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Chapter overview

◦ In this chapter we discuss why certain pathway designs have been selected by evolution, by hypothe-
sizing that some are more beneficial than others – based on several possible criteria and optimization
goals: minimizing the number of reactions, maximizing product yield, increasing reaction turnover
rates, and avoiding small thermodynamic driving forces.

◦ It turns out that all these criteria are related to a single objective: minimizing enzyme demand per
product production rate or, equivalently, maximizing “enzyme productivity”.

◦ We first focus on simple unbranched pathways with predefined flux distributions. We discuss several
feasibility and optimality problems where metabolite concentrations are independent variables and
solve for the minimal enzyme demand. In this setting, we see how enzyme productivity can be assessed
or predicted and how it depends on different system parameters such as kinetics, thermodynamics,
and concentrations of enzymes and metabolites.

◦ We discuss the difference between growth rate and yield. We then illustrate it by comparing between
pathway options for glycolysis.

6.1. What guides evolution to select one pathway over another?
In the previous chapters, we asked what flux distributions are possible in a network, and which are most
profitable for a certain task. Now we shall ask, more specifically, what led to the choice of existing pathways,
or what makes a pathway variant favorable over another one that exists, or may have existed, in evolution.
Of course, the same question plays also an important role in metabolic engineering, when new pathways are
added to an organism, typically with the goal of achieving a maximal production, while imposing the smallest
possible burden on the cell.

The chemical space is vast and many options exist for the same process, even if we consider only reactions
with known enzyme mechanisms and impose thermodynamic constraints. Hence, while evolution had a choice
between many pathway variants, only a tiny fraction of these possible variants is actually realized in nature,
and a core part of central metabolism almost always follows the exact same design. The few exceptions
that exist actually prove the rule, such the two natural variants of glycolysis discussed later in this chapter.
How can we understand why a certain variant is used in a certain organism or situation? And why are many
variants not used at all? Moreover, some very successful pathways show features that might appear strange
at first glance [1]: in glycolysis, an initial investment of ATP is required, and only later it is recovered in
higher amounts leading to a net gain. Is this just an evolutionary accident, i.e. a case where the pathway
that evolved first is the one that stuck around although it is not necessarily better than all the alternatives?
Or, rather, evolution did manage to find the optimal solution and therefore we should try to explain what
the advantages of these “engineered” features are?

In this chapter, we assume that it was a selection for functional features, not chance, that determined these
pathway “choices”, and ask: what guides evolution to select one pathway over another? What are the
criteria that make pathways “efficient” or “profitable” for a cell or, alternatively, for a metabolic engineer?
To compare pathways, we assume that each pathway comes with a predefined flux distribution, and therefore
a predefined product yield, and alternative pathways (yielding the same product) are compared at equal
product production rates.

When people talk about natural ecosystems, diversity is usually the first topic discussed. Indeed, evolution
through natural selection is almost guaranteed to create diversity where species evolve to occupy biological
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Philosophical remarks 6.A : What do we mean by a pathway?

The notion of “pathways” is common in cell biology to describe a set of reactions, proteins, or processes that
form a functional unit. However, there is no general definition: in practice, a pathway is often just a subregion
of interest within a larger network. In metabolism, “pathways” often lead from some important substrate to
some important product, with a simple and predefined flux distribution that consumes substrate(s), generates
product(s), and may or may not make use of co-factors. Considering fluxes in specific pathways (instead of flux
distributions in the entire network) is often a practical choice and, importantly, a choice that assumes that we
can model, understand, manipulate, or engineer such a pathway without strongly affecting the rest of the cell.
This has a number of benefits: (i) Instead of studying a huge network, we can look at pathways separately; (ii)
there are reasons to believe that the flux distributions in enzyme-efficient metabolic states must be elementary
flux modes (see Chapter 4 in [3]). Since EFMs often entail discrete choices between different pathways, it can
make sense to study these pathways separately (iii) once we understand the costs and benefits of single pathways
(with a single, scalable flux mode), we can apply the same thinking to analysing flux distribution on the entire
metabolic network. Thus, in the rest of this chapter, all results about “pathways” will also hold generally for
entire networks, as long as a (scalable) flux mode is given. Instead of comparing alternative pathways, we can
compare alternative flux modes. In the following chapter, we use this for optimizing over the set of all possible
flux modes that a given network can support.

niches while exploring the vast space of possible phenotypes. Similarly, the world of biochemistry is a vast
space of possible reactions. Metabolic enzymes participate in a network of pathways that supply cells with
energy, and building blocks for biomass. Scientists have been studying these biochemical reactions for nearly
300 years [2] – so far tens of thousands such reactions have been classified; certainly many more exist
in nature. Here are a few online databases where biochemical reaction data are collected or predicted:
MetaNetX, KEGG, MetaCyc, BiGG, ModelSEED, ATLAS of biochemistry.

To study the choice between pathways variants, we consider alternative pathways leading from A to B (or
having a certain net sum formula) and their respective advantages and disadvantages. For simplicity, let us
focus on biosynthesis pathways whose main task is more or less clear: producing a precursor molecule. Thus,
the theoretical question would be: if a cell needs to make B from A, which pathway should it use? More
specifically, how should the metabolic reactions be chosen and in what order? What should their kinetics
and how should they be regulated?

If the pathway variant found in nature is due to selection for “good functioning”, then what are the features
that make existing pathway designs successful? In short, what are criteria for “good” pathways? One possible
criterion seems to be simplicity, that is, choosing a short route from pathway substrate and pathway product.

In contrast to the huge diversity that is allowed by the catalytic capabilities of enzymes, a few metabolic
pathways are extremely ubiquitous and exist virtually in every living cell. For example, glycolysis is a general
term for pathways that convert glucose to pyruvate while producing ATP [1]. One variant of glycolysis,
named after Gustav Embden, Otto Fritz Meyerhof, and Karol Parnas (or the EMP pathway for short, see
Figure 6.1), was the first metabolic pathway to be discovered by scientists [2]. Often, the pyruvate is reduced
to lactate or ethanol, which makes the pathway redox balanced. Therefore, it one of the most common way
for producing ATP anaerobically (i.e. without oxygen to serve as an electron acceptor). Another common
variant was discovered in 1952 by Nathan Entner and Michael Doudoroff [4] (ED for short). For example,
E. coli is capable of metabolizing glucose through both the EMP or the ED variants, and often does so
simultaneously [5].

https://www.metanetx.org/
https://www.kegg.jp/
https://metacyc.org/
http://bigg.ucsd.edu/
https://modelseed.org/
https://lcsb-databases.epfl.ch/pathways/atlas/
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Figure 6.1: Two natural variants of the glycolysis pathway, named after their discoverers: Embden-Meyerhof-
Parnas (EMP) and Entner-Doudoroff (ED)

More generally, the overall reaction describing glycolysis is:

Glucose + 2 NAD(P)+ + n ADP + n Phosphate −−→ 2 Pyruvate + 2 NAD(P)H + n ATP + n H2O (6.1)

where the value of n for the EMP pathway is 2. Ng et al. [6] explored the space of all possible glycolyses (with
different values of n), by exhaustively enumerating all glycolytic pathway variants. In order to generate the
variants, they adapted a computational method first introduced by Bar-Even et al. [7] for finding alternative
carbon fixation cycles – metabolic cycles whose net reaction converts CO2 into organic compounds. You
start by collecting a database of known biochemical reactions (e.g. from a database such as KEGG [8]) and
then use a linear-programming algorithm to identify the set of reactions with the minimal sum of fluxes that
conform to the predefined net reaction (e.g. 6.1). The objective is somewhat arbitrary, but since solving
the LP requires setting an objective, we chose the min-flux as a reasonable proxy for the simplicity of the
pathway. In any case, we will soon see how one can iterate through all possible solutions. Ng et al. [6]
used this algorithm with the stoichiometry from 6.1 to find all possible glycolysis pathways comprising known
enzymatic reactions (see Mathematical Details Box 6.B).

The objective set by the linear problem (6.2) is minimizing the sum of fluxes, which corresponds to pathways
with fewer reactions and low fluxes in each one. As discussed in 5.2 in [3], this objective is only a crude
proxy for the efficiency of a pathway, and its only purpose is to get the pathway solutions in a relatively
logical order. Although we have discussed global enzyme constraints in previous chapters (such as molecular
crowding and proteome allocation), when comparing pathways we will focus only on the efficiency of the



4

pathway itself. This will allow us to compare pathways without thinking about the rest of the cell or a
specific metabolic context. But how can one quantify the efficiency of a pathway? The next section will be
dedicated to exactly this question.

6.2. Pathway efficiency - some basic notions and thoughts
For glycolysis alone, Ng et al. [6] found 11,916 alternatives that produce at least one mole of ATP per mole
of glucose. These include, of course, the EMP pathway. Although evolution can explore these options,
natural selection typically converges on one or a few efficient variants. This does not mean that every
single pathway observed in nature must be optimal, but we generally expect cells hosting highly inefficient
pathways to eventually become extinct. Iacometti et al. [10] tested this experimentally by knocking out the
EMP pathway from E. coli and forcing the cells to use the alternatives that naturally exist in this bacterium.
In all cases, growth rates were slower than in the wild-type.

Before we discuss other examples for metabolic pathways, we need to define what we mean by “efficiency”.
There are several criteria one should consider:

◦ Low consumption rate of the substrate
◦ High generation rate of the product
◦ High regeneration rate or low consumption rate of the co-factor
◦ Small number of steps [11]
◦ Higher thermodynamic forces [12, 13]
◦ High enzyme turnover numbers
◦ High enzyme saturation levels

Some of these criteria refer to the cost (or investment) of the pathway, while others reflect the benefit (or
profit) to the cell. By considering two common scenarios – single nutrient limitation or exponential growth
in rich media – we can focus on two simple criteria which provide good measures of efficiency.

When the availability of a single nutrient is limiting growth, maximizing the molar yield (i.e. the number of
moles of product generated for each mole of the nutrient) becomes the important feature. Yield is rather
straightforward to calculate, as it is a direct outcome of the stoichiometry of the pathway. For example,
anaerobic fermentation is often compared to respiration and deemed inefficient since it yields two moles of
ATP per glucose, instead of ≈30 [14].

On the other hand, when conditions are good, such as during exponential growth in rich media, minimizing
the total number of proteins required is often the objective which determines growth rate. . Here, we will be
using the enzyme demand (e.g. in grams of protein) per unit of flux (typically, in mmol per hour per gram
of cell dry weight). In fact, the enzyme demand per flux, as an objective, takes into consideration both the
cost (protein) and the benefit (flux). Importantly, these two criteria scale linearly with respect to each other:
doubling the amount of all enzymes without changing any of the metabolite concentrations would directly
double the flux in the pathway. Therefore, this measure of efficiency is independent of the magnitude of the
flux in the pathway. But, as we will see shortly, enzyme demand is a non-linear function, making it trickier
to compute compared to other constraint-based problems such as ones we’ve seen in previous chapters.

Notably, these two measures of efficiency are not only useful for evolutionary processes, but for bioengineering
as well. Obviously, the molar yield has economical implications when, for example, producing ethanol from
sugar. However, the rate of a bioprocess is important as well due to the costs involved, e.g. for maintaining
an operational bioreactor. One can imagine a computational model that accurately predicts the enzyme
demand per flux of a pathway. Choosing the pathways with the lowest demand would be a good strategy for
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increasing the overall rate of bioproduction [15].

We define the enzyme demand per unit flux as the total amount of enzyme (in grams of protein) that is
required to catalyze all of the pathway reactions at their required rates. We start by deriving a formula for
the demand of a single enzymatic reaction. Consider an enzyme-catalyzed reaction:

S −−⇀↽−− P (6.4)

where s and p will be the concentrations of the substrate (S) and product (P) respectively, and E the
concentration of the enzyme which catalyzes this reaction (for simplicity, we drop the tot subscript from
Etot). Here, we will be using the factorized rate law (Eq. 3.15 in [3]), but other kinetic rate laws would
produce similar results. The rate of a reaction is given by:

v = E · k+
cat · s/KS

1 + p/KP + s/KS
·
(

1 − e∆G′
r/RT

)
(6.5)

where k+
cat is the forward turnover rate, Ks and Kp are the Michaelis-Menten constants for the S and product

P, and ∆G′
r is the Gibbs free energy. So, the minimal amount of enzyme that is required for reaching a

given rate v is:

q ≡ v · h · 1
k+

cat
· 1 + p/KP + s/KS

s/KS
·
(

1 − e∆G′
r/RT

)−1
, (6.6)

where h is a number converting enzyme concentration e into enzyme amount q (for example, the enzyme
molecular mass). For an illustration, see Figure 6.2 . Summing up the demand across all the reactions in the
pathway (each with its own rate, kinetic parameters, and substrate/product concentrations) will produce the
total enzyme demand. Looking at this function, we can already make some interesting observations. First,
the kinetic parameters (k+

cat, Kp, and Ks) can be treated as constants since they change only in evolutionary
timescales, and we often assume that existing enzymes already have near-optimal kinetics (although that’s
not always the case). Since we care about the demand per pathway flux one can, without loss of generality,
set v to 1. However, if the pathway requires a non-trivial ratio between some reactions, the value of v can
be different based on the stoichiometry. Finally, the thermodynamic term, i.e. 1 − e∆G′

r/RT (which we will
discuss in more detail in the following section, 6.3), is a function of the metabolite concentrations and the
Keq, which is another constant. So, generally speaking, enzyme demand is defined by a set of constants
that are unique to each pathway, and variables that represent the metabolite concentrations. Since these
concentrations are subject to change depending on the growth conditions, we often treat them as optimization
variables and try to find the minimal demand possible within certain constraints. In Section 6.4, we will see
a general method for finding the minimal value using convex optimization.

Most of the proposed criteria for good pathways have either to do with material investments (such as
substrate, cofactor, or energy demand) or with “machine investments”, that is, enzyme demands. Enzyme
demands, in turn, depend on pathway length, enzyme masses, and enzyme efficiency, and therefore on rate
laws (where kcat values, thermodynamic forces, and metabolite concentrations come into play). In fact, many
criteria which we discussed earlier as indicators of efficiency are actually an approximation of the enzyme
demand under certain assumptions. For example, the number of steps is proportional to the total demand if
all enzymes have exactly the same k+

cat, saturation, and thermodynamics. Therefore, it is quite a useful rule-
of-thumb in case not much else is known about the enzymes themselves. A better approximation, denoted
Pathway Specific Activity, was used by [7] to compare CO2 fixation cycles. If we assume that all enzymes
are fully saturated and irreversible, the demand would be a direct function of the individual enzyme specific
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Figure 6.2: Enzyme cost in metabolism. (A) Enzyme-specific flux depends on a number of physical factors.
Under ideal conditions, an enzyme molecule catalyses its reaction at a maximal rate given by the enzyme’s
forward catalytic constant (blue). The rate is reduced by microscopic reverse fluxes (magenta) and by
incomplete saturation with substrate, causing waiting times between reaction events, or by enzyme inhibition
or incomplete activation (red). (B-C) On a logarithmic scale, catalytic rates and enzyme demand can be split
into sums of efficiency terms. With lower catalytic rates, larger amounts of enzyme are required for realizing
the same metabolic flux.

activities (specifically, proportional to the sum of all their reciprocal values). But even if we know nothing
about the enzyme kinetic parameters, thermodynamics alone can provide us with useful information with
which to grade pathways. Specifically, the Keq of a reaction is a universal constant that is not affected by
enzymes, but rather determined solely by the chemical structures of the substrates and products.

In the following sections, we will focus on enzyme use efficiency as a main objective and consider a thermo-
dynamic approximation, relating enzyme demands to thermodynamic forces. For linear metabolic pathways,
optimal enzyme profiles (and the associated metabolite profiles and enzyme costs) can be computed with
closed formulae. We will also discuss a way to compute optimal enzyme profiles numerically, for networks of
any shape and size, as long as the flux mode is known.

6.3. The role of thermodynamics
In general, when considering larger metabolic networks, thermodynamic feasibility can play an important
or even crucial role in determining which pathways are used. In this section we will discuss this role more
explicitly and see how thermodynamics can still give us useful insights about pathway efficiency even when
no other kinetic data is available.

Why are thermodynamic driving forces a meaningful criterion for good pathways? In brief, the driving forces,
defined as θ ≡ −∆G′/RT , play a double role: first, they determine whether or not a pathway flux is
feasible at all, given the metabolite concentrations at the pathway boundary (i.e. the metabolites that form
connections to the broader metabolic network); and second, in case the pathway is feasible, driving forces can
affect enzyme efficiency and, consequently, the enzyme demand for a given desired pathway flux. In Chapter
3 in [3], we learned that ∆G′, and hence the driving force θ, depends on the equilibrium constant Keq of
the reaction and on the substrate and product concentrations. We also learned that for a flux in forward
direction, the driving force must be positive. Beyond that, the efficiency of an enzyme is proportional to
ηfor(θ) = 1− e−θ, a function that ranges between 0 (for θ = 0, reactions in thermodynamic equilibrium) and



7

1 (θ � 1, reactions far from equilibrium). Let us now see how this non-equilibrium relation affects pathway
efficiency.

6.3.1. Kinetics and driving forces

We should remind ourselves some of the lessons learned in Chapter 3 in [3]. Specifically, recall the factorized
rate law [16] with a reversibility term that is an explicit function of the Gibbs energy (Eq. 3.15 in [3]):

v = E · k+
cat ·

∏
i sνi

i /Ks

1 +
∏

j p
νj

j /Kp +
∏

i sνi
i /Ks

· (1 − e∆G′
r/RT ) . (6.7)

The enzyme mechanism behind this formula assumes fast binding and unbinding of substrate and product,
and a slow reversible conversion step (of bound substrate into bound product). Note that here we generalize
the rate law for cases with more than one substrate and one product, where νi and νj are the stoichiometric
coefficients of substrates and products, respectively1. This generalization is one out of many, and corresponds
to the assumption that all reactants bind independently to the enzyme (and at random order). We focus on
this rate law because it is one of the simplest, but the theoretical results in this chapter apply to most other
generalizations as well (e.g. convenience kinetics [17]).

According to the definition of k+
cat, and also by noticing that the middle and rightmost terms in Eq. (6.7)

are each smaller than 1, the rate of an enzymatic reaction is bounded by v ≤ E · k+
cat (see Mathematical

Details Box 6.C for a detailed explanation). However, the additional terms are often much lower than 1,
which means that the rate does not reach its maximum. If we try to measure the apparent catalytic rate
by dividing the rate by the enzyme abundance (kapp = v/E) we would typically get a value that is lower
than k+

cat, while only in rare “ideal” cases, kapp would approach the k+
cat. In fact, this reasoning was used by

Davidi et al. [18] to estimate the k+
cat values of more than 100 enzymes in E. coli, where they sampled many

growth conditions and took the maximum kapp as the estimate.

As discussed in Section 3.3.2 in [3], the factorized rate law has a thermodynamic perspective based on the
flux-force relationship, where we view the reversibility term as a “penalty” for the fact that by lowering the
energy barrier, enzymes must catalyze reactions in both directions. When the driving force (θ) is low, the
reverse reaction flux can become significant and lower the net flux. On the other hand, if the driving force
is large enough, this term can be ignored and the rate law resembles irreversible kinetics .

So far we’ve seen that increasing the driving force of a single reaction translates to a better enzyme efficiency
and lower demand. If we consider whole pathways, ones whose overall driving force is larger have more of it
to distribute among the reactions and therefore should also have higher efficiencies overall. However, using
“too much” driving force can also have downsides. Using a larger amount of the Gibbs energy to drive the
pathway reactions means that less of that energy would go for building biomass or currency metabolites such
as ATP. An example for this trade-off between the efficiency of single enzymes (in terms of backward rates)
and the overall pathway efficiency (in terms of ATP yield) was demonstrated by Flamholz et al. [19] who
analyzed two versions of the famous glycolytic pathway (see Figure 6.1 below).
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Figure 6.3: The thermodynamic efficiency term ηfor and some approximations. (A) In a given reaction,
the thermodynamic efficiency term ηfor = 1 − e−θ (solid line) can vary between 0 and 1 depending on the
driving force θ. Small driving forces make the enzyme inefficient, since ηfor → 0, while for large forces,
thermodynamics does not play a role as ηfor → 1. The dashed lines show two linear approximation that
hold always as bounds, but can also be used as good approximations for small or large θ values, respectively:
(1 − e−θ) < θ and (1 − e−θ) < 1. (B) The reciprocal value 1/ηfor is one of the factors determining enzyme
demand. The solid line shows the thermodynamic demand factor 1/ηfor, while the dashed lines show the
resulting approximations 1/ηfor > 1/θ and 1/ηfor > 1, corresponding respectively to the enzyme demand
approximations E ≥ v

kcatθ and E ≥ v
kcat

.

6.3.2. Small driving forces should be avoided

With the factorized rate law 6.7, we can approximate the reaction rates by v ≤ E kcat (1 − e−θ) (where we
assume positive fluxes by convention). The thermodynamic efficiency ηfor = 1 − e−θ plays a prominent role.
As shown in Figure 6.3, this formula yields two important approximations: for small forces θ, that is, close
to equilibrium, we obtain ηfor ≈ θ, while for large forces, that is, for strongly forward-driving reactions, we
obtain ηfor ≈ 1. In fact, both approximations also serve as upper bounds across all θ values. What does this
mean? Far from equilibrium, the thermodynamic term does not play a role and can be ignored. Close to
equilibrium, in contrast we obtain a simple approximation for fluxes

v < E · k+
cat · (1 − e−θ) < E · k+

cat · θ (6.8)

and hence for the enzyme demand

E >
v

k+
cat · (1 − e−θ)

>
v

k+
cat · θ

. (6.9)

As θ goes to zero, the enzyme demand (for a given desired flux) goes to infinity. We already know the reason
from Chapter 3 in [3]: the driving force determines the ratio of forward and reverse one-way fluxes, v+

v−
= eθ.

If θ comes close to zero, their relative difference becomes very small, and in order to obtain a given net flux
v = v+ − v−, both v+ and v− must grow enormously, which would require an a large amount of enzyme.
This effect concerns only very small θ values - for θ much larger than 1 (or ∆G′ much smaller than -RT),
it can be neglected. Therefore, redistributing driving forces between reactions, to avoid very small forces,

1In general, reaction stoichiometries can be arbitrarily scaled. For example, instead of a reaction 2 A → B, we may write
A → 1

2 B for convenience, which will only lead to a scaling factor in the reaction rate. However, this holds only if reaction
stoichiometries are used to describe mass-balance. In cases like Eq. (6.7), where stoichiometries appear in kinetic rate laws or
in thermodynamic balances, we do not have this choice. In these cases, the stoichiometries must reflect the molecularities, that
is, the actual number of reactant molecules involved in the enzymatic reaction.
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Figure 6.4: Thermodynamic forces, enzyme efficiency, and enzyme demand in a linear chain of reactions.
The plot in the center represent two possible profiles of the thermodynamic driving forces (blue and red).
The curves describe the cumulative ∆G′ values: while the total ∆G′ is fixed (and determined by external
metabolite concentrations), the shape of the profile can vary. In the optimal profile (in red), small driving
forces are avoided. The driving forces determine the ratios of forward and backward one-way fluxes (red
arrows), and at a given net flux (black arrows) the enzyme demands. In the suboptimal blue curve, in
contrast, the last three reactions show lower forces, and therefore relatively high reverse fluxes (blue arrows);
to obtain the same net flux, forward and backward fluxes have to be strongly increased, which increases the
enzyme demand.

can save enzyme costs. The relation between driving forces, enzyme efficiency enzyme demand is shown in
more detail in Figure 6.4.

If small driving forces should be avoided to prevent enzyme costs from going infinity, how can this happen
in practice? The driving forces themselves depend on metabolite levels, which can vary over several orders
of magnitude. While the true metabolite concentrations are usually unknown, we hypothesize that selection
favors concentration profiles that prohibit very small driving forces, in order to escape the ensuing large
enzyme demands. Of course, completely avoiding small driving forces may be impossible, as there is always a
trade-off: if a metabolite concentration decreases, the driving forces of all reactions producing it will increase,
but the driving forces of all reactions consuming it will decrease simultaneously. So, all else being equal, the
optimal metabolite profile is one that distributes its driving forces as evenly as possible.

6.3.3. Max-Min Driving Force method

Previously in Chapter 4.3.2 in [3], we discussed adding thermodynamic constraints to constraint-based models
in order to comply with the second law of thermodynamics. We can extend that approach in order to
implement the idea of avoiding small driving forces. When we talk about the thermodynamic profile of
a metabolic pathway, we usually try to visualize it by the cumulative Gibbs energy of reaction: we start
at 0 and at each step add the ∆rG′ of the next reaction, which, assuming the pathway is feasible, is a
negative number. The profile therefore has a shape of a downhill slope. The end point represents the total
Gibbs energy and depends only on the concentrations of the metabolites that are part of the net reaction.
Intermediate metabolites do not affect it, but they do determine the shape of the profile itself (see Figure
6.4). Specifically, each intermediate metabolite typically affects the driving force of two reactions – the
one producing it and the one consuming it – with opposite signs. Therefore, changing the concentration of
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an intermediate can help increase the driving force of one reaction, but always at the expense of another
reaction. This strong coupling between ∆rG′ is why it is not trivial to find the optimal thermodynamic
profile of a pathway.

The Max-Min driving force method (MDF) [20] is a method for predicting metabolite concentrations, based
on the principle of evenly distributed driving forces. All fluxes are fixed and given, and assumed to be
positive. It assumes that each metabolite concentration must remain in a predefined range, converts each
choice of metabolite concentrations into the corresponding pattern of driving forces, and determines the
smallest resulting driving force in the network. If this smallest driving force is negative, the flux distribution
cannot be realized thermodynamically. Otherwise, the larger this smallest driving force, the better the overall
metabolite profile. Hence, among all possible metabolite profiles, MDF predicts the one that maximizes the
value of the minimal driving force across the network. Mathematically, this leads to a linear optimization
problem: in the space of logarithmic metabolite concentrations, a lower bound on all driving forces (denoted
B) is maximized (Eq. 6.10). An illustrative example is shown in Figure 6.5.

Maximizex,B B

Subject to − (∆rG′◦ + RT · N>x) ≥ B

ln(Cmin) ≤ x ≤ ln(Cmax)

(6.10)

MDF is easy to apply: it is based on a simple Linear Programming problem and requires only the following
input data: (i) the stoichiometric network; (ii) the flux directions; (iii)) the known equilibrium constants (or
equivalently, the standard reaction Gibbs free energies); (iv) physiological ranges for metabolite concentra-
tions. Based on these data alone, metabolite concentrations and driving forces (or ∆G′ values) are predicted.
An example application can be found in Hädicke et al. [21], where the potential of CO2 fixation in E. coli
via endogenous pathways was analyzed using MDF.

A theoretical insight from MDF is the notion of distributed bottlenecks. A simple bottleneck would consist
of a single reaction whose driving force cannot be increased because the substrates are at their upper
concentration bounds and the products are at their lower concentration bounds. Given the fixed equilibrium
constant, nothing can be done to increase the driving force in this reaction. A distributed bottleneck is more
complicated: it consists of a series of reactions that all share the same low driving force, which, because of all
the concentration constraints in the system, cannot be further increased (e.g. as in Figure 6.4). Even though
each single reaction looks “harmless” because its own driving force could still be increased, this increase
would happen at the expense of other driving forces.

6.3.4. The roles of thermodynamics for metabolic states

In summary, thermodynamics provides important clues both about the feasibility of pathways fluxes and
about their enzyme demand. To use this knowledge, fluxes need to be considered together with metabolite
concentrations (to obtain the possible driving forces), but no detailed knowledge of enzyme kinetics is
required. Thermodynamics alone yields an upper bound on fluxes (and hence, a lower bound on enzyme
demands) that holds for any kinetic rate laws. The only required data (except for the metabolic network
itself) are equilibrium constants (or equivalently, standard Gibbs free energies of reactions ∆G′◦), which
can be obtained from the eQuilibrator tool (equilibrator.weizmann.ac.il) [22, 23, 24] as well as physiological
bounds on metabolite concentrations. Given this information, and given a feasible choice of metabolite
concentrations, we can compute the driving forces of all reactions, and from the factorized rate law (and

https://equilibrator.weizmann.ac.il
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Figure 6.5: Max-Min Driving force method (MDF): an optimality problem in metabolite space. (A) Example
pathway with given equilibrium constants and fixed concentrations of the external metabolites X and Y .
What are the most favorable concentrations of the internal metabolites A and B? Assuming that small
driving forces should be avoided in all reactions, MDF determines the metabolite profile that optimizes a
worst case: it maximizes the worst (that is, smallest) driving force among all three reactions. (B) Driving
force in reaction 1, as a function of the logarithmic concentrations of A and B, called ln a and ln b. Higher
concentrations of A (the reaction product) lead to smaller driving forces. Above a critical value (where X
and A are in equilibrium), the driving force becomes negative, and a forward flux is impossible (grey region).
The concentration of B, which does not participate in the reaction, does not play a role. (C) Driving force
for reaction 2. Here, it is the ratio b/a that counts. The lower the ratio (lower right), the higher the driving
force. If the ratio is higher than the equilibrium constant, the driving force becomes negative (grey region).
(C) Driving force for reaction 3. (E) By overlaying the contours in (B), (C), and (D) and taking the minimum
value, we obtain the minimal driving force θmin among all three reactions. θmin is a piecewise linear function
of ln a and ln b within the feasible range, yielding positive forces in all three reactions. The maximum point
of this function is the optimum metabolite profile predicted by MDF. In the example shown, the feasible
concentration space is entirely defined by the driving forces themselves, given the external concentrations. In
general, physiological concentration ranges for all metabolites could further decrease the solution space and
shift the optimum point (not shown).

assuming positive fluxes by convention) we can then approximate the reaction rates by v ≤ E kcat (1 − e−θ).

We also recall from Chapter 3 in [3] that driving forces are not independent between reactions, but depend
on the metabolite concentrations, which creates trade-offs: in a chain A R1→ B R2→ C, a lower concentration of
B will increase the driving force in R1, but decrease the driving force in R2. For high enzyme efficiency (low
enzyme demand), all driving forces should in principle be high, but this is most important for low θ values
(while for θ � 1 it does not even matter). Therefore we may conclude that, to save enzyme, a cell should
rearrange its metabolite levels within physiological bounds such that small θ are avoided. Implementing this
as an optimality problem, we obtain MDF.

In conclusion, we described (i) a general rule of thumb that poor thermodynamics makes reactions costly;
(ii) simple approximations of enzyme cost; and (iii) practical methods (MDF) to obtain metabolite profiles
with favorable thermodynamic properties.
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6.4. Enzyme cost minimization

6.4.1. Enzyme cost minimization

The problem of minimizing the total enzyme demand (or cost) for a given pathway can be solved numerically,
thanks to the fact that they are always convex [25]. Finding the minimum of the convex objective (the total
enzyme cost) in a convex set (the set of admissible metabolite profiles, a convex polytope in log-metabolite
space) can be done efficiently. In contrast to general optimality problems, such problems have a unique local
optimum, which can be found by simple numerical methods. In this section, we demonstrate it with a simple
example, the same three-reaction pathway that you already saw in Section 6.3 above.

6.4.2. Enzyme cost landscape of a metabolic pathway

Given the fluxes, kinetics, and concentration bounds in a metabolic pathway model, one can predict the
enzyme demand by assuming that cells minimize the enzyme cost in that pathway. In the Enzyme Cost
Minimization method A reaction rate v = e · f(c) depends on enzyme level e and metabolite concentrations
ci through the enzymatic rate law, f(c). If the metabolite concentrations were known, we could directly
compute enzyme demands e = v/f(c) from fluxes, and similarly calculate the flux-specific enzyme demand
e/v = 1/f(c). However, metabolite concentrations are usually unknown and vary between experimental
conditions. Therefore, there can be many solutions for e and c realizing one flux distribution. To select
one of them, we employ an optimality principle: we define an enzyme cost function (for instance, total
enzyme mass) and choose the enzyme profile with the lowest cost while restricting the metabolite levels to
physiological ranges and imposing some thermodynamic constraints. As we shall see below, the solution is
in many cases unique.

Let us demonstrate this procedure with a simple example (Figure 6.6 (a)). In the pathway X 
 A 
 B 
 Y ,
the external metabolite levels [X] and [Y] are fixed and given, while the intermediate levels [A] and [B] need
to be found. As rate laws for each of the three reactions, we use reversible Michaelis-Menten (MM) kinetics

v = E
k+

cat s/KS − k−
cat p/KP

1 + s/KS + p/KP
(6.11)

with enzyme level E, substrate and product levels s and p, turnover rates k+
cat and k−

cat, and Michaelis
constants KS and KP. In kinetic modeling, steady-state concentrations would usually be obtained from
given enzyme levels and initial conditions through numerical integration. Here, instead, we fix a desired
pathway flux v and compute the enzyme demand as a function of metabolite concentrations:

E(s, p, v) = v
1 + s/KS + p/KP

k+
cat s/KS − k−

cat p/KP
. (6.12)

Figure 6.6 shows how the enzyme demand in each reaction depends on the logarithmic reactant concentra-
tions. To obtain a positive flux, substrate levels s and product levels p must be restricted: for instance, to
allow for a positive flux in reaction 2, the rate law numerator k+

cat [A]/KS − k−
cat [B]/KP must be positive.

This implies that [B]/[A] < Keq where the reaction’s equilibrium constant Keq is determined by the Haldane
relationship, Keq = (k+

cat/k−
cat) · (KP/KS). With all model parameters set to 1, we obtain the constraint

[B]/[A] < 1, i.e. ln[B]− ln[A] < 0, putting a straight boundary on the feasible region (Figure 6.6 (c)). Close
to chemical equilibrium ([B]/[A] ≈ Keq), the enzyme demand e2 approaches infinity. Beyond that ratio
([B]/[A] > Keq) no positive flux can be achieved (grey region). Such a threshold exists for each reaction
(see Figure 6.6 (b)-(d)). The remaining feasible metabolite profiles form a triangle in log-concentration
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Figure 6.6: Enzyme demand in a metabolic pathway. (A) Pathway with reversible Michaelis-Menten kinetics
(equilibrium constants, catalytic constants, and KM values are set to values of 1, [A] and [B] denote the
variable concentrations of intermediates A and B in mM). The external metabolite concentrations [X] and
[Y ] are fixed. Plots (B)-(D) show the enzyme demand of reactions 1, 2, and 3 at given flux v = 1 according
to Eq. (6.12). Grey regions represent infeasible metabolite profiles. At the edges of the feasible region (where
A and B are close to chemical equilibrium), the thermodynamic driving force goes to zero. Since small
forces must be compensated by high enzyme levels, edges of the feasible region are always dark blue. For
example, in reaction 1 (panel (B)), enzyme demand increases with the level of A (x-axis) and goes to infinity
as the mass-action ratio [A]/[X] approaches the equilibrium constant (where the driving force vanishes). (E)
Total enzyme demand, obtained by summing all enzyme levels. The metabolite polytope – the intersection
of feasible regions for all reactions – is a triangle, and enzyme demand is a cup-shaped function on this
triangle. The minimum point defines the optimal metabolite concentrations and optimal enzyme levels. (F)
As the kcat value of the first reaction is lowered by a factor of 5, states close to the triangle edge of reaction
1 become more expensive and the optimum point is shifted away from the edge. (G) The same model with a
physiological upper bound on the concentration [A]. The bound defines a new triangle edge. Since this edge
is not caused by thermodynamics, it can contain an optimum point, in which driving forces are far from zero
and enzyme costs are kept low. Please note the resemblance to the MDF problem for the same pathway,
shown in Figure 6.5.

space, which we call metabolite polytope P (Figure 6.6 (e)), and Eq. (6.12) yields the total enzyme demand
Etot = E1 + E2 + E3, as a function on the metabolite polytope. The demand increases steeply towards the
edges and becomes minimal in the center. The minimum point marks the optimal metabolite profile, and
via Eq. (6.12) we obtain the resulting optimal enzyme profile.

The metabolite polytope and the large enzyme demand at its boundaries follow directly from thermodynamics.
To see this, we consider the unitless thermodynamic driving force Θ = −∆rG

′/RT [26] derived from the
reaction Gibbs free energy ∆rG

′. The thermodynamic force can be written as Θ = ln Keq
[B]/[A] , i.e. the

driving force is positive whenever [B]/[A] is smaller than Keq, and it vanishes if [B]/[A] = Keq. How
is this force related to enzyme cost? A reaction’s net flux is given by the difference v = v+ − v− of
forward and backward fluxes, and the ratio v+/v− depends on the driving force as v+/v− = eΘ. Thus,
only a fraction v/v+ = 1 − e−Θ of the forward flux acts as a net flux, while the remaining forward flux
is partially canceled by the backward flux. Close to chemical equilibrium, where the mass-action ratio
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[B]/[A] approaches the equilibrium constant Keq, the driving force goes to zero, the reaction’s backward
flux increases, and the flux per enzyme level drops. This is what happens at the triangle edges in Figure 6.6:
a reaction approaches chemical equilibrium, the driving force Θ goes to zero, and large enzyme amounts are
needed for compensation. Exactly on the edge, the driving force vanishes and no enzyme level, no matter
how large, can support a positive flux. The quantitative cost depends on model parameters: for example, by
lowering a kcat value, the increase in enzyme cost at the boundary becomes steeper and the optimum point
is shifted away from the boundary (see Figure 6.6 (f)).

6.4.3. Enzyme cost as a function of metabolite profiles

The prediction of optimal metabolite and enzyme levels can be extended to models with general rate laws
and complex network structures. In general, enzyme demand depends not only on driving forces and kcat

values, but also on the kinetic rate law, which includes KM values and small-molecule regulation. We can
conveniently model or approximate these factors by using factorized rate laws. Let us write this rate laws
here again in a general form to see the different factors at play. As we learned in Section 6.2, the rate of
a reaction depends on enzyme level e, forward catalytic constant k+

cat (i.e. the maximal possible forward
rate per unit of enzyme, in s−1), driving force (i.e. the ratio of forward and backward fluxes), and on kinetic
effects such as substrate saturation or small-molecule regulation. If all active fluxes are positive, reversible
rate laws like the Michaelis-Menten kinetics in Eq. (6.11) can be factorized as [16]:

v = E · k+
cat · ηfor · ηsat · ηreg. (6.13)

Negative fluxes, which would complicate our formulae, can be avoided by orienting the reactions in the
direction of fluxes.

Enzyme demand can be quantified as a concentration (e.g. enzyme molecules per volume) or mass concentra-
tion (where enzyme molecules are weighted by their molecular weights). If rate laws, fluxes, and metabolite
concentrations are known, the enzyme demand of a single reaction l follows from Eq. (6.13) as

El(c, vl) = vl · 1
k+

cat,l

· 1
ηfor

l (Θ(c))
· 1

ηsat
l (c) · 1

ηreg
l (c) . (6.14)

To determine the enzyme demand of an entire pathway, we sum over all reactions: Epath
tot =

∑
l el. Based on

its enzyme demands El, we can associate each metabolic flux with an enzyme cost q =
∑

l hEl
El, describing

the effort of maintaining the enzymes. The burdens hEl
of different enzymes represent, e.g. differences in

molecular mass, post-translational modifications, enzyme maintenance, overhead costs for ribosomes, as well
as effects of misfolding and non-specific catalysis. The enzyme burdens hEl

can be chosen heuristically, for
instance, depending on enzyme sizes, amino acid composition, and lifetimes. Setting hEl

= ml (protein
mass in grams per mole), q will be in gram protein per gram cell dry weight. Considering the specific amino
acid composition of enzymes, we can also assign specific costs to the different amino acids. Alternatively,
an empirical cost per protein amount can be established by the level of growth impairment that an artificial
induction of protein would cause [27, 28]. Thus, each reaction flux vl is associated with an enzyme cost ql,
which can be written as a function ql(vl, c) ≡ hEl

El(c, vl) of flux and metabolite concentrations. From now
on, we refer to log-scale metabolite concentrations si = ln ci to obtain simple optimality problems below.
From the factorized rate law Eq. (6.14), we obtain the enzyme cost function

q(s, v) ≡
∑

l

hEl
El(vl, s) =

∑
l

hEl
· vl · 1

k+
cat,l

· 1
ηfor

l (s)
· 1

ηsat
l (s) · 1

ηreg(s) (6.15)
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for a given pathway flux v. If the fluxes are fixed and given, our enzyme cost becomes, at least formally,
a function of the metabolite levels. The cost function is defined on the metabolite polytope P, a convex
polytope in log-concentration space containing the feasible metabolite profiles. Like the triangle in Figure
6.6, the polytope is defined by physiological and thermodynamic constraints.

Beyond minimizing the total enzyme cost, one can also use Enzyme Cost Minimization to analyze the
individual enzyme demands. When the metabolite levels are known, the demand can be directly calculated
and each efficiency factor (η) in Eq. (6.15). By omitting some factors or replacing them by constant numbers
0 < η ≤ 1, simplified enzyme cost functions with fewer parameters can be obtained. For example, ηfor = 1
would imply an infinite driving force Θ → ∞ and a vanishing backward flux, ηsat = 1 implies full substrate
saturation, and ηreg = 1 implies full enzyme activation and no enzyme inhibition (or no small-molecule
regulation at all). In these limiting cases, enzyme activity will not be reduced, and enzyme demand will be
given by the capacity-based estimate v/k+

cat, a lower estimate of the actual demand. Instead of omitting
an efficiency factor, it can also be set to a constant value between 0 and 1. Such simplifications and the
resulting enzyme cost functions with fewer parameters can be practical if kinetic constants are unknown.

6.4.4. General lessons from Enzyme Cost Minimization

Enzyme cost minimization not only provides numerical solutions, but also some general insights.

◦ Convexity Enzyme Cost Minimization shows again the importance of the metabolite polytope. The usage
of logarithmic metabolite concentrations not only leads to a good search space for feasible metabolite
profiles (as in MDF), but also facilitates optimization because enzyme cost is a convex function of the
metabolite log-concentrations [29]. Convexity makes this optimization tractable and scalable – unlike a
direct optimization in enzyme space. Convexity holds for a wide range of rate laws and for extended
versions of the problem, e.g. including bounds on the sum of (non-logarithmic) metabolite concentrations
or bounds on weighted sums of enzyme fractions.

◦ Factorized rate laws disentangle individual enzyme cost effects To see how metabolic states are
shaped by different physical factors, we considered factorized rate laws. The different terms in these
functions represent specific physical factors and require different kinetic and thermodynamic data for their
calculation. By neglecting some terms, one obtains different approximations of the true enzyme cost. By
comparing the different scores, we can estimate the enzyme cost that cells “pay” for running reactions at
small driving forces (to save Gibbs free energy) or for keeping enzymes beneath substrate-saturation (e.g.,
to dampen fluctuations in metabolite levels ).

◦ Relationship to other optimality approaches Beyond their practical advantages, factorized enzyme cost
functions also allow us to easily compare our method to earlier modeling and optimization approaches.
These approaches typically focused on only one or two of the factors that are taken into account in Enzyme
Cost Minimization, and many of them can be reformulated as approximations of this method [20, 30, 12].

◦ Enzyme cost is related to thermodynamics In FBA, thermodynamic constraints and flux costs appear
as completely unrelated aspects of metabolism (as is explained in Chapter 5 in [3]). Thermodynamics
is used to restrict flux directions, and to relate them to metabolite bounds, while flux costs are used to
suppress unnecessary fluxes. In Enzyme Cost Minimization, thermodynamics and flux cost appear as
two sides of the same coin. Like in FBA, flux profiles are thermodynamically feasible if they lead to a
non-empty metabolite polytope, allowing for positive forces in all reactions. However, the values of these
forces also play a role in shaping the enzyme cost function on that polytope. Together, metabolite polytope
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and enzyme cost function (as in Figure 6.6) summarize all relevant information about flux cost.

Many pathways are regulated, for instance by feedback inhibition of enzymes via the end product. While this
may stabilise the dynamics and adapt it to current demands, such enzyme regulation comes at a cost, which
we can estimate by following the logic of Enzyme Cost Minimization. Many enzymes are regulated by small
molecules that act as competitive or allosteric inhibitors [31], an effective way to implement feedback control,
for example to adapt the flux in biosynthesis pathways to current needs. In order for such a regulation to
work, the enzyme needs to be partially inhibited on average (because only then, its activity can be increased
on demand, by alleviating the inhibition). Therefore, the enzyme efficiency goes down, and the cell needs to
provide more enzyme to catalyze the same flux than without the inhibition.

How much will this regulation cost the cell as part of the enzyme budget? From the perspective of Enzyme
Cost Minimization, where we start from desired fluxes and compute the enzyme demand, this question is
easy to answer: in the inhibited enzyme case, the lower efficiency will be described by a factor ηreg ∈ [0, 1]
(Mathematical Details Box 6.C). In the same reaction, the enzyme demand increases by a factor 1/ηreg, so
the extra cost is simply 1/ηreg −1 times the “baseline” cost of this enzyme (without inhibition). Specifically,
a non-competitive inhibitor, with efficiency factor ηreg = 1

1 + c/KI
yields a cost factor 1 + c/KI . If the

metabolite concentrations are fixed, this corresponds to an extra enzyme demand ∆El = El ci

KI,li
. Similarly,

an enzyme activation with efficiency factor ηreg = c/KA

1+c/KA
in the rate laws yields a cost factor 1+c/KA

c/KA
=

1 + KA/c in the formulae for enzyme demands. If the metabolite concentrations are fixed, this corresponds
to an extra enzyme demand ∆El = El KA,li

ci
(where l and i denote the regulated reaction and the regulating

metabolite, respectively). As usually in Enzyme Cost Minimization, an optimal rearrangement of enzyme and
metabolite concentrations must be taken into account, which will then slightly reduce the overall cost.

The predictions of optimal states by Enzyme Cost Minimization rely on two main inputs: a metabolic model
that relates metabolite concentrations, enzyme levels, and fluxes, and an optimality principle based on the
assumption that cells realize their production fluxes at a minimal total enzyme cost. To test whether this
optimality principle holds at all, Noor et al. [25] compared the predictions from Enzyme Cost Minimization
to predictions from the same metabolic model and the same flux distribution, but with randomly sampled
metabolite profiles (and the corresponding enzyme profiles). In comparison, metabolite profiles sampled
close to the Enzyme Cost Minimization optimum yielded significantly better enzyme level predictions than
metabolite profiles sampled more broadly. This strongly supports the idea that E. coli metabolism, in the
conditions studied, is at least partially optimized for low enzyme cost, and thus supports cost-optimality as
a principle in living cells.

6.5. Comparison of alternative pathways
Having clarified our main functional criteria for pathways (substrate productivity and enzyme productivity)
and how they depend on pathway details (including outer concentrations), we can now compare alternative
pathways by their substrate and enzyme demand per production flux (an example of “cost per benefit”) and
see which one scores better.

6.5.1. A tale of two glycolyses

One of the canonical examples discussed throughout this book is how cells choose between respiration and
fermentation for making their ATP. However, having a precise kinetic model for respiration is difficult, since it
involves electron transfer and membrane-bound reactions. Therefore, it is challenging to calculate the enzyme
cost of respiration using models like those discussed in this chapter. Flamholz et al. [19] analyzed a similar



17

but simpler case by comparing between the EMP and ED variants of glycolysis, since all the required enzymes
are soluble and expressed in the cytoplasm and/or the periplasm and many of their kinetic parameters are
measured. The common description of glycolysis ends in pyruvate (e.g., as depicted in Figure 6.1). This
means that the pathway is not neutral in terms of redox, since the oxidation state of pyruvate is higher than
glucose. In order to simplify the comparison and focus only on ATP yield (rather than NADH), the EMP
and ED pathways were extended to end in lactate by including lactate dehydrogenase (ldh) as an extra step,
making them redox neutral. These could be thought of as the more relevant versions of the pathways in
anaerobic conditions.

Although EMP-based fermentation is usually described in textbooks as less efficient than respiration, since
it produces only 2 moles of ATP per mole glucose instead of ≈ 30, the ED pathway has an even lower
yield – 1 mole of ATP. Nevertheless, the ED pathway is quite common among the bacteria. For example,
Zymomonas mobilis – the bacterium used in fermenting pulque (a.k.a., agave wine [32]) and a promising
platform for bio-production [33] – lacks key enzymes from the EMP pathway and uses the ED pathway
exclusively to metabolize sugars. These bacteria don’t seem to be bothered by the low ATP yield and can
achieve high growth rates [34]. This already suggests to us that the ED pathway is probably superior to
EMP in other aspects, such as the enzyme demand. Another clue was provided by a study which found that
the ED pathway improves E. coli growth during glucose up-shifts and that the flux through it increases by
130% [35] (see Economic Analogy Box 6.D)

To see if indeed the models provide predictions that are consistent with the experimental evidence, Flamholz
et al. [19] first used the MDF method to compare the two pathways. The ED pathway was found to be
substantially more thermodynamically favorable, with a much higher score than the EMP pathway (8.0 versus
4.8 kJ/mol, see Figure 6.7 upper row).

Although the EMP pathway is clearly more favorable, we can still argue that an MDF of 4.8 kJ/mol is good
enough, as it means θ > 1.9 for each one of the pathway reactions. In this case, ηfor > 0.85 (see Figure
6.3) and therefore it might be a small price to pay for double the ATP yield. But, as discussed earlier, the
efficiency of a pathway is affected by other factors besides the thermodynamics. Flamholz et al. [19] tried to
see whether ED is superior to EMP also in terms of the enzyme cost using the Enzyme Cost Minimization
method. Indeed, they found that the ED pathway would require ≈5 times less protein compared to EMP for
catalyzing the same flux (see Figure 6.7 bottom row). So, although the ATP yield of the ED pathways is
half that of EMP, one can still generate ATP at a higher rate using the same amount of protein, according
to the model.

The comparison of EMP and ED provided some insight as to a trade-off that can exists between the yield
of a pathway and its cost, or enzyme burden. However, one can expand the question and ask if there are
any other theoretically possible glycolysis pathways that might be able to break this trade-off and be more
efficient than EMP and ED in both aspects. Ng et al. [6] tried to address this question with an algorithm they
called optStoic that generates all biochemically feasible routes between glucose and pyruvate, with various
ATP/glucose yields. They then ran pathway analysis on all 11,916 options and found that indeed both EMP
and ED are both (nearly) Pareto-optimal. This suggests that evolution may indeed select for features such
as high yield and low enzyme cost, where one might be more important than the other depending on the
context.

6.5.2. Metabolic engineering

Besides the quest for understanding the evolution of existing biochemical pathways, pathway analysis methods
like MDF and Enzyme Cost Minimization have also been used by metabolic engineers in order to rank and
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Figure 6.7: Comparing two metabolic pathways using the MDF and the Enzyme Cost Minimization methods.
For the MDF analysis (top row), the dashed green line represents the cumulative Gibbs energy along the
pathway if all metabolite concentrations were 1 mM. The MDF solution is presented as a grey line, where
the bottleneck reactions are marked in red. For the Enzyme Cost Minimization analysis (bottom row), we
used the same kinetic parameters for all enzymes in both pathways (kcat = 200 s−1, KM = 200 µM, same
as in [19]). However, here we used an updated version of Enzyme Cost Minimization with the factorized rate
law, therefore the results are not identical. A Jupyter notebook for generating the figure can be found on
the book website.

prioritize different alternative designs. For example, Volpers et al. [36] used the MDF algorithm and the
Pathway Specific Activity measure to compare between designs of photo-electro-autotrophic strains. Similarly,
Löwe and Kremling [37] used the Enzyme Cost Minimization algorithm to predict the enzyme demand of
both natural and synthetic carbon fixation cycles.

6.5.3. Predicting the metabolite concentrations

So far, the examples given in this section focused on analyzing and comparing pathway alternatives in
isolation, outside of the context of actual living organisms. However, we should not forget that the motivation
for optimization goals such as enzyme demand are derived from physiological and evolutionary principles.
Therefore, the optimal solutions coming from MDF and Enzyme Cost Minimization might be good predictions
for the actual metabolic state that exists in naturally evolved organisms.

For example, a few years after the in silico analysis of the ED pathway [19], Jacobson et al. [38] measured the
intracellular concentrations ED intermediates in Z. mobilis, and used them to calculate the Gibbs energies of
the pathway’s reactions. Indeed, they found that they closely fit the predicted values from the MDF solution.
Similarly, measured values of enzyme and metabolite concentrations in E. coli correlate with predicted values
from Enzyme Cost Minimization (when empricial reaction fluxes were obtained from 13C-MFA measurements,

https://gitlab.com/principlescellphysiology/book-economic-principles-in-cell-biology/-/blob/master/book-manuscript/latex/chapters/PAT/jupyter/plot_figures.ipynb
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(A) (B) (C)

Figure 6.8: Validation of metabolite and enzyme concentrations, predicted by Enzyme Costs Minimization,
in E. coli ’s central carbon metabolism. (A) Comparing predicted and measured metabolic concentrations.
The dashed line marks x = y, i.e. where the predictions match the measurements. Blue points represent
co-factors whose concentration is fixes in the analysis and therefore are not actually predicted. Red points
are for all other metabolites whose allowed concentration range was set to 1µM − 10mM . The Root Mean
Squared Error (RMSE), r2 (Pearson correlation), and p-value refer only to the red points. (B) Comparing
predicted and measured enzyme concentrations. (C) A pie chart showing the distribution of the predicted
absolute mass-concentrations for both enzymes (green) and metabolites (blue) together. Note that aconitase
(catalyzing the reactions acn1 and acn2) has a lower specific activity than glyceraldehyde-3P dehydrogenase
(catalyzing gap), and therefore occupies a higher fraction of the mass-concentration even though the required
concentration of the latter enzyme is higher.

Figure 6.8) [25]. In a related paper, Wortel et al. [39] expanded the idea of this method to explore the entire
flux polytope.

These results suggest that indeed the optimization process that occurs throughout evolution is somewhat
similar to the (much simplified) models presented here. Of course, improving the accuracy of the inputs and
accounting for other effects that impact fitness could improve the predictions further. On the other hand,
it might be naïve to expect natural systems to be optimal, which would mean that using basic principles to
precisely predict phenotypes is an impossible task.

6.6. Concluding remarks
Coming back to our initial question, what have we learned from theory about the choice between possible
pathways? The “choice between pathways” in a larger network is actually a choice between (network-wide)
flux distributions that use different alternative pathways. Here we discussed how to score the usefulness of
given flux distributions, which can also be used to score single pathways.

Importantly, flux distributions are scalable (by scaling all enzyme levels proportionally, and keeping all metabo-
lite levels constant). If we scale the fluxes, this will scale both the flux benefit (for instance, the production of
a desired product or biomass) and the required resources (substrates consumed, enzyme budget invested, or
toxic byproducts produced). Because of this scaling property, our “quality criteria” mostly have the form of
ratios between an output flux (as the benefit) and some (limited) resource (the cost). Such ratios are called
“productivities”, where in Chapter 4 in [3]-5 in [3] we focused mostly on substrate productivity (or yield on
substrate) and in this chapter on enzyme productivity (or enzyme-specific rate) as important criteria. Why
these criteria? On the one hand, they are closely related to some big objectives of the entire cell – depending
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on the type of competition it is facing. On the other hand, they are easy to link to some concrete criteria
about metabolic pathways such as product yield, pathway length, kcat values, thermodynamic forces, etc.

Since yield on substrate depends only on the shape of the flux distribution, it can be studied by methods
like FBA (see chapters 4 in [3] and 5 in [3]). In this chapter, we focused on the more difficult case,
enzyme productivity, where thermodynamics, enzyme kinetics, and the arrangement of metabolite and enzyme
concentrations come into play. The factorized law in Eq. (6.7) shows us how the enzyme demand of a
flux distribution can be computed if metabolite concentrations are known, and how the demand depends on
forward kcat, the thermodynamic force, and enzyme saturation. The only difficulty is that the thermodynamic
forces and metabolite concentrations are usually not known. Here we considered some best-case scenarios,
assuming that the cell will realize the concentration arrangements that optimize pathway performance. When
considering thermodynamics alone (and making some further simplifications), this led to the MDF method.
For the full problem, the solution is provided by Enzyme Costs Minimization. This method is directly related
to the different pathway criteria we discussed initially (including pathway length, thermodynamic forces, and
kcat values) and thus shows how these different factors determine enzyme demand. As a numerical method,
it is relatively easy to use because it is a convex optimization problem. But if little data is available, simpler
methods such as MDF, with their lower demand for parameters, may be useful tools to predict pathway
usage.

Recommended readings
A search for efficient pathways, based on different criteria: Arren Bar-Even, Elad Noor, Nathan E. Lewis,
and Ron Milo. Design and analysis of synthetic carbon fixation pathways. Proceedings of the National
Academy of Sciences, 107(19):88898894, 2010. doi: 10.1073/pnas.0907176107.

The max-min driving force method: Elad Noor, Arren Bar-Even, Avi Flamholz, Ed Reznik, Wolfram
Liebermeister, and Ron Milo. Pathway thermodynamics highlights kinetic obstacles in central metabolism.
PLoS Comput. Biol., 10(2):e1003483, 2014. doi: 10.1371/journal.pcbi.1003483.

Enzyme cost minimization: Elad Noor, Avi Flamholz, Arren Bar-Even, Dan Davidi, Ron Milo, and Wol-
fram Liebermeister. The protein cost of metabolic fluxes: Prediction from enzymatic rate laws and cost
minimization. PLoS Comput. Biol., 12(11):e1005167, 2016. doi: 10.1371/journal.pcbi.1005167.

Problems
Problem 6.1 Pathway efficiencies Estimate pathway efficiencies (i.e. product production rates per total
enzyme concentration) from simple back-of the envelope calculations and plausible numbers (refer to the
BioNumbers database for realistic values). (a) From pathway length (assuming reasonable apparent kcat

values); (b) from given apparent kapp values (or given kcat values and ∆G). (c) Convert the results into
growth rates (assuming realistic estimates of the total protein density; the proteome fraction of metabolic
enzymes; the biomass production rate etc). Assume plausible numbers in all cases.

Problem 6.2 Efficiency – dependence on substrate Compute the reduction of pathway efficiency in a
linear chain when decreasing the external substrate concentration (no constraints on metabolite levels)

Problem 6.3 ATP yield in glycolysis Derive the optimal ATP yield in a glycolysis model with a linear
flux-force relationship

Problem 6.4 MDF method Implement the MDF method in a programming language of your choice.

Problem 6.5 MDF and enzyme cost The optimality principle of MDF (avoiding small thermodynamic

https://doi.org/10.1073/pnas.0907176107
https://doi.org/10.1371/journal.pcbi.1003483
https://doi.org/10.1371/journal.pcbi.1005167
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driving forces) can be justified by assuming that low driving forces would entail high enzyme demands. Do
you expect that MDF solutions are also Enzyme Costs Minimization solutions (or vice versa)? Otherwise,
can you think of an approximation of the Enzyme Costs Minimization problem, such that MDF provides the
correct solution? Show how the Enzyme Costs Minimization objective could be approximated step by step,
and illustrate this with an example.

Problem 6.6 Cycle of chemical reactions Assume a cycle of chemical reactions A ↔ B ↔ C ↔ A without
co-factors or external inputs/outputs. (a) Show that there is no stationary, thermodynamically feasible flux
distribution except for the (trivial) vanishing flux. (b) Explain why, if there were a flux, this would be a
perpetuum mobile.

Problem 6.7 Optimal enzyme levels in two-reaction chain Consider a chain of two reactions S ↔ X ↔ P

with enzymes E1 and E2, v1 = E1(k+1S − k−1X), v2 = E2(k+2X − k−2P ). Compute the steady state flux
given E1, E2. Let E1 +E2 = Epath

tot be fixed. Determine E1, E2 such that the flux is maximal. Use Lagrange
multipliers. Hint: Assume forward flux where P/S < (k+1k+2)/(k−1k−2) = q1q2.

Problem 6.8 Flux maximization in a linear pathway Prove that the function:

f(E) = 1∑
i(AiEi)−1 (6.16)

for a fixed A and under the constraint
∑

i Ei = Etot, is at its maximum when:

Ei = Etot · A
−1/2
i∑

i A
−1/2
i

Problem 6.9 Haldane kinetic rate law Haldane described an enzyme-catalyzed reaction by three steps,
each following a mass-action rate law:

S + E k1−−⇀↽−−
k2

ES k3−−⇀↽−−
k4

EP k5−−⇀↽−−
k6

P + E . (6.17)

The ODE system describing the change in time of each species is:

d[ES]
dt

= [E] · [S] · k1 + [EP ] · k4 − [ES] · (k2 + k3)

d[EP ]
dt

= [E] · [P ] · k6 + [ES] · k3 − [EP ] · (k4 + k5)

d[E]
dt

= −[E] · [S] · k1 + [ES] · k2 + [EP ] · k5 − [E] · [P ] · k6 (6.18)

Prove that at quasy-steady-state (where the total enzyme concentration is fixed, and the concentration of
each species doesn’t change over time), the rate in which [S] is converted to [P ] is governed by the following
rate law:

v = [E0]k
+
cat[S]/KS − k−

cat[P ]/KP

1 + [S]/KS + [P ]/KP
(6.19)

where:

KS = k2k4 + k2k5 + k3k5

k1(k3 + k4 + k5) ; KP = k2k4 + k2k5 + k3k5

k6(k2 + k3 + k4) ; k+
cat = k3k5

k3 + k4 + k5
; k−

cat = k2k4

k2 + k3 + k4
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Problem 6.10 The factorized rate law Use the Haldane relationship:

k+
cat

k−
cat

KP

KS
= k1k3k5

k2k4k6
= Keq (6.20)

and the definition of Gibbs free energy:

∆G′◦
r = −R · T · ln Keq

∆G′
r = ∆G′◦

r + R · T · ln ([P ]/[S])
(6.21)

to prove that Eq. (6.19) is equivalent to the following factorized rate law:

v = [E0]k+
cat ·

(
1 − e∆rG′/RT

)
· [S]/KS

1 + [S]/KS + [P ]/KP
. (6.22)
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Mathematical details 6.B : Integer cuts can be used for iterating all possible solutions

The linear problem can be described by:

minimize
∑

i

vi

subject to Nv = 0

∀i 0 ≤ vi ≤ β

vglycolysis = −1

(6.2)

where v is the flux variable, and N is comprised of the universal stoichiometric matrix , and in addition one
reaction (whose flux is denoted vglycolysis) which has the stoichiometry of Eq. (6.1). The constraint vglycolysis = −1
ensures that the sum of all active reactions except for vglycolysis will together form a full glycolysis pathway, since
their net reaction has to balance the stoichiometry of vglycolysis given the mass balance constraint Nv = 0. β

given the upper bound on the flux for all reactions. For simplicity, we assume that all fluxes are positive and
that reversible reactions are split into their two opposing directionalities . β is a tunable parameter that is an
upper bound on all the fluxes in the solution pathways. Setting it too low would exclude solutions with complex
stoichiometries. On the other hand, a very high value would increase the complexity of the search and lead to
very long run-times. Typically, we choose β = 10 which is a good balance between the two extremes. Finally,
we set the objective function (

∑
i
vi) to minimize the sum of fluxes. As we will explain shortly, we can iterate

through all possible solutions and therefore the objective will only determine the order at which we find them.
To find all possible glycolysis pathways comprising known enzymatic reactions, Ng et al. [6] iteratively introduced
constraints in order to exclude all previous solutions and find the next optimal one [9]: to exclude a solution,
they add an integer cut, which is an inequality constraint ensuring that the number of active reactions is strictly
larger than the sum over their indicator variables (boolean variables that are equal to 1 if the reaction is active,
i.e. carries a nonzero flux). Therefore, at least one of those reactions must be inactive in all future solutions.
This is quite similar to constrained Minimal Cut Sets (cMCS) which were introduced in Chapter 4.4 in [3] as a
way of exploring the flux space.
Formally, if {P0, P1 . . . Pm} are the set of solutions already discovered by our algorithm (where ∀j Pj ⊆
{0, . . . , n}, i.e. each solution is a set of integers which correspond to indices of active reactions) then the
added constraints will be:

∀i zi ∈ {0, 1}

∀i vi − βzi ≤ 0

∀j
∑
i∈Pj

zi < ‖Pj‖
(6.3)

where ‖Pj‖ is the length of pathway j (i.e. the number of reactions). The zi are boolean reaction indicators,
i.e. zi must be equal to 1 if a reaction is active (vi > 0). The final set of constrains eliminate Pj and any
pathway which is a superset of Pj from the solution space. Using this extra set of constraints iteratively, each
time generating the next pathway and adding it to the excluded list, will eventually go through all possible
solutions (by increasing order of their sum of fluxes). It is important to note that using integer cuts requires
switching to an MILP (Mixed-Integer Linear Program) solver, which is computationally much more demanding
and typically requires a commercial license.
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Mathematical details 6.C : Factorized rate laws and enzyme cost function

According to Eq. (6.13), reversible rate laws can be factorized into five terms that depend on metabolite
concentrations in different ways [16]. For a reaction S 
 P with reversible Michaelis-Menten kinetics Eq. (6.11),
a driving force θ = −∆rG

′/RT , and a prefactor for non-competitive inhibition, the rate law can be written as

v = E · k+
cat · [1 − e−θ]︸ ︷︷ ︸

ηfor

· s/KS

1 + s/KS + p/KP︸ ︷︷ ︸
ηsat

· 1
1 + x/KI︸ ︷︷ ︸

ηreg

Rate = enzyme · forward catalytic · thermodynamic · saturation · regulation
level constant factor factor factor

with inhibitor concentration x. The product of the first two terms, E and k+
cat, represents the maximal velocity,

i.e. the rate at full substrate-saturation without backward flux and without enzyme inhibition. The following
factors decrease this velocity for different reasons: ηfor describes a decrease due to backward fluxes, ηsat –
the decrease due to incomplete substrate saturation, and ηreg – the decrease due to small-molecule regulation
(see Figure b). While k+

cat is an enzyme-specific constant (yet, dependent on conditions such as pH, ionic
strength, or molecular crowding in cells), the efficiency factors are concentration-dependent, unitless, and can
vary between 0 and 1. The thermodynamic factor ηfor depends on the driving force (and thus, indirectly, on
metabolite concentrations), and the equilibrium constant is required for its calculation. The saturation factor
ηsat depends directly on metabolite levels and contains the KM values as parameters. Enzyme regulation by
small molecules yields additive or multiplicative terms in the rate law denominator, which in our example and
can be captured by a separate factor ηreg. The enzyme cost for a flux v, with an enzyme burden he, can be
written as

q = he · E = he · v · 1
k+

cat
· 1

[1 − e−θ]︸ ︷︷ ︸
1/ηfor

· 1 + s/KS + p/KP

s/KS︸ ︷︷ ︸
1/ηsat

· [1 + x/KI]︸ ︷︷ ︸
1/ηreg

and contains the terms from the rate law in inverse form. The first factors, he v/k+
cat, define a minimum enzyme

cost, which is then increased by the following efficiency factors. By omitting some of these factors, one can
construct simplified enzyme cost functions with higher specific rates, or lower enzyme demands (compare Figure
6.2b). For a closer approximation, the factors may be substituted with constant numbers between 0 and 1.

Economic analogy 6.D : The push for fast growth

The ED pathway seems to be useful as a quick response to a sudden increase in abundance of resources (glucose),
but less efficient than EMP when the environment is steady. This is somewhat analogous to start-up companies,
which burn large amounts of venture capital in order to grow rapidly. However, after reaching a certain scale,
the dynamic nature of start-ups often becomes a burden, where overhead costs pile up and signal that it is time
to join a larger corporation.
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Economic analogy 6.E : Two important assumptions: homogeneity and stationarity

In the models described in this chapter, we generally assume that our system (for example, a metabolic pathway
in a cell) is spatially and temporally homogeneous, and that it shows stable stationary states. This is clearly a
simplification: in reality, cells are inhomogeneous, with compartments, with enzymes unequally distributed across
the cell, and with enzymes forming complexes or dedicated compartments like the glycosome (an organelle in
some organisms that contains the glycolytic enzymes), which changes (average) enzyme kinetics. Cells are also
dynamic on various time scales (chemical noise, metabolic dynamics, protein expression dynamics), which also
may change (average) enzyme kinetics. If we ignore this in our models – assuming a timeless steady state –
this will not only cause approximation errors in our metabolic model, but much more importantly, we ignore the
fact that the cell can exploit spatial inhomogeneity (e.g. compartments or channeling) and non-steady states
(e.g. metabolic oscillations, or adaptation to fluctuations in the environment) to further improve its fitness (as
compared to a steady-state, constant enzyme model).
Interestingly, classical economic theory makes similar assumptions – e.g. about markets in equilibrium– which
ignore the spatio-temporal, dynamic side of real economic systems, which – as in the case of metabolic models
– is likely to lead to wrong results.
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Solutions to problems
Problem 6.9 (Haldane kinetic rate law)

First, we add the constraint on the total enzyme concentration ([E] + [ES] + [EP ] = Etot) and rewrite the
ODE system in matrix notation:

1 1 1
[S]k1 −(k2 + k3) k4

[P ]k6 k3 −(k4 + k5)
−[S]k1 − [P ]k6 k2 k5


 [E]

[ES]
[EP ]

 =


[E0]

0
0
0

 . (6.23)

Note that the last row is linearly dependent on the two previous ones (it is minus their sum). Therefore,
we can drop it from the system without loosing information. Then, we will find exlicit expressions for [E],
[ES], and [EP ] by using Gaussian elimination – a process of eliminating off-diagonal values in the matrix
until we reach the identity matrix, while at the same time applying the same operations to the vector on the
right-hand side of the equality.

Step 1, elimination the off-diagonal elements on the first column (subtracting the first row times [S]k1 from
the 2nd row and the first row times [P ]k6 from the 3rd row)1 1 1

0 −(k2 + k3) − [S]k1 k4 − [S]k1

0 k3 − [P ]k6 −(k4 + k5) − [P ]k6


 [E]

[ES]
[EP ]

 = [Etot]

 1
−[S]k1

−[P ]k6

 .

Step 2, dividing the second row by −(k2 + k3 + [S]k1) to have 1 on the diagonal:1 1 1
0 1 [S]k1−k4

k2+k3+[S]k1

0 k3 − [P ]k6 −(k4 + k5) − [P ]k6


 [E]

[ES]
[EP ]

 = [Etot]

 1
[S]k1

k2+k3+[S]k1

−[P ]k6

 .

Step 3, subtracting the second row from the 1st, and again from the 3rd (after multiplying by k3 − [P ]k6):
1 0 1 − [S]k1−k4

k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 −(k4 + k5) − [P ]k6 − ([S]k1−k4)(k3−[P ]k6)
k2+k3+[S]k1


 [E]

[ES]
[EP ]

 = [Etot]


1 − [S]k1

k2+k3+[S]k1
[S]k1

k2+k3+[S]k1

−[P ]k6 − [S]k1(k3−[P ]k6)
k2+k3+[S]k1

 .

which after simplifying becomes:
1 0 k2+k3+k4

k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 − [S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
k2+k3+[S]k1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
[S]k1

k2+k3+[S]k1

− [P ]k6k2+[P ]k6k3+[S]k1k3
k2+k3+[S]k1

 .

and we normalize the last row to have 1 on the diagonal:

1 0 k2+k3+k4
k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
[S]k1

k2+k3+[S]k1
[P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5

 .
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Step 4, we eliminate the off-diagonal values of the third column using the 3rd row:

1 0 0
0 1 0
0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
− k2+k3+k4

k2+k3+[S]k1
· [P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[S]k1

k2+k3+[S]k1
− [S]k1−k4

k2+k3+[S]k1
· [P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5


Simplifying the expressions on the right-hand side is a lengthy process (which we do not show here) and in
the end we get:

1 0 0
0 1 0
0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2k4+k2k5+k3k5

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k4k6+[S]k1k4+[S]k1k5

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k2k6+[P ]k3k6+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5


Therefore,

[E] = [Etot]
k2k4 + k2k5 + k3k5

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(6.24)

[ES] = [Etot]
[P ]k4k6 + [S]k1k4 + [S]k1k5

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(6.25)

[EP ] = [Etot]
[P ]k2k6 + [P ]k3k6 + [S]k1k3

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(6.26)
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