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Cell behavior in the face of uncertainty

David Lacoste, Olivier Rivoire, and David Tourigny

Chapter overview

◦ Organisms that grow and survive in uncertain environments may need to change their physiological
state as the environment changes.

◦ When the environment is uncertain, one strategy known as bet-hedging is to make these changes
randomly and independently of the environment, to ensure that at least part of the population is well
adapted.

◦ Organisms that collect information from their environment may also use this information to modulate
their changes of physiological states.

◦ We review these different strategies and point out parallels with the theory of optimal financial
investments.

13.1. Introduction
To a large extent, the content of this textbook prior to the current chapter has dealt with models of microor-
ganisms under the implicit assumption that the dynamics of both environmental factors and intracellular
components are deterministic, and that behavior is optimized uniformly across cells in a population. On
longer time scales however, natural selection also acts on populations and these populations may encounter
environments that fluctuate across both time and space. Under these conditions, natural selection may not
favor a homogeneous deterministic cellular response across the population, but rather select for a certain
level of population diversity and heterogeneity, including behaviors arising from mechanisms that are funda-
mentally stochastic. Stochasticity is inherent to intracellular processes such as gene expression and signal
transduction due to the small number of molecules that they involve. It is often referred to as “noise”, but
this terminology can be misleading because may also fulfill an essential role in cellular function and survival,
for example during growth in uncertain environmental conditions. The purpose of this chapter is to high-
light this role, introduce the mathematical models necessary for understanding it, and draw a new economic
analogy with problems of investment in finance.

Before expanding upon the role that uncertainty plays in shaping cellular behavior, we briefly point out some
general limitations of deterministic models based on optimal regulation of behavior in time as described in
Chapter 10. In that chapter, it was assumed that microorganisms have evolved, under selective pressures
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2 Cell behavior in the face of uncertainty

exerted by the environment, to optimize a specific objective criterion or combination of objective criteria
that were shared by all cells of a population. This assumption was then incorporated into an optimal control
framework to explain how cellular behavior (e.g., enzyme expression) is optimally regulated in time depending
on deterministic interactions between a microbial population and its environment. In particular, we consider
optimal control strategies across a prescribed time window. Defining in such case assumes the organism
has perfect information on how the environment will change (including in response to actions taken) over
time. In an uncertain environment, this information is simply not available. An alternative is instantaneous
optimization of growth rate at each time point but this is a shortsighted strategy that excludes any partial
information on future environmental states that the organism may have acquired over the course of evolution.
Such deterministic models may be suitable for deterministically changing environments, but cannot account
for stochastic behaviors that may be advantageous to population growth in uncertain environments.

In this chapter, it will be shown how principles of optimality can be formulated to study the behavior
of organisms growing under uncertainty. Unlike the deterministic setting however, optimality will instead
need to be defined in terms of probabilities and expected returns. Analogous to the general unification
of deterministic models for cellular behavior using an optimal control theory framework, models including
uncertainty are unified by the subject of stochastic optimal control. Beyond biology, this subject has wide-
reaching applications to engineering but the most relevant analogy is with finance where stochastic strategies
of portfolios diversification mirror stochastic strategies of cellular diversification. This will add a new economic
analogy to the economic analogies of previous chapters.

13.2. Strategies to cope with uncertainty: a financial analogy
We will use the topic of as a recurring example throughout this chapter (Figure 13.1). When a clonal
population of bacteria is exposed to an antibiotic, not all cells within the population are killed – a small
sub-population, although genetically identical to the rest, may nevertheless be in a distinct phenotypic state
that is growth-dormant and resistant to treatment (Figure 13.1A). While the peers of this dormant sub-
population previously grew well in the absence of antibiotic, upon exposure to treatment these growing cells
are killed, and only the dormant cells (the persisters) remain alive. In turn, when the remaining persisters
are transferred to an environment without antibiotic a large fraction is able to revert to the growing state,
allowing the population as a whole to survive. Remarkably, in this subsequent phase of growth roughly the
same small fraction of persisters is retained as before the treatment. Deterministic models based on short-
term optimal growth cannot explain how part of a population adopts a slow-growing state: they would predict
that each cell should adopt the growing phenotype in absence of antibiotics. Cells could have a mechanism to
detect the presence of unfavorable environmental conditions and adopt the persister phenotype as a response,
but there are several experimental observations not explained by such a mechanism [1]: (1) a fraction of
persisters exists prior to antibiotic treatment; and (2) not all cells, although genetically identical, adopt the
persister phenotype. We will see that a more parsimonious description of persistence involves an optimization
of long-term rather than short-term growth, which differs when environmental conditions fluctuate.

Bacterial persistence is an example of , which more generally refers to the benefit of spreading resources
across multiple behavioral phenotypes to reduce the associated with investing all resources into any single
phenotype. Returning to the example of bacterial persistence, a natural question one may ask is: what
determines the precise fraction of persister cells (risk-avoiding, potentially low-reward phenotype) compared
to growing cells (risky, potentially high-reward phenotype) within a given population? This question echoes
a central question in financial investment: how should investors diversify their portfolio to maximize their
capital in the context of uncertain returns? We will see that some of the same mathematical arguments of
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Figure 13.1: Bacterial persistence as an example of a cellular strategy to cope with uncertainty in environ-
mental conditions. A) Cells in a genetically identical population can display one of two distinct phenotypes
that are associated with growth (pink cells) or dormancy (blue cells) in the absence of antibiotics. Only the
dormant cells survive (persist) when exposed to antibiotics, and can transition back to the growth pheno-
type so that the population as a whole resumes growth in the absence of antibiotic. B) In this simplified
model of bacterial persistence, the strategy u over two responses (phenotypes) Rgrowth, Rdormant depends
on environmental states Elow and Ehigh, corresponding to low and high levels of the antibiotic, respectively.
The occurrence of the states Elow and Ehigh is governed by probabilities p(Elow) and p(Ehigh), respectively.
C) The multiplicative rates f(R|E) associated with phenotypes Rgrowth, Rdormant depend on environmental
conditions, so that f(R|E) can be represented in matrix form. The resulting optimal strategy ud correspond-
ing to the fraction of dormant cells in the population in turn depends on the probabilities of the environmental
state E. An analogy with Kelly betting is illustrated on the right-hand side, where the probabilities of a
horse winning a race, the odds provided by a bookmaker and the optimal betting strategy are identified with
p(E), f(R|E) and u(R|E), respectively, as displayed in Table 13.1.

optimality under uncertainty can be used to analyze these two problems, showing how the optimal fraction
of persisters is expected to depend critically on the probability to experience different environmental states.
The terms of the analogy are presented in Table 13.1.

A pure bet-hedging strategy assumes the absence of any direct information on the current environmental
state. Biologically, cells may sense signals or cues that encode varying degrees of information on their current
environment. For instance, in some populations, a larger proportion of persisters is found in nutrient-poor
environments compared to nutrient-rich, implying a direct relationship between shifts in environment and
switches between phenotypes. These sensing or signaling mechanisms can come with associated costs
however, imparted by the investment of cellular resources in, for example, the gene expression machinery.
Thus, optimal cellular behavior in the face of uncertainty may be expected to involve a trade-off between
stochastic (e.g., bet-hedging) and deterministic (e.g., signaling) mechanisms that balance benefit to cost
in a manner that depends on evolutionary context. Other trade-offs may also exist regarding reward versus
risk associated with a particular cellular strategy. Analogously, financial investors face trade-offs when using
incomplete information on the current state of the market and developing an investment strategy based on
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Biology Gambling Finance
Individual Capital unit Currency unit
Environment p(E) Race results p(x) Market state
– Gambler Investor
Phenotype decisions u(R) Bets b(x) Investment strategy
Multiplicative rate f(R, E) Odds o(x) Immediate return
Environmental cue P (S|E) Side information P (y|x) Side information
Population growth rate Λ Long-term return W Long-term return
Extinction probability Probability of bankruptcy Probability of bankruptcy
Growth rate variance σ2 Growth rate variance σ2

W Volatility
Population size Nt Capital Ct Capital

Table 13.1: Analogy between bet-hedging in biological populations and diversification strategies in Kelly’s
gambling and finance. The common problem in each case is an uncertain environment that makes it impossible
to anticipate which phenotype or investment is optimal for future growth. In finance, the “population” is
constituted by the capital which is distributed across different options (different horses of a race or different
stocks of a stock market). The main limitation of the analogy is that information is not processed centrally
in biological populations but at the level of each individual, with therefore no equivalent to a gambler or
investor. The notations are introduced in the main text for the biological problem and in Box 2 for the
gambling problem.

the level of risk they are willing to incur.

13.3. Modeling cells growing in uncertain environments
We begin with a simple model of persistence before introducing a more general framework. This simple
model assumes that bacterial cells experience an alternation of low and high antibiotics environments and
can adopt two physiological states, growing or dormant (Fig. 13.1). The dormant cells are unable to replicate
but persist in either high- or low-antibiotics environments while growing cells always divide when antibiotics
are low in concentration but die when they are high. Mathematically, this is described by f(R, E), the
number of descendants of a cell with phenotype R in environment E: f(R = dormant, E = low) = f(R =
dormant, E = high) = 1, while f(R = growing, E = low) = 2 and f(R = growth, E = high) = 0.
In absence of sensing mechanism, we consider that the fraction of dormant cells, ud ≡ u(R = dormant),
is a fixed quantity that only possibly evolves on very long time scales. The population thus grows by a
global factor Ahigh = f(R = dormant, E = low)ud if the environment is high antibiotics and by a factor
Alow = f(R = dormant, E = low)ud + 2f(R = growing, E = low)(1 − ud) if it is low antibiotics. Finally,
the environment fluctuates randomly, with a probability pa to have high antibiotics and a probability 1−pa to
have low antibiotics. Over a large number T of generations, a population therefore experiences in average paT

periods of high antibiotics and (1−pa)T periods of low antibiotics. As further explained below, the population
size NT after T generation is hence expected to globally grow as Nt = (Ahigh)paT (Alow)(1−pa)T N0. This
corresponds to an exponential growth (or decay) of the form NT = eΛT N0 with a long-term growth rate Λ
given by Λ = pa ln ud + (1 − pa) ln(ud + 2(1 − ud)).

Two bacterial populations which have different “strategies” ud will then have different growth rates Λ(ud).
The optimal strategy which maximizes Λ(ud) is therefore when the probability ud to adopt the dormant state
is

ud =

2pa, if 0 < pa ≤ 1/2.

1, if 1/2 < pa ≤ 1.

The interesting case is when pa < 1/2, otherwise antibiotics is so often high that the population cannot
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grow. In this case, we find that a limited fraction of the population should be in the dormant state and that
this optimal fraction depends on the frequency pa at which high antibiotics occurs.

This example can be extended to an arbitrary number of environmental states E and phenotypic (response)
states R and to the presence of cues collected from the environment. In general, the states and cues may
take discrete (as in the above example) or continuous values. The “strategy” of a cell may then be described
by its probability u(R) to adopt a particular phenotype R. This strategy depends on the environment if some
signal S is perceived, in which case the strategy takes the form of a conditional probability u(R|S) satisfying∑

R

u(R|S) = 1, with u(R|S) ≥ 0

for each possible signal S. For the example of bacterial persistence, u(R = dormant|S) may be the fraction of
cells adopting a dormant phenotype within the population of cells with intracellular antibiotics concentration
S. The fraction of growing cells would then be given by u(R = growing|S) = 1 − u(R = dormant|S). By
comparison, Figure 13.1B illustrates a model where u(R|E) depends directly on the environmental state E.
In finance, u(R|S) would correspond to the fraction of the capital that an investor allocates to asset R when
receiving incomplete information S on the current market state E. More generally, we may also consider that
the probability to adopt a phenotype Rt at time t depends on the phenotype Rt−1 adopted at time t − 1
by the cell or its parent, which would be described by u(Rt|S, Rt−1) or u(Rt|St, Rt−1) to indicate that the
signal St is obtained at time t.

The model also needs to specify the temporal dynamics of the environment and the relation between S

and E. The simplest assumption is that successive environmental states are uncorrelated, and occur with
probability p(E) and that signals are derived from a conditional probability p(S|E), as illustrated in Figure
13.1B where p(S|E) = δ(S|E) is equivalent to S ≡ E. This is sufficient to demonstrate bet-hedging or
discuss the value of signaling and in the examples below we therefore make this simplifying assumption
by default. More generally, to address issues of inheritance where Rt depend on Rt−1, we may assume a
discrete-time Markov process where the state of the next environment depends only of the previous one, with
transition probabilities p(Et|Et−1) where Et denotes the state of the environment at time t = 1, 2 . . . . Even
more generally, we may also want to account for the feedback that the population exerts onto its environment
and consider that Et depends on the size and composition of the population.

Finally, we need to specify the dynamics of the population itself. Between time points t and t + 1, a cell
adopting phenotype R in the context of environment Et either dies or survives and may additionally produce
offsprings. This is summarized by a quantity f(R, Et) ≥ 0 that indicates the mean number of descendants
at time t + 1 of an individual with phenotype R in environment Et (possibly including the individual itself).
Given that u(R|St) denotes the fraction of cells or probability of the organism adopting phenotype R based
on sensed state St, a population is therefore expected to globally increase (or decrease) in size by a factor

At =
∑

R

f(R, Et)u(R|St) (13.1)

that depends both on the strategy u and the current environmental state Et. This factor At is a stochastic
variable as it depends on the stochastic variables Et and St. More explicitly, if Nt denotes the size of the
population at time t, this size will increase or decrease to Nt+1 = AtNt at time t + 1 (in average). We
can in this way account for the dynamics of population growth and then ask what is an “optimal” strategy
u(R|S) that leads to, for example, the largest population size over a given time interval. Compared to the
deterministic setting, however, this is not yet a well-formulated problem as the population size varies with
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time and therefore generally depends on the particular sequence of environments E0, . . . , Et, which is in turn
stochastic. Thus, we need to extend the concept of optimality to the stochastic regime. We examine this
question in the next section.

13.4. Optimization in uncertain environments
In the previous section, we used notation At to denote the fractional increase or decrease in population
size given that strategy u(R|St) is adopted in environment Et. An alternate name for this quantity is the
instantaneous growth rate. It follows from recursion that, given an initial population size of N0 at time t = 0,
the population size at time t is given by

Nt = AtAt−1 · · · A1N0 (13.2)

where At depends on the environmental state Et and is therefore a stochastic variable when the environment
varies stochastically. Here the choice of an objective criterion is fundamentally linked to the time scale at
which growth is considered.

13.4.1. Long-term versus short-term optimization

At the shortest time scale, maximization of population growth over a single time step corresponds to adopting
the distribution u(R|St) that maximizes the arithmetic mean E[A], where A denotes the random variable
whose realization at time t is At (Box 1). This maximum is typically achieved by a population where
all individuals adopt the same optimal phenotype – the phenotype R maximizing E[f(R, Et)u(R|St)] =∑

E,S P (S|E)P (E)f(R, E)u(R|S). In the example of persistent cells, this strategy would correspond to
having all cells in a growing state if the most likely environment is an absence of antibiotics. This strategy
is extremely risky if these growing cells cannot survive an episode of antibiotics, which would therefore
lead to extinction of the population. Taking into account the rare but important events of high antibiotics
concentration requires taking a long-term perspective. Remarkably, in the long-term the problem becomes
effectively deterministic due to the law of large numbers. The best known example of a law of large number
applies to the sum A1 + · · · + At of t random variables Ai, which almost certainly behaves as tE[A] as
t → ∞. Here, the problem involves a product of random variables and a similar but different law of large
number applies: the product A1 ×· · ·× At does not typically behave as (E[A])t but instead as exp(tE[ln A])
where E[ln A] is known as the (Box 1). This corresponds to the intuition that population size typically grows
exponentially in the long run, Nt ∼ eΛtN0, with a well-defined long-term growth rate

Λ = E[ln A] =
∑
E,S

p(S|E)p(E) ln
(∑

R

f(R, E)u(R|S)
)

, (13.3)

that is predictable despite the stochasticity of the environment.

Biologically, therefore, maximizing the geometric mean is equivalent to maximizing the long-term growth
rate of the population. This is the relevant measure of fitness in the long-term from an evolutionary point of
view, because of two populations with growth rates Λ1 and Λ2, the one with Λ1 > Λ2 will almost certainly
exponentially outnumber the other.

The simple example of persistence that we introduced previously illustrates well how maximizing the long-term
is different from optimizing the instantaneous growth rate. The arithmetic mean E[A] is indeed maximized
by ud = 0 when pa < 1/2, which leads to certain extinction unless pa = 0. This remains true for general
models including multiple environmental states and sensing that conveys information about the environment
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Mathematical details 13.A : Arithmetic versus geometric mean and logarithmic utility functions

Additive random processes are governed by the law of large numbers: the sum of many random variables scales
with their arithmetic mean. In finance and biology, returns are compounded and growth is a multiplicative
process. This is fundamentally different: the typical outcome is no longer described by the arithmetic mean but
by the geometric mean [2]. A simple example illustrates this difference. Imagine a succession of environments
in which the population either doubles or is reduced by 2/3, with same probability. This corresponds formally to
a population size increasing as Nt = At . . . A1N0 where At = 2 (doubling) with probability 1/2 and At = 1/3
(2/3 dying rate) with probability 1/2. The arithmetic mean is 7/6 which is > 1 and suggests that the population
will grow. But as each outcome has the same probability, the typical growth over t generation is actually given
by 2t/2(1/3)t/2 = etΛ with Λ = (1/2) ln(2/3) which is < 0: the population will in fact most likely go extinct.
Mathematically, taking the log turns the product into a sum to which the central limit theorem applies. More
intuitively, the arithmetic mean is dominated by very rare events. Historically, the importance of the geometric
mean for estimating risk was first understood by Daniel Bernoulli in the context of games [3, 4]. Later, it has
been the subject of many debates in finance [3], reflecting the fact that alternative utility functions over which
to optimize may be more appropriate when considering a short temporal horizon or when accounting for different
degrees of risks.
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Figure 13.2: Evolution of the log-capital (left plot) or of the capital itself (right plot) as a function of the
number of races for Kelly’s optimal strategies (red curve) and for a non-optimal strategy (yellow curve). On
left plot, the straight lines have the slope of the corresponding growth rate for each strategy. Note that the
fluctuations in Kelly’s strategy can in fact be quite large, when plotted in normal scale instead of log-scale.

through conditional probability p(S|E). Using the long-term growth rate Λ as a measure of fitness, it is then
possible to quantify the value of information S by comparing the optimal growth rate that can be achieved
in presence of S to that in its absence. Remarkably, for special limits of the model, corresponding to Kelly’s
horse-race model (Box 2), this value is given by some of the same quantities that appear in Shannon’s theory
of communication (Box 3).

13.4.2. Trade-offs at intermediate time scales

So far we considered two extreme limits of immediate and infinite time scales under one important assumption:
the population is always large enough to escape extinction. Eq. (13.2) is indeed valid only for large Nt and
does not apply anymore when Nt ∼ 1, in which case the population size is subject to stochastic effects,
called demographic noise in population biology. In our analogy with finance, the eventuality of Nt = 0 with
no possible recovery corresponds to a risk of bankruptcy.
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Mathematical details 13.B : Kelly’s model

In 1956, [5] extended the work of on communication to the field of . This classic model has important implications
for investment strategies in and beyond. In the context of biology, Kelly’s paper led to a clarification of the
notion of value of information which is described in Box 3.
Let us recall the basic elements of Kelly’s horse race. The odds paid by the bookmaker when the horse x wins
is o(x), and the probability for this to happen is p(x). A gambler can distribute his/her bets on the different
horses, and b(x) is the fraction of the bet set on horse x. Thus, a strategy of the gambler is defined by a vector
of bets b of M components b(x). At every race, the gambler invests his/her entire capital on all horses, so that∑M

x=1 b(x) = 1, always betting a non-zero amount on all horses. Since no bet is zero, there is a well-defined
vector of the inverse of the odds paid by the bookmaker denoted r. When the odds are fair, the bookmaker
does not keep any of the invested capital and as a result

∑M

x=1 r(x) = 1.
At each time t, one horse, which we call x, wins with probability p(x). As a result, the capital at time t + 1
is updated according to Ct+1 = bx

rx
Ct. As explained previously, this multiplicative process is best studied by

considering instead the log of the capital, log-cap(t) ≡ log Ct, which satisfies the assumptions of the law of
large numbers when races are independent. In these conditions, log-cap(t) ≡ log Ct converges on long times
towards the growth rate W (b, p) where

W (b, p) =
∑

x

p(x) log o(x)b(x). (13.4)

This growth rate can be rewritten using an information theoretic measure between two probability distributions,
p and q, called the Kullback-Leibler divergence and defined by

DKL(p, q) =
∑

x

p(x) log p(x)
q(x) . (13.5)

One can show that this quantity is a non-negative measure between the two probability distributions. With this
notation, the growth rate can be rewritten as

W (b, p) = DKL (p‖r) − DKL (p‖b) , (13.6)

It follows from this equation that the strategy b∗ = p is optimal. This strategy, known as Kelly’s strategy or
proportional betting, overtakes any other strategy in the long-term as illustrated in Fig. 13.2.
This formulation shows that the growth rate is the difference between the distance of the bookies estimate from
the true distribution and the distance of the gamblers estimate from the true distribution. Hence, the gambler
makes money if they have a better knowledge of the winning probabilities than the bookie. The optimal long
term growth rate is the positive quantity :

W ∗(b, p) = DKL (b‖r) . (13.7)

Kelly’s horse race model is formally a particular case of the model introduced in the main text when considering
that one, and only one phenotype R = R(E) can grow in any given environment E, such that f(R, E) = f(E) if
R = R(E) and 0 otherwise. Horses x may then be interpreted as both the environments E and their associated
phenotypes R(E) so that u(R) = b(x) and f(E) = o(x). In biology, but also in finance where R is interpreted
as an asset, there is generally no one-to-one correspondence between environments E and phenotypes R and
multiple phenotypes (assets) may grow (have non-zero return) in any given environment. The optimal strategy
is then no longer necessarily proportional betting as illustrated in the example of persistence presented in the
main text and as also shown in Ref. [6].
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Mathematical details 13.C : The value and cost of information for growing populations

To see how uncertainty may be quantified by Shannon , first consider a model where f(R, E) is non-zero only
for one phenotype R best adapted to each particular environment E(R). As seen in Box 2, the optimal strategy
in the long-term is proportional betting, u(R(E)) = p(E). To quantify the cost of uncertainty, it must be
compared to a situation where full information is available, in which case all the cells can systematically adopt
the optimal phenotype, leading to an ideal growth rate Λ∗∗ =

∑
E

p(E) ln f(R(E)). The cost of uncertainty
is Λ∗∗ − Λ∗ = −

∑
p(E) ln p(E), which is nothing but the Shannon entropy of the environment H(E). This

has a simple interpretation: the more unpredictable the environment, the larger its entropy and the lower the
maximal growth rate of the population.
The reasoning can be extended to the presence of partial , modeled by p(S|E). The case of perfect information
is indeed the limit case where S = E. The optimal strategy with partial information is a generalization of
proportional betting that takes into account S and the difference of growth rate is now given by the mutual
information I(S, E) (Problem 13.1). The mutual information is minimal when the signal S is uncorrelated to E,
in which case I(S, E) = 0, and maximal in presence of perfect information, in which case I(S, E) = H(E) [7].
These results were first derived by Kelly [5]. They have been generalized to more general forms of f(R, E) as
well as to more general environmental processes in the context of financial investment in which case the cost of
uncertainty and value of information are no longer equal but bounded by information theoretic quantities [7, 8].
This is illustrated in Problem 13.2 with an extension of the model of persistence presented in the main text.
Information is generally costly as it implies producing and operating an accurate sensor, which may come at
the expense of growth rate. Taking into account this cost introduces a trade-off between the cost and value
of information that may justify an imperfect sensor, or even explain an absence of sensor (Problem 13.1). This
trade-off has for instance been invoked to explains that bacteria subject to infrequent periods of antibiotics
evolved to stochastically switch their phenotype rather than to sense the presence of antibiotics [9].
While the problems of information processing in biology and in finance share many analogies, it is also important
to recognize an important difference: in biology, information processing is distributed at the level of each cell,
which may perceive different signals, while in finance, information is processed by an investor who centralizes the
information. The value of information is bounded by information theoretic quantities only in the second case,
or more generally when the same common information is available to all the cells [8]. If information processing
is stochastic at the single cell level, the value of information is effectively higher (Problem 13.3).

When considering long time scales, a population with Λ > 0 will either become extinct or grow exponentially.
In this later case, demographic noise is eventually negligible and our approach valid. At intermediate time
scales, however, population sizes Nt may deviate substantially from N0eΛt predicted by exponential growth,
and may become extinct (Nt = 0) as a result. To quantify these deviations, note that for the model defined in
the main text where there are no correlations of the instantaneous growth rate At, the central limit theorem
imposes that the quantity

∆t = 1
σ

√
t

(
log Nt

N0
− tΛ

)
, (13.8)

converges on long times towards a Gaussian distribution of unit variance, where σ is the standard deviation
of the instantaneous growth rate. It follows from this property that

σ2 = 1
t
Var

(
log Nt

N0

)
, (13.9)

measures the deviation from exponential growth. This quantity is therefore a natural measure of risk, known
in finance under the name of volatility. To understand at which time scale this risk is important, we consider
Eq. 13.8, assuming ∆t is of the order one. Risk will be important, when the term associated with fluctuations,



10 Cell behavior in the face of uncertainty

which is of the order of σ
√

t will be larger than the term associated with exponential growth, which is tΛ.
This will happen when t � (σ/Λ)2: the risk is relevant at intermediate time scales, long-enough for the
central limit theorem to apply but not too long for deviations from exponential growth to become negligible.

This measure of risk has well known drawbacks in finance : it is symmetrical with respect to losses and
gains, which does not conform to the intuitive notion of risk, and furthermore typical fluctuations are often
non-Gaussian. Nevertheless, the volatility is still an important notion in the study of optimization of portfolios
[10]. In this context, Markowitz introduced plots of the volatility σ as a function of the mean growth rate,
which define the so-called “efficient frontier”. This representation illustrates graphically a fundamental trade-
off that exists between the maximization of the mean return and the minimization of the variance (or risk).
The point of zero volatility is a risk-free strategy, which corresponds to dormant states in biology.

This trade-off is naturally present in Kelly’s model introduced in Box 2. Indeed, Kelly’s strategy is based on
the maximization of the long-term growth rate, but at intermediate times the capital can deviate significantly
from the expected exponential growth as shown in Figure 13.2. Prominent economists, such as Samuelson,
strongly opposed the use of Kelly’s criterion in finance precisely for that reason [11]. In practice, however,
investors can mitigate this risk by using Kelly’s criterion for only a fraction of the bets [12]. The resulting
strategy has reduced fluctuations, and at the same time, a reduced growth rate. Another consequence of the
trade-off is that the risk near the optimal strategy (Kelly’s strategy) can be reduced significantly provided one
is ready to sacrifice a small amount of growth rate, an important lesson for gamblers and investors. In order
to build systematically improved gambling strategies with a reasonable amount of risk in Kelly’s model, one
can introduce an objective function that is a linear combination of the growth rate with the volatility of Kelly’
model, σW , weighted by a risk aversion parameter α [13]. The method is illustrated in Problem 13.4 for
the two-horse version of Kelly’s model. By optimizing this objective function, one builds the Pareto diagram
shown in Fig. 13.3 when varying the parameter α.

A general inequality characterizes this trade-off mathematically for an arbitrary number of horses. For Kelly’s
gambling model with fair odds defined in the box 13.B, it has the form

σW ≥ W

σq
, (13.10)

where σW is the volatility of Kelly’s model, W the average growth rate (the equivalent of Λ) and σq is
the standard deviation of a distribution, q(x) defined by q(x) = r(x)/p(x). This distribution compares the
probability of races outcomes described by p(x) with the risk-free strategy described by b(x) = r(x), for
which σW = W = 0 [13]. Recently, a similar bound has been derived for other well-known financial models
such as the Black-Scholes and the Heston models [14].

Let us now illustrate the implications of this trade-off for a biological population using a simple bet-hedging
model with only two phenotypes. Individuals in the population can switch from phenotype A to phenotype B

with a transition probability π1, and with probability π2 from B to A, assuming no sensing. The population
grows in an environment that fluctuates between two values 1 and 2. We denote the population vector,
which describes the number of individuals in each phenotype at a given time t by N(t) = (NA(t), NB(t))T ,
where T denotes the transpose. The subpopulation of individuals with phenotype A grows when placed in
the environment i with the growth rate kAi, while the other subpopulation with phenotype B grows with
rate kBi. The population is assumed to be large, there is no population noise, the dynamics of the system is
deterministic in each separate environment. The population dynamics of the model can be described by the
vector equation :

d

dt
N(t) = MS(t)N(t), (13.11)
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Figure 13.3: Pareto diagram showing the growth rate W versus the fluctuations measured by the standard
deviation of the growth rate σW (which is the volatility for this model) in the simple case that only two
horses are present. The curve can be obtained by varying a risk aversion parameter α, which enters in the
definition of an objective function (see Problem 13.4 for details). The point of maximum growth rate (red
square) corresponds to Kelly’s strategy and divides a trade-off branch (blue solid line) from a non-trade-off
branch (red solid line) (adapted from [13]).

with matrices

MS1 =
(

kA1 − π1 π2

π1 kB1 − π2

)
and MS2 =

(
−π1 + kA2 π2

π1 kB2 − π2

)
. (13.12)

The finite time averaged population growth rate is defined as

Λt = 1
t

ln N(t)
N(0) , (13.13)

in terms of the total population N(t) = NA(t) + NB(t), and the long term population growth rate is

Λ = lim
t→∞

Λt. (13.14)

This optimal long term growth rate Λ can be obtained analytically in this model [15], but approximations
are needed to evaluate the fluctuations of the growth rate, which is the equivalent of the volatility σ2 of
Eq. 13.9 [16]. One can then study the trade-off that exists between the average growth of the population
(either measured instantaneously or over a long time) and the fluctuations of the growth rate, using the
same Pareto plot used for Kelly’s model in Figure 13.3. This “efficient frontier” is shown in Fig. 13.4, and as
in the case of Kelly’s model, in the region of fast growth rate, it is advantageous for a population to trade
growth for less risky fluctuations. In this model, σ2 correlates with the probability that the population N(t)
goes below a certain threshold, where the population is considered as extinct. The probability of extinction
is not monotonic along the Pareto front, which explains why in the region of low growth rate, it is more
advantageous to prioritize instead the increase the growth rate to avoid extinction.

In the context of ecology, besides the probability of extinction, a quantity of interest is the chance for a
population to grow from rarity in the presence of other species. In agreement with the above trade-off, it
was found that this chance can not be predicted only from the mean growth rate, and that the mean growth
rate and its variance should be both used for such a prediction [17]. In summary, the similarity of the Pareto
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Figure 13.4: Pareto diagram showing the population growth rate versus the fluctuations of that growth rate
in a simple model of a biological population evolving in a stochastic environment with no sensing according to
Eq. 13.11 [16]. In this figure, the time scale of environment fluctuations is comparable to that of phenotypic
fluctuations. The inset shows the probability Pext that the population goes below a certain extinction level
versus the risk aversion parameter α which measures the distance along the Pareto plot. Colored bullets
represent different points on the Pareto front (adapted from [16]).

plots (called efficient frontier in finance) obtained in Kelly’s model and in models of biological populations
in fluctuating environments [16], and evidences from various works in ecology, suggest that the trade-off
discussed here is broadly applicable in various fields ranging from biology and ecology to economics.

13.5. Strategies in correlated environments
So far we considered two time scales: the time scale at which phenotypic changes occur and at which
instantaneous growth is defined (t = 1 in our discrete-time model, which may be taken to correspond to one
generation), and the longer time scale t ∼ (σ/Λ)2 beyond which population growth is effectively exponential,
with growth rate Λ. We saw that the choice of an optimization criterion depends fundamentally on the time
horizon relative to these time scales.

Additional time scales are relevant when environmental states are correlated in time, for instance through a
Markov chain P (Et|Et−1). This is for instance the case if conditions of high nutrient or high stress extend
over several generations. As a consequence, strategies u(Rt|St, Rt−1) that depend on past internal states
Rt−1 in addition or instead of externally driven signals St may become valuable, since the fact that phenotype
Rt−1 survived in environment Et−1 indirectly carries information on the current environment Et. We may
then recognize that Rt plays two distinct roles: on one hand, it determines survival and growth via f(Rt, Et)
and, on the other, it provides information to determine the next state Rt+1 via u(Rt+1|St+1, Rt). This
corresponds to the fundamental distinction between phenotype and genotype in biology: the genotype γ is
what is transmitted from one generation to the next while the phenotype φ is what determines instantaneous
growth. Formally, Rt = (φt, γt) with f(Rt, Et) = f(φt, Et) and u(Rt|St, Rt−1) = u(Rt|St, γt−1), by
definition of φt and γt. The “central dogma” of molecular biology states that information flows from the
genotype to the phenotype but not reciprocally, which corresponds here to assuming that u(φt, γt|γt−1)
factorizes as d(φt|St, γt−1)h(γt|γt−1), where d(φt|St, γt−1) may be interpreted as a developmental kernel
and h(γt|γt−1) as an inheritance kernel, with no dependence on St (no Lamarckism). The mathematical
framework that we introduced can be used to study to which extent this particular decomposition is indeed
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Figure 13.5: Example of optimal strategies in correlated environments. (A) We consider here a
model where the environment Et is a continuous variable following a Gaussian process, P (Et|Et−1) =
exp
(
−(Et − aEt−1)2/(2σ2

X)
)
/(2πσ2

X)1/2 with two parameters a and σ2
X that control the overall am-

plitude of the fluctuations σ2
E = σ2

X/(1 − a2) and their time scales τE = −1/ ln a, as illustrated
by the different time series. (B) An individual inherits a genotype γt−1 which determines its pheno-
type φt with probability d(φt|γt−1) = exp

(
−(φt − γt−1)2/(2σ2

D)
)
/(2πσ2

D)1/2 where σ2
D thus represents

phenotypic noise. γt−1 also determines the genotype γt of the progeny with probability h(γt|γt−1) =
exp
(
−(γt − γt−1)2/(2σ2

M )
)
/(2πσ2

M )1/2 where σ2
M thus represents mutational noise. The number ξ of off-

springs is a random variable whose mean f(φt, Et) = k exp
(
−(φt − Et)2/2

)
depends on the phenotype φt

as well as the current state Et of the environment. A population of such individuals grows with a long-term
growth rate Λ that can be computed analytically [18]. (C) Values of σ2

D and σ2
M that optimize Λ define four

phases as a function of the environmental parameters τE and σ2
E . For nearly constant environments, the

optimal strategy is to maintain constant phenotypes (σ2
D = 0) and genotypes (σ2

M = 0) (“no variation”).
For strongly varying but poorly correlated environments, the optimal strategy is to introduce phenotypic
variations (σ2

D > 0) but no genotypic mutations (σ2
M > 0) (“phenotypic switching”). For highly correlated

environments, the optimal strategy is instead to introduce genotypic mutations (σ2
M > 0) while canalizing

the phenopype (σ2
D = 0) (“inherited variations”). A phase also exists where both types of variations are

beneficial (“mixed”). This model thus identifies environmental variations for which bet-hedging (phenotypic
switching) is expected to evolve, namely variations of environmental of sufficient amplitude but with limited
temporal correlations across generations.

a good “strategy” [18]. The answer generally depends on the nature and amplitude of the environmental
fluctuations.

Similarly, the model can be analyzed to understand the conditions under which it is advantageous to introduce
phenotypic variations that are not transmitted – as in bet-hedging – versus genotypic variations that are
transmitted – as with genetic mutations. Stochasticity may indeed be introduced either in the mapping from
γt−1 to φt or the mapping from γt−1 to γt, or in both of them – a problem with no equivalent in finance.
This is illustrated in Fig. 13.5 with a simple solvable model showing how the optimal strategy depends on
the nature of the fluctuations of the environment. In particular, bet-hedging strategies where stochasticity
is purely phenotypic are found to be optimal for environmental fluctuations of sufficient large amplitude but
low temporal correlations from one generation to the next.

Historically, the notions of genotype and phenotype were introduced much before the molecular mechanisms
that underlie them were uncovered. In general, the genotype, defined as inherited information, should not
be confused with the notion of genetic information: along with DNA, a range of epigenetic states, including
metabolic states, are also transmitted from cell to cell which represent genotypic information. In other words,
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the physiological state of a cell, which we analyzed in most of this book from the standpoint of a phenotype
determining current growth, may also represent valuable genotypic information for future generations.

13.6. Concluding remarks
We presented optimal strategies that biological populations may exploit for coping with uncertain envi-
ronments and drew analogies with problems of gambling and financial investments. Optimality assumes a
measure of performance which, however, is not readily defined when environments are changing stochasti-
cally. In particular, the time scale over which the problem is considered is critical. This difficulty has led to
multiple debates over the concept of fitness in biology which partly mirror those over the concept of utility
in economics.

While the analogy with finance is instructive, its limitations should also be kept in mind. Most importantly,
the states that individuals of a biological population adopt are not centrally controlled by a gambler or an
investor. This raises a question that is absent in finance but central in evolutionary biology: is a strategy
that is optimal for the population but detrimental to some of its members – as for instance the persister
cells that “sacrifice” their current growth for the sake of future growth – evolutionary stable? A strategy
that is optimal for a population may indeed never be achieved through evolution as natural selection at
the individual level may favor non-cooperating individuals – an issue known as a “conflict between levels of
selection” which implies that a strategy may be optimal at the population level but not evolutionarily stable.
To address this question, we may extend our model to treat strategies as variables that are themselves subject
to evolution (Problem 13.5). For the model discussed in this chapter, the results show that strategies that
optimize the long-term growth rate are indeed evolutionarily stable (but this is no longer necessarily the case
when considering, for instance, sexually reproducing populations [19]).

The same extension of the model to evolving strategies shows that knowledge of the statistics of the envi-
ronment (pd for our example) is not required a priori but can effectively be learned through an evolutionary
process. This solves a problem that appears also in gambling and finance where the statistics of the environ-
ment must be inferred from past experience. The question has been particularly studied in finance, where
optimal learning strategies known as universal portfolios have been proposed [20]. In the simpler case of
Kelly’s model, the gambler may for instance record previous race results and use them together with Bayesian
inference to predict the probability of the race outcomes [21]. With biological populations, however, learning
must be performed at the individual level. One theoretical proposal that goes beyond random mutations is
for instance that biological populations may use a reinforcement mechanism akin to Hebb’s rule in neural
learning [22].

Finally, we note that the models that we presented rely on a strongly simplifying assumption: the environ-
mental changes occur independently of the population. In fact, the environment is often also changing as the
population grows, for instance through the consumption of nutrients. Even more generally, the environment
may comprise other individuals from the same or other populations with which they may interact. This
ecological dimension is the subject of other chapters.

Recommended readings
Persistence This reference describes the phenomenon of bacterial persistence. Nathalie Q Balaban, Jack
Merrin, Remy Chait, Lukasz Kowalik, and Stanislas Leibler. Bacterial persistence as a phenotypic switch.
Science, 305(5690):16221625, 2004. doi: 10.1126/science.1099390

Information theory for decision making under uncertainty This book is a classic text on the use of
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information theory in problems from finance. Thomas M. Cover and Joy A. Thomas. Elements of Information
Theory. John Wiley & Sons, Hoboken, 2005. doi: 10.1002/047174882X

Model for information sensing The Kussel-Leibler model is one of the first to incorporate information
theory into cellular behavior and signaling. Edo Kussell and Stanislas Leibler. Ecology: Phenotypic diversity,
population growth, and information in fluctuating environments. Science, 309(5743):20752078, 2005. ISSN
00368075. doi: 10.1126/science.1114383.

Problems
Problem 13.1 Kelly strategy with partial information In analogy with Kelly’s problem of betting on horse
races, assume that different environments E occur with independent probabilities p(E) at each generation
with a single phenotype R = E permitting growth by a factor f(E). In absence of any information, the
optimal strategy u(E) for long-term growth is proportional betting, u(E) = p(E) (Box 2). Now assume
that an information S is available to each member of the population that relates to E through a transition
probability q(S|E), i.e., q(S|E) is the probability of perceiving S given E.

1. Show that the long-term growth rate can be written in the form

Λ =
∑

S

p(S)
[∑

E

p(E|S) ln(f(E)u(E|S))
]

(13.15)

where p(S) is the probability to perceive S averaged across all environments and p(E|S) is the probability
that environment is E given that S is perceived. Write p(E|S) as a function of p(E) and q(S|E).

2. Justify that the optimal strategy is u(E|S) = p(E|S).
3. Compare the optimal long-term growth rate in presence of information to the optimal growth rate in

absence of information and show that the difference is given by the mutual information

I(E, S) =
∑
E,S

q(S|E)p(E) ln q(S|E)
p(S) (13.16)

The mutual information I(E, S) therefore quantifies the value of information S in this particular context.
4. Acquiring information is generally costly. If the presence of the information channel q(S|E) reduces the

long-term growth rate by c, what are the conditions on p(E) for the presence of this channel to be
beneficial?

5. The cost c may be expected to depend on the precision of the sensor. Consider for instance a channel that
reveals the correct environment with probability 1 − ε and otherwise does not reveal anything (so-called
erasure channel). Given a cost c(ε) that increases when ε decreases, which value of ε provides an optimal
trade-off between the value and the cost of information?

Problem 13.2 Value of information beyond Kelly’s model Consider the model of bacterial persistence
introduced in the main text where cells can adopt two phenotypes, one growing irrespectively of the environ-
ment and the other growing only in absence of antibiotics.

1. Express the long-term growth rate Λ in presence of an information S modeled by an information channel
q(S|E).

2. What is the optimal strategy given S?
3. Show by comparing to a situation with no information that the value of information can be strictly lower

than I(S, E).
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Problem 13.3 Stochastic sensing at the level of individual cells In the two previous problems, the
information S is assumed to be common to each member of the population. Here we assume instead that
each individual has its own sensor q(S|E) so that S may differ from one individual to the next.

1. Justify that in this case the long-term growth rate takes the form

Λ =
∑

E

p(E) ln

∑
R,S

f(R, E)u(R|S)q(S|E))

 (13.17)

2. Use the concavity of the logarithm (Jensen’s inequality) to justify that the same information channel
q(S|E) has more value at the individual level than at the population level.

Problem 13.4 Pareto front for Kelly’s model Let us consider Kelly’s model with fair odds for two horses.
Let the probability that the first horse wins be p, the bet and the odd on the first horse be b and 1/r.

1. Write the expression of the mean growth rate 〈W 〉, and of the volatility σW for this problem. Show that
there is a risk free strategy when b = r.
One introduces the objective function

J = α〈W 〉 − (1 − α)σW . (13.18)

2. From the optimization of J show that the optimal strategy has the two branches shown in Fig. 13.3. Show
that the optimal bets on these two branches are of the form b± = p ± γσ, where γ = (1 − α)/α and
σ =

√
p(1 − p).

3. Show that the slope of the Pareto border has the form

dσW

d〈W 〉
= σ

p − b
. (13.19)

What happens to this slope near Kelly’s point and near the risk free strategy ?

Problem 13.5 Evolution of an optimal strategy Here we consider evolving the strategy itself.

1. Implement numerically the model of bacterial persistence introduced in the main text for a large but finite
population. To this end, consider N individuals (e.g., N = 1000), each with an attribute R. For each
individual, draw a random number ξ of descendants, with mean f(R, Et) where Et drawn from P (E) is
common to all individuals. Assign a R to each of these descendants with probability u(R). If the total
number of descendants Nt is non-zero, record the ratio Nt/N and re-sample at random the population
to bring back its size to N . Show that provided that N is large enough and Nt does not reach 0 then
(
∑

t ln(Nt/N))/t provides a good approximation to the growth rate Λ in the limit of large t.
2. Extend the model to make udu(R = dormant) an attribute of each individual. Assume that ud is

transmitted from one parent to one of its offspring as ud = min(1, max(0, ud + µ)) where µ is normally
distributed with variance σ2

M . Show that provided that σ2
M is small enough, the distribution of ud evolves

to be centered around the optimal ud.
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