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Abstract
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Chapter overview

Even in clonal populations, cells appear to be strongly heterogeneous in terms of, e.g., protein levels,
RNA levels, sizes at birth or division, interdivision times and elongation rates. Part of this variability
is likely due to the inherent stochasticity of gene expression at the level of single cells. It is however
known that heterogeneous populations may possess an evolutionary advantage, for instance in variable
environments or under stress. Despite appearing to be at odds with the idea of optimality presented in
the previous Chapters, metabolic diversity can be described and modeled within the constraint-based
framework introduced in the previous Chapters. Specifically, a statistical representation of heterogeneous
populations can be obtained by defining suitable probability distributions on the flux polytope. This
Chapter addresses

◦ the different sources of variation that affect microbial metabolism along with the mechanisms that
may favor higher variability,

◦ the methods devised to represent heterogeneous microbial populations within the framework of
constraint-based models, and

◦ how these approaches connect to the optimality scenario presented in the previous Chapters.

12.1. Introduction
The theory of cellular metabolism developed up to this point through constrained-based models (CBMs)
relies crucially on some type of optimality assumption: among all viable flux states encoded in the flux
polytope by mass-balance, thermodynamic and regulatory constraints, cells strive for those that maximize
a physiologically motivated objective function. For E. coli cells growing on carbon-limited substrates, for
instance, it is reasonable to take such a function to be the growth yield. At the very least, these optimal
states provide reference points to gauge cellular behavior. In this respect, having a good grasp of what makes
a configuration of fluxes through the network ‘optimal’ with respect to a certain objective is rather important
from a theoretical viewpoint. On the other hand, it is not easy to prove directly in an experiment that a certain
function is actually being optimized (in any physical system, let alone in a microbe or a microbial population).
An optimality assumption can usually be corroborated a posteriori, e.g. by comparing optimality predictions
to experimentally measured fluxes or growth rates [1, 2], or indirectly, e.g. by showing that, in a given growth
medium, certain metabolic enzymes are expressed at just the level ensuring maximal growth [3]. By looking
at the behavior of individual cells in a population, however, one cannot help but notice a salient feature:
their diversity. Individual cells are macroscopically heterogeneous in terms of parameters like interdivision
times, elongation rates, sizes at birth or division, etc. This suggests that a corresponding diversity is present
at the level of intracellular processes like cell cycle, gene expression and, of course, metabolism. Quantitative
experiments probing populations at single-cell resolution (see Experimental Methods Box 12.A) can nowadays
characterize such a diversity in some detail. Among the remarkable outcomes of these studies is that,
when analyzed through a lens that accounts for diversity, bacterial growth displays signatures of universality
[4, 5, 6], suggesting the existence of general, system- and condition-independent control mechanisms (e.g.
of cell division and growth) that do not change with specifics like strain, quality of medium, etc. Identifying
these mechanisms yields robust insight (and predictive capacity) into the physiology of microbial systems
(see also Chapter on Control of cell division and coordination with other cell-cycle processes).

It is not hard to guess why a bunch of identical cells sharing the same medium would, say, elongate at
different rates. For one, gene expression has a stochastic component, from e.g. the random diffusion of
transcription factors to targets to the thermal noise driving the on/off dynamics of transcription events. We
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Experimental methods 12.A : Quantitative methods for single-cell analysis of microbial systems

At the very minimum, quantitative experimental characterization of cell-to-cell diversity in microbial populations
requires (i) the possibility of achieving steady-state cell growth in controlled environments, and (ii) the possibility
of identifying individual cells within a population. The two setups that are most important for the present Chapter
(and most widely used in general for the study of cell-to-cell heterogeneity in microbial systems) are the following.
◦ High-resolution optical microscopy of bacteria growing on agarose pads. Optical microscopy is the first and

still most used technique to address cellular individuality [7]. Besides giving direct information about the
macroscopic growth dynamics of individual cells [8, 6], it can be used in conjunction with gene expression
reporters like fluorescent proteins to quantify diversity in gene expression levels [9] and dynamics [10]. Optical
means usually allow to reliably follow the expression of a relatively small number of genes. In addition,
however, they can also provide information about many other aspects of bacterial physiology, like motility,
chemotaxis or the spatial self-organization of colonies.

◦ Microfluidic ‘lab-on-a-chip’ devices. In essence, these techniques allow to confine single cells or small lineages
thereof in controlled environments for long-term data acquisition [11]. A well-known example is the ‘mother
machine’ [12]. In a mother machine cells grow in narrow (ca. 1 µm) microfluidic dead-end channels such
that (a) all cells in the same channel are daughters of a mother cell stuck at the closed side of the channel;
(b) a main feeding channel carries away cells that grow out of the length of dead-end channels (which suffice
to contain a few cells, usually 5 to 10); and (c) nutrient in-flow and waste out-flow from the feeding channel
ensure a constant medium in all dead-end channels via diffusion. This setup effectively keeps the population
size fixed. Growing bacteria can then be imaged and analyzed by standard means like time-lapse microscopy
to obtain the statistics of quantities like the interdivision time or the size at birth at stationarity [5].

The setup of mother machines has the advantage that cells can be followed for many more generations than
on agarose pads, since the latter tend to become overcrowded after a limited number of rounds of divisions.
On the other hand, agarose pads offer a more natural environment for cell division. In addition to these, a
host of other techniques are being increasingly refined and used to probe single-cell properties and behavior in
bacterial populations, including single-cell metabolomics by mass spectrometry [13], nanoscale secondary ion
mass spectrometry (nanoSIMS) [14], and single-cell transcriptomics [15].

also know that the cell cycle can be highly variable [16]. And other ‘natural sources of variance can be
found in the dynamics of expression in genetic circuits, aging, asymmetric partitioning of cellular resources at
division, inter-cellular interactions, and epigenetic modifications [17]. In other terms, a degree of variability
across a population is to be expected. The question, however, is, how can variability be reconciled with
the optimality picture? And related to this: can we explain cell-to-cell differences in terms of some other,
perhaps more involved, optimality criterion? Are there cases in which variability is optimized? Can we
describe quantitatively a microbial population in ways that account for inter-cellular diversity? Note that
cell-to-cell variability is inherently a population-level concept. Addressing it therefore requires a framework
that is capable of clearly distinguishing single-cell properties from population-level ones.

It is definitely possible to explain cell-to-cell variability within an optimality framework (see Chapter on
Solutions of constraint-based metabolic models). For example, one could say that, in appropriate conditions,
all microbes in a population are optimal, but the optima are slightly different for different cells. As a matter
of fact, optimal states in CBMs need not be isolated points belonging to the flux polytope. There can in
fact be infinitely many flux vectors that maximize an objective function (this happens, for instance, when
an objective function attains its maxima on one of the edges or faces of the polytope, see Figure 12.1).
This implies that identical cells subject to the same constraints and sharing the same objective may end up
having different metabolic profiles despite carrying the same value for the objective function. In this scenario,
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Figure 12.1: One versus multiple optima in the flux polytope. (A) A two-dimensional flux polytope (shaded
area) with non-negative fluxes and the defining constraints shown as dashed lines. (B) The linear objective
function represented by the red line has a unique maximum (red dot). (C) The linear objective function
represented by the blue line, parallel to one of the constraints, has infinitely many maxima, which coincide
with the segment highlighted in red.

diversity is induced by a very special feature of the objective function and, unless some other ingredient is
brought into the game to lift the degeneracy, all optimal states would be equally likely for cells. If having
an objective function of this type seems unlikely in a high-dimensional setup such as metabolism, one may
imagine a scenario in which all cells optimize the same objective but with slightly different constraints (i.e.
in a slightly different polytope, e.g. due to small variations in regulatory constraints, energy demands, or
nutrient uptakes). In this case, each cell would solve its own optimization problem, ending up having, along
with a different metabolic profile, a slightly different value of the objective function. Metabolic diversity
is therefore induced by variability in the constraints. But it is also possible that, if cells are subject to
fluctuating exogenous constraints (e.g. variable nutrient levels), they would prefer to maximize their, say,
growth rate averaged over conditions, especially if fluctuations occur on faster timescales than those over
which metabolic reactions equilibrate. In such a case, the average growth rate would be maximum (given the
external variability), but other than that every cell could carry a different growth rate and a different metabolic
profile. In this respect, one can say that diversity is now being optimally adapted to external conditions, or
one may even think that different cells have different objective functions. This scenario, possibly unrealistic
for growing microbial populations but not for other cell types (think for instance of the mixture of neurons
with high energy demands and glia with low energy demands in the brain), would also lead to heterogeneous
flux profiles and objectives. And so on.

It is clear from these examples that, in order to represent heterogeneity within CBMs, one must, first and
foremost, clarify the origin of heterogeneity as much as possible. Next, it is necessary to shift from the
language of individual flux vectors belonging to the flux polytope to that of ensembles of flux vectors or,
more reasonably for large populations, of probability densities defined on the flux polytope. This transition
is less trivial and more momentous than it sounds and, together with the causes of variability, is the core
subject of the present Chapter. We shall begin by giving a more precise characterization of the different types
and sources of diversity that can be considered when modeling metabolic networks. Next, we shall introduce
probability densities on the flux polytope and briefly discuss a few simple examples. We shall then address
the general problem of using probability densities to represent heterogeneity and uncertainty, most notably
that seen in empirical data. Finally, we will show how these ideas can be used to generalize the notion of
optimality to heterogeneous populations.
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12.2. Sources of variability and uncertainty in metabolism
Metabolic heterogeneity is widespread among clonal populations of prokaryotic and eukaryotic cells. Pop-
ulations of Escherichia coli display diverse cell-to-cell conversion yields of glucose into final products, such
as fatty acids and tyrosine [18]; not surprisingly, the intracellular concentration of co-factors, including ATP,
also vary significantly between cells [19]. Saccharomyces cerevisiae metabolic states have been observed to
change over time for each cell. For instance, a single budding yeast does uptake oxygen before duplicating
its genetic material, but it changes to an anaerobic metabolism once DNA duplication starts in order to
prevent mutations related to free radicals [20, 21]. Animal cells within a single tissue also show heteroge-
neous metabolisms. Non-small cell lung cancer display a remarkable diversity of preferred carbon sources.
Within the tumor, some cells consume glucose and produce lactate, whereas others divert their metabolism
to consume lactate as a carbon source [22].

The root cause of this metabolic heterogeneity is manifold, including uneven distribution of nutrients in the
environment, asymmetric cell partitioning at division, and noise in gene expression [23, 24]. These effects
are stochastic, and prevent the determination of a cell metabolic state in advance. This type of uncertainty
is rooted in the nature of metabolism itself. We refer to it as objective uncertainty.

There is however another type of uncertainty at play, one that comes from our models of metabolism. In
any metabolic network reconstruction, there can be missing reactions [25], errors or lack of knowledge about
the directionality of certain reactions under in vivo conditions [26], and errors in the experimental estimates
of certain parameters –such as exchange fluxes, or the weights of the biomass reaction [27]. Even when
using a bona fide metabolic network conditioned by precisely measured parameters, optimality principles
can lead to a reduction of the viable polytope as opposed to the identification of a single ‘optimal’ state
[28] (see Chapter on Solutions of constraint-based metabolic models). This is exemplified in the network of
Fig. 12.2.A, where the maximization of v4 only reduces the viable polytope to a subspace defined by the line
shown in Fig. 12.2.B. Uncertainties that stem from modeling uncertainties can be categorized as subjective,
as they arise solely from an observer’s imperfect knowledge.

As we will see in the following, although objective and subjective uncertainties have different sources, both
can be modeled using probability theory.

12.3. Probability densities over the flux polytope
In what follows, we shall denote the convex flux polytope by P and a generic flux configuration in P by
v = {vi}N

i=1. A probability density p defined on P is any non-negative function such that∫
P
p(v)dv1 · · · dvN ≡

∫
P
p(v)dv = 1 . (12.1)

Notice that the integral over P implicitly encodes two types of constraints: mass-balance equations (i.e.
Sv = 0) and ranges of variability of the form vi,min ≤ vi ≤ vi,max (see Chapter on Solutions of constraint-
based metabolic models). The quantity

∫
P dv represents therefore the a priori volume of P (which, un-

derstandably, is far from simple to calculate for high-dimensional polytopes like those corresponding to
genome-scale metabolic network reconstructions [29]). As usual, p(v) can be interpreted as the relative
likelihood of flux configuration v: if we imagine that a cell is assigned a flux configuration by “randomly
sampling it from P” using the rule described by p, then p(v)dv represents the probability that the cell’s flux
configuration will lie in a small volume dv around v. It is clear then that probability densities on P provide
a mathematically convenient way of describing the metabolic state of large populations (or ensembles) of
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Figure 12.2: Minimal metabolic network with multiple optima. (A) Toy network where the top metabolite is
imported by reaction v1 and processed by reactions v2 and v3, which convert it into the bottom metabolite
that is then excreted via v4. When fixing v1 = 10, the maximization of v4 –a proxy of biomass growth
rate– under mass balance results in v4 = 10. There are however infinitely many flux vectors (defined by the
condition v2 + v3 = 10) that are coherent with this solution, including those indicated by red blue and green
flux values. (B) The subspace of optimal solutions forms a line (dark purple) in the space of feasible flux
vectors (Problem 12.1 ). The purple-shaded triangle represents the flux polytope for 0 ≤ v1 ≤ 10.

cells at a given time, provided one can assume that cells have the same metabolic network and are subject
to the same constraints, so that P is the same for all of them. For the population of cells described by p,
the probability density clearly contains all the statistics of metabolic fluxes, from mean values to variances to
correlations. For instance, by integrating p over all fluxes except the i-th, one obtains the marginal probability
density of flux vi, i.e. ∫

P
p(v)dv\i = pi(vi) , (12.2)

where the subscript \i corresponds to ‘except for the flux of index i’ (so dv\i = dv1 · · · dvi−1dvi+1 · · · dvN ).
And from pi we can immediately retrieve the statistical features of flux vi (e.g. mean value, variance, etc).

Let us make a few simple examples.

◦ If we assume that all cells in the population maximize the same objective function, and that there is no
degeneracy in the optimal state, then

p(v) = δ(v − v?) , (12.3)

where v? denotes the (unique) objective-maximizing flux vector and δ(x) denotes Dirac’s δ-distribution.
◦ If we can make no assumption on the cells’ metabolic activity other than it has to be compatible with

the constraints encoded by P, then any flux vector v ∈ P is equally likely to occur in a population. This
means that p is constant on P. Specifically, its value must be equal to the inverse of the volume of P:

p(v) =
(∫

P
dv′

)−1
(v ∈ P) . (12.7)

For any given flux polytope, this distribution can be sampled at least in principle using the methods
described in the Chapter The space of metabolic flux distributions.

◦ Imagine having a dataset derived from a 13C labeling experiment (mass spectrometry) that gives the
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Mathematical details 12.B : Dirac’s δ-distribution

For our purposes, the defining property of the δ-distribution in one dimension is the following: if a variable x is
δ-distributed around the finite value x?, then, for any continuous function f ,∫ +∞

−∞
f(x)δ(x − x?)dx = f(x?) . (12.4)

This means that, intuitively, δ(x − x?) = 0 everywhere on the real axis except at x?, where its value is +∞.
Such a function only makes sense within an integral. In this respect, (12.3) should be seen as an abuse of
notation, albeit a convenient one. There are however several ways to represent the δ-distribution that comply
with the above requirement. For example, one can define∫ +∞

−∞
f(x)δ(x − x?)dx := lim

σ→0

∫ +∞

−∞
f(x) 1√

2πσ2
e

− (x−x?)2

2σ2 dx

= lim
σ→0

∫ +∞

−∞
f(x? + σy) 1√

2π
e− y2

2 dy = f(x?) . (12.5)

The generalization to n > 1 dimensions is obtained by straightforwardly assuming δ(x − x?) =
∏n

i=1 δ(xi −x?
i ),

so that ∫
Rn

f(x)δ(x − x?)dx = f(x?) . (12.6)

Because the δ-distribution effectively has non-zero probability mass only at a single point, it is reasonable to
expect (12.6) to hold also if the integral is carried out over a compact domain D, provided x? belongs to D.
This is indeed the case, although the proof requires some work. For a quick guide to the many other interesting
and useful properties of the δ-distribution that are beyond our current scopes, see [30].

mean value vi of every flux in the network (the average being over the population of cells used in the
experiment), together with an experimental error σi (which likely conflates different sources of uncertainty
of which we may know very little, if anything at all), such that the experimental population-level estimate
of vi is vi ± σi. Let us assume that we know enough about the experiment to be able to define a flux
polytope for the cell type (P), and that all empirically measured averages and errors are in P. Then, if we
want to describe the population by a probability density in P that is uniform over the domain defined by
experimental estimates, we can set

p(v) =
N∏

i=1

θ(vi + σi − vi)θ(vi − vi + σi)
2σi

(v ∈ P) , (12.8)

where θ(x) denotes the Heaviside (step) function defined as (Problem 12.2)

θ(x) =

1 for x > 0

0 for x < 0
. (12.9)

◦ (Boltzmann distribution) Let f(v) denote a generic function of the flux vector, such as f(v) =
∑N

i=1 civi,
with ci prescribed constants. The Boltzmann distribution is defined as

p(v) = 1
Z(β) e

βf(v) (v ∈ P) , (12.10)

where β is a constant and Z is a factor ensuring normalization (i.e. (12.1)), namely Z(β) =
∫

P e
βf(v)dv.
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β = 0 β > 0 β → ∞

p(v) ~ const. p(v) ~ eβf v) p(v) ~ δ(v-v*)

uniform optimumBoltzmann

Figure 12.3: Boltzmann distribution on the flux polytope. The Boltzmann distribution, Eqn (12.10), morphs
from a uniform probability density to a δ-distribution concentrated on the flux vector that maximizes the
function f as β varies from 0 to +∞.

The behavior of p is simple to grasp in three limits.
1. For β → 0, (12.10) reduces to (12.7): in other words, p becomes uniform over P (and therefore

insensitive to f).
2. For β → +∞, p effectively concentrates on the flux vector v? that maximizes f (which for simplicity

we assume to be unique). To see this at a heuristic level, it suffices to notice that, for any v 6= v?, the
ratio

p(v?)
p(v) = eβ[f(v?)−f(v)] (12.11)

increases exponentially as β increases. Because densities are normalized, when this ratio becomes large,
p(v) must become very small. Hence, when integrated over P, the larger is β, the closer to v? must
flux vectors be in order to give a significant contribution to the integral. For β → +∞, the only relevant
contribution comes from v?, so that, effectively, p(v) ' δ(v − v?). This conclusion can be reached
more precisely using Laplace’s method (a.k.a. saddle-point approximation) to evaluate integrals of the
form

∫
Rn e

βg(x)dx in the limit β → ∞ for fixed n (see e.g. [31], Ch. 27).
3. By a similar reasoning, for β → −∞ the only relevant contribution to integrals involving p comes from

the (unique, by assumption) flux vector v? that minimizes f , so that, effectively, p(v) ' δ(v − v?).
When β varies, things depend strongly on the form of f and can become rather complicated when f is
non-linear, especially when terms that involve the product of two or more fluxes (‘high-order interactions’)
are present. However, in the simple case in which f is linear (as outlined above), then the probability
density gradually morphs from a uniform distribution over P to a δ-distribution around the maximum of
f as β increases from 0 to +∞ as shown in Fig. 12.3 (and likewise when β decreases from 0 to −∞).
In this respect, the parameter β can be seen simply as a ‘degree of optimization’: the closer a population
is to optimizing f , the higher the value of β. For reasons that will become clear in the next section, the
Boltzmann distribution plays an especially important role in this Chapter (Problem 12.3).

◦ In Constrained Allocation FBA [2] (see the Chapter 9 in [32], one considers an ensemble of growth-rate
maximization problems constructed by sampling (from a prescribed probability density) a family of random
variables representing the proteome fraction to be invested in each metabolic enzyme per unit flux of the
corresponding reaction. The idea in CAFBA is that different sets of parameters effectively correspond to
different cells, reflecting the cell-to-cell variability in e.g. transcription levels and protein abundances. The
population-level behavior is then obtained by averaging over different choices of these parameters (i.e. over
a population of heterogeneous cells). An alternative interpretation is however possible, namely that different
parameters reflect the different environmental conditions that a species can encounter over its life process
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history. By averaging over parameters one obtains a growth strategy that levels out this environmental
variability. Such a strategy may be the one that cells prefer to implement e.g. when environmental
fluctuations are fast (faster than regulatory timescales). In either case, in CAFBA, randomness in a family
of parameters related to the optimization problem induces randomness in the solutions, and therefore a
probability density over the feasible space. This probability is unfortunately hard to write down explicitly
in the case of CAFBA due to the complexity of the optimization problem. Its marginal distributions are
however easy to calculate numerically. Two of them, specifically for the single-cell growth rate and acetate
excretion fluxes, are shown in Fig. 2 in [2].

We could provide more examples but the key message of this section should already be visible: probability
densities on the flux polytope are useful (a) when one wants to explicitly represent how uncertainties, ex-
perimental knowledge (with errors), or variability in parameters impact our knowledge of what part of the
flux space P is occupied by the metabolic states that occur in a true microbial population; and (b) when
one is interested in representing an optimal (in some sense) population in a way that explicitly accounts for
heterogeneity. If one has data (with errors), a probability density can provide a representation of the data,
as in (12.8). It can likewise describe the solution to a population-level optimization problem, and therefore a
purely theoretical prediction, as in (12.3). Or the solution to an optimization problem with uncertainty, i.e.,
partial knowledge or variability in some of the parameters, in which case it represents an ‘informed’ theoretical
prediction (as in the CAFBA example, where the ‘information’ injected into the problem comes from the
probability density from which parameters are sampled). Or it can simply be a tool to interpolate between
extreme cases when we are unsure about how well a certain function is being optimized (as in (12.10)).
Notice how, in our examples, different motivations activate different theoretical routes, all of which lead to
working with probability densities that have a priori different origins and meanings even though they can be
formally the same.

The two broad motivations for working with probability densities on P outlined above [i.e. (a) representing
uncertainty and (b) representing optimal heterogeneous populations], pose fundamentally different modeling
challenges. In the first case, the key question is one of model selection: given some empirical knowledge,
what is the probability density on P that best represents our residual uncertainty? For instance: how good
of a choice for p is (12.8) given the data we had? Are there criteria that can guide our choice of a probability
density? We will briefly consider these issues in the upcoming Sec. 12.4. When attempting to model optimal
heterogeneous populations at the theoretical level, instead, one basically has to generalize the problem tackled
by CBMs like FBA to the case in which an optimal probability density is searched for instead of an optimal
flux configuration. We will see how this can be done in Sec. 12.5.

12.4. Representing heterogeneity and uncertainty

12.4.1. ML, MAP and Bayesian inference

We have seen that probability densities on P can represent, under certain assumptions, populations of mi-
crobes whose metabolism can be described by the same flux polytope, and that different probability densities
can be surmised to model the distribution of v ∈ P when some external information (e.g. experimental data)
is available. Here, we will address the following question: how can one choose the p that best represents our
knowledge about the metabolic state of a population in presence of these external data?

To summarize the huge and highly involved set of problems behind the above (very general) question [31]
in a way that is useful for the purposes of this Chapter, we can start by assuming we have a priori chosen
a form of p that depends on certain free parameters and ask how to tailor parameters so that p ‘optimally’
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matches the empirical evidence. To be concrete, let us denote by ψ the vector of parameters of p, and
by W = {w1,w2, ...,wR} a set of R experimental samples of v. Each measurement, w, is a vector of
metabolic fluxes that ideally should include all the reactions of a metabolic network. In practice, a vector
w typically spans only a subset of all the reactions of the metabolic network, e.g. those that are amenable
to 13C labeling (TCA, glycolysis, and pentose phosphate pathways) or that correspond to exchange fluxes
that can be reliably measured (glucose and oxygen consumption, or lactate and ethanol, to name a few).
According to Bayes’ rule (we assume all variables to be continuous), the quantities

◦ p(ψ|W): the conditional probability density of the parameters given the observations (a.k.a. the posterior);
◦ p(W|ψ): the conditional probability density of the observations given the parameters (a.k.a. the likeli-

hood);
◦ p(ψ): the prior probability density of parameters (a.k.a. the prior);
◦ p(W): the (marginal) probability density of observations (a.k.a. the evidence)

are related by the formula
p(ψ|W) = p(W|ψ)p(ψ)

p(W) . (12.12)

Ideally, what one would like to know in order to ‘optimally’ set the parameters of p is how likely a parameter
set is given the data, i.e. the full posterior p(ψ|W), as it allows to quantify our uncertainty on the model
itself. One may however also consider different (less ambitious) ways to choose parameters. The three best
known methods are the following:

◦ Maximum Likelihood (ML) inference aims at finding the parameter vector that maximizes the likelihood:

ψML = arg max
ψ

p(W|ψ) . (12.13)

In standard cases, this produces a single ‘optimal’ vector ψ (hence it is called a ‘point estimator’), resulting
in a p that models -in a context-specific manner- the metabolic heterogeneity within the cellular population.

◦ Maximum a Posteriori (MAP) inference aims instead at finding the parameter vector that maximizes the
posterior:

ψMAP = arg max
ψ

p(ψ|W) ≡ arg max
ψ

p(W|ψ)p(ψ) , (12.14)

where the last equality follows from the fact that p(W) does not depend on ψ. As for ML, the MAP
estimator is a point estimator.

◦ Bayesian inference aims finally at computing the full posterior distribution p(ψ|W). It is therefore a
‘distribution estimator’ rather than a point estimator.

Problem 12.4 should clarify the way in which point estimators differ from (and are less informative than)
distribution estimators in practice.

12.4.2. MaxEnt inference

According to the principle of Maximum Entropy (MaxEnt) [48, 49], among all probability densities that are
consistent with given prior knowledge or data, the one having the largest value of the entropy

H[p] = −
∫

P
p(v) ln p(v)dv (12.19)

is the one that best represents our knowledge about the system. A classical intuitive justification of the
MaxEnt principle is most easily given for discrete variables [50].
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Mathematical details 12.C : A recognizable case (Gaussian model)

ML is the most commonly used point estimation method. As said above, the estimated parameters, ψ̂, are
computed as the argument that maximizes the likelihood of the observed data, i.e.

ψ̂ = arg max
ψ

p(W|ψ) = arg max
ψ

R∏
i=1

p(w(i)|ψ) = arg max
ψ

R∑
i=1

log[p(w(i)|ψ)] , (12.15)

where in the last step we used the fact that, as far as the solution is concerned, maximizing p(W|ψ) is equivalent
to maximizing its logarithm. ML takes a familiar form if one follows, for instance, Theorell et al. [33] in modeling
v according to a multivariate normal distribution:

v ∼ N(v|ψ) = 1√
(2π)N |Σ|

e

(
− 1

2 (v̄−v)T Σ−1(v̄−v)
)

(12.16)

The parameters encompass the mean values, v̄, and the covariance matrix, Σ. That is, ψ = [v̄, Σ]. Accordingly,

p(w(i)|ψ) = N(w(i)|ψ) = 1√
(2π)N |Σ|

e

(
− 1

2 (v̄−w(i))T Σ−1(v̄−w(i))
)

, (12.17)

and

ψ̂ = arg max
v̄,Σ

R∑
i=1

[
−1

2(v̄ − w(i))T Σ−1(v̄ − w(i)) − log
(√

(2π)N |Σ|
)]

, (12.18)

which leads to the well-known weighted least squares estimators of mean values (ˆ̄v) and variances (Σ̂). With
ˆ̄v and Σ̄, the frequency of any vector v can be computed from N(v|ˆ̄v, Σ̂). Standard techniques, such as
confidence intervals, can be applied to assess the precision of ψ̂. Generally speaking, the larger the number of
samples, R, the smaller the uncertainty in ψ̂.

Consider N cells, each of which can be found in any of K states (what precisely defines a state is immaterial
for this reasoning). Let an assignment n = {n(i)} be given, such that n(i) denotes the number of cells in
state i (with

∑K
i=1 n(i) = N). Because we can always exchange the states of two cells without changing n,

there are multiple ‘microscopic’ ways to realize an assignment n. Combinatorics tells us that the number of
different microscopic realizations of an assignment n is given by

N (n) = N !∏K
i=1 n(i)!

. (12.20)

If all n(i)’s are large enough, we can use Stirling’s approximation (n! ' (n/e)n) to see that

N (n) ' eNH(n) , H(n) = −
K∑

i=1

n(i)
N

ln n(i)
N

≡ −
K∑

i=1
p(i) ln p(i) ≡ H(p) , (12.21)

where p(i) denotes the fraction of cells in state i (or, equivalently for us, the probability to find a cell in
state i). H is the entropy of the assignment n, and is in essence a measure of the microscopic degeneracy
that underlies a macroscopic arrangement. The distribution p = {p(i)} carrying the largest entropy subject
to certain constraints is therefore the one having the largest underlying microscopic degeneracy given those
constraints. So, if one were to randomly pick a microscopic state given those constraints, the most likely
macroscopic state would be the maximum entropy distribution. In other terms, the MaxEnt distribution
is the least biased distribution compatible with the constraints, as any other distribution satisfying the
same constraints would correspond to a smaller underlying degeneracy, thereby neglecting some feasible (i.e.



11

Mathematical details 12.D : Inference in metabolic network modeling

In metabolic network modeling v is usually a vector of fluxes. Unfortunately, the number of samples is usually
very small [34], which may lead to ψ̂ over-fitted to the sample set. One way to overcome limited sample sizes is
to regularize the estimation procedure by incorporating prior information on ψ via the MAP estimation method
(12.14). The evidence p(ψ) in MAP can be used to encode the distribution of v values observed in previous
experiments or formulated as a plausible non-informative probability distribution. For example, Heinonen et al.
[35] formulated p(ψ) as a multivariate normal distribution with mean values equal to zero, and variances for each
flux adjusted to prevent fluxes extending beyond their lower and upper bounds defined in P. MAP estimation
can be considered as an ML estimation whose objective function has been augmented by the prior distribution
of p(ψ). In this sense, MAP estimation is a ‘regularized’ ML estimation, which helps prevent overfitting.
MAP estimation however does not exploit the capacity of Bayes’ theorem to explore the full set of values that
the parameters can achieve. By producing a distribution estimation of the parameters, Bayesian inference allows
quantifying the parameters’ variability. Compared to point estimation methods, though, Bayesian inference is
computationally expensive as it requires to asses how different values of p(ψ) affect p(W|ψ). Fortunately,
some families of p are susceptible to methods such as Gibbs sampling or Markov Chain Monte Carlo that offer
an efficient way to compute the posterior numerically [36]. This is the case, for instance, for the truncated
multivariate normal distributions that Heinonen et al. [35] used for the likelihood and prior functions appearing
in (12.12). The posterior can then be used to derive statistical features of quantities that depend on ψ, e.g.
metabolic fluxes.
In practice, most parameters underlying the mechanisms that govern cellular metabolism -e.g., enzymes’ allosteric
regulation or the local conditions within cells’ organelles- remain unknown. Various hypotheses can be advanced
to close this knowledge gap. Alas, it is not uncommon to have conflicting scenarios. For instance, to explain
overflow metabolism in S. cerevisiae and E. coli [37, 38, 39], numerous plausible explanations have been pushed
forward, including ATP savings for the production of non-oxidative enzymes (which by being smaller, compared
to their oxidative counterparts, require less ATP in their synthesis) [40, 41], limited uptake rates capacity [42],
and an upper limit on the dissipation of Gibbs energy [43]. (See [44] for an excellent review of optimization-based
explanations.) Because each mechanism can be encoded through a different prior, it is clear that the choice
of the prior is a delicate matter in Bayesian inference. Generally speaking, the choice of the prior becomes
less and less problematic the more data we have, i.e. the better sampling we have of the state space of the
system. However, if data is scant, the prior will leave an important imprint on the resulting posterior. In these
cases, a careful selection of the prior is paramount. Among the methods most commonly employed are (a) the
construction of empirical priors (namely priors that encode previous knowledge about parameters), (b) the use
of so-called “non-informative priors” (i.e. priors that reflect ‘vague knowledge’ about parameters, like the fact
that a certain parameter is non-negative) [45], and (c) the selection of priors based on the Maximum Entropy
principle (see below) [46, 47].

constraint-satisfying) microscopic configurations. In this respect, a MaxEnt distribution requires the least
information besides prior knowledge (i.e. constraints). (A more detailed justification for using the MaxEnt
principle as an inference tool is given e.g. in [50].) If for instance cells are assigned to states in a completely
random way, the MaxEnt distribution is the solution of

max
p

−
K∑

i=1
p(i) ln p(i) subject to

K∑
i=1

p(i) = 1 , (12.22)

which can be found via the method of Lagrange multipliers (Problem 12.5). If other constraints are imposed,
though, the MaxEnt distribution will clearly change (Problem 12.6). For our purposes, the continuous case
with entropy given by (12.19) can be seen as a straightforward generalization of the discrete one.
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Economic analogy 12.E : Maximum Entropy economic equilibrium

Most of economic theory relies on the assumption that markets are capable of allocating resources optimally,
i.e. so that the utilities of each of the participating agents is maximized (an assumption can can be seen as
the analog of each cell in a population maximizing its growth rate). In order to achieve optimal states (called
‘equilibria’ in economics), agents endowed with a priori different preferences, resources and goals identify the
actions that maximize their utilities (e.g. transactions, trade, or production) and carry them out. This process
however can become more and more demanding as the number of agents that take part in the market gets larger
and larger, because (in short) the set of viable transactions for each agent can become exceedingly large. How
can one describe the equilibria that arise from these situations?
A possible approach, used at least since [51] (see also [52, 53, 54]), is based on the Maximum Entropy principle.
The idea, in short, is the following. Once every agent has somehow chosen their preferred actions (i.e. once
a system-wide ‘configuration of individual actions’ has been selected), the market as a whole presents a set of
transactions to be carried out that aggregate the choices of individual agents. When looked at the aggregate
level, though, each set of transactions can correspond to more than one configuration of individual actions.
(This can happen, for instance, because agents have a degree overlap in their characteristics which makes them
indistinguishable from an economic perspective.) If one assumes that agents choose their actions at random
from their set of viable transactions, then some sets of transactions are bound to be more likely than others,
simply because they can be realized in more ‘microscopic’ ways (for instance, by interchanging agents of the same
type). It is then reasonable to think that the likelihood of any particular set of transactions will be larger, the
larger the number of microscopic ways in which it can be realized. Taking entropy as a measure of multiplicity,
the most likely set of transactions, then, is the one that maximizes the entropy.
A model of market where the above program is worked out in detail is found in [51]. The ‘statistical equilibrium’
theory that follows from the use of the Maximum Entropy principle generalizes the standard competitive equilib-
rium discussed in microeconomics by providing a description of optimality in large markets with heterogeneous
participants. This line of work has also inspired further developments that explicitly included agents’ hetero-
geneity into the theory of competitive equilibria [55, 56, 57]. To the best of our knowledge, a similar approach
has not yet been used to model heterogeneous microbial systems.

To get some grasp of the scenario that the MaxEnt rule provides within CBMs, let us work out one especially
noteworthy case, namely the MaxEnt probability density of flux configurations with a given mean value of a
generic function f of the fluxes. This probability density is the solution of

max
p(v)

−
∫

P
p(v) ln p(v)dv subject to

∫
P
p(v)dv = 1 and

∫
P
f(v)p(v)dv = f . (12.23)

To find it, we construct the functional

L[p] = H[p] + α

[∫
P
p(v)dv − 1

]
+ β

[∫
P
f(v)p(v)dv − f

]
, (12.24)

where α and β are Lagrange multipliers for the normalization and the mean-value-of-f constraints, respec-
tively. Variation of L with respect to p yields the maximum condition

−1 − ln p(v) + α+ βf(v) = 0 . (12.25)

Solving for p results in

p(v) = eβf(v)

e1−α
. (12.26)
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Figure 12.4: MaxEnt modeling of single-cell growth rate distributions. Empirical distributions are reproduced
by a MaxEnt assumption where the mean growth rate is constrained, leading to a Boltzmann distribution
over the flux polytope (Eq. (12.30)).

The normalization condition however determines the value of α, as one must have∫
P
eβf(v)dv = e1−α ≡ Z(β) . (12.27)

One is then left with
p(v) = 1

Z(β) e
βf(v) (v ∈ P) . (12.28)

The value of β must be determined from the constraint on the mean value, namely from

1
Z(β)

∫
P
f(v)eβf(v)dv = f . (12.29)

Notice that the result is nothing but Boltzmann’s distribution (12.10). We have therefore found that (12.10)
is the MaxEnt distribution for a given mean value of the function f . This means that if we have a dataset
returning the empirical mean value of an observable f over a population of cells, our knowledge is best
represented by assuming that p(v) is of the form (12.10), with β ensuring the matching of empirical and
theoretical means.

This suggests a possible way to represent single-cell growth-rate distributions [58], such as the E. coli popu-
lations growing in rich media studied e.g. in [59, 5, 6] (see Figure 12.4).

Let us assume that all cells in the population can be described by the same flux polytope P and let λ(v)
denote the growth rate associated to flux configuration v. We can ask the following question: what is the
p(v) on P that best represents our knowledge that the mean growth rate of cells is λ (empirical)? The
answer is

p(v) = 1
Z(β) e

βλ(v) (v ∈ P) , (12.30)

where Z(β) =
∫

P e
βλ(v)dv, and where β is set so that the empirical mean growth rate (λ) matches the

theoretical mean, i.e.

1
Z(β)

∫
P
λ(v)eβλ(v) dv = λ . (12.31)

We can therefore solve the above equation (numerically) and analyze the resulting distribution. One sees
from (12.30) that β has a ‘natural’ unit given by λ−1

max, the inverse maximum growth rate achievable in
P (which is easily computed by LP). In the populations analyzed in [58], the value of β that ensures the
matching condition ranges from 190/λmax to 300/λmax, suggesting that indeed the degree of optimization
of λ is significant. The most remarkable result, however is that the marginal distribution of the growth rate
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computed from (12.30), namely

p(λ) =
∫

P
δ(λ− λ(v))p(v)dv , (12.32)

matches the overall empirical growth-rate distributions. In other words, if one adjusts the parameter of (12.30)
so that the theoretical mean growth rate and the experimental one coincide, then (12.32) reproduces the
entire empirical growth-rate distribution. This observation confirms the empirical evidence that the variance
of single-cell growth-rate distributions is a function of the mean, such that, if growth rates are re-scaled by
the mean, distributions roughly collapse on ‘universal curves’ [5, 6]. In addition, the analysis of [60] has
shown that predictions for individual fluxes obtained from (12.30) (i.e. mean values plus standard deviations)
provide a better fit to experimentally measured fluxes than growth-rate maximizing fluxes obtained from
FBA. This is especially important as it suggests that, despite the relatively high degree of optimization, the
cell-to-cell variability underlied by (12.30) is biologically relevant.

In the following section we will use this observation as a springboard for the analysis of optimal heterogeneous
populations.

12.5. Representing optimal populations
Let us start from a rather abstract question. Suppose that an organism is actually maximizing a certain
function F , unknown to us, which depends on metabolic fluxes v as well as on a set of other variables
w that are not part of metabolism: F ≡ F (v,w). We shall denote by (v?,w?) the (supposedly unique)
configuration of variables where F attains its maximum. Let’s furthermore say that we have a guess for what
the organism’s objective function might be, and that this guess is only a function of metabolic fluxes, which
we denote by f ≡ f(v). If we trust our guess, and if f is maximized by the (supposedly unique) flux vector
v̂, our prediction for the fluxes would be v̂. Question: what is the probability that v̂ is the true optimum,
i.e. that v̂ = v?? Note that f(v?) ≡ f? < f̂ ≡ f(v̂) (i.e. at the ‘true’ optimum the value of f is bound to
be smaller than the maximum value of f).

The answer goes like this: according to the MaxEnt principle, the probability density p(v) for any flux
configuration v to be the true state of the system (i.e. the true optimum) should be undetermined other
than by our knowledge that the real optimum has some value of f below f̂ . What is the correct constraint to
enforce (besides normalization) if we are to look for such a p(v)? We could impose that allowed configurations
strictly have some fixed value of f < f̂ . This choice would lead to a uniform density over all states with a
given value of f . In this way, though, we are imposing that states with a different value of f are strictly
inaccessible, which is not part of our knowledge. However, if we impose that only the mean value of f is
constrained, MaxEnt will return a probability density with the exact same mean value as the uniform density
just described (by construction) but a much larger entropy, just because –intuitively– it will assign a non-
zero probability to all states. Hence, as long as we have no other information, the best prediction we can
make for p(v) is given by the probability density that maximizes the entropy H[p] subject to the constraint
〈f〉 ≡

∫
P p(v)f(v)dv = f?, i.e. by the solution of

max
p

−
∫

P
p(v) ln p(v)dv subject to

∫
P
p(v)dv = 1 and

∫
P
p(v)f(v)dv = f? . (12.33)

We now know the result to be given by (12.10), i.e.

p(v) = 1
Z(β) e

βf(v) (v ∈ P) , (12.34)
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where β is the Lagrange multiplier enforcing the constraint 〈f〉 = f?. What this means in practice is this:
if one is modeling a microbe’s metabolism and is unsure about the objective function but has a guess (f),
information theory suggests that the best one can do is to assume that metabolic flux configurations are
selected according to (12.34). Ideally, the value of β for which one obtains the best agreement between
predictions based on sampling (12.34) and experiments is the ‘degree’ to which the system optimizes f . If f
is the true objective function, then the agreement between theory and experiments will get better and better
as β increases. It is important to keep in mind that (i) while we have assumed that the organism is actually
maximizing something, we didn’t really use the fact that F is maximized at (v?,w?) (only that the true state
of the system has some value of f below f̂); (ii) this is a totally ideal situation (for instance, experimental data
have errors, so whether comparisons between theory and experiments are informative doesn’t only depend
on the theory but also on the quality of the data).

The fact that (12.34) is ‘optimal’ in a rather fundamental sense (a priori different from the sense in which f -
maximizing populations are optimal) encourages to view distributions described by (12.30) through a different
lens. When we maximize the entropy at fixed mean growth rate, in practice, we are looking for the ‘broadest’
probability density (i.e. the most variable population) on P that is compatible with the given mean. In
other terms, we are saying that, given a mean growth rate, the optimal population is the one that has the
largest possible variability. To quantify variability in a more readily understandable way, it is convenient to
transform it into a measure of the amount of information encoded in p. One can reason as follows: if no
prior information is available about the population, uncertainty is maximal and all flux vectors in P must
be considered to be equally likely. This means that, for such a population, the probability density over P is
uniform (see (12.7)). We shall denote the entropy of the uniform distribution over P by H(0). When we
inject information into the problem (e.g. the fact that the population has a certain mean growth rate), then
the probability density is no longer uniform but given, say, by (12.30). The uncertainty is therefore reduced
by H(0) − H(β), where H(β) is the entropy of (12.30). (Clearly, H(0) is just the entropy of (12.30) for
β = 0.) The quantity

I = H(0) −H(β)
ln 2 (12.35)

denotes the amount of information (in bits, hence the factor ln 2) injected by a non-zero value of β. Re-
formulating our population-level optimization, we can say that, for any fixed mean growth rate 〈λ〉, the
optimal population is the one carrying the smallest value of I. A short calculation (Problem 12.7) shows
that 〈λ〉 and I are related by

β〈λ〉 = I ln 2 +
∫ β

0
〈λ〉dβ′ , (12.36)

where it should be noted that 〈λ〉 is an increasing function of β (as β increases, the density gets more and
more concentrated around the growth-rate maximizing flux vector, thereby leading to an increase of 〈λ〉).

The curve 〈λ〉 versus I described by (12.36) can therefore be computed numerically for any metabolic network
reconstruction (as the only ingredients required are encoded in the flux polytope P) [58]. The resulting line
(see Figure 12.5) separates the (〈λ〉, I) plane in a viable (achievable) region and a forbidden region where
the mean growth rates are too large for the amount of information encoded in the population. This ‘phase
diagram’ yields, first and foremost, a general prediction linking the mean growth rate (fitness) of a microbial
population to its metabolic heterogeneity: all populations must have fitness-heterogeneity values in the viable
region. Recent work relying on an advanced statistical inference framework has shown that actual microbial
populations indeed lie in the viable part of the plane [61]. In addition, it provides a quantitative definition of
an optimal population that accounts for variability: optimal populations have fitness-heterogeneity pairs that
lie on the boundary between the viable and the forbidden region. In this respect, results from [58, 60, 61] can
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Figure 12.5: Fitness-information bound (general form). The black line encodes the maximum mean growth
rate achievable for any given value of the information content I (Eq. (12.35)) of a metabolic flux distribution
(or the minimum value of I required to achieve any given mean growth rate).

be summarized by saying that heterogeneous, faster-growing E. coli populations (mean growth rate larger
than roughly 1/h, richer growth media) are very close to optimality, while slower-growing ones tend to have
mean growth rates and information contents that get more and more sub-optimal the less rich is the growth
medium. (Of course, this notion of optimality refers to the growth rate and information content as the
key parameters to evaluate a population’s performance. It may well be, and this is an issue definitely worth
exploring, that slower-growing population are optimal with respect to some other parameter(s).) At any rate,
the above definition of optimality coincides with the standard one (growth-rate maximization) for β → +∞,
in which case variability goes strictly speaking to zero as all cells collapse on the same flux configuration.
And we now understand how it generalizes it: by stressing the way in which heterogeneous populations can
be optimal despite growing at sub-maximal rates.

For later convenience, note that, because the entropy is a convex functional, the solution to the MaxEnt
problem is the same as the solution to

max
p

∫
P
p(v)λ(v)dv subject to

∫
P
p(v)dv = 1 and −

∫
P
p(v) ln p(v)dv = H? . (12.37)

The above problem has perhaps a more direct interpretation: the optimal population is the one that has the
largest mean growth rate at fixed variability (entropy) or, equivalently, at fixed information content.

Before moving on, we notice that, in the above setting, optimality of heterogeneous populations has a
rather simple mechanistic interpretation in terms of how populations ‘occupy’ the flux polytope. If one
considers the uniform distribution on P, Eq. (12.7), and calculates the marginal distribution for the growth
rate (i.e. (12.32)), one finds that the growth-rate landscape in which populations grow is extremely skewed
towards slow growth rates: the overwhelming majority of metabolic flux configurations corresponds to slow-
growing cells, i.e. with growth rates roughly two orders of magnitude below λmax. This implies that, whatever
flux vector we are in, a small random change to it is overwhelmingly more likely to decrease our growth rate
than increase it. In this respect, slow states have an ‘entropic’ advantage over fast states. On the other
hand, by definition, fast-growing flux configurations replicate faster than slow-growing ones, and therefore
have a replicative advantage. It is therefore tempting to interpret the probability density (12.30) as resulting
from the balance between these two tendencies. One can for instance imagine that a microbial population
grows and evolves in time in P due to (i) replication events, and (ii) small random changes of the flux vector
(due e.g. to gene expression noise). Ref. [58] has indeed shown that such a population evolves toward
a distribution very close to (12.30), where the role of β is played by the inverse rate of diffusion of the
population in P, that is, by the inverse of the rate at which small random changes occur: fast rate implies
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small β, and vice versa. (As the mathematical analysis of this scenario requires the toolbox of non-linear
Fokker-Planck equations, it is beyond the scopes of this Chapter.)

The above theory can be extended in various directions. We shall limit ourselves to one example here,
namely that of optimal populations in fluctuating environments [62]. The basic assumption we make is that
the growth rate λ is a function of both the flux vector v and of a single (for simplicity) exogenous variable
s ≥ 0 representing the stress level to which the population is subject: λ ≡ λ(v, s). We furthermore assume
that s is a random variable with probability density P (s). For any value of s, λ will be maximized by a certain
flux vector v? ≡ v?(s). If fluctuations of s are sufficiently slow, then cells may be able to perfectly adapt
their metabolic response to every value of s they encounter. But this is unlikely to be possible in rapidly
fluctuating environments. In the latter case, it is instead reasonable to assume that cells will try to maximize
their average growth rate, where the average is taken over the distribution of s. The relevant quantity is
now the probability density to observe a certain flux configuration v given that the state of the environment
is s (p(v|s)), while the objective function (to be maximized over p(v|s)) is just

〈λ〉 =
∫
dsP (s)

∫
P
p(v|s)λ(v, s)dv . (12.38)

We should now specify the constraints. One is simple and concerns normalization:
∫

P p(v|s)dv should
be equal to one for all s. To introduce the second one, we note that, because one expects v to encode
information about the environment, it is convenient to constrain the mutual information of v and s, i.e.

I(v; s) =
∫
dsP (s)

∫
P
p(v|s) log2

p(v, s)
p(v)P (s)dv , (12.39)

where p(v, s) = P (s)p(v|s) is the joint distribution of v and s, whereas p(v) =
∫
dsP (s)p(v|s). Clearly,

I = 0 if p(v, s) factorizes over v and s and it gets larger and larger as v and s become more and more
correlated. Putting these pieces together, we can write the cell’s optimization problem as

max
p(v|s)

∫
dsP (s)

∫
P
p(v|s)λ(v, s)dv subject to

∫
P
p(v|s)dv = 1 (∀s)

and
∫
dsP (s)

∫
P
p(v|s) log2

p(v|s)
p(v) dv = I? . (12.40)

A comparison with (12.37) should clarify how the above generalizes the previously discussed optimization
framework. Again using the method of Lagrange multipliers one finds that the optimal probability density is
now given by (Problem 12.8)

p(v|s) = p(v)
Z(s, β) e

βλ(v,s) , (12.41)

where

Z(s, β) =
∫

P
dv p(v) eβλ(v,s) , (12.42)

while β is a Lagrange multiplier.

The meaning of (12.41) is straightforward: when β → 0, the metabolic flux configuration v becomes
independent of s, implying I = 0. As β increases, v and s get more and more correlated, while p?(v|s)
tends to get more and more sharply peaked around v?(s). In the limit β → +∞ cells respond to each value
of s by selecting the exact flux configuration that maximizes λ. To achieve this, maximal I is required.



18

A detailed study of the optimal probability density emerging in this case within a highly coarse-grained
model of metabolism has been carried out in [62], showing how complex metabolic strategies (including
the coexistence of slow-growing, persistent states with fast-growing ones) arise as optimal responses to a
fluctuating environment.

12.6. Concluding remarks
Metabolic variability in cell populations has, as we have discussed, multiple origins, both rooted in unavoidable
stochastic effects and (possibly) in the fact that, in certain cases, being heterogeneous can be optimal for a
microbial population. Models can account for variability by representing (sufficiently large) populations via
probability densities defined on the flux polytope. Two main (different) goals can be achieved. First, one
can look for the probability density that yields the best (in a precise sense) description of a set of empirical
data. Methods like Maximum Likelihood and Maximum Entropy provide different, albeit related, approaches
to this task. Second, one can formulate optimization problems for populations, whose general solution is
a probability density rather than a single flux configuration. Solutions to these problems can highlight how
fitness and variability are related in optimal populations, providing useful theoretical benchmarks for real
microbial systems. While possibly more demanding from a mathematical viewpoint (and certainly more
demanding from a computational viewpoint), these approaches expand the scope of CBMs, including in
terms of predictive power. In addition, they can refine the notion of optimality and provide insights into
the fundamental principles that govern the organization of metabolism across populations. The question of
whether variability confers an advantage to microbial populations is however very general, and goes beyond
the metabolic level of CBMs on which we focused here. A broader discussion of these aspects is presented
in the Chapter Cell behavior in the face of uncertainty.
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Problems
Problem 12.1 Use the model in Fig. 12.2 to study different objective functions, specifically combinations of
fluxes. Can you find other cases in which the optimum is not unique?

Problem 12.2 Show that, for a real variable x, a continuous function f and upon integration over R,
d

dxθ(x) = δ(x).

Hint. Use the fact that d
dx [θ(x)f(x)] = θ′(x)f(x) + θ(x)f ′(x).

Problem 12.3 Well- versus ill-defined flux spaces. Using the sampling methods introduced in the Chapter
The space of metabolic flux distributions and a linear objective function of your choice, write a program that
will sample a toy two-dimensional flux polytope according to (12.10), and check the outcome for a few values
of β. Then try changing the shape of the polytope in different ways by changing the constraints. What
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features of the polytope can make sampling harder and/or less accurate (i.e. require a larger number of
samples)? Can you work out a modification of the sampling algorithms that alleviates these problems?

Problem 12.4 MAP inference versus Bayesian inference. Consider a Bernoulli random variable with
parameter ψ, i.e. such that the probability of having k successes in n trials given ψ is

p(k|ψ) =
(
n

k

)
ψk(1 − ψ)n−k , (12.43)

and assume that the prior for ψ is a β-distribution with parameters a and b, i.e.

p(ψ) = Γ(a+ b)
Γ(a)Γ(b) ψ

a−1(1 − ψ)b−1 . (12.44)

Calculate the full posterior p(ψ|k) and the MAP estimator for ψ as a function of k, n, a and b. Then assume
a = b = 2 and compare the following situations: (i) a Bernoulli process that returned 2 successes in 3 trials;
(ii) a Bernoulli process that returned 20 successes in 33 trials. Show that the MAP estimator for ψ is 60%
for both (i) and (ii) (so the two processes are indistinguishable to MAP), while the posterior is different.
Knowing the posterior, which process would you pick if you were asked to point to the one that is more likely
to have ψ = 0.6?

Problem 12.5 Show that the solution of the maximization problem (12.22) is the uniform distribution
p(i) = 1/K for all i.

Problem 12.6 MaxEnt distribution in different cases. Assume that a certain real variable x takes values
x(i) in the K states (one can for instance think of x(i) as the growth rate of cells in state i). Show that the
MaxEnt distributions for constraints imposed on (i) normalization of the distribution, (ii) normalization and
mean value of x, (iii) normalization, mean value of x and second moment of x, and (iv) normalization and
mean of the logarithm of x, are, respectively, uniform, exponential, Gaussian, and power-law.

Problem 12.7 Retrieve formula (12.36).

Problem 12.8 Retrieve formula (12.41) (hard).
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