale metabolic networks due to the large number of

variables and constraints that are introduced in the NLP as the size of the network increases.

Direct Approach (DA) has been formulated more recently than SOA and DOA, and directly includes the LP

solver for the FBA in the right-hand side evaluator function of the ODEs. In this way, it can take advantage of

existing ODE integrators with adaptive step size and error control that can reduce the number of integration

steps and provide better solution accuracy compared to SOA. DA has been implemented in the ORCA tool-

box [386], which complements the constraint-based reconstruction and analysis (COBRA) toolbox for MAT-

LAB [377]. Furthermore, DA has been used for studying the diauxic [387], aerobic and anaerobic[358, 388]

growth of wild type and engineered E. coli strains, the aerobic growth of Corynebacterium glutamicum on glu-

cose and xylose in biorefinery simulations [364], as well as the aerobic and anaerobic growth of wild type

and engineered S. cerevisiae strains [349, 350, 352]. Some of these applications involve dynamic metabolic

engineering for product maximization, and many of them include genome-scale metabolic networks, since

DA is relatively easily scalable like SOA.

However, DA requires the LP to be resolved at least once, every time the right-hand side of the ODEs is

evaluated [389]. This can make DA computationally demanding, especially for larger metabolic networks.

Another major challenge is that when evaluating the right-hand side of the ODEs close to the boundary of

feasibility, the LP can become infeasible and make the dFBA simulation fail. The LP can become infeasible

either because it is really infeasible and the simulation should be terminated, or because the ODE integrator

becomes unable to evaluate the right-hand side of the ODEs and the simulation is discontinued, or erroneous

death phase messages are being displayed. The latter can happen as dFBA simulations involve discrete

events that correspond to switches in the active set of the LP solution. More specifically, different bases for

the optimal solution of the LP can emerge at each time step. Moreover, at the points of change of the active

set, the dFBA model is not differentiable, since the optimal value of the LP as a function of the right-hand

side of the constraints is not continuously differentiable. This is a problem because the first and second

derivatives of the model must be computed when dFBA is used for optimal control or parameter estimation

applications. Finally, another drawback emerges due to the primal multiplicity of the LP. As it is well-known,

FBA is formulated as an underdetermined problem and therefore, the LP does not have a unique solution

[390]. Non-unique optimal reaction fluxes can lead different ODE integrators to different results.
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Mathematical details 10.C : Lexicographic Optimization

Lexicographic or hierarchical optimization involves the solution of a series of LPs with auxiliary objectives ranked

in priority order. The use of auxiliary objectives reduces the feasible space and leads to a unique optimal solution,

while the auxiliary objectives can have specific biological meanings and can be selected based on prior knowledge

about the organism [313]. Some of the most used auxiliary objectives are based on the assumption that evolution

leads to the exclusion of inefficient pathways so that cells can biosynthesize the smaller possible number of enzymes.

Examples of such auxiliary objectives include the minimization of enzyme cost [394], the minimization of the total

reaction flux [395], and the minimization of the number of active reactions [396]. However, it has been shown that

such objectives may not be suitable for some engineered cells [365]. In general, it is not trivial to find a series of

auxiliary objectives that are consistent with experimental data, assure uniqueness and preserve continuity of the

optimal solution. In some cases, even when all auxiliary objectives have been used, hierarchical optimization cannot

ensure the uniqueness of the dFBA solution. Apart from the use of auxiliary objectives, auxiliary rules or auxiliary

parameters have also been proposed to address the primalmultiplicity of FBA. For example, geometricmethods have

been proposed to identify a unique distribution of reaction fluxes for FBA [397], even though there is no biological

evidence to justify such methods.

10.6 Concluding remarks

One approach for understanding the response of microorganisms to changes in their environment is to as-

sume that this response has been optimized by evolution. That is, the regulatory mechanisms controlling the

response optimize an objective, or a trade-off between competing objectives, subject to a variety of physi-

cal and biochemical constraints. This approach gives rise to dynamic optimization problems (10.1)-(10.4) that

can be solved by techniques from optimal control theory. Three examples of such problemswere considered

in this chapter: dynamic optimization of enzyme expression in metabolic pathways, dynamic optimization of

coarse-grainedmodels of cellular growth, and dynamic flux balance analysis. This does not exhaust the range

of possible problems that can be considered. One example is the combination of the resource allocation per-

spective with dynamic flux balance analysis [381].

Some of the predictions obtained by means of dynamic optimization seem to be supported by available ex-

perimental data, such as the time-ordering of enzyme expression in a linear pathway. Other predictions

cannot currently be tested or may not be consistent with the available experimental data, such as the dy-

namical ribosomal protein synthesis pattern. The contradiction between a predicted optimal response and

the observations is interesting, because it indicates that some of the assumptions underlying the problem

need to be revised. The model may not account for all relevant processes taking place in the cell, important

constraints may have been ignored, or the objective may not capture the actual processes taking place.

The solution of a dynamic optimization problem may be different from the concatenation of the solutions

of repeated static optimization problems defined over short, consecutive time intervals making up the time

horizon. For instance, the optimal pattern of resource allocation over a time horizon may involve the ac-

cumulation of a reserve of unused resources that, while being wasteful in the short run, is beneficial when

the whole time interval of interest is considered. One example was given in the introduction of this chapter,

concerning the expression of maltose enzymes in the presence of lactose [309]. Another example is the ac-

cumulation of glycogen in cyanobacteria during daylight, providing the energetic resources for maintenance

metabolism in the night time [306].

The analysis of the growth of microorganisms using dynamic optimization critically depends on the choice

of an appropriate objective function. In the examples discussed above, optimization was performed with

respect to a single objective, e.g., the maximal accumulation of biomass over a time interval or the minimal

time to deplete a given amount of substrate. It is plausible, however, that microorganisms have evolved un-

der the necessity to satisfy several objectives simultaneously. This can be taken into account by formulating

a weighted sum of the different objective functions, such as the simultaneous minimization of throughput



Concluding remarks 165

A
Glucose cG Oxygen cO2

Ethanol cE Acetate cA

FBA model

vG vO2

vE vA

B
Exchange constraints

−10.5
mmol

gDWh

cG

2.7 mg
L + cG

≤ vG ≤ 0

−30
mmol

gDWh

cO2

20 mg
L + cO2

≤ vO2
≤ 0

0 ≤ vE

−30
mmol

gDWh

cA

100 mg
L + cA

≤ vA

C
Dynamic equations
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Figure 10.4: Example result of a dFBA simulation for the E. coli core model [398] performed with DFBAlab.
(A) Illustration of dynamic metabolites and relevant exchange fluxes. Extracellular metabolites use mass
concentration (g/L), exchange fluxes are in molar amount per dry biomass and time (mmol/gDW h). (B)
Concentration-dependent constraints applied to the exchange fluxes during the dFBA simulation. (C) Dif-
ferential equation model for biomass concentration X and metabolite mass concentrations. Growth rate µ
and exchange fluxes v∗ (in red) are optimal values from the underlying FBAmodel. mO2 ,mG,mE,mA aremolar
masses of O2, glucose, ethanol, and acetate, respectively. kLa = 8.5 h−1 is the volumetric mass transfer coef-
ficient for oxygen. (D) Simulation results for concentrations of biomass and metabolites. We can observe
four growth phases: aerobic growth on glucose with production of acetate, anaerobic growth on glucose
with production of ethanol and acetate, aerobic growth on acetate, and a stationary phase. (E) Simulation
result for oxygen concentration in the liquid medium. Oxygen is depleted in the second growth phase due
to mass transfer limitations, but replenishes at the start of the third phase. (F) Penalty function time course.
Increases of the penalty function indicate periods where the underlying FBA model is infeasible. Here, this
occurs when the ATP maintenance constraint cannot be satisfied due to a lack of substrates, and happens
in this simulation during a brief period where the switch from glucose to acetate as a substrate takes place,
since oxygen needs to be replenished first, and in the stationary phase.

time and investment in enzymes in Eq. 10.18. Another approach is to generalize the optimization problem to

a multi-objective optimization problem, with sets of Pareto optimal solutions, each providing a trade-off be-

tween mutually conflicting objectives. One example of such a multi-objective optimization problem is given

by a generalization of the dynamic optimization of enzyme expression in metabolic pathways in Section 10.3,

with the double objective of minimizing the time to consume a given amount of substrate and minimizing

the concentration of (possibly toxic) intermediate metabolites [399].

Instead of making a-priori assumptions about the objectives presumably optimized by microorganisms, one

could try to infer the latter from the experimental data. This inverse optimization approach leverages the

large amounts of time-course data on the dynamic response of microorganisms to environmental pertur-

bations that have accumulated in the past decade. Inverse optimization requires the solution of complex

inverse optimal control problems that have been little explored until now [312].
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Methodological foundations of dynamic optimization and optimal control:

◦ Gerdts, Optimal Control of ODEs and DAEs, De Gruyter, 2011 [310]. Introduction to optimal control theory.

◦ Kirk, Optimal Control Theory: An Introduction, Courier Corporation, 2004 [311].

Dynamic optimization of enzyme expression in metabolic pathways:

◦ Klipp, Heinrich, and Holzhütter. Prediction of temporal gene expression: metabolic optimization by re-

distribution of enzyme activities. European Journal of Biochemistry, 2002 [317]. Classical paper on dynamic

optimization of enzyme expression in unbranched pathways.

◦ Oyarzún, Ingalls, Middleton, and Kalamatianos. Sequential activation of metabolic pathways: a dynamic

optimization approach. Bulletin of Mathematical Biology, 2009 [321]. Recent example revisiting the problem

of dynamic optimization of enzyme expression.

Dynamic optimization of resource allocation in coarse-grained models of cellular growth:

◦ Pavlov and Ehrenberg. Optimal control of gene expression for fast proteome adaptation to environmental

change. Proceedings of the National Academy of Sciences USA, 2013 [326]. Example of the use of optimal

control to understand temporal adaptation of gene expression in response to a change in the environment.

◦ Giordano, Mairet, Gouzé, Geiselmann, and de Jong. Dynamical allocation of cellular resources as an op-

timal control problem: Novel insights into microbial growth strategies. PLoS Computational Biology, 2016

[322]. Example of dynamic optimization applied to a coarse-grained model of microbial growth, including

a review of related work.

Dynamic flux balance analysis of metabolic networks:

◦ Mahadevan, Edwards, and Doyle. Dynamic flux balance analysis of diauxic growth in Escherichia coli, Bio-

physical Journal, 2002 [357]. Classical paper proposing two different approaches for dynamic flux balance

analysis, with an example of diauxic growth in E. coli.

◦ Hjersted and Henson. Steady-state and dynamic flux balance analysis of ethanol production by Saccha-

romyces cerevisiae, IET Systems Biology, 2009 [350]. Comparison of steady-state and dynamic flux bal-

ance analysis of variably-sized metabolic models for screening metabolic engineering strategies affecting

ethanol production by Saccharomyces cerevisiae.

Problems

Problem 10.1 The solutions of some of the optimization problems in Section 10.3 exhibit abrupt switches in

enzyme concentrations (”bang-bang behavior”), which in reality are not possible.

1. What would be possible adjustments of themodels to make the predictions more realistic? (Hint: consider

explicit modeling of enzyme synthesis and enzyme degradation or dilution by growth.)

2. What predicted behavior would you expect for these modified models?

3. In these extended models, which possibilities would the cell have to speed up the adaptation of enzyme

concentrations? Under what circumstances could this provide an actual advantage?
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Problem 10.2 The resource allocation model in Section 10.4 defines biomass as being composed of proteins

only, neglecting notably the (small) contribution of metabolites. This has the disadvantage of putting no

constraints on metabolite concentrations, which is not realistic from a biological point of view.

1. What would be a possible adjustment of themodel to integrate metabolites into the biomass composition,

under the assumption that the total biomass density remains constant? (Hint: consider the definition of

growth rate in Eq. 10.26.)

2. How would the objective function for this model (Eq. 10.27) need to be adapted accordingly?

3. How would you expect the resulting constraint on metabolite concentrations to affect the predicted be-

havior of the microbial self-replicator?
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Chapter 11

Control of cell division and

coordination with other cell-cycle

processes

Mattia Corigliano, Marco Cosentino Lagomarsino, Jacopo Grilli, and Gabriele Micali

Chapter overview

◦ Cells require coordination of growth and division, as well as coordination of cell-cycle progression

with several essential sub-tasks, such as chromosome replication and segregation.

◦ Single-cell dynamics data offer correlation patterns that can be used to understand these decisional

processes.

◦ The cell-cycle progression and cell-division decisional process can be described by continuous-time

and discrete-time stochastic processes.

◦ There are quantitative relationships that connect growth, cell-cycle progression, and resource alloca-

tion.

◦ There are differences and common points in the decisional processes by which single cells of different

organisms commit to divide (sizers, adders, accumulators, titration-dilutors, etc.)

11.1 Introduction: thedecision todivide illustrated through single-

cell E. coli data.

As nicely put by the Nobel prize winner François Jacob, “the dream of every cell is to become two cells”.

Achieving this dream often requires multiple steps, such as growing by a certain size, replicating DNA, and

dividing. The previous chapters have addressed cell growth as a consequence of optimization of catabolic

and biosynthetic fluxes through optimally regulated resource allocation; this chapter deals with the decision

to divide (and to progress the cell cycle), based on growth and other important cellular processes and cues.

Clearly this decision to divide or progress the cell cycle must be based on a set if inputs (growth, production

processes such as DNA replication and cell-wall biosynthesis, partitioning processes, etc.) and entails several

outputs, prominently cell division, but also intermediate key cell-cycle substeps, such as initiation of DNA

replication or construction of a “divisome” organelle. The questions that we will consider concern the char-

acterization of the known aspects of this decisional process and its coupling to cell size, to cell growth, and

169



170 Control of cell division

(A)

(D)

(B) (C)

Cell

size

s(t)

log(s)

sDIV

sBIRTH sBIRTH

log(sBIRTH)

Equivalent plots

timer
timer

timer

adder
adder

adder

sizer
sizer

sizer

exponential growth ( ) size-growth plot

G= 

division ( )

Δs

t

log(sBIRTH)

log(sBIRTH)log(sBIRTH)

Figure 11.1: . Salient quantitative features of cell-division control, explained through E. coli data. (A) E. coli cells
are rod-like. Within a condition they grow by increasing their length, and they divide symmetrically. Following
single-cell lineages, growth in length or volume is close to exponential. (B) Size-growth plots quantify the
strength of division control. For a timer, multiplicative growth quantified by G = log(sd/s0) is uncoupled to
birth size, for a sizer, it is maximally coupled. The single-cell data show an intermediate trend. (C) Since G =
log(sd/so) = ατ , the size-growth plot can be split into contributions correlationg birth size to growth rate (top)
and/or interdivision time. The data show that E. coli bacteria only compensate by modulating interdivision
times. (D) Equivalent quantifications of the strength of the division control size (right). The intermediate
control strategy adopted by E. coli adds a size that is independent from the initial size (“adder”). This strategy
is sufficient to achieve size homeostasis.

to the chromosome cycle. We will use throughout the chapter E. coli as an example. This section provides

a description of the main problem through an introduction to the data, based on E. coli bacteria. Sections

2-5 start from amathematical toolbox of models that are useful in this context and compare them with data.

Finally, section 6 describes applications to other organisms than E. coli.

Capturing the key processes regulating cell division is a fundamental question in biology, which remains

open despite a history of more than 60 years. During the years, scientists have learned a great deal about

the size and shape of bacteria in different nutrient conditions, what most of the molecular players involved

in the division process are, how the DNA replication machinery is formed and how it proceeds along the

chromosome, how the septum and the new cell wall are synthesized. However, the vast majority of these

data are based on population averages, out of which it turns out to be impossible to extract any direct and/or

causal link between the different processes involved in cell growth that set cell division [402]. Today, a new

generation of data has the potential to answer several open questions [402, 403, 404]. These data differ

from the previous generation in the ability to measure single bacterial cells over multiple division events in

controlled conditions. At the same time, the expression of a specific gene or the concentration of specific

proteins of interest can be monitored using fluorescent reporters. For example, fluorescent tags on the

proteins involved in replication are used to score the initiation of replication in each cell cycle. Single-cell

data allow for validatingmathematicalmodels and thus bring insights into the causal link between the several

processes a cell need to complete before dividing.

By following lineages of cells over multiple generations under controlled environmental conditions, scientists

collected different important pieces of evidence (Figure 11.1): First, within a cell cycle, the cell size s(t) is well-
described by a single exponential in time1 [407, 408]: s(t) = s0 exp(αt), where s0 is the size at birth, α is the

growth rate, and t is the time since cell birth.

If division occurs at time τd, a simple relationship connects the size at division sd with the other cell properties:

sd = s0 exp(ατd). All the four parameters of this equation are subject to stochasticity in time and vary across

single cells, even when they grow in controlled conditions. Second, in steady growth, the size distribution of

newborn cells does not change over time, an observation that is referred to as cell-size homeostasis [405].

1Note that most of the studies today use cell length as a proxy for size. However, different choices are possible such as
volume or mass, and the differences are not fully characterized [405, 406].
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Equivalently, cells show specific correlation patterns between size at growth and size at division, which are

related to their cell-division strategy [409, 405].

Let us try to understand more in detail how single-cell correlation patterns can be used to understand cell-

division behaviors. The observation of near-exponential growth immediately suggests a change of variables

that is useful to formulate mathematical models and to understand how single cells control cell division.

Indeed, if we can assume that growth is exponential, we can use logarithmic sizes instead of linear sizes. One

robust observation, is that the elongation G = log(sd/s0) = ατ depends on the size at birth s0 (Figure 11.1B).

This allows us to generate so-called “size-growth” plots (Figure 11.1B), in which the log-multiplicative growth

during a cell cycle of a single cell is plotted as a function of the logarithmic size at birth [409]. Different

mechanisms of size control predict different slopes for this plot. A cell division set by a “timer”, for instance,

would predict no relation between G and size. Since G = log sd − log s0, if instead log sd were independent

of the initial size, a “sizer”, one would predict a slope = −1. The E. coli data typically fall half way in between

these two predictions, a negative slope of about 0.5 (Figure 11.1B).

By noticing that the overall logarithmic growthG during a cell cycle is the product of the single-cell growth rate

and inter-division time (G = ατ ), we can ask the question of which one of these variables is responsible for the

correlation. This analysis disentangles the contributions to cell division control due to growth rate and inter-

division timing (Figure 11.1C). In other words, the dependency ofG on initial size can be further decomposed

on the dependency of growth rate α and division time τ . In E. coli, when growth rate and interdivision times

are plotted separately as a function of the logarithmic size at birth, the negative slope is only observed in the

interdivision-time plot, suggesting that cell control size by adjusting the single-cell interdivision time rather

than their single-cell growth rates. Hence, E. coli data indicate that τ does depend strongly on initial size,

while the growth rate has only a weak dependency [408].

One can visualize and quantify the mutual dependencies between cell sizes and growth properties in other

equivalent ways (Figure 11.1D). For example, in E. coli data, the scatter plot relating size at division in the y-axis

to size at birth in the x-axis for single cells has a slope of around 1 (and once again this observation holds true

for different strains and under different environmental conditions). In this plot, a slope of 0 would suggest

that cells on average need to reach a threshold in size upon division, a sizer. More technically, the division size

sd is independent on the initial size s0 in the case of a sizer. Instead, a slope of 2 in this plot would suggest that

cells on average need to wait a fixed time upon division, a timer. The observed intermediate slope of 1 can

also be understood using the equivalent plot inwhich the added size between birth and division is used on the

y-axis, studying the dependency of the added size sd − s0 on s0. This latter way to plot the data is particularly

popular, given that, for many datasets it shows no dependency, suggesting that adding a constant added size

is the mechanism of size control effectively in place. Indeed, for E. coli the experimentally observed slope is

always close to 0 [410, 411, 405], an observation that goes under the name of “adder” behavior since cells

appear to add on average a constant size during the cell cycle (Figure 11.1(B,D)).

It is fairly simple to rationalize why, for exponentially growing cells, a cell division strategy based on a timer

does not achieve a homeostatic size. In order to do this, we can call q(i) = log(s0(i)) the logarithmic cell size

at birth of cell-cycle i, and look at its dynamics through subsequent cell cycles. Since s(τ) = s0 exp(ατ), and
〈ατ〉 = log 2, and assuming that cells divide perfectly in two halves, one immediately gets that

q(i+ 1) − q(i) = ν(i)

where ν(i) is a zero-average randomvariable independent for each cell-cycle, arising from the size-independent

fluctuations of inter-division times (hence, in technical jargon, we can model ν as a discrete-time Markovian

random process). Since the jumps in logarithmic size between subsequent cell cycles are random and inde-

pendent, cell size at birth makes a discrete-time multiplicative random walk, hence, within a population, the

distribution of cell sizes at birth tends to get wider and wider across divisions. The following two sections will

explain how size homeostasis can be achieved by size-coupled cell divisions.
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Figure 11.2: Illustration of the inverse hazard rate approach on data. Data from many lineages of dividing
cells can be used to estimate the cumulative distribution of non-divided cells, which can also be conditioned
on different variables. The drawn example refers to the case where the tested variable is the added size
s − s0. In this case, the formalism allows to extract mathematically the hazard rate hd(s − s0) from this
distribution. Experimental E. coli data are consistent with this adder scenario, with an hazard rate that peaks
at a characteristic added size, after which the division control weakens.

11.2 Hazard rate approach to cell division

As we have seen in the previous section, E. coli cells grow roughly exponentially. Hence, we can describe their

growth by a trajectory for size s (measured as cell mass or volume) of the kind s(t) = s0 exp(αt), where t is
time from cell birth. While experimentally the growth rate α fluctuates with time, we will neglect its variability

and assume for the moment that it is constant. As a consequence, the cell grows as a simple exponential

function of time. We will address different hypotheses regarding this point in the later sections.

A simple way to describe the decision processes leading to division (or other cell cycle progression events)

is the so-called “hazard rate” model [412, 408, 411]. In this framework, as the cell cycle progresses, each

cell has a certain probability to divide, and we call hd the rate of cell division. In principle, this rate can be a

function of many different internal cellular parameters, all the processes that contribute setting cell division.

However, since we have in mind experiments measuring cell size versus time and recording cell divisions,

the most general “empirically accessible” hd can depend on s, t, s0, α with the constraint that s/s0 = exp(αt).
This means that there can be at most three free parameters. We can also consider simplified models, such

as hd = hd(s) or hd = hd(s, t). Empirically, the lack of correlation between α and birth size suggests a smaller

role for this parameter. It is important to realize that this formalism is very powerful, as it can be applied

more widely to any sub-cell cycle decision (for example, entry into a specific phase, such as initiation of

DNA replication, mitosis, etc.), and to measurements of different relevant cell-cycle processes (for example

chromosome configurations or the expression of cell-cycle proteins or other factors), which the hazard rate

may depend on.

Given a model for the hazard rate, we are interested in the cumulative probability F (t|s0, α) that a cell born
at t = 0 has not divided at time t, given that its initial size is s0 and its exponential growth rate α. Box 11.A

discusses the mathematical formalism to obtain this probability.

The considerations we made so far are sufficient to produce “forward models” where a hazard rate is as-

sumed, and one explores its consequences on the division dynamics. The simulation of such a model is

straightforward. For each discretized time increment dt, the cell will grow by the prescribed dynamics s(t)
and will divide with hazard rate hd. If a division occurs, the mother’s cell size will halve, and go from s to s/2
(we assume for simplicity perfect binary divisions, but this assumption can easily be relaxed). What is a “sizer”

in this framework? We can define it as a model where hd = hd(s) [413]. Equally, a timer is a model where

hd = hd(t), and an adder has hd = hd(s− s0). At this stage, it is only intuitive, but not formally grounded, that

the scatter plots of the previous section correspond precisely to thesemodels. This problemwill be discussed

in section 11.3. Note that not all the choices of hazard rates will guarantee a steady-state cell size distribution.

As a particular case, one can consider a constant division rate hd(t) = r, which is a simple Poisson process

(see the problem above). This is a pure timer and we expect that it will not maintain a steady-state cell size



Hazard rate approach to cell division 173

Mathematical details 11.A : Probability distribution of (un)divided cells

This box derives the probability distribution of (un)divided cells from thehazard rate. Theprobability that a cell divides

between time t and t + dt is the probability of not having divided so far times the probability of dividing between t

and t+dt, in turn given by the product of the hazard rate and the time interval dt, F (t|s0, α)hd(s(t), t, s0, α)dt. During

the same time interval, the cumulative probability of not having divided will decrease by the same amount. Hence,

we can write

F (t + dt|s0, α) = F (t|s0, α)[1 − hd(s(t), t, s0, α)dt] . (11.1)

In the limit of dt → 0 we obtain a differential equation, which governs the evolution of our system

d

dt
F (t|s0, α) = −hd(s(t), t, s0, α)F (t|s0, α) , (11.2)

and whose formal solution is (for t ≥ 0)

F (t|s0, α) = e
−
∫ t

0
dzhd(s(z),z)

. (11.3)

Since we said that the probability of a cell division event in the time interval [t, t + dt] is P (t|s0, α)dt = F (t|s0, α)hddt,

the corresponding probability density is

P (t|s0, α) = hd(s, t)e−
∫ t

0
dzhd(s(z),z) = −

d

dt
F (t|s0, α). (11.4)

Alternatively, the size s can be used as a coordinate, considering for s > s0,

F (s|s0, α) = e
−
∫ s

s0
dzh∗

d
(z,t(z))

, (11.5)

while F (s|s0, α) = 0 for s < s0. Here, h∗
d(s, t(s))dx is the probability of cell division in the size range between s and

s + ds. The two rates are simply related by h∗
d(s, t(s))ds = hd(s(t), s)dt, where ds/dt = hg(s) = αs is the rate of

growth.

distribution (the reader can verify it, e.g. by simulations).

Beyond the forward approach, we would like to recognize the trends in the data that favor one model rather

than another. In particular, we can ask which model best describes the E. coli data, presented in the first

section of this chapter. This question is a “reverse problem”, and is equivalent to the inference of the hazard

rate hd from data (Figure 11.2). It is a very common reverse problem for the literature, used for example in

the so-called “survival analysis” in clinical studies [414]. In that case, the hazard rate typically corresponds to

a one-time negative outcome (death of the patient) and the process is not repeated along lineages as in the

case of cell divisions. However, the mathematical ingredients are very similar. Consequently, there are many

regressionmethods available in the literature, which can be transferred to our case. One of themost famous

is Cox regression [415]. However, most of these regressionmethods need an ansatz for the parameterization

of the model, which might be a nuisance, as it would require some previous knowledge. Here we consider

a simpler, direct inference method, which does not need any parameterization (but is effective only with a

sufficient amount of data, i.e., for many cell divisions).

Suppose for simplicity we deal with a sizer. In this case, it is possible generate an estimator for the functional

form of hd(s) using Eq. (11.5). By inversion, we obtain

hd(s) = −αs d
ds
log[F (s|s0)], (11.6)

whereF can easily be estimated fromdata, from the cumulative fraction of undivided cells at size swith initial

size s0. In our case, we can use the mean value of the growth rate 〈α〉, since we are neglecting fluctuations
in growth rate.

Since we do not know whether our assumption of a sizer apples to data, we can first combine the data and

the inference to falsify the assumption [408]. In order to do this, we can further condition our histograms
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in order to fix s0. If hd depends solely on s, then the inferred function h̃d should not change with varying

s0. This is indeed the case if the procedure is applied to simulated data. However, when we apply the same

procedure to the experimental data shown in the previous section, the inferred hd(s) changes if it is inferred
for different bins of birth size s0. Hence, we conclude that our E. coli data do not behave as a sizer, in the

sense of the hazard rate. Instead, if we consider the adder ansatz for the hazard rate hd(s − s0), and we

repeat the procedure, we find that further conditioning by birth size or time from birth does not change our

inferred hazard rate [411]. Hence, we can conclude that a hazard-rate analysis of the data supports an adder

(or at least that the data cannot falsify this simple model).

How does the inferred hd depend on size? Curiously, for any fixed s0, hd increases superlinearly for small cell

sizes, then reaches a maximum after which it decreases. In other words, some cells may “miss” a cell division

event and keep growing until they find a better occasion to divide. This process is called “filamentation”

(because the cells that miss one or more division elongate and end up looking like filaments), and is typically

the consequence of stress, but also present in stress-free growth conditions. experimental observations

show that E. coli forms filaments in response toDNAdamage, antibiotics, host immune systems, temperature,

starvation, and many other stresses. As a consequence, size plasticity may be in many cases an adaptive

strategy. The quantitative division rules of filamentous E. coli cells have been studied experimentally [416],

but we lack a comprehensive mathematical model.

One very robust observation of cell division statistics, in E. coli and beyond [417, 411, 418, 419], is that the

distributions of size at birth, size at division, and division times measured across conditions, collapse onto

the same curve when rescaled by their mean. For instance, the distributions around these values are clearly

non-overlapping: the single-cell birth-size distribution in glucose pglu(s0) strongly differ from the one in TSB

medium pT SB(s0). In particular, the typical size at birth for E. coli growing in glucose 〈x0〉glu is about 2/3 the
size of E. coli growing in TSB 〈s0〉T SB and the average division time 〈τd〉T SB is TSB is half the one of E. coli

in glucose 〈τd〉glu. This appears to be valid across different environmental conditions (e.g., nutrient quality,

temperature, pH, etc.). The remarkable empirical observation is that, when comparing two conditions, the

rescaled distribution is universal. If we introduce the rescaled size s̃0 = s0/〈s0〉c, the distribution of s̃0 is

universal, independent of the condition. This observation applies also to size at division, added size between

divisions, interdivision time, and, to a certain extent, growth rate [418].

An obvious question that follows from this observation is how the size-scaling properties of cell-size at birth

constrain the mechanisms of homeostasis and the properties of stochasticity at the single-cell level. A nec-

essary consequence of the distribution collapse is that the processes leading to single-cell heterogeneity and

homeostasis must have common underlying properties across conditions. Conditions differ because they

are characterized by different dimensional scales, but, phenomenologically, division control is governed by

the same underlying principles (although the key molecular players may vary). The collapse of all the dis-

tributions, when the variables are rescaled by the mean has another, stronger, consequence: whatever the

division control mechanism is, it depends on only two scales, a size-scale (setting the typical cell size) and a

temporal scale (setting growth rate and division time).

This constraint has strict consequences on the variability of the hazard rate across conditions. In particular,

it implies that the hazard rate must take the mathematical form [420]

hd(s(t), s0, tα) = αh̃

(
s(t)
〈s〉c

,
s0

〈s〉c

)
, (11.7)

where the function h̃(·, ·) is the same across conditions. The dependency on α and t disappears, as the

scaling of division time, implies the existence of a unique time scale. Since h̃(·, ·) is by definition adimensional,

it can only depend on the product αt, which can always be re-expressed as a function of s and s0, as αt =
log(s(t)/s0). While this is a powerful observation, as it allows to naturally connect divisionmechanisms across

conditions, it does not provide any evidence to a particular decisional mechanism enforcing cell division,

which is encoded in the function h̃(·, ·). Addressing this question needs further experimental details.
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11.3 Cell-division control as discrete-time linear response pro-

cess

In the previous section, we have seen how the cell-division controlmechanism can bemathematically defined

using the hazard-rate framework. This approach uses as a fundamental ingredient the probability per unit

time of cell division hd, which is, a-priori, a function of many internal cellular parameters. This approach is, in

some sense, very general, as it allows to characterize any complex cellular decision process. However, this

generality limits the tractability and interpretability of the model. In this section, we introduce an alternative

discrete-time mathematical framework which greatly simplifies the parameterization and the interpretation

of a cell-division control model [421, 422], and easily maps to the empirical parameters discussed in Fig-

ure 11.1.

Specifically, instead of tracking the division rate at different stages of the cell-cycle, it is often convenient to

model directly the cell size at birth across different generations. In this case we can, in full generality, write

si+1
0 = f(si

0, α, . . . ) + ηi(si
0, α, . . . ) . (11.8)

where si
0 is the birth size of the cell at generation i. The function η(·) represents a random variable whose

mean is equal to 0 and having, a priori, arbitrary probability distribution. The function f(·) described the

control over cell division. Specifically, the function f(·) can be simply (almost tautologically) defined as the

conditional average of the size at birth at generation i+1 given all the variables that contribute to cell division
control (the previous size at birth, the growth rate, and others),

f(si
0, α, . . . ) := 〈si+1

0 〉|xi
0,α,... . (11.9)

The random variable η(si
0, α, . . . ) characterizes the fluctuations around this conditionally averaged birth size.

This formulation of the process is as general as the hazard-rate formalism as it allows to express any divi-

sion probability F (s|s0, α, . . . ). Eq. (11.8) simply isolates the contribution of the (conditional) average size at

division from the deviations from this average. This separation is useful because it allows a clear interpre-

tation of the mechanism of division control, and because the conditional average size at division is typically

accessible from single-cell experiments. For instance, a timer corresponds to f(si
0, α) ∝ si

0, where the pro-

portionality constant equals exp(ατd)/2. A sizer corresponds to f(·) being a constant, independent of the

initial size si
0. Along the same lines, an adder is defined as f(si

0, α) = (si
0 + ∆(α))/2, where ∆(α) corresponds

to the (average) added size. The formalism also shows how there is a continuum of possible intermediate

behaviors besides these three limit cases.

Given the facts that growth is exponential, and the distribution of sizes at birth is approximately Lognor-

mal [411, 418], it is once again convenient to introduce the logarithmic size qi
0 = log si

0. One can derive the

dynamics of the variable qi
0 as a function of the dynamics defined in Eq. (11.8) [420]. This procedure is de-

scribed in Box ??. Since the fluctuations of this variable are small, this dynamics is fully specified by a set of

linear-response parameters λab relating the main observables (i.e. in our case each of the variables a, b can

be q0, α, τ,G).

The linear-response framework offers a flexible and analytically tractable tool to formulate and explore dif-

ferent models of division control. The models can be constrained by correlation patterns measured in data,

quantified for example by covariances, which relate to the coupling parameters λab. However, the question

remains of whether such models are consistent with data. For E. coli data, the linear-response framework

predicts the correct consistency relations between experimental measurements, thereby confirming its use-

fulness to characterize empirical data [422]. A second, more biologically relevant, question is identifying the

biologicalmechanism reproducing the observed dependency patterns. As already discussed, the observation

that λqq ∼ 0.5 is a strong indication of adder-like size-control mechanisms [421, 411, 420, 422]. Interestingly,
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Figure 11.3: Comparison of different cell-cycle models including chromosome sub-periods proposed in the
literature for E. coli. (A) The DNA replication-segregation cycle divides of the cell cycle into sub-periods. The
B-period is the period between cell birth and initiation of DNA replication; the C-period is the period needed
for completing DNA replication; and the D-period is the period between the termination of DNA replication
and cell division. Finally, the I-period is the period between two consecutive initiations of DNA replication,
which usually spans two generations. (B) Scheme of the ‘replication-centric’ class of models in which DNA
replication-segregation sets division (first column). These models usually assume that the CD and the I peri-
ods are adders (blue lines in the third and fourth column, respectively), in agreement with data (red lines in
the same panels). The G-period correlation pattern is a prediction of the model in general agreement with
data (yellow vs red lines in the second column). (C) Schematic for the ‘replication-agnostic’ class of models in
which a process starting at cell birth drive division (first column). These models assume the G and I periods
to be adders (blue lines in the second and fourth panels, respectively). The C+D period correlation pattern
is a prediction of this model which does not agree with the available data (yellow vs red lines in the third
panel). (D) Schematic for the ‘concurrent cycles’ class of models in which two processes compete to set divi-
sion through an AND gate (first column). These models assume the I periods to be an adder (blue lines in the
fourth column) and using additional parameters predict both adders in the G and C+D periods (yellow lines
in the second and third column). (E) Plotting the slope of the G versus the C+D-period allows to compare the
different models with data. Schematic similar Figure 4 in [424].

one can show that the non-zero correlation between growth rate and log-initial size 〈δαi+1δqi
0〉 can be ex-

plained because of the correlation between mother and daughter single cell growth rates (the presence of a

non-zero value λαα and a dependency of the division size on the growth rate (a non-zero term λqα). Such a

relation between parameters point to some dependency on the size at division on the single cell-growth rate.

For E. coli, it is possible [422] to reproduce the empirical values of these coupling parameters by assuming an

adder model where the added size depends exponentially on the single-cell growth rate, following the same

dependency it has on the population growth rate (this behavior will be discussed in more detail below, and

is sometimes termed Schaechter’s Law [423]).

11.4 Coordination of cell division with different cell-cycle pro-

cesses

In the previous sections, we learned that E. coli single-cell dynamic data reveal the adder size-control behavior,

which allows bacterial cells to maintain size homeostasis. We also discussed a mathematical framework that
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describes how size control is achieved, and, in particular, how the keymeasured variables (logarithmic size at

birth, interdivision time, growth rate, and total growth during a cell cycle) are connected. Here, we introduce

a joint description of the DNA replication cycle, which at the modeling level makes it necessary to partition

the cell cycle into sub-periods. We then present the key elements and observations around the debate on

whether and how DNA replication and genome segregation is limiting cell division in E. coli. In presenting

this debate we aim to (i) highlight the positive and innovative aspects of some of the cornerstone studies of

recent years, (ii) provide the reader with robust tools necessary to compare mathematical models against

data. Finally, we conclude the section by underlying a few open questions.

It is a classic question in biology [425, 426] how cells achieve the precise coordination of the cell cycle with

chromosome replication and segregation is necessary for cell survival. DNA replication defines a way to

subdivide the cell cycle into sub-periods. In E. coli, the period between cell division and initiation of DNA

replication is normally referred as the B-period. The C-period is the period needed to complete replication.

Bacterial DNA is organized in circular chromosomes which replicate starting from a well-defined “origin” re-

gion (called ori locus). The replication machinery moves bi-directionally, and the two “replication forks” pro-

ceed approximately at the same speed and terminate in a “terminus” region of the chromosome called ter

locus [427, 428, 429]. For E. coli cells dividing at mean interdivision times from about 20 minutes to about

one hour, the replication speed is approximately constant, resulting in an approximately constant C period

of around 40 minutes [430]. The D-period is the period that lasts from the end of replication to the next

division which thus includes segregation and septum formation. Note that the inter-division time, i.e. the

time between two consecutive division events, can be as short as 20 minutes in E. coli. How can a cell with a

division time shorter than the C-period duration have at least two copies of the DNA? Classical studies have

shown that E. coli and other bacteria can set up multiple overlapping rounds of replication, as summarized

by Cooper and Helmstetter in 1968 [426]. For example, a cell at birth is already replicating DNA and has two

forks. During the cell cycle, two new initiation events take place, which will only terminate in the daughter

cells [431]. We will refer to the “G-period” and the “I-period” as the periods between two consequent division

and initiation events, respectively.

As briefly mentioned in the introduction of this chapter, the recent single-cell experiments allow to score

initiation and termination of DNA replication by fluorescently tagging proteins involved in the formation of

the replication forks or directly the ori locus [432, 433, 434, 435, 424]. The scoring of initiation and termination

makes it possible to produce the size-growth, and the equivalent adder, plots for any of the sub-periods BCD 2

as well as for the G- and I-periods (jointly). In the remainder of this section, we will refer to the slope of the

size-growth plot of a sub-period X (X= B,C,D,G, or I) as λX , and to the slope of the corresponding adder plot

as ζX . The two slopes are linked by the equation (1 − λX) = ζX +1
QX

, where QX = exp(〈growth during X〉) (see
Mathematical Detail Box 11.B).

Having formally defined sub-periods for the cell cycle and the corresponding linear-response formalism, we

now proceed by discussing a schematic overview of the experimental observations in E. coli that any mathe-

matical model should reproduce:

◦ The G-period shows an adder behavior, (λG = −0.5, ζG = 0) [410, 411].
◦ The C-period duration is approximately constant across cells and experimental conditions with, a tendency

to increase for slow growth rates and the C-period generally shows a timer behavior3 (λC = 0, ζC = QC −
1) [436, 437, 438, 432, 428].

◦ The I-period shows an adder behavior, (λG = −0.5, ζG = 0)[439, 435, 434].
◦ The CD-period shows an adder behavior (λCD = QCD−1

QCD
, ζCD = 0)[435, 440].

◦ The single-cell growth rate and the duration of the CD period are inversely proportional [433].

2Note that under fast-growing conditions the termination is experimentally harder to score reliably and hence in many
studies the C and D periods of single cells are considered together as a “CD period”.

3Given the difficulty in observing the C-period in single cells, this last question requires further experimental investiga-
tion.
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Other interesting observations that are considered in the mathematical models we will present shortly are

◦ E. coli cells divide symmetrically with a narrow distribution of division length with CV = 0.05 [408]. Note

that this CV is lower than the CV of both the growth-rate distribution (CV ≈ 0.1) and interdivision time

distribution (CV ≈ 0.2).

◦ The growth rate of the mother cell is correlated positively with the growth rate of the daughter cells, with

a Pearson correlation of around 0.5 [407].

Mathematical details 11.B : Linear formalism and adder plots

This box showshow to translate the linear response (“λ-formalism”) to an equivalent formalismbased on the slopes of

adder plots (“ζ-formalism”). The interested reader can findmore information in [421, 422, 439, 441, 424]. As discussed

previously, Eq. (B.2) makes it possible to estimate the linear-response parameter λ in experimental data from the

covariance of log-size fluctuations between subsequent generations, by noticing that (1 − λG) =

〈
δqi+1

0 δqi
0

〉
σ2

q0
, where

we refer to λ in Eq. (B.2) as λG, to highlight the fact that this equation refers to the G-period. Exponential growth

dictates that 2si+1
0 = si

0eαiτi
, where si

0, αi, and τ i are the size at birth, the growth rate and the interdivision time,

respectively. For the cell cycle i one can expand the logarithmic growthGi
G := αiτ i around its average value (〈GG〉 '

log 2) in terms of variations around the logarithmic size at birth qi
0 := log si

0. Following this procedure, the cell size at

birth of generation i+1 within a lineage can be expressed as a function of the parameters of generation i, as follows,

2si+1
0 = QG

(
si

0
)1−λG 〈s0〉λG + νi

0 , (11.10)

where QG = e〈GG〉 = exp 〈log sd/s0〉, sd is the cell size at division and νi
0 is a discrete-time Gaussian noise with mean

zero and standard deviation σs0 . Expanding around the average size, for small fluctuations we obtain a mapping

between added size and slope of the size-growth plot,

2si+1
0 = QG 〈s0〉 + (1 − λG)QGδsi

0 + νi
0

δ∆i
G = + [(1 − λG)QG − 1] δsi

0 + νi
0.

Here∆i
G = si

f −si
0 is the added size during a cell cycle, and δ∆i

G = ∆i
G −
〈

∆i
G

〉
is its fluctuation. Hence, by definition,

the term in square brackets must be the slope of the adder plot

ζG := (1 − λG)QG − 1. (11.11)

Solving the equation for λG, we get

(1 − λG) =
(ζG + 1)

QG
, (11.12)

which can be used (assuming as usual small fluctuations) to convert the slope ζG of the adder plot into the slope of

the size-growth plot λG, and vice-versa.

The mathematical models proposed in the literature can all be described with the general framework we

provided so far. However, they are different in terms of ingredients and relevant variables (Fig. 11.3). Specif-

ically, they can be grouped into two broad classes with fundamentally different views on the role of DNA

replication, its impact on cell division control, and ultimately on how the cell division and replication cycles

are coupled [441, 442, 428, 434, 435]. A class of ‘replication-centric’ models see the completion of DNA repli-

cation as the crucial checkpoint for cell-cycle progression, which fundamentally limits division and initiation

events [433, 435]. Instead, ‘replication-agnostic’ models assume that cell division is limited by a cell cycle-

related process such as septum or cell wall formation and not by DNA replication [443, 434].

The linear-response theory over sub-periods coupled with the new-generation experimental observations on

single cells gives us a powerful tool to compare the differentmodels (see Box 11.C). Crucially, while the slopes

of the size-growth plots are ultimately correlation patterns, the interpretation of the causal link between

them changes across different models. For instance, the replication-centric models generally assume that

two parameters among λI , λB , λCD are input variables, fixed by an underlying molecular mechanism, while

λG is an output of the model, i.e. an emergent correlation pattern predicted by the model. In contrast, the
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Mathematical details 11.C : Comparing cell-cycle sub-periods models with data

This box describes the quantitative tools necessary to systematically compare cell-cycle sub-periodsmodels with data

using the linear-response formalism and size-growth plots. Since the formalism may become very heavy, to avoid

complications we will present the the case of slow-growth conditions, in which there are no overlapping replication

rounds. In addition, we will assume that the growth rate is a constant parameter and we will assume perfectly

symmetric division.

Replication-centric models assume λCD and either λB or λI to be input parameters in the model. Here, we focus on

the case in which λ∗
CD and λ∗

I are fixed, which is the case for the Cooper and Helmstetter, Ho and Amir, andWitz et al

models [426, 444, 445]. In these models, one has that δqi+1
I = (1 − λ∗

I )δqi
I + ανi

I and δqi+1
0 = (1 − λ∗

CD)δqi
I + ανi

CD ,

where qi
0 and qi

I are the logarithmic sizes at birth and initiation of the cell cycle i, respectively; α is the growth rate,

and νi
I and νi

CD are the white noise contribution related to the I and CD periods, respectively. In this class of models,

λG and λB are mathematically linked to λ∗
CD and λ∗

I , which provides predictions that can be validated or falsified

with data:

(1 − λG) :=

〈
δqi+1

0 δqi
0
〉

σ2
q0

=
(1 − λ∗

CD)2(1 − λ∗
I )σ2

qI

σ2
q0

, (11.13)

(1 − λB) :=

〈
δqi

Iδqi
0
〉

σ2
q0

=
(1 − λ∗

CD)(1 − λ∗
I )σ2

qI

σ2
q0

. (11.14)

Note that by combining (11.13) with (11.14), we also get the relationship

(1 − λG) = (1 − λCD) (1 − λB) . (11.15)

replication-agnostic models assume a mechanism for the G-period (λG is fixed), and the other correlation

patterns are outputs of the model. Hence, the observed relationships between linear-response constants

across conditions can be used to select a specific model. In the following, we present replication-agnostic

theories first, then replication-centric models, then we introduce a class of models that find a solution of this

dichotomy.

The replication-centric models are in line with the classic views on the E. coli cell cycle, but they are challenged

by recent findings [426, 446, 441, 443, 436]. The 1968 Cooper and Helmstetter model was based only on the

available population-average data at that time. The model posits that cell division happens within a defined

period (CD) of time after initiation. Shortly after, Donachie [446] combined the Cooper andHelmstetter obser-

vation of a constant (population average) CD period with the even older observation that population-average

cell size increases with the growth rate with a trend that is compatible with an exponential (Schaechter’s

law [423], which we mentioned above) and postulated that the population-average mass-per-origins is con-

stant with the growth rate. Crucially, the classic paradigm by which replication limits division rested on indi-

rect conclusions based on population averages, but these assumptions needed to be verified by single-cell

data, which showed that things are much more complex [402].

In recent times, Ho and Amir [444] were the first to connect the Cooper-Helmstetter-Donachie ideas with the

new observation of adder correlation patterns over the G-period. The authors assumed an addermechanism

during the I-period and a timer mechanism during the CD period. This model produces (in the limit of small

noise in the timing of the CD period) an adder behavior in the G-period. Note that in thismodel λI = −0.5 and
λCD = 0 are inputs while λG ≈ −0.5 is an output of the model. This model, by definition, fails in reproducing

the adder behavior in the CD period (which was not known at the time). Although it turned out to be an

oversimplification, this work has the merit of connecting the old theories with new single-cell data into a

simple and elegant replication-centric model.

The first studies measuring the initiation of DNA replication in single cells [432, 433] brought two new exper-

imental pieces of evidence into the field: they observed the duration of the CD period was inversely propor-

tional to the single-cell growth rate and that the C period does not display any size compensation. Based on
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their data, Wallden and coworkers proposed a replication-centricmodel with a sizer in the B-period (ζB = −1),
which was later falsified [439, 435, 434]. A subsequent study by a different group [435]measured consecutive

initiation events in single cells and observed three adders in the G, I, and CD periods. They then designed an

improved version of the Ho-Amir model (already proposed for mycobacteria [447]) in which the initiation of

DNA replication triggers both the next initiation and a division event with an addermechanism. In thismodel,

the adder in the G-period is an output of the model, which emerges from the adder in I and CD when the

growth rate is a random variable and a sufficiently skewed asymmetry in cell division is added into themodel.

This replicaiton-centric model is unable to capture the growth rate – CD period inverse relationship discov-

ered by Wallden and coworkers. However, it has the merit of improving the Ho and Amir model accounting

for both adders in I and CD and introducing a debate over the importance of asymmetric division.

The replication-agnostic models entered the debate more recently. Based on dynamic cell-wall and cell-

geometry measurements, Harris and Theriot proposed a model in which the completion of the division sep-

tum, and not the chromosome, was the limiting factor for cell division [442, 443]. This model proposes a

simple molecular mechanism for the adder based on three main ingredients: (i) a crucial factor involved in

setting division is produced at a rate proportional to the cell size; (ii) this factor needs to reach a threshold in

the number in order the cell to divide; (iii) the factor in the next generation has to be reset, with no history

dependencies on the previous cell cycle (in the case of the septum, this is natural, as a new septum needs

to be produced from zero at every cell cycle). This model structure is still the basis for different mechanis-

tic models explaining the adder during the G period, but the mechanistic factor was also proposed to be a

protein [448, 449, 434]. Further evidence in favor of a replication-agnostic view came from experiments per-

formed by the Jun lab [434] aiming to perturb independently the adder correlation pattern in the G-period,

while maintaining intact the adder pattern over the I-period, and viceversa. The perturbations were achieved

by inducing oscillating levels of the FtsZ protein, which forms a contractile ring structure at the future cell-

division site and of the DnaA protein, responsible for the initiation of replication, respectively. The authors

interpreted the results of these experiments as a proof that the replication and division cycles are indepen-

dently regulated, and in particular that completion of DNA replication and segregation is not a limiting factor

for cell division. Additionally, the authors re-interpreted the ‘molecular adder’ model proposed by Harris

and Teriot, suggesting that the FtsZ may be the “adder protein” setting division. This work has the merit of

providing precious experimental information. However, the model fails to explain the adder behavior over

the CD period, as well as the correlation patterns related to how the replication and the division cycles are

coordinated [439, 441, 424].

The replication-centric and replication-agnostic views have been firmly opposing each other in recent years

(see e.g. [450, 445, 451]). However, a standpoint that is gaining consensus is that neither of these views

is able to capture the full complexity of the correlation patterns in the data [439, 441, 424, 436, 428, 452].

The recently proposed “concurrent-cycles” scenario [439, 441, 424] bridges the two opposing views and is

in better agreement with the data compared to all the above models. The key innovative element in this

theoretical framework lies in the assumption that there is no unique process limiting cell division. Rather a

set of competing processes have to be completed before division, and some “downstream control” module

(modelled as a logic gate) has to process the input from these processes. In its original formulation [439,

441], based on the available data the competing processes are the DNA replication processes defined by an

adder in the I-period, a timer in the replication-segregation period cycle, and a cell division process that adds

constant size between two consecutive divisions (division-related cycle). The division is decided by an AND

gate, which triggers when both of two actions are completed, the interdivision period is complete and the

replication-segregation period is complete. Therefore, the AND gate selects the slowest of the two random

processes (which vary across single cells) to set the timing. Note that in this framework the CD period can be

set by the intrinsic replication-segregation period of this is the slowest process, or by the interdivision period

in case this other process is the slowest one. The concurrent-cycles framework makes precise predictions on

how the sub-periods correlations of size change when either the replication-related or the division-related

cycles are perturbed. Recently, experiments in which cell wall insertion is delayed confirmed the prediction of
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the model [424]. Other recent studies proposed similar frameworks, adding mechanistic details, where the

onset of constriction at the divisome [452] and/or a “progression control complex” including the chromosome

and the divisome play the role of the gate deciding cell division [436, 428]. Technically, concurrent cycle

models need an additional set of parameters compared to the replication-centric and agnostic models (see

Box 11.D). These parameters are ultimately summarized by one extra relevant parameter, which can be

expressed as the probability that the division-related process to sets division (in a given cell cycle). Thus,

the replication-centric and replication-agnostic models can be seen as limit cases of the concurrent-cycles

framework, where this probability is zero or one respectively.

Despite the large improvement that the concurrent-cycles framework provides in the agreement with data,

many questions remain open. For example, we do not know the probability of either of the concurrent pro-

cesses limiting division varies under different conditions. Recent surveys of the available data [424, 452] sug-

gest that the probability of a chromosome-agnostic cycle increases with increasing growth rate. At very slow

growth (interdivision times of 300 minutes or more), it has been been suggested that replication-segregation

is the limiting process. Additionally, we currently do not know what tunes such probability and what the role

of the growth rate may be. We also do not know how many concurrent processes there are and which pre-

cisely are the relevant players at the molecular level. Finally, the regulation of initiation of DNA replication

could also be set by a “gate” integrating a set of processes, a hypothesis that remains underexplored in the

literature.

Mathematical details 11.D : The concurrent-cycles framework

This box provides the mathematical relationships that correspond to the ones appearing in Box 11.C for the more

general concurrent-cycles framework. Given the complexity of this model, we restrict to the case of no overlapping

rounds. In particular, we will show how Eq. (11.15) is no longer valid in the concurrent-cycles framework (without the

need to include additional ingredients such as asymmetric division or mother-daughter growth rate correlations).

In the concurrent-cycles model, cell division is determined by the slowest of two processes. The first process is an

interdivision, (chromosome-agnostic) cycle that is concluded, for generation i, at a log-size qi
H , which is expressed

as qi
H = q∗

H + (1 − λ∗
H)
(

qi
0 −
(

q∗
H − log 2

))
+ ανi

H , with λH size control parameter of this process. The second

process is a chromosome replication-segregation cycle (replication-centric), that is concluded, for generation i, at a

log-size qi
R, which is expressed as qi

R = q∗
R + δqi

I + ανi
I . Note that this equation assumes a timer for this process,

λ∗
CD′ = 0, where CD′ identify the time needed for completing DNA replication, which is identical to the measurable

CD-period only when this second cycle sets division. The cell size at division is determined by the slowest process,

i.e. qi
d = max

(
qi

H , qi
R

)
. The initiation of DNA replication decides the next initiation independently on the size at birth

or division, generating the fluctuation around the logarithmic size at initiation that we already found in Box 11.C,

δqi+1
I = (1 − λ∗

I )δqi
I + ανi

I .

To calculate the fluctuations of the logarithmic size at division, we assume that the replication-centric process sets

the division of generation i with probability pH independently on qi
0 and qi

I . With this assumption, and considering

λ∗
H , λ∗

I and λ∗
CD′ = 0, the model predicts the following values for the strength of the size-growth plots in the B-, CD-

and G-period,

(1 − λB) = (1 − λCD) (1 − λI)
σ2

qI

σ2
q0

(11.16)

(1 − λCD) = (1 − pH) + pH (1 − λ∗
H) (1 − λB)

σ2
qI

σ2
q0

, (11.17)

(1 − λG) = (1 − pH) (1 − λB) + pH (1 − λ∗
H) (11.18)

Overall, the concurrent-cycles model allows to match the experimental trends in the size-growth plots with an addi-

tional parameter (pH ). In particular, it allows to break the relationship in Eq. (11.15) without including asymmetric

divisions or mother-daughter correlations in growth rates [439, 441, 424].
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11.5 Protein sectors and cell division

This chapter focuses on quantitative descriptions of the cell cycle and cell division control, and it is natural

to wonder whether and how these consideration relate to the topic of previous Chapters 8 and 9 which

deal with resource allocation models where cell growth is set by catabolism and biosynthesis. There is a

strong link between regulation of growth and cell-cycle progression, which remains a largely open area of

investigation both in biology and in quantitative biology / physics of living systems. This section discusses

some recent models aimed to describe some specific aspects of the coordination between cell growth and

cell-cycle progression. We will start by presenting the main questions that we want to address with the

aid of mathematical models. Then we will discuss the main ideas and ingredients behind the models that

address these questions, and present some relevant predictions that can be tested and validated against

experimental data.

The maintenance of an interplay between cell growth and cell cycle is crucial for the correct functioning

of the cell. Specifically, a cell has to adapt both growth and division rates concertedly when either one is

perturbed. For example, the response and adaptation to environmental stresses, such as sudden shifts in

nutrient conditions or exposure to drugs or toxins, requires the ability to reprogram in a coordinated way cell

growth and cell division. Consequently, cells across all kingdoms of life have developed specific mechanisms

to precisely coordinate cell cycle progression with cell growth and biosynthesis [195, 453, 405, 454, 409, 455].

There aremanymechanisms involved in this coordination, and we lack a complete and coherent quantitative

understanding of how this coordination works in different contexts. Sometimes we even lack simple ways to

frame questions concerning the effects on cell cycle progression of cell growth perturbations/inhibitions, or

the effects of cell growth of cell-cycle perturbations (such as cell cycle arrest).

To formulate and address these questions quantitatively, we would need a theoretical framework where

both growth physiology (as in “how does a cell grow?”) and cell-cycle decisions/progression (as in “how does

a cell decide when to divide?”) aspects are allowed to play a role and influence each other. However, while

both cell growth and cell cycle progression alone have been subject of intense study in the past (especially in

bacteria [403], but see ref. [456] for a recent review of these themes in eukaryotes), comparatively little effort

has been directed so far toward the development of such unified framework. Nonetheless, recent work has

advanced our quantitative understanding of the cross-talk between cell growth and cell cycle progression in

bacteria. The remainder of this section will focus on discussing these aspects.

Relatively to the bacterium E. coli, recent and current efforts aimed at integrating already existing coarse-

grained models of cell physiology and cell cycle control. More precisely, several studies have extended the

classic proteome allocation theory, (presented in chapters 8 and 9), which has proven successful in describ-

ing several physiological laws, to include also a cell-division proteome sector “X”, whose dynamics should

implement cell-division control (or cell-cycle progression control) strategies at a phenomenological or molec-

ular level (Fig. 11.4). The current models for E. coli usually include a threshold accumulation process for cell

division, i.e., proteins of the division sector accumulate during cell cycle progression up to a threshold level

that triggers cell division. The previous section has mentioned some candidate molecular players for this

accumulation (the FtsZ protein and the cell wall insertion).

Let us take a closer look at the ingredients of this modeling framework. The two main ingredients are (i) the

standard proteome allocation theory extended to include a division sectorX , alongside to the standardmain

sectors (see Chapter 8), Q (house-keeping), R (ribosomes), P (catabolism and transport), together with (ii) a

threshold-accumulation division strategy to set the decision to divide (Fig.11.4A). Note that the fact that the

division factorX is a protein is an implicit assumption in these framework and experimentally things could be

more complex. Crucially, the fact that cell division is a proteome sector couples the rates of cellular growth

and division, by controlling the synthesis of division proteins. Specifically, the models encode a trade-off

between ribosomes and division protein synthesis, which as wewill see determinesmany salient predictions.

Box 11.E shows how these ideas and ingredients can be translated into a mathematical model. The frame-
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Mathematical details 11.E : A mathematical model

The model consists of two different layers of dynamical equations, and one relationship connecting them. The first

set of equations describes cell growth and division as cellular processes

ds

dt
= λs ,

dX

dt
= kXs −

dX

mX
X, X(τd) = Xth =⇒

{
s(τd) → s(τd)/2

X(τd) → 0
, (11.19)

where cell size s (mass or volume) grows exponentially at a rate λ ([λ] = [T ]−1), while division proteins X , of mass

mX being synthesized and degraded at rates (kX ([kX ] = [s]−1[T ]−1), dX([dX ] = [M ][T ]−1)), accumulate until a

threshold amount of them is reached and cell division occurs, after that cell size is divided exactly in half and division

proteins number is reset to zero.

The second set of equations describes the dynamical allocation of the proteomeand the biosynthesis layer underlying

cell growth, as follows

dA

dt
=

1
ma

knP − aktRfa +
∑

Pi∈{Q,P,R,X}

dPi
Pi

 ,

dPi

dt
=

1
mPi

(
aktfPi

Rfa − dPi
Pi

)
. Pi ∈ {Q, P, R, X} .

(11.20)

According to Eq. (11.20), free amino-acids (A) are produced from import/catalysis of nutrients at a rate kn ([kn] =
[M ][T ]−1)) per number of catabolic/transport proteins P , and from protein degradation, occurring at a rate dPi

Pi

(where dPi
([dPi

] = [M ][T ]−1) is the degradation rate) for each specific sector. Free amino-acids are taken up to

synthesise each proteome sector Pi at a rate equal to the number of active ribosomes (Rfa), times the fraction of

ribosomes synthesising the specific sector fPi
, times an overall protein translation rate, which in this particularmodel

is equal to a constant translation rate per ribosomes kt ([kt] = [s][T ]−1) times the concentration of free amino-acids

a ≡ (maA)/ ([a] = [M ][s]−1).
Finally, there must be a connection between the two levels of description, in the sense that cellular rates should

be regarded as the result of the underlying biosynthesis dynamics. To make this connection explicit, we write the

equation

s = γM = γ(mAA + mP P + mRR + mQQ + mXX) , (11.21)

representing mass conservation (if ”size” stands for ”mass” s = M ), or the assumption of constant density (if ”size”

stands for ”volume” s = V ), verified in E. coli for population averages but not for single cells, or for certain perturba-

tions [406, 461].

Together, Eqs. (11.19), (11.20) and (11.21) fully specify the model.

work that we are now going to discuss is consistent with different models recently developed in the litera-

ture [457, 458, 459, 460, 454].

In order to exemplify how this framework can generate relevant predictions, we dedicated an appendix

”Growth Laws” at the end of this document where some concrete examples taken from the literature are

discussed. The mathematical derivations are not exhaustive, but aimed to give the reader a feeling of the

”recipe” followed to obtain a given prediction starting from the model’s ingredients. The interested reader

should have sufficient information to work out the mathematical calculations autonomously or follow the

complete derivation in the cited references (for example by Serbanescu et al. [457, 458]).

11.6 Control of cell division across species and kingdoms

The concepts described in the previous sections are widely applicable, but there are many relevant species-

specific aspects, so that different crucial assumptions that we have taken so far might break down for dif-

ferent species and kingdoms. Additionally, it should be noted that the approach described here is purely

phenomenological, while a biological investigation might be concerned with the detailed molecular play-

ers responsible for the cell division and cell-cycle progression decisions. Even in this case, the approach is

useful and is being applied in recent work. For example, if the goal is to understand how the size control
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Figure 11.4: Ingredients and predictions of modeling frameworks integrating sector models with cell-division
control. (A) The framework unifies growth and cell division by extending the standard proteome allocation
model to include a division sector X, implementing a threshold-accumulation process setting the decision to
divide. (B) Themodel is naturally suited to uncover general relationships and growth laws involving proteome
composition and growth rate, as well as trade-offs between different proteome sectors. The inclusion of a
division protein sectorX regulating cell division allows themodel tomake predictions on cell size control and
study the transient dynamics in nutrient shifts.

phenomenon is regulated, the phenomenological analyses can quantify how the phenomenology of size cor-

rection behaves under different mutants and perturbations, helping to identify molecular players and their

effects on cell-cycle decisions.

Let us consider briefly some important variations of the approach used so far, relevant for the understanding

of different species-specific behaviors. First, it is not granted that single cells grow exponentially, or even

that exponential growth is a good approximate description. Even in the cases where exponential growth

appears to be a good average description, these averages may emerge from more complex behaviors at

the single-cell level or in cell cycle sub-periods. For bacteria, most studies conclude that exponential growth

is a sufficiently good description, although recent accounts show deviations [462, 463]. In budding yeast

(S. cerevisiae), the average growth rate was reported to change at regulatory checkpoints with the cell-cycle

phase [464, 465, 466]. In the fission yeast S. pombe, a systematic study of single-cell growth concludes that

the majority of growth trajectories are best described by a bi-linear growth [467]. In cell lines of animal cells,

most studies suggest that, on average, cells grow exponentially until a certain saturation size after which they

slow down, but this mean behavior hides many details [405]. For example, it seems that cells in the G1 phase

of the cell cycle grow at a slightly slower rate than in later stages of the cell cycle [468].

A second important aspect to consider is whether division is symmetric or not. In E. coli, cells divide symmet-

rically, giving rise to two daughter cells that are nearly equal in size, with a precision of a few percent [408].

However, different species use very different strategies for cell division, which increase variability or explic-

itly aim for asymmetry. For example, S. cerevisiae reproduces through budding (hence the term “budding

yeast”). The parent cell creates a small outgrowth that eventually becomes a daughter cell. Both division

strategies are common among unicellular organisms (many filamentous fungi grow via budding). Budding

creates a parent/offspring distinction in which age-related aspects are not transmitted equally. Since aging

may correspond to a decrease in fitness/growth rate, it can also create diversity along lineages. A third im-

portant aspect to consider is that the growth rate may be coupled to size and enforce size homeostasis. In

other words, homeostasis can be achieved by modulating cell-cycle duration based on size at birth, but also

if large-born cells grow slower than small-born ones.

As an example of how different issues can be analyzed with extensions of the phenomenological approaches

discussed so far, it is instructive to discuss in more detail how one can use the linear-response framework to

detect indications of growth-based size homeostasis. As we mentioned previously, the overall multiplicative
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growth of a cell in one cycle is quantified by G = qf − q0 = log sf

s0
=: ατ . The slope λ of the size-growth plot

is equivalent to considering the conditional average of G over logarithmic size q,

〈G〉q = 〈G〉 − λδq (11.22)

As we have seen in Fig 11.1, we can consider the separate contributions of timing and growth to the coupling

by taking separate scatter plots with growth rate and cell division time. We can give a more formal quantifi-

cation of their contributions as follows. We call θ the coupling strength derived from the slope the first plot

quantifying control by modulation of interdivision time,

〈τ〉q = 〈τ〉 − 〈τ〉θδq , (11.23)

and γ the slope quantifying modulation of growth rate based on birth size,

α− 〈α〉 = −〈α〉 (γδq) + να . (11.24)

For positive values of γ, cells that are born larger than average can correct their sizes by growing with a slower

growth rate, and cells that are born with a smaller size than average can correct by growing at a faster rate.

Conversely, for negative values of γ, birth-size related specific growth rate variations increases systematically

size variability.

Intuitively, we can understand that θ γ and λmust be related. First, the overall homeostasismust be the result

of the one enforced by growth-ratemodulation and the one enforced by interdivision-timemodulation. More

formally, the slopes of the correlation plots illustrated in Fig. 11.1 for G, α and τ versus logarithmic birth size

must be related, because G = ατ .

Using the linear response approach defined in section 11.3, one can derive the following equation

λ = θ〈α〉〈τ〉 + γ〈α〉〈τ〉 . (11.25)

Eq. (11.25) states that the overall correction to size over a cell cycle has to be the sum of a correction due to

modulation of timing and a correction due to the modulation of specific growth rate based on size at birth.

For example, if the overall strength is an adder, and the size coupling of the duration of the cell cycle is already

an adder, the growth rate must be uncoupled from initial size.

Going back to the data, one can use Eq. (11.25) to evaluate the different strategies, by evaluating the couplings

θ, γ and λ from the different scatter plots. Importantly, the constraint imposed by Eq. (11.25) is realized in

data from several bacterial species and growth conditions, indicating that the framework is sufficient to de-

scribe the data. Work on different bacteria shows widespread adder correlations [403], hence λ ' 0.5. What

is more surprising is that adder behavior has been reported for in budding yeast and cultured human cells.

Hence, for many species, the inter-division correlation patterns are nearly always close to an adder. One

interesting exception is the fission yeast S. pombe, discussed below. The widespread adder patterns may

suggest common general principles underlying the division control of microorganisms and cultured single

mammalian cells. Considering the couplings θ, γ shows a different scenario, with a clear distinction between

microorganisms and cultured mammalian cells. In the studied unicellular microbes, the inter-division adder

is always due to the modulation of cell-cycle duration. Instead, cultured mammalian cells also rely on growth

rate modulation to correct their size. In particular, this rejects the hypothesis that adder behavior may be

favored by common underlying mechanisms. Additionally, for budding yeast andmammalian cells, the over-

all adder behavior emerges from homeostatic regulations acting close to the initiation of replication (G1/S

transition) during the cell cycle, and from a weaker regulation of the subsequent parts of the cell cycle [405].

Cell growth outside of G1 is critical in setting the average cell size but appears to be less significant for the

size homeostasis effect setting cell-to-cell variability in birth size. This is not the case in bacteria, where we

have seen that key questions regarding the specific events in the cell cycle where homeostasis is exerted are
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still under debate.

The fission yeast S. pombe is an interesting case to discuss. This rapidly dividing microorganism is a yeast

but uses symmetric division (hence it is sometimes called “fission yeast”), and was the central model system

in pioneering studies of the cell cycle. Its size-correction mechanism is the strongest observed in nature,

because it can correct size fluctuations in a single cell cycle. Its inter-division size pattern is close to a sizer,

but recently the study of mutants with different cell widths has shown that the mechanism that triggers

division is based on a surface-area sensor, triggered at a critical cell surface. The molecular effector of this

sensing, a protein called Cdr2, has been indentified [469]. Curiously, genetic knockout of this protein does

not lead to an ablation of size homeostasis. Rather, fission yeast cells fall back to a volume-basedmechanism,

suggesting that multiple biochemical circuits play a role in the decision to divide.

Finally, since cells of different species and in different conditions use a range of ways to control cell division,

for example sizers or adders. An important question is why a particular species would implement one partic-

ular strategy. One possibility is that this trait is under selection, and the fitness of individual cells decreases

away from the optimal size. In this case sizers would be favored, because they can compensate for deviations

in one cell cycle andminimize fluctuations. A second, more likely, possibility is that intrinsic physiological con-

straints linking cell cycle and growth are important in determining cell division control. For example, it has

been argued that in bacteria size control is a result of a cell’s attempt to exert a tight control over the initiation

of DNA replication – rather than cell division [470].

11.7 Concluding remarks

This chapter focused onmodeling the cell cycle. The reader should have acquired an overview of some of the

key recent experimental results in this area, as well as the basic mathematical toolbox to address biological

questions motivated by single-cell dynamic data, concerning (i) decisional processes during the cell cycle and

primarily the decision to divide, (ii) coordination between different cell-cycle processes, and primarily the

chromosome cycle with cell division and (iii) the coordination of cell cycle progression with growth.

This chapter is connected with Chapters 8 and 9 describing resource allocationmodels used here to describe

growth, and with Chapter 12, describing models of growth rate variability, because it provides a framework

to include a description of the division rate variability.

Problems

Problem 11.1 Show that for cells that grow linearly in time an adder and a timer are the same.

Problem 11.2 Analyze the consequences of a constant per-size hazard rate h∗
d = 1/s̃ and compare them to

the consequence of a constant per-time hd = r (a Poisson process).

Problem 11.3 Analyze the forward hazard rate model for cell division where hd(s) = (s/s̃2) by simulation

and/or analytical calculations.

Problem 11.4 Find the hazard rate corresponding to the process defined by Eq. (B.2).

Problem 11.5 Write an explicit expression of the four parameters λab appearing in Eq. (B.5) and Eq. (B.4) as

a function of the covariances between the fluctuations of growth rates and log-size at the same or different

generations.

Problem 11.6 Prove that the adder strategy rapidly achieves cell size homeostasis (that is, a controlled cell

size at birth) after a few cell generations, independently of the starting initial size. Prove that convergence to

homeostasis and loss of memory of the initial cell size is exponential in the number of cell cycles. Write down

a simple numerical code to simulate this process and verify your analytical predictions. What is the role of
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noise in setting the inter-division added size?

Problem 11.7Write the equivalent of Eq. (B.2) for the I-period and for sub-periods B and CD, and prove the

following relationships:

(1 − λI) =
〈
δqi+1

I δqi
I

〉
σ2

qI

, (1 − λB) =
〈
δqi

Iδq
i
0
〉

σ2
q0

, (1 − λCD) =
〈
δqi+1

0 δqi
I

〉
σ2

qI

,

where the log-size fluctuation at initiation for the cell cycle i is δqi
I := qi

I − 〈qI〉 ≈ log
(
si

I/ 〈sI〉
)
, with si

I the cell

size at initiation.

Problem 11.8Write the equivalent of Eq. (11.12) for the I-period and for sub-periods B and CD.

Problem 11.9 Write the predicted λG and λI for a model in which λ∗
CD and λ∗

B are input parameters of the

model. Does Eq. (11.15) still hold?

Problem 11.10 Extend the models in Box 11.C for:

1. Overlapping rounds of DNA replication. This case is more difficult to address analytically, but can be easily

simulated.

2. The ζ-formalism (without overlapping rounds). Use the model to answer the question: can an adder in the

I- and CD-period provide the adder behavior in the G-period4?

Problem 11.11 Run numerical simulations of Eqs. (11.19). Prove that in order to obtain an adder, the ingre-

dients of a size-specific (rather than constant) production rate of the division protein kX and a reset to zero

(rather than partitioning in half in the two daughter cells) of the division factor X turn out to be essential.

Problem 11.12 Rewrite the system of equations (11.20) in terms of protein fractions, either defined as protein

mass fractions φi ≡ Mi/Mprot or protein number fraction ψi ≡ Pi/
∑

i
Pi, where Mprot = mQQ + MPP +

mRR + mXX = M − mAA. In both cases one has the obvious constraint
∑

ψi = 1 =
∑

i
φi. Find the

connection betweenψi andφi. What can be generally said about the stationary composition of the proteome?

How does the senario change if degradation can be neglected?

Problem 11.13 For the mathematically curious readers, show that the model described in Box 11.E far can

be written in more general mathematical terms as

dXi

dt
= fi(X); dZ

dt
= h(X, Z)

V (X, Z) =
N∑

i=1

viXi + vZZ
(11.26)

where V is the volume of the cell and Xi, Z its chemical constituents. Identify the functions fis and h. Show

that the fis satisfy the property of homogeneity, fi(βX) = βfi(X). The predictions of this model have been

studied in the wider framework of dynamical systems theory [471, 472].

Problem 11.14 By directly integrating Eq. (11.19), derive the following expression for the threshold number

of division proteins Xth ≡ X(τd)

X(t) = kXs0

λ+ dX
mX

(
2

t
τd − 2− dX

mX λ
t

τd

)
=⇒ Xth = kX

λ+ dX
mX

(
sd − s02− dX

mX λ

)
. (11.27)

4Note that the adder behavior can be recovered introducing asymmetric divisions [435]



188 Control of cell division

Recommended readings

◦ Osella M, Tans SJ, Cosentino Lagomarsino M. Step by Step, Cell by Cell: Quantification of the Bacterial Cell

Cycle. Trends Microbiol. 2017 Apr;25(4):250-256. doi: 10.1016/j.tim.2016.12.005. Epub 2017 Jan 13. PMID:

28094092.

◦ Willis L, Huang KC. Sizing up the bacterial cell cycle. Nat Rev Microbiol. 2017 Oct;15(10):606-620. doi:

10.1038/nrmicro.2017.79. Epub 2017 Aug 14. PMID: 28804128.

◦ Cadart, C., Venkova, L., Recho, P. et al. The physics of cell-size regulation across timescales. Nat. Phys. 15,

993–1004 (2019). https://doi.org/10.1038/s41567-019-0629-y

◦ Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress,

and the future with focus on cell size control: a review. Rep Prog Phys. 2018 May;81(5):056601. doi:

10.1088/1361-6633/aaa628. Epub 2018 Jan 9. PMID: 29313526; PMCID: PMC5897229.

◦ Serbanescu D, Ojkic N, Banerjee S. Cellular resource allocation strategies for cell size and shape control in

bacteria. FEBS J. 2021 Oct 19. doi: 10.1111/febs.16234. Epub ahead of print. PMID: 34665933.

◦ Amir A,Männik J, Woldringh CL, Zaritsky A. Editorial: The Bacterial Cell: Coupling betweenGrowth, Nucleoid

Replication, Cell Division, and ShapeVolume2. FrontMicrobiol. 2019 Sep4;10:2056. doi: 10.3389/fmicb.2019.02056.

PMID: 31551989; PMCID: PMC6737747.

◦ Kleckner NE, Chatzi K, WhiteMA, Fisher JK, StoufM. Coordination of Growth, Chromosome Replication/Seg-

regation, and Cell Division in E. coli. Front Microbiol. 2018 Jul 9;9:1469. doi: 10.3389/fmicb.2018.01469.

PMID: 30038602; PMCID: PMC6046412.



Chapter 12

Metabolic diversity in cell

populations: probability densities

over the flux polytope

Andrea De Martino and Marcelo Rivas-Astroza

Chapter overview

Even in clonal populations, cells appear to be strongly heterogeneous in terms of, e.g., protein levels,

RNA levels, sizes at birth or division, interdivision times and elongation rates. Part of this variability is

likely due to the inherent stochasticity of gene expression at the level of single cells. It is however known

that heterogeneous populations may possess an evolutionary advantage, for instance in variable envi-

ronments or under stress. Despite appearing to be at odds with the idea of optimality presented in

the previous Chapters, metabolic diversity can be described and modeled within the constraint-based

framework introduced in the previous Chapters. Specifically, a statistical representation of heteroge-

neous populations can be obtained by defining suitable probability distributions on the flux polytope.

This Chapter addresses

◦ the different sources of variation that affect microbial metabolism along with the mechanisms that

may favor higher variability,

◦ the methods devised to represent heterogeneous microbial populations within the framework of

constraint-based models, and

◦ how these approaches connect to the optimality scenario presented in the previous Chapters.

12.1 Introduction

The theory of cellular metabolism developed up to this point through constrained-based models (CBMs) re-

lies crucially on some type of optimality assumption: among all viable flux states encoded in the flux polytope

by mass-balance, thermodynamic and regulatory constraints, cells strive for those that maximize a physio-

logically motivated objective function. For E. coli cells growing on carbon-limited substrates, for instance, it

is reasonable to take such a function to be the growth yield. At the very least, these optimal states provide

reference points to gauge cellular behavior. In this respect, having a good grasp of what makes a configu-

ration of fluxes through the network ‘optimal’ with respect to a certain objective is rather important from

189
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a theoretical viewpoint. On the other hand, it is not easy to prove directly in an experiment that a certain

function is actually being optimized (in any physical system, let alone in a microbe or a microbial population).

An optimality assumption can usually be corroborated a posteriori, e.g. by comparing optimality predictions

to experimentally measured fluxes or growth rates [473, 474], or indirectly, e.g. by showing that, in a given

growth medium, certain metabolic enzymes are expressed at just the level ensuring maximal growth [475].

By looking at the behavior of individual cells in a population, however, one cannot help but notice a salient

feature: their diversity. Individual cells are macroscopically heterogeneous in terms of parameters like inter-

division times, elongation rates, sizes at birth or division, etc. This suggests that a corresponding diversity

is present at the level of intracellular processes like cell cycle, gene expression and, of course, metabolism.

Quantitative experiments probing populations at single-cell resolution (see Experimental Methods Box 12.A)

can nowadays characterize such a diversity in some detail. Among the remarkable outcomes of these stud-

ies is that, when analyzed through a lens that accounts for diversity, bacterial growth displays signatures of

universality [476, 477, 478], suggesting the existence of general, system- and condition-independent control

mechanisms (e.g. of cell division and growth) that do not change with specifics like strain, quality of medium,

etc. Identifying these mechanisms yields robust insight (and predictive capacity) into the physiology of mi-

crobial systems (see also Chapter on Control of cell division and coordination with other cell-cycle processes).

Experimental methods 12.A : Quantitative methods for single-cell analysis of microbial systems

At the very minimum, quantitative experimental characterization of cell-to-cell diversity in microbial populations re-

quires (i) the possibility of achieving steady-state cell growth in controlled environments, and (ii) the possibility of

identifying individual cells within a population. The two setups that are most important for the present Chapter (and

most widely used in general for the study of cell-to-cell heterogeneity in microbial systems) are the following.

◦ High-resolution optical microscopy of bacteria growing on agarose pads. Optical microscopy is the first and still

most used technique to address cellular individuality [479]. Besides giving direct information about the macro-

scopic growth dynamics of individual cells [480, 478], it can be used in conjunction with gene expression reporters

like fluorescent proteins to quantify diversity in gene expression levels [481] and dynamics [482]. Optical means

usually allow to reliably follow the expression of a relatively small number of genes. In addition, however, they can

also provide information about many other aspects of bacterial physiology, like motility, chemotaxis or the spatial

self-organization of colonies.

◦ Microfluidic ‘lab-on-a-chip’ devices. In essence, these techniques allow to confine single cells or small lineages

thereof in controlled environments for long-term data acquisition [483]. A well-known example is the ‘mother

machine’ [484]. In a mother machine cells grow in narrow (ca. 1 µm) microfluidic dead-end channels such that

(a) all cells in the same channel are daughters of a mother cell stuck at the closed side of the channel; (b) a main

feeding channel carries away cells that grow out of the length of dead-end channels (which suffice to contain a

few cells, usually 5 to 10); and (c) nutrient in-flow and waste out-flow from the feeding channel ensure a constant

medium in all dead-end channels via diffusion. This setup effectively keeps the population size fixed. Growing

bacteria can then be imaged and analyzed by standard means like time-lapse microscopy to obtain the statistics

of quantities like the interdivision time or the size at birth at stationarity [477].

The setup of mother machines has the advantage that cells can be followed for many more generations than on

agarose pads, since the latter tend to become overcrowded after a limited number of rounds of divisions. On the

other hand, agarose pads offer a more natural environment for cell division. In addition to these, a host of other

techniques are being increasingly refined and used to probe single-cell properties and behavior in bacterial popula-

tions, including single-cell metabolomics by mass spectrometry [485], nanoscale secondary ion mass spectrometry

(nanoSIMS) [486], and single-cell transcriptomics [487].

It is not hard to guesswhy a bunch of identical cells sharing the samemediumwould, say, elongate at different

rates. For one, gene expression has a stochastic component, from e.g. the random diffusion of transcription

factors to targets to the thermal noise driving the on/off dynamics of transcription events. We also know

that the cell cycle can be highly variable [488]. And other ‘natural’ sources of variance can be found in the

dynamics of expression in genetic circuits, aging, asymmetric partitioning of cellular resources at division,

inter-cellular interactions, and epigenetic modifications [489]. In other terms, a degree of variability across a

population is to be expected. The question, however, is, how can variability be reconciled with the optimality
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Figure 12.1: One versus multiple optima in the flux polytope. (A) A two-dimensional flux polytope (shaded
area) with non-negative fluxes and the defining constraints shown as dashed lines. (B) The linear objective
function represented by the red line has a unique maximum (red dot). (C) The linear objective function rep-
resented by the blue line, parallel to one of the constraints, has infinitely many maxima, which coincide with
the segment highlighted in red.

picture? And related to this: can we explain cell-to-cell differences in terms of some other, perhaps more

involved, optimality criterion? Are there cases inwhich variability is optimized? Canwedescribe quantitatively

a microbial population in ways that account for inter-cellular diversity? Note that cell-to-cell variability is

inherently a population-level concept. Addressing it therefore requires a framework that is capable of clearly

distinguishing single-cell properties from population-level ones.

It is definitely possible to explain cell-to-cell variability within an optimality framework (see Chapter on So-

lutions of constraint-based metabolic models). For example, one could say that, in appropriate conditions, all

microbes in a population are optimal, but the optima are slightly different for different cells. As a matter of

fact, optimal states in CBMs need not be isolated points belonging to the flux polytope. There can in fact be

infinitelymany flux vectors thatmaximize an objective function (this happens, for instance, when an objective

function attains its maxima on one of the edges or faces of the polytope, see Figure 12.1). This implies that

identical cells subject to the same constraints and sharing the same objective may end up having different

metabolic profiles despite carrying the same value for the objective function. In this scenario, diversity is

induced by a very special feature of the objective function and, unless some other ingredient is brought into

the game to lift the degeneracy, all optimal states would be equally likely for cells. If having an objective func-

tion of this type seems unlikely in a high-dimensional setup such as metabolism, onemay imagine a scenario

in which all cells optimize the same objective but with slightly different constraints (i.e. in a slightly different

polytope, e.g. due to small variations in regulatory constraints, energy demands, or nutrient uptakes). In this

case, each cell would solve its own optimization problem, ending up having, along with a different metabolic

profile, a slightly different value of the objective function. Metabolic diversity is therefore induced by vari-

ability in the constraints. But it is also possible that, if cells are subject to fluctuating exogenous constraints

(e.g. variable nutrient levels), they would prefer to maximize their, say, growth rate averaged over conditions,

especially if fluctuations occur on faster timescales than those over which metabolic reactions equilibrate.

In such a case, the average growth rate would be maximum (given the external variability), but other than

that every cell could carry a different growth rate and a different metabolic profile. In this respect, one can

say that diversity is now being optimally adapted to external conditions, or one may even think that different

cells have different objective functions. This scenario, possibly unrealistic for growing microbial populations

but not for other cell types (think for instance of the mixture of neurons with high energy demands and glia

with low energy demands in the brain), would also lead to heterogeneous flux profiles and objectives. And

so on.

It is clear from these examples that, in order to represent heterogeneity within CBMs, one must, first and

foremost, clarify the origin of heterogeneity as much as possible. Next, it is necessary to shift from the

language of individual flux vectors belonging to the flux polytope to that of ensembles of flux vectors or, more

reasonably for large populations, of probability densities defined on the flux polytope. This transition is less
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trivial and more momentous than it sounds and, together with the causes of variability, is the core subject

of the present Chapter. We shall begin by giving a more precise characterization of the different types and

sources of diversity that can be considered when modeling metabolic networks. Next, we shall introduce

probability densities on the flux polytope and briefly discuss a few simple examples. We shall then address

the general problem of using probability densities to represent heterogeneity and uncertainty, most notably

that seen in empirical data. Finally, we will show how these ideas can be used to generalize the notion of

optimality to heterogeneous populations.

12.2 Sources of variability and uncertainty in metabolism

Metabolic heterogeneity is widespread among clonal populations of prokaryotic and eukaryotic cells. Popu-

lations of Escherichia coli display diverse cell-to-cell conversion yields of glucose into final products, such as

fatty acids and tyrosine [490]; not surprisingly, the intracellular concentration of co-factors, including ATP,

also vary significantly between cells [491]. Saccharomyces cerevisiaemetabolic states have been observed to

change over time for each cell. For instance, a single budding yeast does uptake oxygen before duplicat-

ing its genetic material, but it changes to an anaerobic metabolism once DNA duplication starts in order to

prevent mutations related to free radicals [492, 493]. Animal cells within a single tissue also show heteroge-

neous metabolisms. Non-small cell lung cancer display a remarkable diversity of preferred carbon sources.

Within the tumor, some cells consume glucose and produce lactate, whereas others divert their metabolism

to consume lactate as a carbon source [494].

The root cause of this metabolic heterogeneity is manifold, including uneven distribution of nutrients in the

environment, asymmetric cell partitioning at division, and noise in gene expression [495, 496]. These effects

are stochastic, and prevent the determination of a cell metabolic state in advance. This type of uncertainty

is rooted in the nature of metabolism itself. We refer to it as objective uncertainty.

There is however another type of uncertainty at play, one that comes from our models of metabolism. In any

metabolic network reconstruction, there can be missing reactions [497], errors or lack of knowledge about

the directionality of certain reactions under in vivo conditions [498], and errors in the experimental estimates

of certain parameters –such as exchange fluxes, or the weights of the biomass reaction [499]. Even when

using a bona fidemetabolic network conditioned by preciselymeasured parameters, optimality principles can

lead to a reduction of the viable polytope as opposed to the identification of a single ‘optimal’ state [500] (see

Chapter on Solutions of constraint-based metabolic models). This is exemplified in the network of Fig. 12.2.A,

where the maximization of v4 only reduces the viable polytope to a subspace defined by the line shown in

Fig. 12.2.B. Uncertainties that stem frommodeling uncertainties can be categorized as subjective, as they arise

solely from an observer’s imperfect knowledge.

As we will see in the following, although objective and subjective uncertainties have different sources, both

can be modeled using probability theory.

12.3 Probability densities over the flux polytope

In what follows, we shall denote the convex flux polytope by P and a generic flux configuration in P by

v = {vi}N
i=1. A probability density p defined on P is any non-negative function such that∫

P
p(v)dv1 · · · dvN ≡

∫
P
p(v)dv = 1 . (12.1)

Notice that the integral over P implicitly encodes two types of constraints: mass-balance equations (i.e.

Sv = 0) and ranges of variability of the form vi,min ≤ vi ≤ vi,max (see Chapter on Solutions of constraint-based

metabolic models). The quantity
∫

P dv represents therefore the a priori volume of P (which, understand-

ably, is far from simple to calculate for high-dimensional polytopes like those corresponding to genome-scale

metabolic network reconstructions [501]). As usual, p(v) can be interpreted as the relative likelihood of flux
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Figure 12.2: Minimal metabolic network with multiple optima. (A) Toy network where the top metabolite is
imported by reaction v1 andprocessedby reactions v2 and v3, which convert it into the bottommetabolite that
is then excreted via v4. When fixing v1 = 10, the maximization of v4 –a proxy of biomass growth rate– under
mass balance results in v4 = 10. There are however infinitely many flux vectors (defined by the condition
v2 +v3 = 10) that are coherent with this solution, including those indicated by red blue and green flux values.
(B) The subspace of optimal solutions forms a line (dark purple) in the space of feasible flux vectors (Problem
12.1 ). The purple-shaded triangle represents the flux polytope for 0 ≤ v1 ≤ 10.

configuration v: if we imagine that a cell is assigned a flux configuration by “randomly sampling it from P” us-

ing the rule described by p, then p(v)dv represents the probability that the cell’s flux configuration will lie in a

small volume dv aroundv. It is clear then that probability densities onP provide amathematically convenient

way of describing the metabolic state of large populations (or ensembles) of cells at a given time, provided

one can assume that cells have the same metabolic network and are subject to the same constraints, so

that P is the same for all of them. For the population of cells described by p, the probability density clearly

contains all the statistics of metabolic fluxes, frommean values to variances to correlations. For instance, by

integrating p over all fluxes except the i-th, one obtains the marginal probability density of flux vi, i.e.∫
P
p(v)dv\i = pi(vi) , (12.2)

where the subscript \i corresponds to ‘except for the flux of index i’ (so dv\i = dv1 · · · dvi−1dvi+1 · · · dvN ). And

from pi we can immediately retrieve the statistical features of flux vi (e.g. mean value, variance, etc).

Let us make a few simple examples.

◦ If we assume that all cells in the population maximize the same objective function, and that there is no

degeneracy in the optimal state, then

p(v) = δ(v − v?) , (12.3)

where v? denotes the (unique) objective-maximizing flux vector and δ(x) denotes Dirac’s δ-distribution.
◦ If we can make no assumption on the cells’ metabolic activity other than it has to be compatible with the

constraints encoded by P , then any flux vector v ∈ P is equally likely to occur in a population. This means

that p is constant on P . Specifically, its value must be equal to the inverse of the volume of P :

p(v) =
(∫

P
dv′
)−1

(v ∈ P) . (12.7)

For any given flux polytope, this distribution can be sampled at least in principle using the methods de-

scribed in the Chapter The space of metabolic flux distributions.

◦ Imagine having a dataset derived from a 13C labeling experiment (mass spectrometry) that gives the mean
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Mathematical details 12.B : Dirac’s δ-distribution

For our purposes, the defining property of the δ-distribution in one dimension is the following: if a variable x is

δ-distributed around the finite value x?, then, for any continuous function f ,∫ +∞

−∞
f(x)δ(x − x?)dx = f(x?) . (12.4)

This means that, intuitively, δ(x − x?) = 0 everywhere on the real axis except at x?, where its value is +∞. Such

a function only makes sense within an integral. In this respect, (12.3) should be seen as an abuse of notation, al-

beit a convenient one. There are however several ways to represent the δ-distribution that comply with the above

requirement. For example, one can define∫ +∞

−∞
f(x)δ(x − x?)dx := lim

σ→0

∫ +∞

−∞
f(x)

1
√

2πσ2
e

− (x−x?)2

2σ2 dx

= lim
σ→0

∫ +∞

−∞
f(x? + σy)

1
√

2π
e− y2

2 dy = f(x?) . (12.5)

The generalization to n > 1 dimensions is obtained by straightforwardly assuming δ(x − x?) =
∏n

i=1 δ(xi − x?
i ), so

that ∫
Rn

f(x)δ(x − x?)dx = f(x?) . (12.6)

Because the δ-distribution effectively has non-zero probability mass only at a single point, it is reasonable to expect

(12.6) to hold also if the integral is carried out over a compact domainD, provided x? belongs toD. This is indeed the

case, although the proof requires some work. For a quick guide to the many other interesting and useful properties

of the δ-distribution that are beyond our current scopes, see [502].

value vi of every flux in the network (the average being over the population of cells used in the experiment),

together with an experimental error σi (which likely conflates different sources of uncertainty of which we

may know very little, if anything at all), such that the experimental population-level estimate of vi is vi ±σi.

Let us assume that we know enough about the experiment to be able to define a flux polytope for the cell

type (P), and that all empirically measured averages and errors are in P . Then, if we want to describe the

population by a probability density inP that is uniformover the domain definedby experimental estimates,

we can set

p(v) =
N∏

i=1

θ(vi + σi − vi)θ(vi − vi + σi)
2σi

(v ∈ P) , (12.8)

where θ(x) denotes the Heaviside (step) function defined as (Problem 12.2)

θ(x) =

{
1 for x > 0

0 for x < 0
. (12.9)

◦ (Boltzmann distribution) Let f(v) denote a generic function of the flux vector, such as f(v) =
∑N

i=1 civi,

with ci prescribed constants. The Boltzmann distribution is defined as

p(v) = 1
Z(β) e

βf(v) (v ∈ P) , (12.10)

where β is a constant and Z is a factor ensuring normalization (i.e. (12.1)), namely Z(β) =
∫

P e
βf(v)dv. The

behavior of p is simple to grasp in three limits.

1. For β → 0, (12.10) reduces to (12.7): in other words, p becomes uniformoverP (and therefore insensitive

to f ).

2. For β → +∞, p effectively concentrates on the flux vector v? that maximizes f (which for simplicity we
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β = 0 β > 0 β → ∞

p(v) ~ const. p(v) ~ eβf v) p(v) ~ δ(v-v*)

uniform optimumBoltzmann

Figure 12.3: Boltzmann distribution on the flux polytope. The Boltzmann distribution, Eqn (12.10), morphs
from a uniform probability density to a δ-distribution concentrated on the flux vector that maximizes the
function f as β varies from 0 to +∞.

assume to be unique). To see this at a heuristic level, it suffices to notice that, for any v 6= v?, the ratio

p(v?)
p(v) = eβ[f(v?)−f(v)] (12.11)

increases exponentially as β increases. Because densities are normalized, when this ratio becomes large,

p(v) must become very small. Hence, when integrated over P , the larger is β, the closer to v? must flux

vectors be in order to give a significant contribution to the integral. For β → +∞, the only relevant

contribution comes from v?, so that, effectively, p(v) ' δ(v − v?). This conclusion can be reached more

precisely using Laplace’s method (a.k.a. saddle-point approximation) to evaluate integrals of the form∫
Rn e

βg(x)dx in the limit β → ∞ for fixed n (see e.g. [503], Ch. 27).

3. By a similar reasoning, for β → −∞ the only relevant contribution to integrals involving p comes from

the (unique, by assumption) flux vector v? thatminimizes f , so that, effectively, p(v) ' δ(v − v?).
When β varies, things depend strongly on the form of f and can become rather complicated when f is non-

linear, especially when terms that involve the product of two or more fluxes (‘high-order interactions’) are

present. However, in the simple case in which f is linear (as outlined above), then the probability density

gradually morphs from a uniform distribution over P to a δ-distribution around the maximum of f as β

increases from 0 to+∞ as shown in Fig. 12.3 (and likewise when β decreases from 0 to−∞). In this respect,

the parameter β can be seen simply as a ‘degree of optimization’: the closer a population is to optimizing f ,

the higher the value of β. For reasons that will become clear in the next section, the Boltzmann distribution

plays an especially important role in this Chapter (Problem 12.3).

◦ In Constrained Allocation FBA [474] (see the Chapter 9, one considers an ensemble of growth-rate max-

imization problems constructed by sampling (from a prescribed probability density) a family of random

variables representing the proteome fraction to be invested in each metabolic enzyme per unit flux of

the corresponding reaction. The idea in CAFBA is that different sets of parameters effectively correspond

to different cells, reflecting the cell-to-cell variability in e.g. transcription levels and protein abundances.

The population-level behavior is then obtained by averaging over different choices of these parameters

(i.e. over a population of heterogeneous cells). An alternative interpretation is however possible, namely

that different parameters reflect the different environmental conditions that a species can encounter over

its life process history. By averaging over parameters one obtains a growth strategy that levels out this

environmental variability. Such a strategy may be the one that cells prefer to implement e.g. when envi-

ronmental fluctuations are fast (faster than regulatory timescales). In either case, in CAFBA, randomness

in a family of parameters related to the optimization problem induces randomness in the solutions, and

therefore a probability density over the feasible space. This probability is unfortunately hard to write down

explicitly in the case of CAFBA due to the complexity of the optimization problem. Its marginal distribu-

tions are however easy to calculate numerically. Two of them, specifically for the single-cell growth rate



196 Addressing the metabolic diversity of cell populations

and acetate excretion fluxes, are shown in Fig. 2 in [474].

We could provide more examples but the key message of this section should already be visible: probability

densities on the flux polytope are useful (a) when one wants to explicitly represent how uncertainties, ex-

perimental knowledge (with errors), or variability in parameters impact our knowledge of what part of the

flux space P is occupied by the metabolic states that occur in a true microbial population; and (b) when one

is interested in representing an optimal (in some sense) population in a way that explicitly accounts for het-

erogeneity. If one has data (with errors), a probability density can provide a representation of the data, as

in (12.8). It can likewise describe the solution to a population-level optimization problem, and therefore a

purely theoretical prediction, as in (12.3). Or the solution to an optimization problem with uncertainty, i.e.,

partial knowledge or variability in some of the parameters, in which case it represents an ‘informed’ theoret-

ical prediction (as in the CAFBA example, where the ‘information’ injected into the problem comes from the

probability density from which parameters are sampled). Or it can simply be a tool to interpolate between

extreme cases whenwe are unsure about howwell a certain function is being optimized (as in (12.10)). Notice

how, in our examples, different motivations activate different theoretical routes, all of which lead to working

with probability densities that have a priori different origins and meanings even though they can be formally

the same.

The two broad motivations for working with probability densities on P outlined above [i.e. (a) representing

uncertainty and (b) representing optimal heterogeneous populations], pose fundamentally different model-

ing challenges. In the first case, the key question is one of model selection: given some empirical knowledge,

what is the probability density on P that best represents our residual uncertainty? For instance: how good

of a choice for p is (12.8) given the data we had? Are there criteria that can guide our choice of a probability

density? We will briefly consider these issues in the upcoming Sec. 12.4. When attempting to model optimal

heterogeneous populations at the theoretical level, instead, one basically has to generalize the problem tack-

led by CBMs like FBA to the case in which an optimal probability density is searched for instead of an optimal

flux configuration. We will see how this can be done in Sec. 12.5.

12.4 Representing heterogeneity and uncertainty

12.4.1 ML, MAP and Bayesian inference

We have seen that probability densities on P can represent, under certain assumptions, populations of mi-

crobeswhosemetabolism can be described by the sameflux polytope, and that different probability densities

can be surmised tomodel the distribution of v ∈ P when some external information (e.g. experimental data)

is available. Here, we will address the following question: how can one choose the p that best represents our

knowledge about the metabolic state of a population in presence of these external data?

To summarize the huge and highly involved set of problems behind the above (very general) question [503]

in a way that is useful for the purposes of this Chapter, we can start by assuming we have a priori chosen

a form of p that depends on certain free parameters and ask how to tailor parameters so that p ‘optimally’

matches the empirical evidence. To be concrete, let us denote by ψ the vector of parameters of p, and by

W = {w1,w2, ...,wR} a set of R experimental samples of v. Each measurement, w, is a vector of metabolic

fluxes that ideally should include all the reactions of a metabolic network. In practice, a vector w typically

spans only a subset of all the reactions of themetabolic network, e.g. those that are amenable to 13C labeling

(TCA, glycolysis, and pentose phosphate pathways) or that correspond to exchange fluxes that can be reliably

measured (glucose and oxygen consumption, or lactate and ethanol, to name a few). According to Bayes’ rule

(we assume all variables to be continuous), the quantities

◦ p(ψ|W): the conditional probability density of the parameters given the observations (a.k.a. the posterior);

◦ p(W|ψ): the conditional probability density of the observations given the parameters (a.k.a. the likelihood);

◦ p(ψ): the prior probability density of parameters (a.k.a. the prior);
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Mathematical details 12.C : A recognizable case (Gaussian model)

ML is themost commonly used point estimationmethod. As said above, the estimated parameters, ψ̂, are computed

as the argument that maximizes the likelihood of the observed data, i.e.

ψ̂ = arg max
ψ

p(W|ψ) = arg max
ψ

R∏
i=1

p(w(i)|ψ) = arg max
ψ

R∑
i=1

log[p(w(i)|ψ)] , (12.15)

where in the last step we used the fact that, as far as the solution is concerned, maximizing p(W|ψ) is equivalent
to maximizing its logarithm. ML takes a familiar form if one follows, for instance, Theorell et al. [504] in modeling v
according to a multivariate normal distribution:

v ∼ N(v|ψ) =
1√

(2π)N |Σ|
e

(
− 1

2 (v̄−v)T Σ−1(v̄−v)
)

(12.16)

The parameters encompass the mean values, v̄, and the covariance matrix, Σ. That is, ψ = [v̄, Σ]. Accordingly,

p(w(i)|ψ) = N(w(i)|ψ) =
1√

(2π)N |Σ|
e

(
− 1

2 (v̄−w(i))T Σ−1(v̄−w(i))
)

, (12.17)

and

ψ̂ = arg max
v̄,Σ

R∑
i=1

[
−

1
2

(v̄ − w(i))T Σ−1(v̄ − w(i)) − log
(√

(2π)N |Σ|
)]

, (12.18)

which leads to the well-knownweighted least squares estimators ofmean values (ˆ̄v) and variances (Σ̂). With ˆ̄v and Σ̄,

the frequency of any vector v can be computed from N(v|ˆ̄v, Σ̂). Standard techniques, such as confidence intervals,

can be applied to assess the precision of ψ̂. Generally speaking, the larger the number of samples, R, the smaller

the uncertainty in ψ̂.

◦ p(W): the (marginal) probability density of observations (a.k.a. the evidence)

are related by the formula

p(ψ|W) = p(W|ψ)p(ψ)
p(W) . (12.12)

Ideally, what one would like to know in order to ‘optimally’ set the parameters of p is how likely a parameter

set is given the data, i.e. the full posterior p(ψ|W), as it allows to quantify our uncertainty on themodel itself.

Onemay however also consider different (less ambitious) ways to choose parameters. The three best known

methods are the following:

◦ Maximum Likelihood (ML) inference aims at finding the parameter vector that maximizes the likelihood:

ψML = arg max
ψ

p(W|ψ) . (12.13)

In standard cases, this produces a single ‘optimal’ vectorψ (hence it is called a ‘point estimator’), resulting in

a p that models -in a context-specific manner- the metabolic heterogeneity within the cellular population.

◦ Maximum a Posteriori (MAP) inference aims instead at finding the parameter vector that maximizes the

posterior:

ψMAP = arg max
ψ

p(ψ|W) ≡ arg max
ψ

p(W|ψ)p(ψ) , (12.14)

where the last equality follows from the fact that p(W) does not depend onψ. As forML, theMAP estimator

is a point estimator.

◦ Bayesian inference aims finally at computing the full posterior distribution p(ψ|W). It is therefore a ‘distri-
bution estimator’ rather than a point estimator.

Problem 12.4 should clarify the way in which point estimators differ from (and are less informative than)

distribution estimators in practice.



198 Addressing the metabolic diversity of cell populations

Mathematical details 12.D : Inference in metabolic network modeling

In metabolic network modeling v is usually a vector of fluxes. Unfortunately, the number of samples is usually very

small [505], which may lead to ψ̂ over-fitted to the sample set. One way to overcome limited sample sizes is to

regularize the estimation procedure by incorporating prior information on ψ via the MAP estimation method (12.14).

The evidence p(ψ) in MAP can be used to encode the distribution of v values observed in previous experiments or

formulated as a plausible non-informative probability distribution. For example, Heinonen et al. [506] formulated

p(ψ) as a multivariate normal distribution with mean values equal to zero, and variances for each flux adjusted to

prevent fluxes extending beyond their lower and upper bounds defined in P . MAP estimation can be considered as

an ML estimation whose objective function has been augmented by the prior distribution of p(ψ). In this sense, MAP

estimation is a ‘regularized’ ML estimation, which helps prevent overfitting.

MAP estimation however does not exploit the capacity of Bayes’ theorem to explore the full set of values that the

parameters can achieve. By producing a distribution estimation of the parameters, Bayesian inference allows quan-

tifying the parameters’ variability. Compared to point estimation methods, though, Bayesian inference is compu-

tationally expensive as it requires to asses how different values of p(ψ) affect p(W|ψ). Fortunately, some families

of p are susceptible to methods such as Gibbs sampling or Markov Chain Monte Carlo that offer an efficient way to

compute the posterior numerically [507]. This is the case, for instance, for the truncated multivariate normal distri-

butions that Heinonen et al. [506] used for the likelihood and prior functions appearing in (12.12). The posterior can

then be used to derive statistical features of quantities that depend on ψ, e.g. metabolic fluxes.

In practice, most parameters underlying the mechanisms that govern cellular metabolism -e.g., enzymes’ allosteric

regulation or the local conditions within cells’ organelles- remain unknown. Various hypotheses can be advanced to

close this knowledge gap. Alas, it is not uncommon to have conflicting scenarios. For instance, to explain overflow

metabolism in S. cerevisiae and E. coli [508, 509, 510], numerous plausible explanations have been pushed forward,

including ATP savings for the production of non-oxidative enzymes (which by being smaller, compared to their ox-

idative counterparts, require less ATP in their synthesis) [511, 512], limited uptake rates capacity [513], and an upper

limit on the dissipation of Gibbs energy [514]. (See [515] for an excellent review of optimization-based explanations.)

Because each mechanism can be encoded through a different prior, it is clear that the choice of the prior is a del-

icate matter in Bayesian inference. Generally speaking, the choice of the prior becomes less and less problematic

the more data we have, i.e. the better sampling we have of the state space of the system. However, if data is scant,

the prior will leave an important imprint on the resulting posterior. In these cases, a careful selection of the prior is

paramount. Among the methods most commonly employed are (a) the construction of empirical priors (namely pri-

ors that encode previous knowledge about parameters), (b) the use of so-called “non-informative priors” (i.e. priors

that reflect ‘vague knowledge’ about parameters, like the fact that a certain parameter is non-negative) [516], and (c)

the selection of priors based on the Maximum Entropy principle (see below) [517, 518].

12.4.2 MaxEnt inference

According to the principle of Maximum Entropy (MaxEnt) [519, 520], among all probability densities that are

consistent with given prior knowledge or data, the one having the largest value of the entropy

H[p] = −
∫

P
p(v) ln p(v)dv (12.19)

is the one that best represents our knowledge about the system. A classical intuitive justification of the

MaxEnt principle is most easily given for discrete variables [521].

Consider N cells, each of which can be found in any ofK states (what precisely defines a state is immaterial

for this reasoning). Let an assignment n = {n(i)} be given, such that n(i) denotes the number of cells in

state i (with
∑K

i=1 n(i) = N ). Because we can always exchange the states of two cells without changing n,
there are multiple ‘microscopic’ ways to realize an assignment n. Combinatorics tells us that the number of

different microscopic realizations of an assignment n is given by

N (n) = N !∏K

i=1 n(i)!
. (12.20)
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Economic analogy 12.E : Maximum Entropy economic equilibrium

Most of economic theory relies on the assumption that markets are capable of allocating resources optimally, i.e. so

that the utilities of each of the participating agents ismaximized (an assumption can can be seen as the analog of each

cell in a population maximizing its growth rate). In order to achieve optimal states (called ‘equilibria’ in economics),

agents endowed with a priori different preferences, resources and goals identify the actions that maximize their

utilities (e.g. transactions, trade, or production) and carry them out. This process however can become more and

more demanding as the number of agents that take part in the market gets larger and larger, because (in short) the

set of viable transactions for each agent can become exceedingly large. How can one describe the equilibria that

arise from these situations?

A possible approach, used at least since [522] (see also [523, 524, 525]), is based on the Maximum Entropy principle.

The idea, in short, is the following. Once every agent has somehow chosen their preferred actions (i.e. once a system-

wide ‘configuration of individual actions’ has been selected), the market as a whole presents a set of transactions to

be carried out that aggregate the choices of individual agents. When looked at the aggregate level, though, each set

of transactions can correspond to more than one configuration of individual actions. (This can happen, for instance,

because agents have a degree overlap in their characteristics whichmakes them indistinguishable from an economic

perspective.) If one assumes that agents choose their actions at random from their set of viable transactions, then

some sets of transactions are bound to be more likely than others, simply because they can be realized in more

‘microscopic’ ways (for instance, by interchanging agents of the same type). It is then reasonable to think that the

likelihood of any particular set of transactions will be larger, the larger the number of microscopic ways in which it

can be realized. Taking entropy as a measure of multiplicity, the most likely set of transactions, then, is the one that

maximizes the entropy.

A model of market where the above program is worked out in detail is found in [522]. The ‘statistical equilibrium’

theory that follows from the use of theMaximum Entropy principle generalizes the standard competitive equilibrium

discussed in microeconomics by providing a description of optimality in large markets with heterogeneous partici-

pants. This line of work has also inspired further developments that explicitly included agents’ heterogeneity into the

theory of competitive equilibria [526, 527, 528]. To the best of our knowledge, a similar approach has not yet been

used to model heterogeneous microbial systems.

If all n(i)’s are large enough, we can use Stirling’s approximation (n! ' (n/e)n) to see that

N (n) ' eNH(n) , H(n) = −
K∑

i=1

n(i)
N

ln n(i)
N

≡ −
K∑

i=1

p(i) ln p(i) ≡ H(p) , (12.21)

where p(i) denotes the fraction of cells in state i (or, equivalently for us, the probability to find a cell in

state i). H is the entropy of the assignment n, and is in essence a measure of the microscopic degeneracy

that underlies a macroscopic arrangement. The distribution p = {p(i)} carrying the largest entropy sub-

ject to certain constraints is therefore the one having the largest underlying microscopic degeneracy given

those constraints. So, if one were to randomly pick a microscopic state given those constraints, the most

likely macroscopic state would be the maximum entropy distribution. In other terms, the MaxEnt distribu-

tion is the least biased distribution compatible with the constraints, as any other distribution satisfying the

same constraints would correspond to a smaller underlying degeneracy, thereby neglecting some feasible

(i.e. constraint-satisfying) microscopic configurations. In this respect, aMaxEnt distribution requires the least

information besides prior knowledge (i.e. constraints). (A more detailed justification for using the MaxEnt

principle as an inference tool is given e.g. in [521].) If for instance cells are assigned to states in a completely

random way, the MaxEnt distribution is the solution of

max
p

−
K∑

i=1

p(i) ln p(i) subject to

K∑
i=1

p(i) = 1 , (12.22)

which can be found via the method of Lagrange multipliers (Problem 12.5). If other constraints are imposed,

though, the MaxEnt distribution will clearly change (Problem 12.6). For our purposes, the continuous case

with entropy given by (12.19) can be seen as a straightforward generalization of the discrete one.
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Figure 12.4: MaxEnt modeling of single-cell growth rate distributions. Empirical distributions are reproduced
by a MaxEnt assumption where the mean growth rate is constrained, leading to a Boltzmann distribution
over the flux polytope (Eq. (12.30)).

To get some grasp of the scenario that the MaxEnt rule provides within CBMs, let us work out one especially

noteworthy case, namely the MaxEnt probability density of flux configurations with a given mean value of a

generic function f of the fluxes. This probability density is the solution of

max
p(v)

−
∫

P
p(v) ln p(v)dv subject to

∫
P
p(v)dv = 1 and

∫
P
f(v)p(v)dv = f . (12.23)

To find it, we construct the functional

L[p] = H[p] + α

[∫
P
p(v)dv − 1

]
+ β

[∫
P
f(v)p(v)dv − f

]
, (12.24)

where α and β are Lagrange multipliers for the normalization and the mean-value-of-f constraints, respec-

tively. Variation of L with respect to p yields the maximum condition

−1 − ln p(v) + α+ βf(v) = 0 . (12.25)

Solving for p results in

p(v) = eβf(v)

e1−α
. (12.26)

The normalization condition however determines the value of α, as one must have∫
P
eβf(v)dv = e1−α ≡ Z(β) . (12.27)

One is then left with

p(v) = 1
Z(β) e

βf(v) (v ∈ P) . (12.28)

The value of β must be determined from the constraint on the mean value, namely from

1
Z(β)

∫
P
f(v)eβf(v)dv = f . (12.29)

Notice that the result is nothing but Boltzmann’s distribution (12.10). We have therefore found that (12.10)

is the MaxEnt distribution for a given mean value of the function f . This means that if we have a dataset

returning the empirical mean value of an observable f over a population of cells, our knowledge is best

represented by assuming that p(v) is of the form (12.10), with β ensuring the matching of empirical and

theoretical means.

This suggests a possible way to represent single-cell growth-rate distributions [529], such as the E. coli pop-

ulations growing in rich media studied e.g. in [530, 477, 478] (see Figure 12.4).

Let us assume that all cells in the population can be described by the same flux polytope P and let λ(v)
denote the growth rate associated to flux configuration v. We can ask the following question: what is the

p(v) on P that best represents our knowledge that the mean growth rate of cells is λ (empirical)? The answer
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is

p(v) = 1
Z(β) e

βλ(v) (v ∈ P) , (12.30)

where Z(β) =
∫

P e
βλ(v)dv, and where β is set so that the empirical mean growth rate (λ) matches the theo-

retical mean, i.e.

1
Z(β)

∫
P
λ(v)eβλ(v) dv = λ . (12.31)

We can therefore solve the above equation (numerically) and analyze the resulting distribution. One sees

from (12.30) that β has a ‘natural’ unit given by λ−1
max, the inversemaximumgrowth rate achievable inP (which

is easily computed by LP). In the populations analyzed in [529], the value of β that ensures the matching

condition ranges from 190/λmax to 300/λmax, suggesting that indeed the degree of optimization of λ is signif-

icant. The most remarkable result, however is that the marginal distribution of the growth rate computed

from (12.30), namely

p(λ) =
∫

P
δ(λ− λ(v))p(v)dv , (12.32)

matches the overall empirical growth-rate distributions. In other words, if one adjusts the parameter of

(12.30) so that the theoretical mean growth rate and the experimental one coincide, then (12.32) reproduces

the entire empirical growth-rate distribution. This observation confirms the empirical evidence that the vari-

ance of single-cell growth-rate distributions is a function of the mean, such that, if growth rates are re-scaled

by the mean, distributions roughly collapse on ‘universal curves’ [477, 478]. In addition, the analysis of [531]

has shown that predictions for individual fluxes obtained from (12.30) (i.e. mean values plus standard devi-

ations) provide a better fit to experimentally measured fluxes than growth-rate maximizing fluxes obtained

from FBA. This is especially important as it suggests that, despite the relatively high degree of optimization,

the cell-to-cell variability underlied by (12.30) is biologically relevant.

In the following section we will use this observation as a springboard for the analysis of optimal heteroge-

neous populations.

12.5 Representing optimal populations

Let us start from a rather abstract question. Suppose that an organism is actually maximizing a certain

function F , unknown to us, which depends on metabolic fluxes v as well as on a set of other variables w that

are not part of metabolism: F ≡ F (v,w). We shall denote by (v?,w?) the (supposedly unique) configuration
of variables whereF attains itsmaximum. Let’s furthermore say that we have a guess for what the organism’s

objective function might be, and that this guess is only a function of metabolic fluxes, which we denote by

f ≡ f(v). If we trust our guess, and if f is maximized by the (supposedly unique) flux vector v̂, our prediction
for the fluxes would be v̂. Question: what is the probability that v̂ is the true optimum, i.e. that v̂ = v??

Note that f(v?) ≡ f? < f̂ ≡ f(v̂) (i.e. at the ‘true’ optimum the value of f is bound to be smaller than the

maximum value of f ).

The answer goes like this: according to the MaxEnt principle, the probability density p(v) for any flux config-
uration v to be the true state of the system (i.e. the true optimum) should be undetermined other than by

our knowledge that the real optimum has some value of f below f̂ . What is the correct constraint to enforce

(besides normalization) if we are to look for such a p(v)? We could impose that allowed configurations strictly

have some fixed value of f < f̂ . This choice would lead to a uniform density over all states with a given value

of f . In this way, though, we are imposing that states with a different value of f are strictly inaccessible, which

is not part of our knowledge. However, if we impose that only the mean value of f is constrained, MaxEnt

will return a probability density with the exact same mean value as the uniform density just described (by
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construction) but a much larger entropy, just because –intuitively– it will assign a non-zero probability to all

states. Hence, as long as we have no other information, the best prediction we can make for p(v) is given by

the probability density that maximizes the entropy H[p] subject to the constraint 〈f〉 ≡
∫

P p(v)f(v)dv = f?,

i.e. by the solution of

max
p

−
∫

P
p(v) ln p(v)dv subject to

∫
P
p(v)dv = 1 and

∫
P
p(v)f(v)dv = f? . (12.33)

We now know the result to be given by (12.10), i.e.

p(v) = 1
Z(β) e

βf(v) (v ∈ P) , (12.34)

where β is the Lagrange multiplier enforcing the constraint 〈f〉 = f?. What this means in practice is this:

if one is modeling a microbe’s metabolism and is unsure about the objective function but has a guess (f ),

information theory suggests that the best one can do is to assume that metabolic flux configurations are

selected according to (12.34). Ideally, the value of β for which one obtains the best agreement between

predictions based on sampling (12.34) and experiments is the ‘degree’ to which the system optimizes f . If f

is the true objective function, then the agreement between theory and experiments will get better and better

as β increases. It is important to keep in mind that (i) while we have assumed that the organism is actually

maximizing something, we didn’t really use the fact that F is maximized at (v?,w?) (only that the true state

of the system has some value of f below f̂ ); (ii) this is a totally ideal situation (for instance, experimental data

have errors, so whether comparisons between theory and experiments are informative doesn’t only depend

on the theory but also on the quality of the data).

The fact that (12.34) is ‘optimal’ in a rather fundamental sense (a priori different from the sense in which

f -maximizing populations are optimal) encourages to view distributions described by (12.30) through a dif-

ferent lens. When we maximize the entropy at fixed mean growth rate, in practice, we are looking for the

‘broadest’ probability density (i.e. the most variable population) on P that is compatible with the givenmean.

In other terms, we are saying that, given a mean growth rate, the optimal population is the one that has the

largest possible variability. To quantify variability in a more readily understandable way, it is convenient to

transform it into a measure of the amount of information encoded in p. One can reason as follows: if no

prior information is available about the population, uncertainty is maximal and all flux vectors in P must

be considered to be equally likely. This means that, for such a population, the probability density over P is

uniform (see (12.7)). We shall denote the entropy of the uniform distribution over P byH(0). When we inject

information into the problem (e.g. the fact that the population has a certain mean growth rate), then the

probability density is no longer uniform but given, say, by (12.30). The uncertainty is therefore reduced by

H(0) −H(β), whereH(β) is the entropy of (12.30). (Clearly,H(0) is just the entropy of (12.30) for β = 0.) The
quantity

I = H(0) −H(β)
ln 2 (12.35)

denotes the amount of information (in bits, hence the factor ln 2) injected by a non-zero value of β. Re-

formulating our population-level optimization, we can say that, for any fixed mean growth rate 〈λ〉, the opti-
mal population is the one carrying the smallest value of I. A short calculation (Problem 12.7) shows that 〈λ〉
and I are related by

β〈λ〉 = I ln 2 +
∫ β

0
〈λ〉dβ′ , (12.36)

where it should be noted that 〈λ〉 is an increasing function of β (as β increases, the density gets more and

more concentrated around the growth-rate maximizing flux vector, thereby leading to an increase of 〈λ〉).

The curve 〈λ〉 versus I described by (12.36) can therefore be computed numerically for anymetabolic network

reconstruction (as the only ingredients required are encoded in the flux polytope P) [529]. The resulting line

(see Figure 12.5) separates the (〈λ〉, I) plane in a viable (achievable) region and a forbidden region where the
mean growth rates are too large for the amount of information encoded in the population. This ‘phase dia-
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Figure 12.5: Fitness-information bound (general form). The black line encodes the maximum mean growth
rate achievable for any given value of the information content I (Eq. (12.35)) of a metabolic flux distribution
(or the minimum value of I required to achieve any given mean growth rate).

gram’ yields, first and foremost, a general prediction linking themean growth rate (fitness) of amicrobial pop-

ulation to its metabolic heterogeneity: all populations must have fitness-heterogeneity values in the viable

region. Recent work relying on an advanced statistical inference framework has shown that actual microbial

populations indeed lie in the viable part of the plane [532]. In addition, it provides a quantitative definition of

an optimal population that accounts for variability: optimal populations have fitness-heterogeneity pairs that

lie on the boundary between the viable and the forbidden region. In this respect, results from [529, 531, 532]

can be summarized by saying that heterogeneous, faster-growing E. colipopulations (mean growth rate larger

than roughly 1/h, richer growth media) are very close to optimality, while slower-growing ones tend to have

mean growth rates and information contents that get more and more sub-optimal the less rich is the growth

medium. (Of course, this notion of optimality refers to the growth rate and information content as the key

parameters to evaluate a population’s performance. It may well be, and this is an issue definitely worth ex-

ploring, that slower-growing population are optimal with respect to some other parameter(s).) At any rate,

the above definition of optimality coincides with the standard one (growth-rate maximization) for β → +∞,

in which case variability goes strictly speaking to zero as all cells collapse on the same flux configuration. And

we now understand how it generalizes it: by stressing the way in which heterogeneous populations can be

optimal despite growing at sub-maximal rates.

For later convenience, note that, because the entropy is a convex functional, the solution to the MaxEnt

problem is the same as the solution to

max
p

∫
P
p(v)λ(v)dv subject to

∫
P
p(v)dv = 1 and −

∫
P
p(v) ln p(v)dv = H? . (12.37)

The above problem has perhaps a more direct interpretation: the optimal population is the one that has the

largest mean growth rate at fixed variability (entropy) or, equivalently, at fixed information content.

Before moving on, we notice that, in the above setting, optimality of heterogeneous populations has a rather

simplemechanistic interpretation in terms of how populations ‘occupy’ the flux polytope. If one considers the

uniform distribution on P , Eq. (12.7), and calculates themarginal distribution for the growth rate (i.e. (12.32)),

one finds that the growth-rate landscape inwhich populations grow is extremely skewed towards slowgrowth

rates: the overwhelmingmajority ofmetabolic flux configurations corresponds to slow-growing cells, i.e. with

growth rates roughly two orders of magnitude below λmax. This implies that, whatever flux vector we are in,

a small random change to it is overwhelmingly more likely to decrease our growth rate than increase it.

In this respect, slow states have an ‘entropic’ advantage over fast states. On the other hand, by definition,

fast-growing flux configurations replicate faster than slow-growing ones, and therefore have a replicative

advantage. It is therefore tempting to interpret the probability density (12.30) as resulting from the balance

between these two tendencies. One can for instance imagine that a microbial population grows and evolves

in time in P due to (i) replication events, and (ii) small random changes of the flux vector (due e.g. to gene
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expression noise). Ref. [529] has indeed shown that such a population evolves toward a distribution very

close to (12.30), where the role of β is played by the inverse rate of diffusion of the population in P , that is,

by the inverse of the rate at which small random changes occur: fast rate implies small β, and vice versa. (As

the mathematical analysis of this scenario requires the toolbox of non-linear Fokker-Planck equations, it is

beyond the scopes of this Chapter.)

The above theory can be extended in various directions. We shall limit ourselves to one example here, namely

that of optimal populations in fluctuating environments [533]. The basic assumption we make is that the

growth rate λ is a function of both the flux vector v and of a single (for simplicity) exogenous variable s ≥ 0
representing the stress level to which the population is subject: λ ≡ λ(v, s). We furthermore assume that

s is a random variable with probability density P (s). For any value of s, λ will be maximized by a certain

flux vector v? ≡ v?(s). If fluctuations of s are sufficiently slow, then cells may be able to perfectly adapt

their metabolic response to every value of s they encounter. But this is unlikely to be possible in rapidly

fluctuating environments. In the latter case, it is instead reasonable to assume that cells will try to maximize

their average growth rate, where the average is taken over the distribution of s. The relevant quantity is now

the probability density to observe a certain flux configuration v given that the state of the environment is s

(p(v|s)), while the objective function (to be maximized over p(v|s)) is just

〈λ〉 =
∫
dsP (s)

∫
P
p(v|s)λ(v, s)dv . (12.38)

We should now specify the constraints. One is simple and concerns normalization:
∫

P p(v|s)dv should be

equal to one for all s. To introduce the second one, we note that, because one expects v to encode informa-

tion about the environment, it is convenient to constrain the mutual information of v and s, i.e.

I(v; s) =
∫
dsP (s)

∫
P
p(v|s) log2

p(v, s)
p(v)P (s)dv , (12.39)

where p(v, s) = P (s)p(v|s) is the joint distribution of v and s, whereas p(v) =
∫
dsP (s)p(v|s). Clearly, I = 0

if p(v, s) factorizes over v and s and it gets larger and larger as v and s become more and more correlated.

Putting these pieces together, we can write the cell’s optimization problem as

max
p(v|s)

∫
dsP (s)

∫
P
p(v|s)λ(v, s)dv subject to

∫
P
p(v|s)dv = 1 (∀s)

and

∫
dsP (s)

∫
P
p(v|s) log2

p(v|s)
p(v) dv = I? . (12.40)

A comparison with (12.37) should clarify how the above generalizes the previously discussed optimization

framework. Again using the method of Lagrange multipliers one finds that the optimal probability density is

now given by (Problem 12.8)

p(v|s) = p(v)
Z(s, β) e

βλ(v,s) , (12.41)

where

Z(s, β) =
∫

P
dv p(v) eβλ(v,s) , (12.42)

while β is a Lagrange multiplier.

The meaning of (12.41) is straightforward: when β → 0, the metabolic flux configuration v becomes inde-

pendent of s, implying I = 0. As β increases, v and s get more and more correlated, while p?(v|s) tends
to get more and more sharply peaked around v?(s). In the limit β → +∞ cells respond to each value of

s by selecting the exact flux configuration that maximizes λ. To achieve this, maximal I is required. A de-

tailed study of the optimal probability density emerging in this case within a highly coarse-grained model of
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metabolism has been carried out in [533], showing how complex metabolic strategies (including the coexis-

tence of slow-growing, persistent states with fast-growing ones) arise as optimal responses to a fluctuating

environment.

12.6 Concluding remarks

Metabolic variability in cell populations has, as we have discussed, multiple origins, both rooted in unavoid-

able stochastic effects and (possibly) in the fact that, in certain cases, being heterogeneous can be optimal for

a microbial population. Models can account for variability by representing (sufficiently large) populations via

probability densities defined on the flux polytope. Two main (different) goals can be achieved. First, one can

look for the probability density that yields the best (in a precise sense) description of a set of empirical data.

Methods likeMaximumLikelihood andMaximumEntropy provide different, albeit related, approaches to this

task. Second, one can formulate optimization problems for populations, whose general solution is a proba-

bility density rather than a single flux configuration. Solutions to these problems can highlight how fitness

and variability are related in optimal populations, providing useful theoretical benchmarks for real microbial

systems. While possibly more demanding from a mathematical viewpoint (and certainly more demanding

from a computational viewpoint), these approaches expand the scope of CBMs, including in terms of predic-

tive power. In addition, they can refine the notion of optimality and provide insights into the fundamental

principles that govern the organization of metabolism across populations. The question of whether variabil-

ity confers an advantage to microbial populations is however very general, and goes beyond the metabolic

level of CBMs on which we focused here. A broader discussion of these aspects is presented in the Chapter

Cell behavior in the face of uncertainty.
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Problems

Problem 12.1 Use the model in Fig. 12.2 to study different objective functions, specifically combinations of

fluxes. Can you find other cases in which the optimum is not unique?

Problem 12.2 Show that, for a real variable x, a continuous function f and upon integration over R, d
dx
θ(x) =

δ(x).

Hint. Use the fact that d
dx

[θ(x)f(x)] = θ′(x)f(x) + θ(x)f ′(x).

Problem 12.3 Well- versus ill-defined flux spaces. Using the sampling methods introduced in the Chapter

The space of metabolic flux distributions and a linear objective function of your choice, write a program that will

sample a toy two-dimensional flux polytope according to (12.10), and check the outcome for a few values of

β. Then try changing the shape of the polytope in different ways by changing the constraints. What features

of the polytope can make sampling harder and/or less accurate (i.e. require a larger number of samples)?

Can you work out a modification of the sampling algorithms that alleviates these problems?

Problem 12.4 MAP inference versus Bayesian inference. Consider a Bernoulli random variable with param-
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eter ψ, i.e. such that the probability of having k successes in n trials given ψ is

p(k|ψ) =
(
n

k

)
ψk(1 − ψ)n−k , (12.43)

and assume that the prior for ψ is a β-distribution with parameters a and b, i.e.

p(ψ) = Γ(a+ b)
Γ(a)Γ(b) ψ

a−1(1 − ψ)b−1 . (12.44)

Calculate the full posterior p(ψ|k) and the MAP estimator for ψ as a function of k, n, a and b. Then assume

a = b = 2 and compare the following situations: (i) a Bernoulli process that returned 2 successes in 3 trials;

(ii) a Bernoulli process that returned 20 successes in 33 trials. Show that the MAP estimator for ψ is 60% for

both (i) and (ii) (so the two processes are indistinguishable to MAP), while the posterior is different. Knowing

the posterior, which process would you pick if you were asked to point to the one that is more likely to have

ψ = 0.6?

Problem 12.5 Show that the solution of the maximization problem (12.22) is the uniform distribution p(i) =
1/K for all i.

Problem 12.6 MaxEnt distribution in different cases. Assume that a certain real variable x takes values

x(i) in the K states (one can for instance think of x(i) as the growth rate of cells in state i). Show that the

MaxEnt distributions for constraints imposed on (i) normalization of the distribution, (ii) normalization and

mean value of x, (iii) normalization, mean value of x and second moment of x, and (iv) normalization and

mean of the logarithm of x, are, respectively, uniform, exponential, Gaussian, and power-law.

Problem 12.7 Retrieve formula (12.36).

Problem 12.8 Retrieve formula (12.41) (hard).



Chapter 13

Cell behavior in the face of

uncertainty

David Lacoste, Olivier Rivoire, and David Tourigny

Chapter overview

◦ Organisms that grow and survive in uncertain environments may need to change their physiological

state as the environment changes.

◦ When the environment is uncertain, one strategy known as bet-hedging is to make these changes

randomly and independently of the environment, to ensure that at least part of the population is well

adapted.

◦ Organisms that collect information from their environmentmay also use this information tomodulate

their changes of physiological states.

◦ We review these different strategies and point out parallels with the theory of optimal financial in-

vestments.

13.1 Introduction

To a large extent, the content of this textbook prior to the current chapter has dealt with models of microor-

ganisms under the implicit assumption that the dynamics of both environmental factors and intracellular

components are deterministic, and that behavior is optimized uniformly across cells in a population. On

longer time scales however, natural selection also acts on populations and these populations may encounter

environments that fluctuate across both time and space. Under these conditions, natural selection may not

favor a homogeneous deterministic cellular response across the population, but rather select for a certain

level of population diversity and heterogeneity, including behaviors arising from mechanisms that are fun-

damentally stochastic. Stochasticity is inherent to intracellular processes such as gene expression and signal

transduction due to the small number of molecules that they involve. It is often referred to as “noise”, but

this terminology can be misleading because may also fulfill an essential role in cellular function and survival,

for example during growth in uncertain environmental conditions. The purpose of this chapter is to high-

light this role, introduce the mathematical models necessary for understanding it, and draw a new economic

analogy with problems of investment in finance.

Before expanding upon the role that uncertainty plays in shaping cellular behavior, we briefly point out some

general limitations of deterministic models based on optimal regulation of behavior in time as described in

207
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Chapter 10. In that chapter, it was assumed that microorganisms have evolved, under selective pressures

exerted by the environment, to optimize a specific objective criterion or combination of objective criteria

that were shared by all cells of a population. This assumption was then incorporated into an optimal con-

trol framework to explain how cellular behavior (e.g., enzyme expression) is optimally regulated in time de-

pending on deterministic interactions between a microbial population and its environment. In particular, we

consider optimal control strategies across a prescribed time window. Defining in such case assumes the or-

ganism has perfect information on how the environment will change (including in response to actions taken)

over time. In an uncertain environment, this information is simply not available. An alternative is instanta-

neous optimization of growth rate at each time point but this is a shortsighted strategy that excludes any

partial information on future environmental states that the organism may have acquired over the course

of evolution. Such deterministic models may be suitable for deterministically changing environments, but

cannot account for stochastic behaviors that may be advantageous to population growth in uncertain envi-

ronments.

In this chapter, it will be shown how principles of optimality can be formulated to study the behavior of organ-

isms growing under uncertainty. Unlike the deterministic setting however, optimality will instead need to be

defined in terms of probabilities and expected returns. Analogous to the general unification of deterministic

models for cellular behavior using an optimal control theory framework, models including uncertainty are

unified by the subject of stochastic optimal control. Beyond biology, this subject has wide-reaching applica-

tions to engineering but the most relevant analogy is with finance where stochastic strategies of portfolios

diversification mirror stochastic strategies of cellular diversification. This will add a new economic analogy to

the economic analogies of previous chapters.

13.2 Strategies to cope with uncertainty: a financial analogy

We will use the topic of as a recurring example throughout this chapter (Figure 13.1). When a clonal pop-

ulation of bacteria is exposed to an antibiotic, not all cells within the population are killed – a small sub-

population, although genetically identical to the rest, may nevertheless be in a distinct phenotypic state that

is growth-dormant and resistant to treatment (Figure 13.1A). While the peers of this dormant sub-population

previously grew well in the absence of antibiotic, upon exposure to treatment these growing cells are killed,

and only the dormant cells (the persisters) remain alive. In turn, when the remaining persisters are trans-

ferred to an environment without antibiotic a large fraction is able to revert to the growing state, allowing

the population as a whole to survive. Remarkably, in this subsequent phase of growth roughly the same

small fraction of persisters is retained as before the treatment. Deterministic models based on short-term

optimal growth cannot explain how part of a population adopts a slow-growing state: they would predict

that each cell should adopt the growing phenotype in absence of antibiotics. Cells could have a mechanism

to detect the presence of unfavorable environmental conditions and adopt the persister phenotype as a re-

sponse, but there are several experimental observations not explained by such a mechanism [534]: (1) a

fraction of persisters exists prior to antibiotic treatment; and (2) not all cells, although genetically identical,

adopt the persister phenotype. We will see that a more parsimonious description of persistence involves

an optimization of long-term rather than short-term growth, which differs when environmental conditions

fluctuate.

Bacterial persistence is an example of , which more generally refers to the benefit of spreading resources

across multiple behavioral phenotypes to reduce the associated with investing all resources into any single

phenotype. Returning to the example of bacterial persistence, a natural question one may ask is: what

determines the precise fraction of persister cells (risk-avoiding, potentially low-reward phenotype) compared

to growing cells (risky, potentially high-reward phenotype) within a given population? This question echoes

a central question in financial investment: how should investors diversify their portfolio to maximize their

capital in the context of uncertain returns? We will see that some of the same mathematical arguments of

optimality under uncertainty can be used to analyze these two problems, showing how the optimal fraction
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Figure 13.1: Bacterial persistence as an example of a cellular strategy to cope with uncertainty in environ-
mental conditions. A) Cells in a genetically identical population can display one of two distinct phenotypes
that are associated with growth (pink cells) or dormancy (blue cells) in the absence of antibiotics. Only the
dormant cells survive (persist) when exposed to antibiotics, and can transition back to the growth phenotype
so that the population as a whole resumes growth in the absence of antibiotic. B) In this simplified model
of bacterial persistence, the strategy u over two responses (phenotypes) Rgrowth, Rdormant depends on en-
vironmental states Elow and Ehigh, corresponding to low and high levels of the antibiotic, respectively. The
occurrence of the states Elow and Ehigh is governed by probabilities p(Elow) and p(Ehigh), respectively. C)
The multiplicative rates f(R|E) associated with phenotypes Rgrowth, Rdormant depend on environmental con-
ditions, so that f(R|E) can be represented in matrix form. The resulting optimal strategy ud corresponding
to the fraction of dormant cells in the population in turn depends on the probabilities of the environmental
state E. An analogy with Kelly betting is illustrated on the right-hand side, where the probabilities of a horse
winning a race, the odds provided by a bookmaker and the optimal betting strategy are identified with p(E),
f(R|E) and u(R|E), respectively, as displayed in Table 13.1.

of persisters is expected to depend critically on the probability to experience different environmental states.

The terms of the analogy are presented in Table 13.1.

A pure bet-hedging strategy assumes the absence of any direct information on the current environmental

state. Biologically, cellsmay sense signals or cues that encode varying degrees of information on their current

environment. For instance, in some populations, a larger proportion of persisters is found in nutrient-poor

environments compared to nutrient-rich, implying a direct relationship between shifts in environment and

switches between phenotypes. These sensing or signaling mechanisms can come with associated costs

however, imparted by the investment of cellular resources in, for example, the gene expression machinery.

Thus, optimal cellular behavior in the face of uncertainty may be expected to involve a trade-off between

stochastic (e.g., bet-hedging) and deterministic (e.g., signaling) mechanisms that balance benefit to cost in

a manner that depends on evolutionary context. Other trade-offs may also exist regarding reward versus

risk associated with a particular cellular strategy. Analogously, financial investors face trade-offs when using

incomplete information on the current state of the market and developing an investment strategy based on

the level of risk they are willing to incur.
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Biology Gambling Finance

Individual Capital unit Currency unit
Environment p(E) Race results p(x) Market state
– Gambler Investor
Phenotype decisions u(R) Bets b(x) Investment strategy
Multiplicative rate f(R,E) Odds o(x) Immediate return
Environmental cue P (S|E) Side information P (y|x) Side information
Population growth rate Λ Long-term returnW Long-term return
Extinction probability Probability of bankruptcy Probability of bankruptcy
Growth rate variance σ2 Growth rate variance σ2

W Volatility
Population size Nt Capital Ct Capital

Table 13.1: Analogy between bet-hedging in biological populations and diversification strategies in Kelly’s
gambling and finance. The common problem in each case is an uncertain environment that makes it impos-
sible to anticipate which phenotype or investment is optimal for future growth. In finance, the “population” is
constituted by the capital which is distributed across different options (different horses of a race or different
stocks of a stock market). The main limitation of the analogy is that information is not processed centrally
in biological populations but at the level of each individual, with therefore no equivalent to a gambler or in-
vestor. The notations are introduced in themain text for the biological problem and in Box 2 for the gambling
problem.

13.3 Modeling cells growing in uncertain environments

We begin with a simple model of persistence before introducing a more general framework. This simple

model assumes that bacterial cells experience an alternation of low and high antibiotics environments and

can adopt two physiological states, growing or dormant (Fig. 13.1). The dormant cells are unable to replicate

but persist in either high- or low-antibiotics environments while growing cells always divide when antibiotics

are low in concentration but die when they are high. Mathematically, this is described by f(R,E), the number

of descendants of a cell with phenotypeR in environmentE: f(R = dormant, E = low) = f(R = dormant, E =
high) = 1, while f(R = growing, E = low) = 2 and f(R = growth, E = high) = 0. In absence of sensing

mechanism, we consider that the fraction of dormant cells, ud ≡ u(R = dormant), is a fixed quantity that

only possibly evolves on very long time scales. The population thus grows by a global factor Ahigh = f(R =
dormant, E = low)ud if the environment is high antibiotics and by a factor Alow = f(R = dormant, E =
low)ud +2f(R = growing, E = low)(1−ud) if it is low antibiotics. Finally, the environment fluctuates randomly,

with a probability pa to have high antibiotics and a probability 1 − pa to have low antibiotics. Over a large

number T of generations, a population therefore experiences in average paT periods of high antibiotics and

(1 − pa)T periods of low antibiotics. As further explained below, the population size NT after T generation

is hence expected to globally grow as Nt = (Ahigh)paT (Alow)(1−pa)TN0. This corresponds to an exponential

growth (or decay) of the form NT = eΛTN0 with a long-term growth rate Λ given by Λ = pa lnud + (1 −
pa) ln(ud + 2(1 − ud)).

Two bacterial populations which have different “strategies” ud will then have different growth rates Λ(ud).
The optimal strategy which maximizes Λ(ud) is therefore when the probability ud to adopt the dormant state

is

ud =

{
2pa, if 0 < pa ≤ 1/2.

1, if 1/2 < pa ≤ 1.

The interesting case is when pa < 1/2, otherwise antibiotics is so often high that the population cannot grow.
In this case, we find that a limited fraction of the population should be in the dormant state and that this

optimal fraction depends on the frequency pa at which high antibiotics occurs.

This example can be extended to an arbitrary number of environmental states E and phenotypic (response)

states R and to the presence of cues collected from the environment. In general, the states and cues may

take discrete (as in the above example) or continuous values. The “strategy” of a cell may then be described
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by its probability u(R) to adopt a particular phenotype R. This strategy depends on the environment if some

signal S is perceived, in which case the strategy takes the form of a conditional probability u(R|S) satisfying∑
R

u(R|S) = 1, with u(R|S) ≥ 0

for each possible signal S. For the example of bacterial persistence, u(R = dormant|S) may be the fraction of

cells adopting a dormant phenotype within the population of cells with intracellular antibiotics concentration

S. The fraction of growing cells would then be given by u(R = growing|S) = 1 − u(R = dormant|S). By

comparison, Figure 13.1B illustrates a model where u(R|E) depends directly on the environmental state E.

In finance, u(R|S) would correspond to the fraction of the capital that an investor allocates to asset R when

receiving incomplete information S on the currentmarket stateE. More generally, wemay also consider that

the probability to adopt a phenotype Rt at time t depends on the phenotype Rt−1 adopted at time t − 1 by

the cell or its parent, which would be described by u(Rt|S,Rt−1) or u(Rt|St, Rt−1) to indicate that the signal

St is obtained at time t.

The model also needs to specify the temporal dynamics of the environment and the relation between S

and E. The simplest assumption is that successive environmental states are uncorrelated, and occur with

probability p(E) and that signals are derived from a conditional probability p(S|E), as illustrated in Figure

13.1B where p(S|E) = δ(S|E) is equivalent to S ≡ E. This is sufficient to demonstrate bet-hedging or discuss

the value of signaling and in the examples below we therefore make this simplifying assumption by default.

More generally, to address issues of inheritance where Rt depend on Rt−1, we may assume a discrete-time

Markov process where the state of the next environment depends only of the previous one, with transition

probabilities p(Et|Et−1) where Et denotes the state of the environment at time t = 1, 2 . . . . Even more

generally, wemay also want to account for the feedback that the population exerts onto its environment and

consider that Et depends on the size and composition of the population.

Finally, we need to specify the dynamics of the population itself. Between time points t and t + 1, a cell

adopting phenotypeR in the context of environmentEt either dies or survives andmay additionally produce

offsprings. This is summarized by a quantity f(R,Et) ≥ 0 that indicates the mean number of descendants

at time t + 1 of an individual with phenotype R in environment Et (possibly including the individual itself).

Given that u(R|St) denotes the fraction of cells or probability of the organism adopting phenotype R based

on sensed state St, a population is therefore expected to globally increase (or decrease) in size by a factor

At =
∑

R

f(R,Et)u(R|St) (13.1)

that depends both on the strategy u and the current environmental state Et. This factor At is a stochastic

variable as it depends on the stochastic variablesEt and St. More explicitly, ifNt denotes the size of the pop-

ulation at time t, this size will increase or decrease to Nt+1 = AtNt at time t + 1 (in average). We can in this

way account for the dynamics of population growth and then ask what is an “optimal” strategy u(R|S) that
leads to, for example, the largest population size over a given time interval. Compared to the deterministic

setting, however, this is not yet a well-formulated problem as the population size varies with time and there-

fore generally depends on the particular sequence of environments E0, . . . , Et, which is in turn stochastic.

Thus, we need to extend the concept of optimality to the stochastic regime. We examine this question in the

next section.

13.4 Optimization in uncertain environments

In the previous section, we used notation At to denote the fractional increase or decrease in population

size given that strategy u(R|St) is adopted in environment Et. An alternate name for this quantity is the

instantaneous growth rate. It follows from recursion that, given an initial population size of N0 at time t = 0,
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Mathematical details 13.A : Arithmetic versus geometric mean and logarithmic utility functions

Additive random processes are governed by the law of large numbers: the sum of many random variables scales

with their arithmetic mean. In finance and biology, returns are compounded and growth is a multiplicative process.

This is fundamentally different: the typical outcome is no longer described by the arithmetic mean but by the geo-

metric mean [535]. A simple example illustrates this difference. Imagine a succession of environments in which the

population either doubles or is reduced by 2/3, with same probability. This corresponds formally to a population

size increasing as Nt = At . . . A1N0 where At = 2 (doubling) with probability 1/2 and At = 1/3 (2/3 dying rate) with

probability 1/2. The arithmetic mean is 7/6 which is > 1 and suggests that the population will grow. But as each

outcome has the same probability, the typical growth over t generation is actually given by 2t/2(1/3)t/2 = etΛ with

Λ = (1/2) ln(2/3) which is < 0: the population will in fact most likely go extinct. Mathematically, taking the log turns

the product into a sum to which the central limit theorem applies. More intuitively, the arithmetic mean is dominated

by very rare events. Historically, the importance of the geometric mean for estimating risk was first understood by

Daniel Bernoulli in the context of games [536, 537]. Later, it has been the subject of many debates in finance [536],

reflecting the fact that alternative utility functions over which to optimize may be more appropriate when considering

a short temporal horizon or when accounting for different degrees of risks.

the population size at time t is given by

Nt = AtAt−1 · · ·A1N0 (13.2)

whereAt depends on the environmental stateEt and is therefore a stochastic variablewhen the environment

varies stochastically. Here the choice of an objective criterion is fundamentally linked to the time scale at

which growth is considered.

13.4.1 Long-term versus short-term optimization

At the shortest time scale, maximization of population growth over a single time step corresponds to adopt-

ing the distribution u(R|St) that maximizes the arithmetic mean E[A], where A denotes the random variable

whose realization at time t isAt (Box 1). Thismaximum is typically achieved by a populationwhere all individu-

als adopt the sameoptimal phenotype – thephenotypeRmaximizingE[f(R,Et)u(R|St)] =
∑

E,S
P (S|E)P (E)f(R,E)u(R|S).

In the example of persistent cells, this strategy would correspond to having all cells in a growing state if the

most likely environment is an absence of antibiotics. This strategy is extremely risky if these growing cells

cannot survive an episode of antibiotics, which would therefore lead to extinction of the population. Taking

into account the rare but important events of high antibiotics concentration requires taking a long-term per-

spective. Remarkably, in the long-term the problem becomes effectively deterministic due to the law of large

numbers. The best known example of a law of large number applies to the sumA1 + · · ·+At of t random vari-

ables Ai, which almost certainly behaves as tE[A] as t → ∞. Here, the problem involves a product of random

variables and a similar but different law of large number applies: the product A1 × · · · ×At does not typically

behave as (E[A])t but instead as exp(tE[lnA]) where E[lnA] is known as the (Box 1). This corresponds to the

intuition that population size typically grows exponentially in the long run, Nt ∼ eΛtN0, with a well-defined

long-term growth rate

Λ = E[lnA] =
∑
E,S

p(S|E)p(E) ln

(∑
R

f(R,E)u(R|S)

)
, (13.3)

that is predictable despite the stochasticity of the environment.

Biologically, therefore, maximizing the geometric mean is equivalent to maximizing the long-term growth

rate of the population. This is the relevant measure of fitness in the long-term from an evolutionary point

of view, because of two populations with growth rates Λ1 and Λ2, the one with Λ1 > Λ2 will almost certainly

exponentially outnumber the other.
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The simple example of persistence that we introduced previously illustrates well how maximizing the long-

term is different from optimizing the instantaneous growth rate. The arithmetic mean E[A] is indeed max-

imized by ud = 0 when pa < 1/2, which leads to certain extinction unless pa = 0. This remains true for

general models including multiple environmental states and sensing that conveys information about the en-

vironment through conditional probability p(S|E). Using the long-term growth rateΛ as ameasure of fitness,

it is then possible to quantify the value of information S by comparing the optimal growth rate that can be

achieved in presence of S to that in its absence. Remarkably, for special limits of themodel, corresponding to

Kelly’s horse-race model (Box 2), this value is given by some of the same quantities that appear in Shannon’s

theory of communication (Box 3).

Mathematical details 13.B : Kelly’s model

In 1956, [538] extended the work of on communication to the field of . This classic model has important implications

for investment strategies in and beyond. In the context of biology, Kelly’s paper led to a clarification of the notion of

value of information which is described in Box 3.

Let us recall the basic elements of Kelly’s horse race. The odds paid by the bookmaker when the horse x wins is

o(x), and the probability for this to happen is p(x). A gambler can distribute his/her bets on the different horses,

and b(x) is the fraction of the bet set on horse x. Thus, a strategy of the gambler is defined by a vector of bets b of

M components b(x). At every race, the gambler invests his/her entire capital on all horses, so that
∑M

x=1 b(x) = 1,
always betting a non-zero amount on all horses. Since no bet is zero, there is a well-defined vector of the inverse

of the odds paid by the bookmaker denoted r. When the odds are fair, the bookmaker does not keep any of the

invested capital and as a result
∑M

x=1 r(x) = 1.
At each time t, one horse, which we call x, wins with probability p(x). As a result, the capital at time t + 1 is updated

according toCt+1 =
bx

rx
Ct. As explained previously, this multiplicative process is best studied by considering instead

the log of the capital, log-cap(t) ≡ log Ct, which satisfies the assumptions of the law of large numbers when races

are independent. In these conditions, log-cap(t) ≡ log Ct converges on long times towards the growth rate W (b, p)
where

W (b, p) =
∑

x

p(x) log o(x)b(x). (13.4)

This growth rate can be rewritten using an information theoretic measure between two probability distributions, p
and q, called the Kullback-Leibler divergence and defined by

DKL(p, q) =
∑

x

p(x) log
p(x)
q(x)

. (13.5)

One can show that this quantity is a non-negative measure between the two probability distributions. With this

notation, the growth rate can be rewritten as

W (b, p) = DKL (p‖r) − DKL (p‖b) , (13.6)

It follows from this equation that the strategy b∗ = p is optimal. This strategy, known as Kelly’s strategy or propor-

tional betting, overtakes any other strategy in the long-term as illustrated in Fig. 13.2.

This formulation shows that the growth rate is the difference between the distance of the bookie’s estimate from the

true distribution and the distance of the gambler’s estimate from the true distribution. Hence, the gambler makes

money if they have a better knowledge of the winning probabilities than the bookie. The optimal long term growth

rate is the positive quantity :

W ∗(b, p) = DKL (b‖r) . (13.7)

Kelly’s horse race model is formally a particular case of the model introduced in the main text when considering

that one, and only one phenotype R = R(E) can grow in any given environment E, such that f(R, E) = f(E) if
R = R(E) and 0 otherwise. Horses x may then be interpreted as both the environments E and their associated

phenotypes R(E) so that u(R) = b(x) and f(E) = o(x). In biology, but also in finance where R is interpreted as an

asset, there is generally no one-to-one correspondence between environments E and phenotypes R and multiple

phenotypes (assets) may grow (have non-zero return) in any given environment. The optimal strategy is then no

longer necessarily proportional betting as illustrated in the example of persistence presented in the main text and

as also shown in Ref. [539].
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Figure 13.2: Evolution of the log-capital (left plot) or of the capital itself (right plot) as a function of the number
of races for Kelly’s optimal strategies (red curve) and for a non-optimal strategy (yellow curve). On left plot, the
straight lines have the slope of the corresponding growth rate for each strategy. Note that the fluctuations
in Kelly’s strategy can in fact be quite large, when plotted in normal scale instead of log-scale.

Mathematical details 13.C : The value and cost of information for growing populations

To see how uncertainty may be quantified by Shannon , first consider amodel where f(R, E) is non-zero only for one
phenotype R best adapted to each particular environment E(R). As seen in Box 2, the optimal strategy in the long-

term is proportional betting, u(R(E)) = p(E). To quantify the cost of uncertainty, it must be compared to a situation

where full information is available, in which case all the cells can systematically adopt the optimal phenotype, leading

to an ideal growth rate Λ∗∗ =
∑

E
p(E) ln f(R(E)). The cost of uncertainty is Λ∗∗ −Λ∗ = −

∑
p(E) ln p(E), which is

nothing but the Shannon entropy of the environmentH(E). This has a simple interpretation: themore unpredictable

the environment, the larger its entropy and the lower the maximal growth rate of the population.

The reasoning can be extended to the presence of partial , modeled by p(S|E). The case of perfect information is

indeed the limit case where S = E. The optimal strategy with partial information is a generalization of proportional

betting that takes into account S and the difference of growth rate is now given by the mutual information I(S, E)
(Problem 13.1). The mutual information is minimal when the signal S is uncorrelated to E, in which case I(S, E) = 0,
and maximal in presence of perfect information, in which case I(S, E) = H(E) [540].
These results were first derived by Kelly [538]. They have been generalized tomore general forms of f(R, E) aswell as
to more general environmental processes in the context of financial investment in which case the cost of uncertainty

and value of information are no longer equal but bounded by information theoretic quantities [540, 541]. This is

illustrated in Problem 13.2 with an extension of the model of persistence presented in the main text.

Information is generally costly as it implies producing and operating an accurate sensor, which may come at the

expense of growth rate. Taking into account this cost introduces a trade-offbetween the cost and value of information

that may justify an imperfect sensor, or even explain an absence of sensor (Problem 13.1). This trade-off has for

instance been invoked to explains that bacteria subject to infrequent periods of antibiotics evolved to stochastically

switch their phenotype rather than to sense the presence of antibiotics [542].

While the problems of information processing in biology and in finance share many analogies, it is also important to

recognize an important difference: in biology, information processing is distributed at the level of each cell, whichmay

perceive different signals, while in finance, information is processed by an investor who centralizes the information.

The value of information is bounded by information theoretic quantities only in the second case, or more generally

when the same common information is available to all the cells [541]. If information processing is stochastic at the

single cell level, the value of information is effectively higher (Problem 13.3).

13.4.2 Trade-offs at intermediate time scales

So far we considered two extreme limits of immediate and infinite time scales under one important assump-

tion: the population is always large enough to escape extinction. Eq. (13.2) is indeed valid only for large Nt

and does not apply anymore when Nt ∼ 1, in which case the population size is subject to stochastic effects,

called demographic noise in population biology. In our analogy with finance, the eventuality of Nt = 0 with



Optimization in uncertain environments 215

no possible recovery corresponds to a risk of bankruptcy.

When considering long time scales, a population with Λ > 0 will either become extinct or grow exponentially.

In this later case, demographic noise is eventually negligible and our approach valid. At intermediate time

scales, however, population sizes Nt may deviate substantially from N0e
Λt predicted by exponential growth,

and may become extinct (Nt = 0) as a result. To quantify these deviations, note that for the model defined in

the main text where there are no correlations of the instantaneous growth rate At, the central limit theorem

imposes that the quantity

∆t = 1
σ

√
t

(
log Nt

N0
− tΛ

)
, (13.8)

converges on long times towards a Gaussian distribution of unit variance, where σ is the standard deviation

of the instantaneous growth rate. It follows from this property that

σ2 = 1
t

Var
(

log Nt

N0

)
, (13.9)

measures the deviation from exponential growth. This quantity is therefore a natural measure of risk, known

in finance under the name of volatility. To understand at which time scale this risk is important, we consider

Eq. 13.8, assuming ∆t is of the order one. Risk will be important, when the term associated with fluctuations,

which is of the order of σ
√
twill be larger than the term associated with exponential growth, which is tΛ. This

will happen when t � (σ/Λ)2: the risk is relevant at intermediate time scales, long-enough for the central

limit theorem to apply but not too long for deviations from exponential growth to become negligible.

This measure of risk has well known drawbacks in finance : it is symmetrical with respect to losses and gains,

which does not conform to the intuitive notion of risk, and furthermore typical fluctuations are often non-

Gaussian. Nevertheless, the volatility is still an important notion in the study of optimization of portfolios

[543]. In this context, Markowitz introduced plots of the volatility σ as a function of the mean growth rate,

which define the so-called “efficient frontier”. This representation illustrates graphically a fundamental trade-

off that exists between the maximization of the mean return and the minimization of the variance (or risk).

The point of zero volatility is a risk-free strategy, which corresponds to dormant states in biology.

This trade-off is naturally present in Kelly’s model introduced in Box 2. Indeed, Kelly’s strategy is based on

the maximization of the long-term growth rate, but at intermediate times the capital can deviate significantly

from the expected exponential growth as shown in Figure 13.2. Prominent economists, such as Samuelson,

strongly opposed the use of Kelly’s criterion in finance precisely for that reason [544]. In practice, however,

investors can mitigate this risk by using Kelly’s criterion for only a fraction of the bets [545]. The resulting

strategy has reduced fluctuations, and at the same time, a reduced growth rate. Another consequence of

the trade-off is that the risk near the optimal strategy (Kelly’s strategy) can be reduced significantly provided

one is ready to sacrifice a small amount of growth rate, an important lesson for gamblers and investors. In

order to build systematically improved gambling strategies with a reasonable amount of risk in Kelly’s model,

one can introduce an objective function that is a linear combination of the growth rate with the volatility of

Kelly’ model, σW , weighted by a risk aversion parameter α [546]. Themethod is illustrated in Problem 13.4 for

the two-horse version of Kelly’s model. By optimizing this objective function, one builds the Pareto diagram

shown in Fig. 13.3 when varying the parameter α.

A general inequality characterizes this trade-offmathematically for an arbitrary number of horses. For Kelly’s

gambling model with fair odds defined in the box 13.B, it has the form

σW ≥ W

σq
, (13.10)

where σW is the volatility of Kelly’s model, W the average growth rate (the equivalent of Λ) and σq is the

standard deviation of a distribution, q(x) defined by q(x) = r(x)/p(x). This distribution compares the prob-

ability of races outcomes described by p(x) with the risk-free strategy described by b(x) = r(x), for which
σW = W = 0 [546]. Recently, a similar bound has been derived for other well-known financial models such
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Figure 13.3: Pareto diagram showing the growth rate W versus the fluctuations measured by the standard
deviation of the growth rate σW (which is the volatility for this model) in the simple case that only two horses
are present. The curve can be obtained by varying a risk aversion parameter α, which enters in the definition
of an objective function (see Problem 13.4 for details). The point of maximum growth rate (red square)
corresponds to Kelly’s strategy and divides a trade-off branch (blue solid line) from a non-trade-off branch
(red solid line) (adapted from [546]).

as the Black-Scholes and the Heston models [547].

Let us now illustrate the implications of this trade-off for a biological population using a simple bet-hedging

model with only two phenotypes. Individuals in the population can switch from phenotype A to phenotype

B with a transition probability π1, and with probability π2 from B to A, assuming no sensing. The population

grows in an environment that fluctuates between two values 1 and 2. We denote the population vector,

which describes the number of individuals in each phenotype at a given time t by N(t) = (NA(t), NB(t))T ,

where T denotes the transpose. The subpopulation of individuals with phenotype A grows when placed in

the environment i with the growth rate kAi, while the other subpopulation with phenotype B grows with

rate kBi. The population is assumed to be large, there is no population noise, the dynamics of the system is

deterministic in each separate environment. The population dynamics of the model can be described by the

vector equation :
d

dt
N(t) = MS(t)N(t), (13.11)

with matrices

MS1 =

(
kA1 − π1 π2

π1 kB1 − π2

)
and MS2 =

(
−π1 + kA2 π2

π1 kB2 − π2

)
. (13.12)

The finite time averaged population growth rate is defined as

Λt = 1
t

ln N(t)
N(0) , (13.13)

in terms of the total population N(t) = NA(t) +NB(t), and the long term population growth rate is

Λ = lim
t→∞

Λt. (13.14)

This optimal long term growth rate Λ can be obtained analytically in this model [548], but approximations

are needed to evaluate the fluctuations of the growth rate, which is the equivalent of the volatility σ2 of

Eq. 13.9 [549]. One can then study the trade-off that exists between the average growth of the population

(either measured instantaneously or over a long time) and the fluctuations of the growth rate, using the

same Pareto plot used for Kelly’s model in Figure 13.3. This “efficient frontier” is shown in Fig. 13.4, and as
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Figure 13.4: Pareto diagram showing the population growth rate versus the fluctuations of that growth rate
in a simplemodel of a biological population evolving in a stochastic environment with no sensing according to
Eq. 13.11 [549]. In this figure, the time scale of environment fluctuations is comparable to that of phenotypic
fluctuations. The inset shows the probability Pext that the population goes below a certain extinction level
versus the risk aversion parameter α which measures the distance along the Pareto plot. Colored bullets
represent different points on the Pareto front (adapted from [549]).

in the case of Kelly’s model, in the region of fast growth rate, it is advantageous for a population to trade

growth for less risky fluctuations. In this model, σ2 correlates with the probability that the population N(t)
goes below a certain threshold, where the population is considered as extinct. The probability of extinction

is not monotonic along the Pareto front, which explains why in the region of low growth rate, it is more

advantageous to prioritize instead the increase the growth rate to avoid extinction.

In the context of ecology, besides the probability of extinction, a quantity of interest is the chance for a

population to grow from rarity in the presence of other species. In agreement with the above trade-off, it

was found that this chance can not be predicted only from the mean growth rate, and that the mean growth

rate and its variance should be both used for such a prediction [550]. In summary, the similarity of the Pareto

plots (called efficient frontier in finance) obtained in Kelly’s model and in models of biological populations

in fluctuating environments [549], and evidences from various works in ecology, suggest that the trade-off

discussed here is broadly applicable in various fields ranging from biology and ecology to economics.

13.5 Strategies in correlated environments

So far we considered two time scales: the time scale at which phenotypic changes occur and at which in-

stantaneous growth is defined (t = 1 in our discrete-time model, which may be taken to correspond to one

generation), and the longer time scale t ∼ (σ/Λ)2 beyond which population growth is effectively exponential,

with growth rate Λ. We saw that the choice of an optimization criterion depends fundamentally on the time

horizon relative to these time scales.

Additional time scales are relevant when environmental states are correlated in time, for instance through a

Markov chain P (Et|Et−1). This is for instance the case if conditions of high nutrient or high stress extend over
several generations. As a consequence, strategies u(Rt|St, Rt−1) that depend on past internal states Rt−1

in addition or instead of externally driven signals St may become valuable, since the fact that phenotype

Rt−1 survived in environment Et−1 indirectly carries information on the current environment Et. We may

then recognize that Rt plays two distinct roles: on one hand, it determines survival and growth via f(Rt, Et)
and, on the other, it provides information to determine the next state Rt+1 via u(Rt+1|St+1, Rt). This corre-
sponds to the fundamental distinction between phenotype and genotype in biology: the genotype γ is what
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Figure 13.5: Example of optimal strategies in correlated environments. (A) We consider here a
model where the environment Et is a continuous variable following a Gaussian process, P (Et|Et−1) =
exp
(
−(Et − aEt−1)2/(2σ2

X)
)
/(2πσ2

X)1/2 with two parameters a and σ2
X that control the overall amplitude

of the fluctuations σ2
E = σ2

X/(1 − a2) and their time scales τE = −1/ ln a, as illustrated by the different
time series. (B) An individual inherits a genotype γt−1 which determines its phenotype φt with probability
d(φt|γt−1) = exp

(
−(φt − γt−1)2/(2σ2

D)
)
/(2πσ2

D)1/2 where σ2
D thus represents phenotypic noise. γt−1 also de-

termines the genotype γt of the progeny with probability h(γt|γt−1) = exp
(
−(γt − γt−1)2/(2σ2

M )
)
/(2πσ2

M )1/2

where σ2
M thus represents mutational noise. The number ξ of offsprings is a random variable whose mean

f(φt, Et) = k exp
(
−(φt − Et)2/2

)
depends on the phenotype φt as well as the current state Et of the en-

vironment. A population of such individuals grows with a long-term growth rate Λ that can be computed
analytically [551]. (C) Values of σ2

D and σ2
M that optimize Λ define four phases as a function of the environ-

mental parameters τE and σ2
E . For nearly constant environments, the optimal strategy is tomaintain constant

phenotypes (σ2
D = 0) and genotypes (σ2

M = 0) (“no variation”). For strongly varying but poorly correlated en-
vironments, the optimal strategy is to introduce phenotypic variations (σ2

D > 0) but no genotypic mutations
(σ2

M > 0) (“phenotypic switching”). For highly correlated environments, the optimal strategy is instead to
introduce genotypic mutations (σ2

M > 0) while canalizing the phenopype (σ2
D = 0) (“inherited variations”). A

phase also exists where both types of variations are beneficial (“mixed”). This model thus identifies environ-
mental variations for which bet-hedging (phenotypic switching) is expected to evolve, namely variations of
environmental of sufficient amplitude but with limited temporal correlations across generations.

is transmitted from one generation to the next while the phenotype φ is what determines instantaneous

growth. Formally, Rt = (φt, γt) with f(Rt, Et) = f(φt, Et) and u(Rt|St, Rt−1) = u(Rt|St, γt−1), by defini-

tion of φt and γt. The “central dogma” of molecular biology states that information flows from the genotype

to the phenotype but not reciprocally, which corresponds here to assuming that u(φt, γt|γt−1) factorizes as
d(φt|St, γt−1)h(γt|γt−1), where d(φt|St, γt−1) may be interpreted as a developmental kernel and h(γt|γt−1) as
an inheritance kernel, with no dependence on St (no Lamarckism). The mathematical framework that we in-

troduced can be used to study to which extent this particular decomposition is indeed a good “strategy” [551].

The answer generally depends on the nature and amplitude of the environmental fluctuations.

Similarly, the model can be analyzed to understand the conditions under which it is advantageous to intro-

duce phenotypic variations that are not transmitted – as in bet-hedging – versus genotypic variations that

are transmitted – as with genetic mutations. Stochasticity may indeed be introduced either in the mapping

from γt−1 to φt or the mapping from γt−1 to γt, or in both of them – a problem with no equivalent in finance.

This is illustrated in Fig. 13.5 with a simple solvable model showing how the optimal strategy depends on

the nature of the fluctuations of the environment. In particular, bet-hedging strategies where stochasticity is

purely phenotypic are found to be optimal for environmental fluctuations of sufficient large amplitude but

low temporal correlations from one generation to the next.

Historically, the notions of genotype and phenotype were introduced much before the molecular mecha-
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nisms that underlie themwere uncovered. In general, the genotype, defined as inherited information, should

not be confused with the notion of genetic information: along with DNA, a range of epigenetic states, includ-

ing metabolic states, are also transmitted from cell to cell which represent genotypic information. In other

words, the physiological state of a cell, which we analyzed in most of this book from the standpoint of a

phenotype determining current growth, may also represent valuable genotypic information for future gen-

erations.

13.6 Concluding remarks

We presented optimal strategies that biological populations may exploit for coping with uncertain environ-

ments and drew analogies with problems of gambling and financial investments. Optimality assumes amea-

sure of performance which, however, is not readily defined when environments are changing stochastically.

In particular, the time scale over which the problem is considered is critical. This difficulty has led to mul-

tiple debates over the concept of fitness in biology which partly mirror those over the concept of utility in

economics.

While the analogy with finance is instructive, its limitations should also be kept in mind. Most importantly,

the states that individuals of a biological population adopt are not centrally controlled by a gambler or an

investor. This raises a question that is absent in finance but central in evolutionary biology: is a strategy

that is optimal for the population but detrimental to some of its members – as for instance the persister

cells that “sacrifice” their current growth for the sake of future growth – evolutionary stable? A strategy

that is optimal for a population may indeed never be achieved through evolution as natural selection at

the individual level may favor non-cooperating individuals – an issue known as a “conflict between levels of

selection”which implies that a strategymaybeoptimal at the population level but not evolutionarily stable. To

address this question, we may extend our model to treat strategies as variables that are themselves subject

to evolution (Problem 13.5). For the model discussed in this chapter, the results show that strategies that

optimize the long-term growth rate are indeed evolutionarily stable (but this is no longer necessarily the case

when considering, for instance, sexually reproducing populations [552]).

The same extension of the model to evolving strategies shows that knowledge of the statistics of the envi-

ronment (pd for our example) is not required a priori but can effectively be learned through an evolutionary

process. This solves a problem that appears also in gambling and finance where the statistics of the en-

vironment must be inferred from past experience. The question has been particularly studied in finance,

where optimal learning strategies known as universal portfolios have been proposed [553]. In the simpler

case of Kelly’s model, the gambler may for instance record previous race results and use them together with

Bayesian inference to predict the probability of the race outcomes [554]. With biological populations, how-

ever, learning must be performed at the individual level. One theoretical proposal that goes beyond random

mutations is for instance that biological populationsmay use a reinforcementmechanism akin to Hebb’s rule

in neural learning [555].

Finally, we note that the models that we presented rely on a strongly simplifying assumption: the environ-

mental changes occur independently of the population. In fact, the environment is often also changing as

the population grows, for instance through the consumption of nutrients. Even more generally, the environ-

ment may comprise other individuals from the same or other populations with which they may interact. This

ecological dimension is the subject of other chapters.
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Problems

Problem 13.1 Kelly strategy with partial information In analogy with Kelly’s problem of betting on horse

races, assume that different environments E occur with independent probabilities p(E) at each generation

with a single phenotype R = E permitting growth by a factor f(E). In absence of any information, the

optimal strategy u(E) for long-term growth is proportional betting, u(E) = p(E) (Box 2). Now assume that an

information S is available to eachmember of the population that relates toE through a transition probability

q(S|E), i.e., q(S|E) is the probability of perceiving S given E.

1. Show that the long-term growth rate can be written in the form

Λ =
∑

S

p(S)

[∑
E

p(E|S) ln(f(E)u(E|S))

]
(13.15)

where p(S) is the probability to perceive S averaged across all environments and p(E|S) is the probability
that environment is E given that S is perceived. Write p(E|S) as a function of p(E) and q(S|E).

2. Justify that the optimal strategy is u(E|S) = p(E|S).
3. Compare the optimal long-term growth rate in presence of information to the optimal growth rate in ab-

sence of information and show that the difference is given by the mutual information

I(E,S) =
∑
E,S

q(S|E)p(E) ln q(S|E)
p(S) (13.16)

The mutual information I(E,S) therefore quantifies the value of information S in this particular context.

4. Acquiring information is generally costly. If the presence of the information channel q(S|E) reduces the
long-term growth rate by c, what are the conditions on p(E) for the presence of this channel to be benefi-

cial?

5. The cost cmay be expected to depend on the precision of the sensor. Consider for instance a channel that

reveals the correct environment with probability 1 − ε and otherwise does not reveal anything (so-called

erasure channel). Given a cost c(ε) that increases when ε decreases, which value of ε provides an optimal

trade-off between the value and the cost of information?

Problem 13.2 Value of information beyond Kelly’s model Consider the model of bacterial persistence intro-

duced in themain text where cells can adopt two phenotypes, one growing irrespectively of the environment

and the other growing only in absence of antibiotics.

1. Express the long-term growth rate Λ in presence of an information S modeled by an information channel

q(S|E).
2. What is the optimal strategy given S?

3. Show by comparing to a situation with no information that the value of information can be strictly lower

than I(S,E).

Problem 13.3 Stochastic sensing at the level of individual cells In the two previous problems, the informa-

tion S is assumed to be common to each member of the population. Here we assume instead that each
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individual has its own sensor q(S|E) so that S may differ from one individual to the next.

1. Justify that in this case the long-term growth rate takes the form

Λ =
∑

E

p(E) ln

(∑
R,S

f(R,E)u(R|S)q(S|E))

)
(13.17)

2. Use the concavity of the logarithm (Jensen’s inequality) to justify that the same information channel q(S|E)
has more value at the individual level than at the population level.

Problem 13.4 Pareto front for Kelly’s model Let us consider Kelly’s model with fair odds for two horses. Let

the probability that the first horse wins be p, the bet and the odd on the first horse be b and 1/r.

1. Write the expression of the mean growth rate 〈W 〉, and of the volatility σW for this problem. Show that

there is a risk free strategy when b = r.

One introduces the objective function

J = α〈W 〉 − (1 − α)σW . (13.18)

2. From the optimization of J show that the optimal strategy has the two branches shown in Fig. 13.3. Show

that the optimal bets on these two branches are of the form b± = p ± γσ, where γ = (1 − α)/α and

σ =
√
p(1 − p).

3. Show that the slope of the Pareto border has the form

dσW

d〈W 〉 = σ

p− b
. (13.19)

What happens to this slope near Kelly’s point and near the risk free strategy ?

Problem 13.5 Evolution of an optimal strategy Here we consider evolving the strategy itself.

1. Implement numerically the model of bacterial persistence introduced in the main text for a large but finite

population. To this end, considerN individuals (e.g.,N = 1000), each with an attribute R. For each individ-
ual, draw a random number ξ of descendants, with mean f(R,Et) where Et drawn from P (E) is common

to all individuals. Assign a R to each of these descendants with probability u(R). If the total number of

descendantsNt is non-zero, record the ratio Nt/N and re-sample at random the population to bring back

its size to N . Show that provided that N is large enough and Nt does not reach 0 then (
∑

t
ln(Nt/N))/t

provides a good approximation to the growth rate Λ in the limit of large t.

2. Extend themodel tomake udu(R = dormant) an attribute of each individual. Assume that ud is transmitted

from one parent to one of its offspring as ud = min(1,max(0, ud + µ)) where µ is normally distributed with

variance σ2
M . Show that provided that σ2

M is small enough, the distribution of ud evolves to be centered

around the optimal ud.
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Chapter 14

Economy of organ shapes and

function

Christophe Goupil, Éric Herbert, Cyril Karamaoun, Benjamin Mauroy and Frédérique Noël

Chapter overview

◦ The central concept of economy presented in the previous chapters are extended to the level of the

organ and the living organisms.

◦ The development of organs in pluricellular living beings is constrained by several requirements. Nu-

trients, energy and form are few examples of developmental constraints that are analyzed, in the

point of view of the economy of the organ function.

◦ In mammals, the respiratory system is submitted to a high level of constraints, mainly energetic and

morphometric, that did shape the lung through evolutionary processes.

◦ The lung is the central organ of respiration, connecting the outer atmosphere to the cellular compart-

ment through the ventilation process.

◦ We show that the constraints on thismajor organ imply a high level of complexity of the organ’s shape

and a precise control of the ventilation.

◦ The control of growth and shape of the lung is highlighted by previous works on the scaling laws that

exist and govern the development and function of this organ throughout the entire mammal class.

◦ Through several examples, we demonstrate how these scaling i.e., allometric laws control the ventila-

tion, and the respiratory processes in general.

14.1 Optimization of organs and systems

In the previous chapters, the central model of the cell has been deeply explored. On another scale, the inte-

gration of cells into larger structures such as tissues, organs, and entire systems in multicellular organisms

requires an extension of the main concepts presented in this book. Nevertheless, the completion of the mul-

tiple functions of an organ follows the same general principles as for individual cells, including the economic

aspects.

14.1.1 Organs and constraints

The way that a cell population aggregates itself into a high-level structure, as part of a pluricellular organism,

has been determined through evolutionary processes, following a more general path of specialization of

223
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structures and functions. Each organ evolved to fulfill its functions in the most optimized manner. This

observation leads us to interrogate the concept of optimization for such a large structure – from a cellular

point of view. In the context of organ function, optimization can be defined through the processes by which

the functions are fulfilled as best as possible while minimizing the associated cost variables. Among those

variables, energy plays a central role. Thus, one possibility for constraining the organwould be tomaintain its

function at an optimal level while minimizing its cost in energy. This effect can be expressed mathematically.

Let us define the cost in energy E which depends on one or more variables x ∈ Rn (n > 1). Furthermore, let

us define one or more equality constraints to our problem, c(x) = 0, where c : Rn → Rm. The optimization

problem under constraints comes down to finding an optimal value for x that minimizes the function E(x)
while x satisfies c(x) = 0. This results in

min
x∈Rn

E(x), such that c(x) = 0. (14.1)

The optimization under constraint problem can be solved using the Lagrangian function,

L(x, λ) = E(x) −
m∑

k=1

λkck(x),

where the λk are Lagrange multipliers. Indeed, if we assume that x∗ is the optimal solution to the prob-

lem (14.1), then thanks to the Lagrangemultiplier theorem, there exists a unique Lagrangemultiplier λ∗ such

that,

∇E(x∗) = λT
∗ Jc(x∗),

where Jc is the Jacobian of the function c. It implies that the optimal solution x∗ is a stationary point of L,
satisfying the condition of minimal energy expenditure.

A study of the constraints on the cardiac system offers an excellent example of energy optimization, due

to high consumption of the heart. The cardiac pump delivers deoxygenated blood to the lung through pul-

monary circulation and brings oxygenated blood to the whole body through systemic circulation [556]. In-

terestingly, blood pressure developed in both ventricles are not of the same order of magnitude, with a left

ventricular pressure approximately ten times larger than the right ventricular one [556]. This makes sense

from an energetic point of view; the heart requires a non-negligible amount of energy to fulfill its role of blood

pumping. Furthermore, as with any mechanical system, only a fraction of the energy consumed (mainly in

the form of ATP) is converted in mechanical work – around 25% [557], the rest being dissipated as heat.

Thus, the pumping work tends to be optimized from an energy consumption point of view. On one hand, the

pressure needed to irrigate the pulmonary circulation is low; the lung presents a small value of resistance

to perfusion, and its apex is located only centimeters above the heart position. And on the other hand, the

pressure developed in the systemic circulation must allow the oxygenated blood to irrigate all the organs,

including high-energy consumers – muscles, brain – that located further above heart position, developing a

hydrostatic pressure that the blood flow has to overcome [556]. It is to be noted that this energetic optimiza-

tion is also connected to the metabolism requirements, with a pumping work closely related to the body’s

O2 consumption [558], which ensures an optimized adaptation of the cardiac output to the body energy

requirements.

Although often considered as a major aspect, this energetic constraint is far from being the only condition

for a proper functioning of the organ. Other variables such as nutrient consumption, metabolic integration

or physical constraints participate in shaping the organ function. Brain development in primates, and hu-

mans especially, is a prime example of effect that combination of several constraints has on energetic and

nutrients availability. The underlyingmechanisms that determine the evolution towards a large and complex

brain structure in humans are still debated [559, 560]. However, it is evident that the development and nor-

mal function of this organ is dependent on adequate and specific energetic and nutrients inputs. From the

energetic point of view, brainmetabolism largely depends on glucose consumption. However, in case of high
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consumption and/or deprivation, ketones metabolism takes place in order to furnish a fast and rich source

of energy for the organ. Ketones are catabolizedmainly in the liver [561], and have the important property of

being able to cross the blood-brain barrier, to the contrary of long chains of saturated fatty acids [562]. In par-

allel, proper brain development and function require a large input of specific nutrients that are not common

in every food source [563]. Among those, iodine [564] and iron [565] appear to be essential for the brain, and

exert a strong constraint on its adequate growth and functioning. The notable presence of iodine-enriched

food sources close to the sea shores, compared to traditional terrestrial food sources, is thought to have

favored the recent development of the so-called shore-based paradigm of human brain evolution i.e., that the

access to seafood produce supported and enhanced brain development in early hominid populations, lead-

ing to increased brain mass and cognitive functions in those populations [563]. Among these considerations,

let us remind that any organ has to develop and function in specific localization and body environment. Thus,

the constraints applied to an organ and its development and function can also be of morphometric nature.

14.1.2 Energy conversion in living systems

When energy is transferred to a system, its responsemanifests itself at themicroscopic level by the excitation

of its individual degrees of freedom, and at the global level when collective excitations are possible. In generic

terms, a thermodynamicmachine is defined as a systemwhere an incident energy flow dispersed is converted

into an energy flow aggregated and a loss flow. This conversion is performed by a thermodynamic working

fluid which, carrying entropy, leads to a coupling between the respective potentials through the equations

of state.

In the case of thermal machines, the dispersed form of energy is called heat and its associated potential is

temperature, while the aggregated form is called work and its associated potential is, for example, pressure.

Temperature and pressure are linked by one or more equations of state. The system response results from

the collective response of the microscopic degrees of freedom of the working fluid. Thus, part of the energy

received by the working fluid can be made available to a load on a global, and possibly macroscopic, scale

for a given purpose as useful work, the remainder being redistributed (dispersed) at the microscopic level

and dissipated due to internal friction and any other dispersion processes imposed by the boundary con-

ditions [566]. Conversion efficiency is therefore closely related to the proportion of energy allocated to the

system’s collective modes.

Living organisms are open, out-of-equilibrium and dissipative systems, as they continuously exchange energy

andmatter with their environment [567, 568]. Unlike classical thermodynamic engines, for which equilibrium

models can be constructed using extremal principles, such a possibility does not exist in the case of living

organisms due to the absence of truly identifiable equilibrium states and the absence of principle for non-

equilibrium systems. Nevertheless, assuming a global system close to equilibrium, the development of a

tractable thermodynamic model of metabolism can be based on notions from classical equilibrium thermo-

dynamics. In this approach, theworking fluid acts as a conversionmedium, characterized by its thermoelastic

properties, or chemicoelastic coefficient for chemical systems.

14.1.3 The example of the lung

As an example of an organ submitted to geometric limitations, the lung has to face, from its early devel-

opment to its mature state, multiple constraints on its morphometry and proper functioning. The principal

role of this organ is, as well known, to establish the connection between the respiratory gases in the atmo-

sphere and these in circulation in the body i.e., O2 as a reactive agent, and CO2 as a by-product that has to

be eliminated from the organism. To fulfill its role, the lung has evolved in a manner that maximizes the gas

exchange surface – as diffusion is a surface phenomenon – in a reduced thoracic volume. This surface-to-

volume requirement has forged the lung structure has it is known; an intricate dichotomic bronchial tree that

conducts the air inwards and outwards, to and from the alveolar sacs, respectively. This semi-fractal, space-

filling structure, presents the advantages of an extremely wide exchange surface enclosed in a relatively small



226 Economy of organ shapes and function

volume [556].

The mechanisms of development of the lung branching structure in a closed environment is still a debated

question [569, 570]. Indeed, the tree structure presents a series of specific characteristics necessary for a

proper functioning of the organ. Among these, the space-filling aspect of the bronchial tree is remarkable, as

it solves the problem of the surface-to-volume constraint of the organ. In addition, the whole bronchial tree

is a self-avoiding structure, as no bronchus enters in contact with other ones in its local environment, which

ensures a proper circulation of the air in the structure. It is striking that these properties, which can be found

in fractal geometries, are observed in any well-functioning lung structure, leading to important developmen-

tal questionings. For example, the pattern of branching of the bronchi, although strongly stereotyped in the

first generations starting from the trachea, appears to follow a space-filling procedural development rather

than a deterministic branching pattern [569, 571, 572]. Accordingly, some authors have developed a set of

hypotheses that tend to explain these mechanisms. A group of restricted genes would encode the steps of

branching and growth of the bronchi during the organ development, ensuring a proper structure of the adult

lung [570], following procedural steps somehow encoded in genes or groups of genes coding for periodicity,

bifurcating and rotating routines [573]. However, to the best of our knowledge, these genes have not been

determined nor a proper molecular mechanism of stereotypical branching.

Among the questions raised by the programmed morphogenesis approach, the link between the molecu-

lar dimensions and the organ world are still elusive. Another path for branching procedure, which could

reconcile the deterministic point of view with the problem of the transfer of information along different or-

ders of magnitude is the self-organized morphogenesis approach. Several authors [569, 574, 575] suggested

that the branching routine of the bronchial tree is less stereotyped than thought, especially in the central

and distal generations. This hypothesis is supported by the observation that modeling approaches using

stochastic space-filling routines, constructed based on a stereotyped proximal tree, are capable of generat-

ing tri-dimensional branched structures that satisfy the constraints of a morphometric adult lung [576, 577].

On another side, the core concept of the self-organizedmorphogenesis approach relies on the observation that

key molecular components are necessary and sufficient for proper growth and branching of the bronchial

epithelium. Among these, the fibroblast growth factor 10 encoded by the fgf10 gene has been demonstrated

to play a central role in epithelial proliferation [578], whose activity is highly regulated [569, 579].

In 2012, Clément et al. [569] proposed a scenario for the spontaneous emergence of a tree structure. This

scenario is based on the sole diffusion of a protein promoting cell proliferation, such as FGF10, in an environ-

ment with two layers that mimic the bronchial epithelium and the lung mesothelium.In addition, the layers

present a resistance to folding and are growing as a function of the received flow of proteins.This scenario

forms a model for the lung development and has been studied using mathematical and numerical tools. To

mimic the diffusion process from the outer layer of the organ (mesothelium) to the inner layer (bronchial

epithelium), Clément et al. solved the Laplace equation applied on the protein concentration c:

4c = 0

Then, they considered that each layer was growing according to a function of the local protein gradient:

dx
dt

= fm (||∇c(x)||) for x in the mesothelium
dx
dt

= fe (||∇c(x)||) for x in the bronchial epithelium

The functions fm and fe are increasing functions, typically with a sigmoid shape. To avoid the epithelium to

catch up with the mesothelium, fe is kept smaller than fm. A smoothing of the layers based on a fixed char-

acteristic size is then performed in order to mimic the layers resistance to folding. With this model, Clément

et al. observed the spontaneous formation of branching patterns similar to those observed during bronchial

development, as depicted in Figure 14.1 and, based on an extended model, in Figure 14.2. Hence, this com-

pact modeling approach is sufficient for observing de novo branching and growth patterns in a simulated

tissular environment. Since then, this self-organized morphogenesis approach has been used as a framework
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Figure 14.1: Proposedmechanism for themorphogenesis of biological branched structures. In this approach,
the gradient of concentration of a key molecular activator guides the growth of specific tissue layer through
the activation of the associated receptor. In this example, the local gradient of concentration of FGF10 (black
arrows) activates the budding of the epithelium layer (branching mechanism – left). As the tissue curvature
flattens, the local concentration vanishes and the growth stops, preventing the tissue overlap (avoiding mech-
anism – right) [569].

for other organs [580] and other branched systems [581]. To date, the question of the mechanisms of devel-

opment of branching organs is not clearly elucidated. However, the link between the molecular and cellular

components requires further investigation, in order to unveil the determinants at the scale of the tissues and

organs.

Philosophical remarks 14.A : The origin of shape?

How growth and organ specialization define the shape and structure of the mature organ is a long-debated scientific

question, which has not unveiled all its secrets and mysteries, as we will discuss in Section 14.3.

However, these examples of constrained organ development raises several issues that need to be discussed

in details. Among these, one can notice that the shape of the system appears as central in the developmental

considerations, especially under constraints.

In the next section, the respiratory system, and the lung as its central organ, will be studied in details in light

of the concepts of organ optimization. Indeed, the lung, its structure, its functioning, its efficiency, are all the

result of a series of optimization under constraints that shaped the organ through evolution.

14.2 The lung as amodel organ for optimizationunder constraints

At the core of the respiration process, the lung is the organ that connects the ambient air to the blood,

allowing to transport oxygen from the ambient air to blood and carbon dioxide from blood to the ambient

air. The needs of the body in oxygen and carbon dioxide, the respiratory gases, determines the lung function,

which is based on a complex geometrical structure and on several physical and chemical processes.

14.2.1 Lung morphology, a complex structure

A basic description of the lung structure would consist in dividing it in two parts: the bronchial tree and the

exchange surface with blood. The function of the bronchial tree is limited to the transport of the respiratory

gases and no exchange occurs in this part of the lung. It forms a cascade of bifurcating airwayswith cylindrical
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Figure 14.2: Tridimensional spontaneous emergence of a tree (budding) based on themodel of Clément et al.
(2014) [582]. An eighth of the budded sphere has been sliced out to show the branching core (blue). Notice
the self-avoiding and space-filling branching, which are commonly found in biological tree structures.

shapes. There is an average of seventeen successive bifurcations in the human lung. The trunk of the tree is

called the trachea; it is connected to the ambient air through the tracheo-pharyngeal pathway. The leaves of

the tree are called the terminal bronchioles; they are connected to the exchange surface with blood. At each

bifurcation the size of the airways is decreasing, with a tracheal diameter of about 2 cm and a diameter of the

terminal bronchioles of about 0.3 to 0.5mm. The exchange surfacewith blood consists in a foam-like structure

that is an assembly of exchange units called the acini. Each acinus is also shaped as a bifurcating airway tree,

but the size of the airways is conserved at the bifurcations. There is an average of six successive bifurcations

in a typical acinus. The acinar airways are called the alveolar ducts and their walls are garnished with bubble-

like structures, the alveoli. The alveoli walls are mainly blood capillaries, called pulmonary capillaries, and

they are the location of the respiratory gas exchanges. Each terminal airway of the bronchial tree feeds an

average of two acini. The auto-similar, multi-scaled structure of the bronchial tree and of the acini allows the

lung to contain a very large exchange surface that is folded in the thorax. In a typical human, the exchange

surface is about 70-100 m2 [556].

Since the morphology of the lung is complex, it becomes necessary to make assumptions in order to have a

simple model while conserving the principal geometrical properties. Our model is then based on the assem-

bly of self-similar trees with cylindrical branches and symmetric bifurcations that mimic the two functional

zones (see Figure 14.3). To account for the core geometrical properties of the lung, we assume that the

dimensions of the branches in the conductive tree decreases from one generation to the next with a ratio

h =
(

1
2

) 1
3 [590, 591, 592], while in the acinus we assume that the size of the bronchi remains constant [590].

Note that the airways spatial distribution such as the branching angles or the orientations of the branching

planes is not taken into account in our model since it is not really relevant for the computation of oxygen

transport in the lung.

14.2.2 Lung dynamics: where physics enters the play

The transport of the respiratory gases to and from blood involves a combination of physical processes which

ensure that the needs of the body in respiratory gases are fulfilled.

Diffusion : no energy costs, but tooweak. As blood entering the pulmonary capillaries has an oxygen partial

pressure lower than the oxygen partial pressure in the alveolar air, oxygen flows to the blood by the process

of diffusion that tends to balance the partial pressures between blood and the alveolar air. For the lung’s

point of view, the blood acts as an oxygen sink. The transport of carbon dioxide in the lung relies on the

same processes than that for oxygen, except that blood flowing in the alveoli membranes acts as a source of
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Box 14.B : Energy conversion in muscles

Despite the complexity of biological systems, it is possible to apply the Onsager’s phenomenological approach of

locally linearized non-equilibrium thermodynamics Onsager [583]. Through this approach, it is possible to identify

the non-equilibrium processes that link the degradation of the chemical potential of food by its digestion into a

macroscopic form of energy made available for muscular work. By applying Onsager’s approach and integrating

it with macroscopic systems, we can describe the behavior of certain thermodynamic conversion machines under

mixed boundary conditions [566, 584, 585]. In the case of Dirichlet boundary conditions the system is driven by

the potential differences, meanwhile in Neumann boundary conditions the system is driven by the fluxes. Mixed

conditions are located between these two extreme configurations. These lead to feedback effects and the emergence

of complex dynamic behaviors [586].

(A) Illustration of muscle as an energy converter. The incoming energy flow Φ+ is converted into

mechanical power P = FMIM and a waste fraction Φ−. IM is the so-called metabolic intensity. (B) Plot

of the system’s response under varying metabolic intensities IM . The response extends from the basal

resting point to the point of exhaustion, via the point of maximum work production.

If we apply this description to the case of living organisms that have been reduced to chemical conversion machines,

we obtain a thermodynamic formalism (see Figure above) that regains the phenomenological description of themus-

cular response proposed by Hill [587, 588]. In Hill’s phenomenology, the metabolic force FM and the contracting ve-

locity v are linked by three constants represented by the equation FM = c
v+b

− a. The thermodynamic formulation

gives FM = Fiso+Rfb

IM +IT
IT −

(
RfbIT + RM IM

)
where IM ∝ v. The thermodynamic approach gives us access to the

physical meaning of the parameters i.e., Fiso is the isometric force of the muscle, IT defines the threshold of accept-

able metabolic intensity, RM is the viscous resistance to displacement and Rfb the feedback resistance induced by

the mixed conditions previously mentioned .

A proxy for the flow released by the muscle is the quantity of oxygen breathed in during ventilation [589]. To achieve

an effort of a given intensity, the level of O2 adjusts accordingly. Naturally, this quantity cannot grow indefinitely, and

is limited by the absolute size of the organ that enables this exchange and by the relative size of this organ compared

to the size of the individual.

For an individual, this is an intrinsic limitation on the ability to produce effort. So, depending on the size of the

individual, which constrains its volume, the respiratory system must be optimized to maximize the flow of O2. By

comparing inter-species data and using a generic description, it is then possible to find an allometric law, as we shall

see in this chapter.

carbon dioxide. The diffusion process is passive in the lung i.e., no energy is spent by the organ to perform

the transport. Notice that this is not true from the pulmonary blood circulation point of view, as blood has to

be incessantly renewed to maintain the respiratory gas partial pressure difference between the alveolar air

and the blood. However, at the metabolic time scale, the diffusion process has a limited range in the airway

tree. Were the transport of the respiratory gas only based on diffusion, the lung could not maintain the

respiratory gas flow at a level compatible with the mammals metabolisms. The reason behind this limitation

stands in the size of the airway tree. The pathways from the ambient air to the respiratory zone are too

long and narrow for the diffusion to provide gas flows compatible with the metabolism of mammals. In the
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Figure 14.3: Illustration of the lung model used in this work. The tree in beige mimics the bronchial tree,
where oxygen and carbon dioxide are only transported along the branches. The tree in blue mimics the
acini, where the respiratory gases are transported along the branches. They are also captured by the alveoli
that cover the walls of the branches.

case of the human lung, the typical length of these pathway is of about Lp = 30 cm [591]. The characteristic

time tp for an oxygen molecule to travel by diffusion through all such a pathway can be estimated using a

dimensional analysis. Using Lp and the diffusion coefficient of oxygen in airD = 0.2 cm2 ·s−1 [593], the order

of magnitude of tp can be estimated with:

tp =
L2

p

D
' 4500 s = 1 hour and 15 minutes!

Hence, a pure diffusive transport of the respiratory gas cannot fit the mammals needs. Actually, in human,

the order of magnitude of the length LD traveled by diffusion during the typical time of inspiration i.e., ti = 2
seconds, is LD =

√
D × ti ' 6.3 mm. Thus, in the resting human, diffusion can transport oxygen from

the terminal bronchioles to the nearby exchange surface. However, at a time scale compatible with the

metabolism, diffusion cannot reach the upper part of the bronchial tree. It cannot either reach the deeper

parts of the respiratory zone, which is non active at rest. Actually, this last phenomenon, called the screening

effect [593], plays a crucial role in the lung. It is described in details later in this chapter. More generally, the

limited spatial range of diffusion hasmany consequences on the living systems. An emblematic example is its

role on the size limitation of insects [594], where diffusion in the tracheal tubes is the onlymean of respiratory

gas transport. It participates to the explanation of why the increased atmospheric oxygen concentration

during the Palaeozoic era allowed insects to be larger than today as, following Fick’s law, the diffusive flow is

proportional to the gradient of partial pressure between the ambient air and the inner body.

Convection : the rescuer. We have seen that the diffusion process is too weak to transport the respiratory

gas through the whole airway tree. In the absence of other transport mean, the oxygen partial pressure in

the lung would decrease and the flow of oxygen to blood would drop. Similarly, the carbon dioxide partial

pressure would increase and prevent the exchanges with blood to occur. Consequently, the air in the lung

has to be renewed in order to expel the excess of carbon dioxide and to refresh the inhaled air volume

with oxygen. This phenomenon is called the ventilation. The ventilation is a dynamic i.e., time-dependent,

process based on the succession of inhalation and exhalation of a volume of air, the tidal volume, at a given

rate, the breathing frequency. Ventilation is performed thanks to a set of muscles that surround the lung

and modify its volume. At rest regime, the main acting muscle is the diaphragm, located at the base of the

lung. By first pulling onto the lung, this muscle deforms the lung tissues, creating a negative pressure drop

and the transport a volume of ambient air inside the lung; this is the inspiration phase. At rest, the elastic

energy stored in the tissues during the inspiration phase allows for a passive recoil of the lung and a volume
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of air equal to the volume inhaled is expelled; this is the expiration. Then the cycle repeats following the

same procedure, at least at rest. Since the duration of a breath cycle for a resting human is about four to five

seconds, a human performs, on average, about six to seven hundredmillions breaths during her/his lifetime.

Modeling the oxygen transport. The transport of oxygen in the lung is then driven by three phenomena:

diffusion, convection by the airflow and exchange with blood through the alveoli walls in the alveolar ducts.

The partial pressure of oxygen averaged over the lumen area is transported along the longitudinal axis x

of the airway. Hence, in each airway of our idealized lung, the mean partial pressure of oxygen P over the

airway section follows,
∂P

∂t
−D

∂2P

∂x2 + u
∂P

∂x
= β (Pblood − P ) , (14.2)

where D is the oxygen diffusion coefficient, u is the velocity of the airflow, β is a reactive term and Pblood is

the partial pressure of oxygen in the capillary blood. The reactive term β mimics the exchanges with blood

through the alveolar membrane. This coefficient depends on the diffusion coefficient of oxygen in water,

on the solubility coefficient of oxygen in water, on the thickness of the alveolar-capillary membrane, and

on the radius of the alveolar duct. It is equal to zero in the bronchial tree since no exchange with the blood

happens in this part of the lung and is positive in the acini. The oxygen partial pressure in blood is determined

by assuming that the flow of oxygen leaving an alveolar duct through the alveolar-capillary membrane is

equal to the flow of oxygen captured by blood, accounting for the oxygen captured by hemoglobin and for

the oxygen dissolved in plasma [556]. Finally, all generations are linked through bifurcations by assuming

continuity between generations and conservation of the quantity of oxygen at each bifurcations.

Experimental methods 14.C : Conditions for the numerical simulations

Our model takes as input the ventilation parameters: the tidal volume VT (in mL) and the breathing frequency fb

(in min−1) and outputs the mean amount of oxygen exchanged with blood over a respiratory cycle. To validate our

model, we performed computations at rest by assuming that a human breathes around 12 times per minute and

inhales around 500 mL of air for each breathing cycle. With these parameters, our transport model gives an oxygen

flow exchanged with blood of 230 mL · min−1, which is close to the average physiological value of 250 mL · min−1

[556].

14.2.3 The energy expenditure or the cost of breathing

Breathing is part of the basal metabolism, meaning that it is a regular and mandatory energy cost for the

maintenance of the body. Yet, natural selection, one of the main processes driving evolution, tends to select

for minimal energetic cost so that the organisms can allocate most of their resources to their reproduction

[595]. Hence, in order to understand breathing, it is important to determine the origin of the energetic costs

and how they are affected by the breathing process. We already pointed out that diffusion, considered from

the lung point of view, is a passive process. So, most of the energetic costs involved in the lung function

arise from the process of ventilation. Energy is spent through the action of the muscles on the lung. This

action has two main effects: it deforms the tissues and it displaces the air along the bronchial tree. On the

one hand, the tissues are deformed due to the action of the thoracic muscles, especially the diaphragm. This

deformation is considered as elastic in the normal range of ventilation [596], and energy is dissipated along

the displacement of the tissues. On the other hand, as every gas, air acts as a fluid with specific viscosity. As

the bronchial tree is an assembly of a high number of narrow tubes with decreasing size, the energy spent

for the displacement of the air in the bronchial tree is dominated by the energy dissipated by the friction of

air in the bronchi. The air kinetic energy is negligible relatively to the dissipation. This can be summarized in

term of the power spent by the muscles (energy per unit of time):

Pm︸︷︷︸
muscle power

' Pe︸︷︷︸
elastic power

+ Pa︸︷︷︸
air viscous dissipation

.
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Figure 14.4: Trade-off between elastic energy stored in the tissue and viscous energy dissipated in the air
circulation (exercise regime, computed from our model).

These quantities depend on several lung characteristics, on the breathing frequency f and on the amount of

air inhaled during on breath cycle VT . This raises the trade-off shown in Figure 14.4 and, using optimization

theory, optimal ventilation frequencies and tidal volume can be be predicted. The viscous dissipation of air

in the bronchial tree is characterized by the lung hydrodynamic resistance R, which is directly related to

the geometry, size, number and structuring of the bronchi [596]. The hydrodynamic resistance is a physical

quantity that represents how the energy put in the system is divided between kinetic energy and heat energy.

It connects the volume of air displaced per unit of time, also called air flow F , to the force per unit of surface

applied to the air, also called air pressure pa: p = RF . For the same pressure applied on the lung, the

higher the hydrodynamic resistance, the lower the air flow and the higher the dissipation. Then, the power

dissipated by viscous friction of the air inside all the bronchi can be estimated by Pa = pF = RF 2. By

assuming in our case that the velocity of the air follows a sinus function, we can deduce the power dissipated

by viscous friction as follows:

Pa = 1
4R (πfbVT )2 .

The elastic power is characterized by the compliance C of the lung, that relates the force per unit of surface

applied by the muscles (pm) to the volume change of the lung [598]. The compliance depends on the lung’s

volume, especially when the deformation of the lung is high although the compliance can be considered con-

stant while healthy. That is why, in our case, we assume that the compliance is a constant and we neglect the

non-linearities arising at large lung’s deformations [599]. The elastic power can be estimated by integration

of the volume along the inspiration phase and it gives us,

Pe = V 2
T fb

2C .

Finally, the total energetic cost of breathing P can be written as the sum of the power dissipated by viscous

frictionPa and the elastic powerPe. The total power has to beminimized relatively to the tidal volume VT and

the breathing frequency fb with a constraint on the oxygen flow to blood that has to match the oxygen flow

demand (see Equation 14.1). Thanks to our model previously defined, we can compute the oxygen flow to

blood as a function of tidal volume and breathing frequency and compare it to the oxygen flow V̇O2 requested

by the body at the regime considered.

Our model predicts (see Figure 14.5), for a human at rest, an optimal breathing frequency of 12.2 breaths per
minute and an optimal tidal volume of 497 mL, which are very close to the average physiological values [590].
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The model exhibits a robustness in term of frequency perturbation around the optimal. A 5% shift in the

energy brings the frequency into a range between 8 breaths per minute up to 18.5 breaths per minute. This

effect is due to the fact that, at low regimes, a low tidal volume VT is sufficient to perform an optimal ven-

tilation. When the exercise intensity increases, the power profiles as a function of the frequency become

steeper and steeper and focus the optimal value within a tighter region. It implies that a shift from the op-

timal configuration at high intensities is predicted to be costly in term of energy spent. This behavior is fully

compatible with the fact that the control of ventilation is stronger at exercise, preventing even talking. The

question of the optimal conditions of ventilation in human leads naturally to a series of extensions that need

to be considered. We have seen previously that the optimization under constraints occurs in almost every

organ in all the living beings. Thus, could we expect the present model to be extended to all mammals, as

the control of ventilation is, more than probably, present in the whole mammalian class?

14.3 Allometric scaling laws for respiration and ventilation

The answer to this question of generalization leads us to a vast scientific question that will bring us back to

the late 19th century and which is still open on many aspects.

14.3.1 The emergence of scaling relations in nature

In 2007, Savage andWest published a seminalwork inwhich they present a collection of data of sleepduration

in a set of mammalian species. Among other major results, their analysis confirmed the previous observa-

tion [600] that the larger the animal, the shorter the duration of its sleep cycle [601]. More precisely, the sleep

duration correlates negatively with the body mass of the mammal and follows, based on the data from Sav-

age & West, an interesting exponential law of the form ts = 10.1M−0.103, with ts the sleep duration in hours

during a 24 hours period and M the body mass of the mammal in kilograms, as seen in Figure 14.6 [601].

Thus, by taking the log of both sides of the equation, one can write this sleep-to-mass relation as log ts = log

10.1 - 0.103 logM i.e., a linear relation between the logarithm of the sleep duration and the logarithm of the

mass of the animal, see Figure 14.7. As we will see later, this type of exponential relation is now referred, in

ecological sciences, as an allometric scaling. In general, an allometric law will write Y = Y0M
b, where Y is the

studied – physiological, morphometric – property,M the mass of the living organism, Y0 and b the allometric

Figure 14.5: Total power expenditure during ventilation (W) as a function of the respiratory frequency (min−1)
for different intensities of exercise. Dots correspond to the optimal ventilation frequency i.e., that minimizes
the dissipated power. Adapted from [597].
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Figure 14.6: Distribution of total sleep duration (h) in mammals, based on data from Savage & West [601].
The data are best fitted by the curve indicated in light gray.

prefactor and exponent, respectively [602, 603]. Actually, the concept presented by Savage &West is far from

being recent. The history of the study of allometric relations dates back to the 19th century. Scientists from

various disciplines started to analyze the changes in shape and form of living beings in relation with their

overall size [604]. Let us read the fascinating story told by Jean Gayon about the origins of the allometric

concept [605].

14.3.2 A brief history of allometry

In a pioneer work from 1897, Eugène Dubois described the relation that guides the evolution of brain’s mass

and that of the individual in a variety of mammal species [606]. He observed that brain is smaller, relatively to

the their mass, in bigger animals. He then derived an adequate expression for this relation, such as e = c sr ,

where e is the brain’s mass, s the body mass and c and r two coefficient that define the relation, with r close

to 1/2, justifying the relative decrease in brain’s mass that he observed. As far as we know, this represents the

first mathematical expression of an allometric law, years before this term was even coined as it. It is in 1907

that Lapicque [607] had the idea to transform Dubois’ relation in a log-log dependency, giving a straight line

representation in logarithmic coordinates that is now familiar to us, cf. Figure 14.7. At that time, this work

was purely descriptive and empirical. However, biological and ecological data started to accumulate in the

following years that led, mainly in animal species, to a variety of scaling laws. Thus, the ubiquity of allometric

relations in every ecological discipline [608] raised the question of the nature of the biological mechanisms

underlying their observation.

In parallel, the question of the emergence of forms in living organisms arose in the literature. One of the

major works at that time came from the Scottish naturalist D’Arcy Wentworth Thompson, whosemain contri-

bution came from his book On Growth and Form, first published in 1917 [609]. In this publication, he adopted

the – still debated – thesis that the living systems as we know are submitted, in addition to the process of

natural selection, to the physical laws of nature that can modify, transform and adapt their form and their

path of development i.e., their growth [610]. This reference publication paved the way to the new disciplinary

research field of biomathematics and, even in present times, is still considered as amajor contribution to this

field [611]. However, the D’Arcy Thompson’s approach has not been accepted by the whole community, and

the debate is still vivid more than a century after the publication of the first edition of his work [612]. Indeed,
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Figure 14.7: Distribution of total sleep duration (h) in mammals in log-log plot, based on data from Savage &
West [601]. The data are best fitted by the line indicated in bold black. Confidence intervals are presented
as light gray zones along the regression line. The corresponding allometric relation is presented in its expo-
nential form.

D’Arcy Thompson was not entirely convinced by the pure Darwinian approach that dominated the field of

developmental biology in his time. Although a strong Darwin’s admirer [613], he rather considered that the

paths of development of the organisms were not dictated purely by acquired mutations and hard-encoded

routines. At the contrary, he was convinced that these paths could only follow a number of sequences, a

series of schemes that, following the laws of physics and chemistry, would allow for the formation of the

variety of shapes and developments observed in nature [611, 612]. Critics emerged about his teleological –

in some ways [613] – conception of evolution, or at least of emergence of form. In essence, his work was

one of his time, and his theories of forces of development were not supported by the genetic and molecular

knowledge that has since been accumulated [612]. D’Arcy Thompson was an author of his time. He paved

the way, with others developmental naturalists, to numerous concepts in biomathematics that influenced a

number of past [614] and present works, as discussed in Section 14.1. But D’Arcy Thompson was also an

author among his peers. Motivated by his conception of developmental shaping forces, he started to cor-

respond with a younger British naturalist named Julian Huxley, who will later forge a prolific international

career as a biologist and science advocate, although carrying with him some controversies that are beyond

the scope of this chapter [615].

The scientific correspondence started slightly after one of Huxley’s major publication, dated from 1924. In

this article, Huxley studied the dynamics of growth of chelae in a crab species whose individuals possess one

small and one large chela [616]. What seems at first a highly specific topic is enlarged by the idea to measure

the mass of the chelae relatively to the mass of the individual. Following the steps of Dubois and Lapicque,

Huxley weighted around 400 specimens of crab and plotted in a logarithmic scale the mass of the large

chela against the total weight of the animal minus the weight of the large chela. He then observed that the

experimental data could be joined by a straight line in this logarithmic plot. The originality of Huxley’s work

resides in his interpretation of the results that he obtained. He noticed that the slope k of the regression line

remained larger than one, in accordance with the observation of the relative larger i.e., heterogonic growth

[617] of the chela compared to the growth of each individual. He then provided a proposed mechanism for

this relative growth: the rate of cellular division in the chela is larger than the one in the rest of the body,

more precisely in a k : 1 ratio [616]. With this – still emergent – mechanistic approach, Huxley provided for
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the first time a simple method for deciphering heterogonic growth of a characteristic, that will be observed

as a straight line of slope k > 1 when plotted against the normalized mass of the individual in logarithmic

coordinates.

Finally, the works of Lapicque, Dubois, D’Arcy Thompson and all their contemporaries emerged in 1936 in a

joint paper between Huxley and a younger scientist, Georges Teissier, in which they agreed for the terminol-

ogy of allometry and the associated law that is now famous y = bxα [618]. Altogether, this brief section on

the historical emergence of the allometric concept in ecological sciences depicts a vibrant and active research

theme, developed in the late 19th century, which extends the Darwinian concept of natural selection towards
the emergence of growth, form and function. However, the reader will notice that the allometric approach of

these times is still largely descriptive, with limited causal explanations of the nature of the scaling coefficients

and the putative mechanisms that drive their behavior.

14.3.3 Allometry: a mechanistic approach

Many years later, a possible approach that compensates for this lack of mechanistic causality would be found

in the work of West, Brown and Enquist (WBE), published in 1997 [603]. In this major article, the authors

focused on the allometries inmetabolic properties that have been described in the past decades, with the aim

of developing a new mechanistic framework that would explain these allometries i.e., be able to derive the

allometric exponents for the numerous physiological properties at stake here. The question of the existence

of a general allometry for the metabolic rate of the living beings is a thrilling question. This would imply that

all the organisms, from the tiny bacteria to themassive trees ormammals, do possess sharedmechanisms of

energy expenditure that would reflect on the presence of a common exponent all over the different orders

of magnitudes among the species. Furthermore, the exponent should reflect somehow, by its value, the

nature of the energetic mechanisms, and thus could be derived by a comprehensive modeling approach.

WBE answer positively to these strong hypotheses, and developed a structured approach that focuses on

the modeling of energy and mass fluxes in biological networks – cardiovascular and respiratory systems for

example – which they consider as the common ground for all the species [603]. The hypotheses of WBE are

of strong nature, and have been discussed largely in the literature (see for example [619, 620]). Although this

important – and still open – debate lies beyond the scope of this chapter, it appears important to emphasize

that the WBE approach created a mechanistic, mathematical framework for the study of allometric relations

that, somehow, acted as a bridge between the traditional descriptive allometry and the modern mechanistic

approach.

14.3.4 Allometric relations for the respiratory system

As far as the respiratory system is concerned, the model of WBE appears to act as a promising framework for

the study of the allometric relations of this system [621]. Indeed, the lungs ofmammals are built as a network

ofmass and energy transfer, as described before, and sharemorphological and functional properties, raising

the question on whether the previous results for human can be extended or not to all mammals. These

properties are known to be dependent on the massM of the mammal with allometric scaling laws [602, 603,

618, 622, 623]. Furthermore, the physics of ventilation, and hence its control, is linked to the geometry of the

lung. Consequently, the morphological differences among mammals also affect the control of ventilation.

First, our gas transport model for the human lung presented in the previous section can be slightly modified

to be valid for all mammals. Indeed, we know that the lungs of mammals share invariant characteristics [590]

such as the tree-like structure with bifurcating branches and the decomposition into two parts: the bronchial

tree and the acini. The derivation of a lung model that depends only on mammal mass requires to relate

explicitly the morphological parameters involved in our model such as the tracheal radius and length, with

the animal mass. We used the datasets from [603]. The oxygen transport and exchange now occur in the

idealized lung that has been generalized to fit any mammal. The transport of oxygen in the mammals lung

is still driven by the tree phenomena: convection by the airflow, diffusion and exchange with blood through
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the alveoli walls. Hence, in each airway, the partial pressure of oxygen follows the convection-diffusion-

reaction equation (14.2) previously defined. The exchange coefficient β is dependent on the mammals mass

since it depends on the radius of the alveolar duct which follows an allometric law. Finally, we search for

the minimum of the total energetic cost of breathing P relatively to the tidal volume VT and the breathing

frequency fb with a constraint on the oxygen flow to blood that has to match the oxygen flow demand V̇O2 .

Since allometric scaling laws for oxygen flow demands for mammals at basal, field and metabolic rates are

available in the literature [602, 624, 625, 626], we can compute the desired oxygen flow V̇O2 depending on

the mammal mass and on the metabolic regime.

Our model predicts that breathing frequencies and tidal volumes follow indeed allometric scaling laws. Fur-

thermore, these laws can be derived in three different metabolic regimes: basal metabolic rate (BMR), field

metabolic rate (FMR) and maximal metabolic rate (MMR), as seen in Figure 14.8,

fBMR
b ≈ 0.61M−0.27 Hz, V BMR

T ≈ 6.1M1.04mL,

fF MR
b ≈ 1.17M−0.31 Hz, V F MR

T ≈ 11.8M0.97mL,

fMMR
b ≈ 1.37M−0.17 Hz, V MMR

T ≈ 29.7M1.01mL.

It predicts exponents that are in accordance with the values observed in the literature. Indeed, breathing

rate at BMR has been estimated to follow the law fBMR
b ' 0.58 M− 1

4 Hz [627] and tidal volume to follow the

law V BMR
T ' 7.14 M1 mL [603, 628]. At other metabolic rates, less data is available in the literature except

for the breathing rate of mammals at MMR, estimated to follow the law fMMR
b ' 5.08 M−0.14 Hz [629]. The

validation of our model at both minimal and maximal metabolic regimes suggests that its predictions should

be coherent whatever the regime, in the limit of the availability of its input parameters. This indicates that

the mechanical power spent for ventilation might have driven the selection by evolution of the ventilation

patterns.

The idealized representation of the bronchial tree and of the exchange surface used in this study accounts for

five core characteristics common to all the mammals lungs, as identified in the literature [590, 591, 597, 603,

630]: a bifurcating tree structure; an homogeneous decrease of the size of the bronchi at the bifurcations; the

size of the trachea; the size of the alveoli; and the surface area of the exchange surface. These characteristics

are the main determinants for the tuning of the ventilation in order to minimize its energetic cost. This

indicates that once the metabolic regime is fixed, the morphology of the lung is probably the primary driver

of the physiological control of ventilation. We tested this hypothesis by altering, in our analysis, the allometric

scaling laws related to the geometry of the lung. We observed corresponding alteration of the laws predicted

for tidal volumes and breathing frequencies. Sincemorphology itself has probably been selected by evolution

in order tominimize the hydrodynamic resistance in a constrained volume [591], morphology and ventilation

patterns are intertwined together in order for the lung to function with a low global energetic cost i.e., a low

hydrodynamic resistance R and a low ventilation cost P(VT , fb) that also depends on R. Interestingly, our

representation of the lung does not account for interspecific differences known to exist between the lungs of

mammals, such as different degrees of branching asymmetry, monopodial or bipodial lungs, etc. [631, 632,

633, 634].

As in the human lung, the transport of gases in the mammalian lung relies on the two major processes of

diffusion and convection. We know that, in humans, the diffusive transport in the alveolar ducts is submitted

to a physical phenomenon called the screening effect [593, 635]. Indeed, as gas exchanges occur through

the alveoli walls lining the alveolar ducts, the diffusion can transport the respiratory gases only on a limited

range of generations. This range depends on the physico-chemical properties affecting the diffusion of the

gas in the alveolar air and through the alveolo-capillary membrane. This range has been estimated to be

of about four generations for oxygen and one for carbon dioxide [593] in humans. The description of the

screening effect in mammals requires several additional hypotheses. Because of the screening effect, the

alveolar ducts far from the convection–diffusion transition get only a small diffusive oxygen flow, as most of
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(a) Frequency (b) Tidal Volume

Figure 14.8: Predicted ventilation frequency (s−1 – left) and tidal volume (L – right) as a function of themammal
mass (kg – log-log scale) at differentmetabolic regimes. BMR: BasalMetabolic Rate, FMR: FieldMetabolic Rate,
MMR: Maximal Metabolic Rate.

Figure 14.9: Localization in terms of lung generation index of the conductive zone andof the exchange surface
(acini) as a function of the mammal species mass (kg). Both the green line (rest regime – left) and the red
line (maximal exercise regime – right) represent the transition from a transport of the respiratory gas by
convection to a transport by diffusion. Adapted from [621].

the available oxygen has been captured by the alveolar ducts closer to the transition. In these deep parts

of the acini, the oxygen partial pressure gradient between the deoxygenated blood and the alveolar ducts,

which drives the oxygen capture by blood, is low. Carbon dioxide is mostly evacuated from the alveolar ducts

very close to the transition: they are refilled by carbon dioxide too quickly for the deeper ducts to be drained

of gas by diffusion. Hence, the ducts far from the transition cannot be relieved of the carbon dioxide and

the exchange with blood in these ducts is low. As a consequence, the deeper part of the exchange surface

is not available for the exchanges. The location of the transition between convective and diffusive transport

of the respiratory gas drives the magnitude of the screening, and this transition depends on the geometry

of the airway tree and of the ventilation regime. The screening phenomenon in mammals has been studied

mathematically in [621]. Within the framework of themodels hypotheses, the authors show that the number

of conductive airways NconD and the number of alveolar ducts Nad follow allometric scaling laws:

NconD ∝ Nad ∝ M
7
8 .

Additionally, they show that the number of airways NconV in which the gases are transported by convection
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Box 14.D : Convection–diffusion transition and allometry

It is to be noted that the predictions of ourmodel for the localization of the convection–diffusion transition in idealized

lungs lead to good estimations of the allometric scaling laws for tidal volumes and breathing frequencies, indicating

that the morphological parameters included in our model might drive primarily the control of ventilation.

also follows an allometric scaling law. This law depends on the ventilation regime:

NconV ∝


{

M0.56 ifM < 150 kg
M0.405 ifM ≥ 150 kg

at rest

M0.63 at maximal exercise

These equations translate into linear relationships in terms of log(M), as shown in Figure 14.9. Rest regime

is represented on the left plot and maximal exercise regime on the right plot. The figure indicates that,

at rest regime, the small mammals use their lung very efficiently, as only a few of their acini generations

are fed by diffusion, as indicated by the green curve in Figure 14.9. Hence, the screening effect in small

mammals is weak. However, this suggests that they have few reserve for increasing their metabolism at

exercise [593, 621]. As suggested by the red curve on the right plot in Figure 14.9, the shift of the transi-

tion between convection and diffusion to deeper generations does not increase significantly the available

exchange surface. To the contrary, large mammals are submitted to large screening effects at rest regime,

and a large part of their exchange surface is not used. However, during exercise, the shift of the transition

towards a deeper lung generation allows to recruit a significantly larger exchange surface.

Through this short introduction to allometry of constrained organs, we started to decipher the latent mecha-

nisms of development of a constrained organ inside a class of organisms. The example of the lung is emblem-

atic: how a complex and central organ can develop, specialize and evolve to fulfill the needs of organisms,

while sharing among species its particularities, and efficiency.

14.4 Concluding remarks

Biological optimization, making the most effective use of limited resources within a set of given constraints,

is a multifaceted subject that has been a source of content for countless articles and a stimulus for related

discussion. To make the optimization of biological systems more readily comprehensible, this chapter has

focused attention on a single organ, the human lung, and used it as a stage on which to introduce basic

principles and a canvas on which to illustrate their application. The range of constraints, for the most part

energetic ormorphometric in nature, that have conditioned the development of the lung over the long course

of its evolutionary history and given the mammalian respiratory system its particular shape is expansive.

The characteristics of these constraints and the conditions that govern their interplay can be represented as

mathematical equations that form the basis for models that describe the scale of the effect constraints have

on biological systems and illuminate the magnitude of their impact. The insights into the lung’s form that

these models yield also provide a more thorough understanding of its function, characterizing, for example,

modulations in the regulation of respiratory ventilation that occur in response to changes in the body’s state

– e.g., when the body is at rest or in motion; when it is healthy or when its health is compromised. The

models are also a source of results that can be abstracted and subsequently applied to both human organs

and those of other species that are larger and more complex. Considered within this broader context, they

can also be seen as integral elements of much larger systems and as instances of the general allometric laws

to which those systems adhere. The significance of the larger orthogenetic and phylogenetic implications

that this abstraction of specific models into generalized laws carries cannot be overstated and discussion of

those implications is vigorous and far-reaching. Through these discussions, many aspects of allometry have
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Box 14.E : Cost and energy

The allometric relationship found applies to the pulmonary organ. This is a crucial link in muscular activity, and

therefore in locomotion or any activity requiring an effort, even moderate. As such, its properties must also be

present during physical exercise. A useful quantity, based on oxygen consumption V̇O2 and frequently used in the

literature, is the Cost of Oxygen Transport (COT). This corresponds to the ratio V̇O2 /v with v the locomotion velocity.

Using the correct metabolic conversion factor COT is the energy dissipated per unit length. It is known empirically

that COT shows a local minimum corresponding to an optimal situation in which the minimum energy is dissipated

per unit length. Building on this property, Tucker in 1975 [636] noted that this minimum follows distinct allometric

laws according to the major locomotion families, runners, swimmers and fliers, see the following Figure, left.

Left is the COT defined here as the ratio P/(M v), with P the power production and v the velocity as a function of the

body mass M for several species (adapted from [636]). Green are swimmers, red are fliers, black are runners, blue

are engines designed by engineers. Continuous lines correspond to linear fits on data shown with filled markers.

Right, top is oxygen consumption V̇O2 of a horse plotted against the speed v/v? for walk (red stars), trot (blue dots),

and gallop (green squares), and their fits with our modeling. Bottom is COT for the same set of data. The three gaits

data are normalized by the muscle fiber ratio leading to a unique master curve.

Based on the model proposed in Box Energy conversion, it has been demonstrated [637] that a living system can

be described as a collection of N identical, standard, muscle units operating in parallel. Then the COT expression

becomes:

COT =
N

NH

(
a0 k + rM k2 v +

b

v

)
(14.3)

with a0 k a constant, rM a dissipative term and b the basal consumption i.e., out of effort. This last three parameters

describing the standard muscle unit. We are then allowed to derive the minimum of the COT as an intrinsic property

of energy conversion machines, COTmin ∝
√

rM b. It is found independent of the number of standard muscle fibers

involved in the effort. Thus, effort is a combination of the number N of standard muscle fibers used and their

characteristics b and rM . The parameterization of the standardmuscle fiber depends on the specific implementations

for an organism. It can be expected to be identical for a single animal. We have carried out this work in the case

of the horse, which exhibits three well-differentiated gaits: walk, trot and gallop (see Figure ??, right). We show that

the COT curves, or equivalently V̇O2 , of the different gaits can be found using N as the only adjustable parameter,

leaving the muscle fiber parameters unchanged.

As muscle is the most commonmeans of producing power in animals, the typical behavior described here should be

found in the most general way, without barriers between species, genera or classes. Of course, muscular implemen-

tation is specific to each animal, constrained by its own characteristics (intensity of effort, size, etc.), which suggests

the origin of the observed scaling laws.

been illuminated and a deeper understanding of the complex systems that determine the ways individuals,

species and systems function and interact has been achieved. Yet many of the field’s underlyingmechanisms

and governing principles remain to be discovered. This chapter is the prelude to a journey into a space at
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the intersection of biology, ecology, and mathematics that the allometric universe occupies and the fuel for

the exploration of the mysteries those hidden mechanisms are waiting to reveal.

Recommended readings

◦ For a proper introduction to respiratory physiology, in healthy and pathological conditions: John B. West,

Respiratory Physiology: The Essentials [556].

◦ A reading for a deeper understanding of the lung morphometry: Ewald R. Weibel, Morphometry of the

human lung [638] and one for the respiratory gases exchange: Ewald R. Weibel, The Pathway for Oxygen:

Structure and Function in the Mammalian Respiratory System [590].

◦ Anice thesis about (in)organicmechanismsofmorphogenesis: Raphaël Clément,Morphogénèse et développe-

ment pulmonaire [639].

◦ The old but gold textbook in morphogenesis of living beings: D’Arcy Wentworth Thompson, On Growth and

Form [609].

◦ On allometric relations, in general: Robert H. Peters, The Ecological Implications of Body Size [602] and from

amodeling approach: G. B.West et al., A general model for the origin of allometric scaling laws in biology [603].

Problems
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Appendix A

Metabolism

A.1 Derivation of enzymatic reaction rate models

Enzymatic reactions can bemodeled using amechanistic model of enzyme binding and catalysis. The general

approach is to develop a ‘cartoon’ model of the physical steps in a reaction. This cartoon model usually takes

the form of a series of reactions, involving either binding / unbinding events or chemical conversions. Once a

model is developed one can write down ordinary differential equations (ODEs) based on these reactions, and

assuming each reaction to be governed by mass action kinetics (see Section 3.3). The ODEs can be simplified

using certain assumptions, or sometimes just kept as is, before applying a quasi steady-state assumption

(which states the enzyme-substrate complexes to be in steady-state). This assumption would allow us to

solve the ODE for the enzyme-substrate complex(es) at steady-state. We then enter these solutions into the

ODE for the product, so to obtain a reduced system and a specific rate equation for product formation. This

approach forms the basis of obtaining simplified rate equations, that is, a reducedODE for the rate of product

formation, for enzymatic reactions.

A.1.1 Derivation of the single substrate, irreversible rate equation

This is themost genericmodel of an enzymatic reaction that has been developed/studied by LeonorMichaelis

(1875 – 1947) and Maud Leonora Menten (1879 – 1960), and their contemporaries. It involves the following

reaction scheme, where a substrate binds to an enzyme to form a enzyme-substrate complex, gets converted

into a product, and then released from the enzyme:

S + E
k1−−⇀↽−−k2

ES
k3−−⇀↽−−k4

EP
k5−−⇀↽−−k6

P + E. (A.1)

We can simplify this reaction system by assuming that (1) the transition between enzyme complexes ES and

EP are instantaneous and are therefore considered as a single entity, e.g. ES, and (2) that the release of

product and enzyme is irreversible. The scheme now becomes:

S + E
k1−−⇀↽−−k2

ES k3−−→ P + E. (A.2)
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We can now write a set of ODEs to describe the dynamics of this reaction system - using mass action kinetics.

The ODEs are as follows:

ds
dt = −s · e · k1 + es · k2

de
dt = −s · e · k1 + es · (k2 + k3)

dc
dt = s · e · k1 − es · (k2 + k3)

dp
dt = es · k3

where we used the small letter notation to represent the concentration of each species, e.g. “e” for the
concentration of the enzyme, E, and “es” for the concentration of the enzyme-substrate complex, ES. At this

stage, we can see that if we can formulate ”es” as a function of “s”, we can provide a simpler rate model

that relates production of the product, P, to the level of the substrate, S. To achieve this we make several

additional assumptions. First, we will assume that the total level of the enzyme is conserved, i.e. e + es = C,

where C is a constant (referred to as εtot in the main text). This assumption effectively means that total

enzyme levels are fixed in the timescale of reaction dynamics. This assumption already allows us to re-define

the ODEs and reduce their number to three from four - since, we can now express e, as a function of es. The
new ODEs look like this:

ds
dt = −s · (C − es) · k1 + es · k2

des
dt = s · (C − es) · k1 − es · (k2 + k3)

dp
dt = es · k3

Second, we will assume that the binding/unbinding of substrate to the enzyme happensmuch faster than re-

lease of product from the enzyme-substrate complex. This assumption, together with the additional assump-

tion that enzyme levels are much lower than substrate levels, allows us to consider the enzyme-substrate

complex to remain constant throughout the reaction. In other words, we consider the enzyme-substrate

complex to be in a ‘quasi steady-state’. This allows us to solve the second ODE from above for steady-state:

des
dt = 0 = s · (C − es) · k1 − es · (k2 + k3)

es · (k2 + k3) = s · (C − es) · k1

es · (k2 + k3) = sC · k1 − s · es · k1

es · (k2 + k3 + s · k1) = s · C · k1

es = s · C · k1

(k2 + k3 + s · k1)

We have now an expression for “es”, which we can simply introduce to the ODE system. We have effectively

reduced our ODE system from a three variable system into a two variable one:

ds
dt = −s · (C − s · C · k1

(k2 + k3 + s · k1) )k1 + s · C · k1

(k2 + k3 + s · k1) · k2

dp
dt = s · C · k1

(k2 + k3 + s · k1) · k3

The second ODE describes the rate of change in product, P, as a function of substrate, S. It is a rate model

for this enzymatic reaction, and holds under the assumptions we made in its derivation. It is known as the
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Michaelis-Menten kinetic rate model and is commonly expressed as:

v = s · εtot · kcat

KM + s

where εtot is equal to C and represents total enzyme concentration, kcat is equal to k3 and is known as the

maximal catalytic rate of an enzyme, and KM is equal to (k2 + k3)/k1 and is known as the Michaelis-Menten

coefficient of the enzyme. Plotting this rate against increasing substrate concentration would show that the

rate is a ‘saturating function’ of S, i.e. the rate approaches a threshold point - given by vmax = εtot · k3 as

substrate increases. The enzymatic nature of the reaction introduces a limiting factor on the reaction rate!

This saddle point is actually a underpinning point for some of the constraint-basedmethods discussed in this

book.

A.1.2 Derivation of a two substrate, irreversible rate equation

See Problem 3.2

A.1.3 Derivation of the single substrate, reversible rate equation

We now return to the reaction scheme we considered in the above section:

S + E
k1−−⇀↽−−k2

ES
k3−−⇀↽−−k4

EP
k5−−⇀↽−−k6

P + E.

The corresponding ODE system, written only for the key variables ES, EP, and P, is as follows:

des
dt = e · s · k1 + ep · k4 − es · (k2 + k3)

dep
dt = e · p · k6 + es · k3 − ep · (k4 + k5)

dp
dt = ep · k5 − e · p · k6

As above, we will now introduce the assumptions of (1) total enzyme being conserved, and (2) the quasi

steady-state, but this time for both of the enzyme-substrate and enzyme-product complexes. We will denote

total enzyme concentration as C, as before, and use these two assumptions to express es and ep in terms of

each other, and the other variables. Let us first proceed with es;

des
dt = 0 = e · s · k1 + ep · k4 − es · (k2 + k3)

es · (k2 + k3) = (C − es− ep) · s · k1 + ep · k4

es · (k2 + k3 + s · k1) = (C − ep) · s · k1 + ep · k4

es = C · s · k1 + ep · (k4 − s · k1)
(k2 + k3 + s · k1)

We carry the same derivation for ep;

dep
dt = 0 = e · p · k6 + es · k3 − ep · (k4 + k5)

ep · (k4 + k5) = (C − es− ep) · p · k6 + es · k3

ep · (k4 + k5 + p · k6) = (C − es) · p · k6 + es · k3

ep = C · p · k6 + es · (k3 − p · k6)
(k4 + k5 + p · k6)

We see that we have a symmetry in the expressions for es and ep, in that the two expressions can be derived

from each other by a replacement of variables (k1, k4, k2, s) → (k6, k3, k5, p). Keeping this symmetry in mind,
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we now attempt to eliminate one of the complexes from the equation for the other:

ep · (k4 + k5 + p · k6) = C · p · k6 + es · (k3 − p · k6)

ep · (k4 + k5 + p · k6) = C · p · k6 + C · s · k1 + ep · (k4 − s · k1)
(k2 + k3 + s · k1) · (k3 − p · k6)

ep · (k4 + k5 + p · k6) = C · p · k6 + C · s · k1k3 − C · s · k1 · p · k6 + ep · (k4 − s · k1) · (k3 − p · k6)
(k2 + k3 + s · k1)

ep · (k4 + k5 + p · k6) · (k2 + k3 + s · k1) = C · p · k6 · (k2 + k3 + s · k1) + C · s · k1k3 − C · s · k1 · p · k6+

ep · (k4 − s · k1) · (k3 − p · k6)

ep · (k4 + k5 + p · k6) · (k2 + k3 + s · k1) = C · p · k6k2 + C · p · k6k3 + C · s · k1k3 + ep · (k4 − s · k1) · (k3 − p · k6)

ep · ((k4 + k5 + p · k6) · (k2 + k3 + s · k1) − (k4 − s · k1) · (k3 − p · k6)) = C · p · k6k2 + C · p · k6k3 + C · s · k1k3

ep = C · p · k6 · (k2 + k3) + C · s · k1k3

(k4 + k5 + p · k6) · (k2 + k3 + s · k1) − (k4 − s · k1) · (k3 − p · k6)

ep = C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

Note that, in the above equation set, we have dropped the dot notation from multiplication of parameters

for simplicity of expression. Based on the above argument of symmetry, or by following the same steps for

“es”, we can show that we will have a similar expression with different parameters in the numerator:

es = C · s · (k1k5 + k1k4) + C · p · k6k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

With these expressions for es and ep at hand, we can now derive an expression for e:

e = C − es− ep

e = C − C · s · (k1k5 + k1k4) + C · p · k6k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

− C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

e = C − C · s · (k1k3 + k1k5 + k1k4) + p · (k6k2 + k6k3 + k6k4)
(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

e = C · k3k5 + k2k5 + k2k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

We are now ready to substitute all these expressions into the ODE for the product, so to obtain our rate

equation:

dp
dt = C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4) · k5

− C · k3k5 + k2k5 + k2k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4) · p · k6

dp
dt = C · s · k1k3k5 − p · k2k4k6

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)
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We can somewhat simplify this expression by defining the following composite rate constants:

KS = k3k5 + k2k5 + k2k4

k1 · (k3 + k4 + k5)

KP = k3k5 + k2k5 + k2k4

k6 · (k2 + k3 + k4)

k+
cat = k3k5

k3 + k4 + k5

k−
cat = k2k4

k2 + k3 + k4

and substituting them into the rate expression from above, to get:

dp
dt = v = C · k

+
cat
KS

·

s− p ·
k

−
cat

KP
k

+
cat

KS

1 + p
KP

+ s
KS

This reaction rate is referred to as the Haldane kinetic rate equation, named after Jack Burden Sanderson Hal-

dane (5 November 1892 – 1 December 1964). It can be re-expressed by recognizing the fact that the fraction

entering as amultiplier for the product concentration is actually equivalent to the equilibrium constant of the

reaction scheme drawn above, at the beginning of this section, when we assume the reaction proceeding in

the forward direction, i.e. towards product formation:

k−
cat

KP

k+
cat

KS

= k2k4k6

k1k3k5
= 1/Keq

This allows us to re-express the Haldane rate equation as:

v = C · k+
cat · s/KS

1 + p
KP

+ s
KS

· (1 − p/s

Keq
)

This re-arranged expression is interesting because we can recognize that the last term is related to the ther-

modynamic Gibbs free energy of the reaction, allowing us to finally derive:

v = C · k+
cat · s/KS

1 + p/KP + s/KS
· (1 − e∆G′/RT )

where ∆rG
′ is the Gibbs free energy of reaction for given substrate and product levels, considering forward

direction, and R and T stand for the gas constant and temperature respectively. This rate equation shows

that forward reaction rate will be independent of thermodynamics, when the reaction free energy is highly

negative (i.e. thermodynamically highly favored), but the reaction rate will decrease as Gibbs free energy gets

close to zero.

A second, faster derivation of this rate equation is found by noting that the ODEs for des
dt

and dep
dt

are linear

in e, es and ep, and can therefore be solved with linear matrix algebra. One may write:sk1 −(k2 + k3) k4

pk6 k3 −(k4 + k5)
1 1 1


 e

es

ep

 =

0
0
C

 , (A.3)

where the first two rows of the matrix correspond to des
dt

= 0 and dep
dt

= 0, and the last row represents

conservation of total enzyme concentration. The equilibrium concentrations of e, es and ep are then found

by left-multiplying both sides of the equation by the inverse of this matrix. The obtained results are the same
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as given above.

A.1.4 Derivation of two substrate, reversible rate equation for simultaneous

binding of substrates

The two-substrate case is described by the following reaction scheme:

S1 + S2 + E
k1−−⇀↽−−k2

ES1S2
k3−−⇀↽−−k4

EP1P2
k5−−⇀↽−−k6

P1 + P2 + E,

Where we assume that binding and unbinding of the substrates and products occurs simultaneously. Pro-

ceeding as above we let e, es1s2, ep1p2, s1, s2, p1 and p2 denote the concentrations of E, ES1S2, EP1P2, S1,

S2, P1 and P2 respectively. The differential equations for es1s2, ep1p2 and p1 + p2 are:

des1s2

dt = e · s1 · s2 · k1 + ep1p2 · k4 − es1s2 · (k2 + k3)

dep1p2

dt = e · p1 · p2 · k6 + es1s2 · k3 − ep1p2 · (k4 + k5)

d(p1 + p2)
dt = ep1p2 · k5 − e · p1 · p2 · k6.

Proceeding as in the single substrate case, we note that the the ODEs for des1s2
dt

and dep1p2
dt

are linear in e,

es1s2 and ep1p2, and that the total enzyme concentration e+ es1s2 + ep1p2 is constant, denoted C.s1s2k1 −(k2 + k3) k4

p1p2k6 k3 −(k4 + k5)
1 1 1


 e

es1s2

ep1p2

 =

0
0
C

 . (A.4)

We therefore see that the results for the two-substrate case are the same as for the single substrate case, with

s replaced by s1s2 and p replaced by p1p2. This result is dependent on the assumption that binding/unbinding

of substrates/products occurs simultaneously.

A.2 Example metabolic models

A.2.1 A simple model illustrating product activation

This model demonstrates that allosteric regulation of an enzymatic reaction by its product can create a

bistable system. In this simple example, we consider enzymatic production of a metabolite (labelled ’x’) and

its non-enzymatic consumption. It is assumed that the metabolite allosterically regulates the enzyme that

produces it. The listing uses the Antimony format [640] which can be easily converted into SBML [294]. An

online converter can be found at https://sys-bio.github.io/makesbml/

1 // The following model admits three steady-states at:

2 // x = 0.325, x = 1.671, and x = 0.873

3 // The first reaction step `-> x' uses a rate law that models

4 // positive feedback via the product x. The constant 0.2

5 // is to ensure that the lower steady-state is non-zero.

6 // The statement `ext Xo' indicates that the species Xo is fixed.

7

8 ext Xo

9 Xo -> x; (vo*x^n)/(1 + x^n) + 0.2

10 x ->; k1*x

11

https://sys-bio.github.io/makesbml/


Example metabolic models 299

12 k1 = 0.65

13 n = 4; vo = 1

14 x = 0

Listing A.1: Model illustrating bistability

1 # Equivalent model as a differential equation in python:

2 def ode (x, t):

3 vo = 1

4 n = 4

5 k1 = 0.65

6 return [((vo*x**n)/(1 + x**n) + 0.2) - k1*x]

Listing A.2: Equivalent model as a differential equation in python
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Appendix B

Cell division control

B.1 Equations for birth size

Here we derive the dynamic equations of the birth size qi
0 across generations (indexed by i) in the discrete-

time formalism. We define 〈q0〉α as the average value of q0, and the log size deviation δqi
0 := qi

0 − 〈q0〉α. The

dynamics for the log-size deviation takes the form

δqi+1
0 = g(δqi

0, α) + ζi(δqi
0, α) , (B.1)

where ζi(δqi
0, α) is a random variable with zero mean. This equation has the same degree of generality of

Eq. (11.8) and can express any arbitrary division control model (or equivalently any shapes of the hazard

rate function). In order to make further mathematical (and biological) progress, we need to simplify the

equation and make the comparison with data possible. There are several possible choices. In the following,

for simplicity, we first neglect the fluctuation of the growth rate α. Assume that the size at birth is the only

variable influencing cell division (g(·) is a function of δqi
0 only) will allow us to introduce a linear-response

framework. We will then describe how to consider the heterogeneity of multiple growth parameters.

The main empirical observation that comes to our help is the fact that the coefficient of variation of qi
0 is

small (typically around 0.15) [403, 411, 421, 418, 420]. The small value of the coefficient of variation strongly

suggests the possibility of Taylor-expanding the function g(δqi
0) around δqi

0 = 0 [421]. In this limit, the function

g(δqi
0) is approximately linear and the random variable ζi(δqi

0, α) can be well approximated by a Gaussian

random variable with zero mean and constant variance [420]. The resulting equation reads

δqi+1
0 = (1 − λ)δqi

0 + σξi , (B.2)

where ξi is a Gaussian random variable with zero mean and unit variance. The two parameters λ and σ

encode, respectively, the relevant information about the mechanism of size control and the level of stochas-

ticity. The parameter σ simply corresponds to ζi(0, α). The parameter λ, which quantifies the strength of

size control, has a direct relationship with the mechanism at its origin. It is defined as λ = 1 − g′(0, α). For
instance, the sizer corresponds to λ = 1 and an adder to λ = 1/2. The case λ = 0 does not lead to a stationary
process and corresponds to a timer. Consequently, this parameter can easily be inferred from the plots in

Figure 11.1.

Eq. (B.2) can be solved analytically [420]. In particular one can show that the conditional probability of observ-

ing a log-size deviation δqi
0 from the average at generation i given a deviation at generation 0, is a Gaussian

with mean

〈δqi
0〉δq0

0
= (1 − λ)iδq0

0 . (B.3)

301
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This result clearly shows how different mechanisms correspond to different strengths of cell-size homeosta-

sis, leading to fluctuations persisting across a different number of generations. For a sizer, λ = 1, the ex-

pected deviation of the daughter cell is independent of the mother cell fluctuations. A timer, with λ = 0,
does not lead to homeostasis, as the expected deviation of size at birth of a daughter cell is the same as the

deviation of the mother. The adder, λ = 1/2, leads on average to a halving of the size at birth deviation at

each generation, as approximately observed in experiments [411].

One can generalize the linear-response framework to consider fluctuations of different growth parame-

ters [422]. In general, one can assume that the size at birth of the daughter cell depends on both size at

birth of the mother and her individual growth rate fluctuations.

δqi+1
0 = (1 − λqq)δqi

0 − λqαδα
i + ξi

q . (B.4)

Along the same lines, one can assume that the growth rate fluctuations obey a similar equation

δαi+1 = −λαqδq
i
0 − λααδα

i + ξi
α . (B.5)

This kind of equation can be written in multiple forms, i.e. including multiple variables. For example, one can

write an equation explicitly for the elongation rate between divisions δG := δqi+1
0 − δqi

0 or for the division

time. Since the linear-response equations assume that the fluctuations around the means of these variables

are small, all these choices turn out to be mathematically equivalent. This is also the reason why the dif-

ferent plots in Figure 11.1 are equivalent. While a linear dependency of growth rate α and division time τd on

(log-)size at birth q0 would induce a non linear dependency of the elongation G = ατd on the initial size, such

non-linearities can be neglected in the limit of small fluctuations, leading always to linear dependencies [421,

422].

The values of the parameters λab can be easily inferred using the standard tools of linear regression. Notably,

the best (maximum likelihood) estimates of these parameters can be directly obtained from the variable

covariances [420, 422]. For instance, 〈δqi+1δqi〉 = λqqσ
2
q + λqα〈δαiδqi〉. By writing the expressions for other

correlations (e.g., 〈δqi+1δαi〉 or 〈δαi+1δqi+1〉 ) one canmap the coefficient λab with themeasured covariances.

B.2 Growth laws

Growth laws and trade-offs between protein sectors. Prototypical predictions are the so-called ”growth

laws”, general quantitative relationships linking proteome composition and rates of cellular processes. The

reason why relationships of the kind λ = λ(φR, φX , . . . ) and kX(φR, φX , . . . ) naturally emerge in the frame-

work is due to cell growth and division rates being coupled to proteome allocation dynamics.

Growth law for the ribosome sector. For example, the first growth law, stating that the ribosomemass fraction

increases linearly with the nutrient-imposed growth rate, that is λ = λ(φR) = K(φR − φmin
R ), is obtained

straightforwardly by noting that upon differentiation of Eq. (11.21) with respect to time and substitution

of Eq. (11.19) and Eq. (11.20) one finds the dynamical relation λ(t) = knP (t)
M

, which at equilibrium reads

(neglecting degradation)

λ∗ = knP
∗

M
= aktR

∗fa

M
= akt

mR

Mprot

M

(
φR − φmin

R

)
, (B.6)

since at equilibrium the amino-acid import flux knP
∗ matches the biosynthesis flux aktR

∗fa (dA/dt = 0 in

absence of degradation). Note that we have used the definitions φi ≡ (miPi)/Mprot = (miPi)/(M −Ma) and
Rfa = Ractive = R−Rinactive and we have identified φinactive

R = φmin
R .

Trade-Offs between Ribosomes and Division Protein Synthesis. Following Refs. [457, 458], we re-write Eq. (B.6)
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as kn = akt
mR

mP
φR−φmin

R
φP

and use the constraint φmax
R = 1 − φQ = φR + φP + φX to obtain

φX = −Kn +Kt

Kn
φR + Ktφ

min
R +Knφ

max
R

Kn
, (B.7)

where Kn ≡ kn/mP ([Kn] = [T ]−1) and Kt ≡ akt/mR ([Kt] = [T ]−1). Eq. (B.7) shows a negative correlation
between the ribosome and division sectors under nutrient or translational perturbations, in agreement with

recent published data [641]. Also, since the rates of growth and division protein synthesis are respectively

proportional to the ribosome and the division sector, this negative correlation reflects a trade-offs between

allocating ribosomal resources towards growth or division (see Fig.1F in Ref. [457]).

Growth law for the division sector. So, the larger the fraction of ribosomesmaking division proteins the smaller

the fraction of ribosomes making ribosomes. In other words, there is a negative correlation between the

growth rate and the division protein sector. Indeed, the ribosome sector is related to the growth rate via the

first growth law φR = Mλ
MprotKt

+φmin
R , but it is also related to φX via Eq. (B.7) φR = Ktφmin

R +Knφmax
R

Kn+Kt
− Kn

Kn+Kt
φX .

Equating the two terms yields

λ = KnKt

Kn +Kt

Mprot

M

(
φmax

R − φmin
R − φX

)
, (B.8)

which is Eq. (9) in Ref. [457].

We now discuss how two known steady-growth size-related behaviors emerge in the unified framework from

the interplay between cell growth and cell division.

Adder mechanism. As we discussed, E. coli cells regulate their size by adding a constant volume between

consecutive cell divisions (adder mechanism). In a previous problem, we investigated with numerical simula-

tions the range of validity of this property. In the following one, we instead show analytically that the adder

property is naturally embedded in the unified framework.

It can be seen then that whenever λ � dX/mX (e.g. fast growth conditions), ∆s1cycle ≈ λ
kX
Xth = const

which is the adder property. Notably, in increasingly slower growth conditions, where degradation becomes

with the growth rate, deviations from the adder are predicted, up to the point λ � dX/mX where sd ≈
XthdX/(kXmX) = const.

“Schaechter–Maaloe–Kjeldgaard” (SMK) growth law. According to this law, the population-averaged cellular

size scales with growth rate in an approximately exponential fashion [642]. Interestingly, deviations from the

exponential trend have recently been reported, particularly at slow growth, leading to a different proposi-

tion [436]. Notably, deviations from this law are accounted in our framework. Indeed, in an exponentially

expanding population the average cell size can be expressed as 〈s〉 = 2 log 2〈s0〉 [403], which, combined with

Eq. (11.27) and 〈sd〉 = 2〈s0〉 leads to

〈s〉 =
λ+ dX

mX

k̃X

(
2 − 2− dX

mX λ

) (B.9)

where, following Ref. [457], we have defined k̃X ≡ kX/(2 log 2Xth). Note that since λ ∝ φR and kX ∝ −φR the

average cell size increases with ribosome abundance, a trend observed in experiments. Notably, upon deter-

mining the model parameters and making full explicit the growth rate dependence, the authors in Ref. [457]

with no further fitting showed that Eq. (B.9) recapitulates the experimental data [436, 457], a remarkable

achievement of the unified framework.

Non-steady relationships. Finally, we contextualize within the unified framework some predictions of a

model recently proposed to unify cell division and growth in non-steady growth conditions [449]. As we saw,

although there is consensus on an inter-division adder at the phenomenological level, the mechanisms regu-

lating cell division dynamics in the bacterium E. coli are still widely debated. In particular several mechanistic

models based on different mechanisms for division control were proposed for the adder [443, 512, 434, 433].
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In order to help selecting different scenarios, experiments beyond steady-state growth help comparing the

specific causal relationships underlying different models with data. Following this philosophy, and aiming to

shedmore light on cell division dynamics, Panlilio et al. [449] ranmultiple long-term E. colimicrofluidics exper-

iments jointy monitoring size-division dynamics and reporters of ribosomal and constitutive genes through

nutritional up-shifts. The fluorescent reporters can be seen as proxies for the dynamics of the R and P

sectors during the shift. Remarkably, in their experiments they observed highly-complex multiple-timescale

dynamics in different cell-division variables (particularly inter-division time, division rate, added volume and

added-to-initial volume ratio) during the nutritional up-shift. Notably, in spite of this complex dynamics, they

found the division control strategy to be unaffected by the shift. The transient observed division dynamics in

their shift data falsifies several scenarios, such as the Harris-Theoriot septum-limited division and the classic

scenario of replication-limited division. Instead, the authors found that a threshold accumulationmodel such

as the one described by Eq. (11.19) could not be falsified,

ds(t)
dt

= α(t)s(t) dN(t)
dt

= rX(t)s(t) . (B.10)

This the usual scenario where a constitutive X-sector protein accumulates to a threshold value N∗ and at

that point triggers cell division. The regulation of cell division from a constitutive sector is coherent with

the observation that ppGpp is a cell size and cell division regulator [643]. These results are also in line with

independent conclusions based on steady-state data [458, 434, 448] and isolate FtsZ as a likely candidate

cell-division trigger, although the previous section has clarified how the complexity of the decision to divide

is likely higher than described by the chromosome-agnostic cell-division models that are used in integrated

frameworks. Future efforts will have to integrate this complexity in a description that also accounts for the

interplay of different processes relevant for cell cycle progression with cell growth.
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Solutions to problems

C.1 Chapter “What makes up a cell”

Problem 1 (Intuition for biological numbers)

Check the results at http://bionumbers.hms.harvard.edu, http://book.bionumbers.org/ or https://doi.

org/10.1016/j.cell.2010.06.019.

Problem 2 (Proteins per cell - estimate one)

Proteins
mL = 0.2 g

mL · 6 · 1023 1
mol · 1

40000
mol

g = 3 · 1018 1
mL

Proteins
µm3 = 3 · 1018 1

mL · 10−12 mL
µm3 = 3 · 106 1

µm3

Proteins
cell ≈


3 · 106 E. coli

2 · 108 S. cerevisiae

9 · 109 mammalian cells

Problem 3 (Proteins/ribosomes per cell - estimate two)

109 · 0.3/25 ≈ 1.2 · 107 proteins

109 · 0.3/3400 ≈ 88000 ribosomes

Problem 4 (Buoyant cell density)

Density = 1 · 0.7 + 1.3 · 0.18 + 1.7 · 0.08 + 1 · 0.03 + 1.5 · 0.01 = 1.115

Problem 5 (Concentrations enzymes and substrates)

Concentration of one molecule per E. coli cell:

1
µm3 · 1015 µm3

L · 1
6 · 1023

mol
1 = 1.7 · 10−9 mol

L

Enzyme mass: 40 000 g mol−1 (BNID 105861)

Glucose mass: 180 g mol−1

40000/180 = 222

Assuming that themass of the free enzyme and themass of the substrate should be equal for optimal flux, we
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need approximately 222molecules of substrate (glucose) per onemolecule of free enzyme. This corresponds

to the following concentrations:

Enzyme: ∼ 1.7 nmol L−1

Substrate: ∼ 370 nmol L−1

Problem 6 (Cell size in different dimensions)

Cell 1 Cell 2 Ratio

Diameter 1 2 2

Surface area 3.14 12.57 4

Volume 0.52 4.19 8

SA/V 6 3 0.5

As the cell diameter increases, the volume grows faster than the surface area, leading to a decrease in the

surface area-to-volume ratio (SA/V). This decrease can impact nutrient uptake as there is less relative surface

area available for membrane transporters. Therefore, larger cells with lower SA/V ratios may face challenges

in obtaining enough nutrients to meet their metabolic demands.

Problem 7 (Alien lifeforms)

We do not know the answer to this question. These are ideas from ChatGPT (https://openai.com, GPT-3.5,

version 2023) – take them with a grain of salt:

When imagining alien lifeforms, it is difficult to make definitive statements about their nature since we have

no direct knowledge of extraterrestrial life. However, we can explore some possibilities and consider the

principles of biology and physics as we currently understand them.

1. Composition of Cells. While cells are the fundamental building blocks of life on Earth, it is not certain

that extraterrestrial life would be composed of cells. Cells are a product of evolution on our planet and are

highly efficient structures for carrying out biological processes. However, alternative forms of life may exist

with entirely different structures and organization. For example, hypothetical non-cellular life forms based

on self-replicating molecules or other complex arrangements have been proposed.

2. Different Features of Alien Cells. (a) Membranes: While cells on Earth have lipid bilayer membranes, it

is conceivable that alien life forms might have different membrane compositions. For example, they could

havemembranes composed of different molecules or organized in alternative ways. (b) Genetic Material: On

Earth, DNA and RNA are the primary carriers of genetic information. However, it is possible that alternative

genetic molecules or information storage systems could exist in alien life. These could have different base

pairs or use different codingmechanisms. (c) Metabolism: Alien life could have differentmetabolic processes

compared to Earth organisms. They might utilize different energy sources, employ unique enzymatic reac-

tions, or even rely on completely novel biochemical pathways. (d) Size and Structure: Cells on Earth exhibit

a wide range of sizes, from microscopic bacteria to the largest known cells in organisms like ostrich eggs. It

is conceivable that alien cells could differ significantly in size and overall structure, depending on the specific

conditions and evolutionary paths of their respective environments.

3. Features Dictated by Physics. Certain fundamental principles of physics are likely to impose constraints

on the functioning and structure of any kind of cell, including potential alien cells. These features include:

(a) Biochemistry: Regardless of the specific molecular composition, alien cells would need a biochemistry

that allows for the storage and utilization of energy, the replication and expression of genetic information,

and the maintenance of internal equilibrium. (b) Thermodynamics: The laws of thermodynamics, such as

energy conservation and entropy increase, are universal physical principles. Any living system, including

alien cells, would need to adhere to these principles tomaintain their internal processes. (c) Water: Water is a

highly abundant molecule and a fundamental solvent for life on Earth. It provides a medium for biochemical

reactions and allows for efficient transport of molecules within cells. It is possible that water or another

suitable liquid would be essential for alien life, but alternative solvents cannot be ruled out entirely.

https://openai.com
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While these considerations provide a starting point for thinking about alien life, the possibilities are vast, and

it is challenging to predict the specific characteristics of extraterrestrial organisms. Future discoveries and

investigations in astrobiology will help refine our understanding of life beyond Earth.

Problem 8 (Substrate demand to saturate an enzyme) Take the irreversible Michaelis-Menten law, and plug

in v = 0.1 × vmax and v = 0.9 × vmax. By rearranging the terms to express S in terms ofKM, the answers are

S0.1 = 0.1
0.9KM ≈ 0.11KM and S0.9 = 0.9

0.1KM = 9KM. This is approx. 81-fold difference to go from 0.1 × vmax to

0.9 × vmax!

C.2 Chapter “The dynamics of metabolic systems”

Problem 1 (An irreversible reaction with simultaneous binding)

(a)

E + S1 + S2
k1−−⇀↽−−k2

ES1S2
k3−−→ E + P1 + P2 (C.1)

(b)
dp

dt
= k3

s1s2C

s1s2 + k2+k3
k1

, (C.2)

where p = [P1 + P2] and C = [E] + [ES1S2].

Problem 2 (A reversible reaction with simultaneous binding)

(a)

E + S1 + S2
k1−−⇀↽−−k2

ES1S2
k3−−⇀↽−−k4

E + P1 + P2 (C.3)

(b)

dp
dt = k3

C(s1s2 − k2k4
k1k3

p)
s1s2 + k4

k1
p+ k2+k3

k1

(C.4)

where p = [P1 + P2] and C = [E] + [ES1S2].

Problem 3 (An irreversible reaction with sequential binding)

(a)

E + S1
k1−−⇀↽−−k2

ES1

ES1 + S2
k3−−⇀↽−−k4

ES1S2
k5−−→ E + P1 + P2 (C.5)

(b)
dp
dt = k5

s1s2C

s1s2 + s1
k4+k5

k3
+ s2

k5
k3

+ k2
k1k3

(k1 + k5)
, (C.6)

where p = [P1 + P2] and C = [E] + [ES1] + [ES1S2]

Problem 4 (An irreversible reaction with random-order binding)

(a)

E + S1
k1−−⇀↽−−k2

ES1

ES1 + S2
k3−−⇀↽−−k4

ES1S2

E + S2
k5−−⇀↽−−k6

ES2

ES2 + S1
k7−−⇀↽−−k8

ES1S2

ES1S2
k9−−→ E + P1 + P2 (C.7)
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(b)

dp
dt = k9

Cs1s2
(
k1k3(k6 + k7s1) + k5k7(k2 + k3s2)

)
s1A(s1) + s2B(s2) + s1s2C(s1, s2) +D

(C.8)

where p = [P1 + P2], C = [E] + [ES1] + [ES2] + [ES1S2], and

A(s1) = k1k6(k4 + k8 + k9) + k7(k0 + k4)(k2 + k1s1)

B(s2) = k2k5(k4 + k8 + k9) + k3(k0 + k8)(k6 + k5s2)

C(s1, s2) = k1k3(k6 + k8 + k7s1) + k5k7(k2 + k4 + k3s2) + k3k7k9

D = k2k6(k4 + k8 + k9)

C.3 Chapter “The space of metabolic flux distributions”

Problem 4.4 (Elementary Flux Modes (2))

EFMs containing forward fluxes only:

1 3/4 5/4
A B

C

D
1

A B

C

D

1 5/4
A B

C

D A B

C

D
1/21

EFMs containing forward and backward fluxes:

1

1

3/2

2/3

1

2

1

1

A B

C

D

3/2

A B

C

A B

C

D

A B

C

D

D

A

C

B D

2

A

C

B D

1

2

A

C

B D
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C.4 Chapter “Rating metabolic pathways by enzyme efficiency”

Problem 6.9 (Haldane kinetic rate law)

First, we add the constraint on the total enzyme concentration ([E] + [ES] + [EP ] = Etot) and rewrite the ODE

system in matrix notation:
1 1 1

[S]k1 −(k2 + k3) k4

[P ]k6 k3 −(k4 + k5)
−[S]k1 − [P ]k6 k2 k5


 [E]

[ES]
[EP ]

 =


[E0]

0
0
0

 . (C.9)

Note that the last row is linearly dependent on the two previous ones (it is minus their sum). Therefore, we

can drop it from the system without loosing information. Then, we will find exlicit expressions for [E], [ES],
and [EP ] by using Gaussian elimination – a process of eliminating off-diagonal values in the matrix until we

reach the identitymatrix, while at the same time applying the same operations to the vector on the right-hand

side of the equality.

Step 1, elimination the off-diagonal elements on the first column (subtracting the first row times [S]k1 from

the 2nd row and the first row times [P ]k6 from the 3rd row)1 1 1
0 −(k2 + k3) − [S]k1 k4 − [S]k1

0 k3 − [P ]k6 −(k4 + k5) − [P ]k6


 [E]

[ES]
[EP ]

 = [Etot]

 1
−[S]k1

−[P ]k6

 .

Step 2, dividing the second row by −(k2 + k3 + [S]k1) to have 1 on the diagonal:1 1 1
0 1 [S]k1−k4

k2+k3+[S]k1

0 k3 − [P ]k6 −(k4 + k5) − [P ]k6


 [E]

[ES]
[EP ]

 = [Etot]

 1
[S]k1

k2+k3+[S]k1

−[P ]k6

 .

Step 3, subtracting the second row from the 1st, and again from the 3rd (after multiplying by k3 − [P ]k6):1 0 1 − [S]k1−k4
k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 −(k4 + k5) − [P ]k6 − ([S]k1−k4)(k3−[P ]k6)
k2+k3+[S]k1


 [E]

[ES]
[EP ]

 = [Etot]

 1 − [S]k1
k2+k3+[S]k1

[S]k1
k2+k3+[S]k1

−[P ]k6 − [S]k1(k3−[P ]k6)
k2+k3+[S]k1

 .

which after simplifying becomes:1 0 k2+k3+k4
k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 − [S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
k2+k3+[S]k1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
[S]k1

k2+k3+[S]k1

− [P ]k6k2+[P ]k6k3+[S]k1k3
k2+k3+[S]k1

 .

and we normalize the last row to have 1 on the diagonal:1 0 k2+k3+k4
k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
[S]k1

k2+k3+[S]k1
[P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5

 .
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Step 4, we eliminate the off-diagonal values of the third column using the 3rd row:1 0 0
0 1 0
0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
− k2+k3+k4

k2+k3+[S]k1
· [P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[S]k1

k2+k3+[S]k1
− [S]k1−k4

k2+k3+[S]k1
· [P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5


Simplifying the expressions on the right-hand side is a lengthy process (which we do not show here) and in

the end we get:1 0 0
0 1 0
0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2k4+k2k5+k3k5

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k4k6+[S]k1k4+[S]k1k5

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k2k6+[P ]k3k6+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5


Therefore,

[E] = [Etot]
k2k4 + k2k5 + k3k5

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(C.10)

[ES] = [Etot]
[P ]k4k6 + [S]k1k4 + [S]k1k5

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(C.11)

[EP ] = [Etot]
[P ]k2k6 + [P ]k3k6 + [S]k1k3

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(C.12)
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