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Abstract

Among the major economical concepts that present a degree of analogy with biological systems, the question
of costs and their minimization is of crucial importance. Minimizing the costs, especially at the macroscopic
level of the organ, implies that this organ is constrained by one or more variables, such as nutrients availability,
shape or energy consumption. By taking the lung as an example of organ development under constraints,
we show that its range of function is optimized under the energy consumption constraint. Furthermore, we
explore the ventilation optimization in the whole mammalian class, and show that the mechanisms governing
the lung function in human can be extended, with caution and in the framework of allometric relations, to
other species of mammals, all guided by the same major principles of economy.
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Chapter overview

◦ The central concept of economy presented in the previous chapters are extended to the level of the
organ and the living organisms.

◦ The development of organs in pluricellular living beings is constrained by several requirements. Nutri-
ents, energy and form are few examples of developmental constraints that are analyzed, in the point
of view of the economy of the organ function.

◦ In mammals, the respiratory system is submitted to a high level of constraints, mainly energetic and
morphometric, that did shape the lung through evolutionary processes.

◦ The lung is the central organ of respiration, connecting the outer atmosphere to the cellular com-
partment through the ventilation process.

◦ We show that the constraints on this major organ imply a high level of complexity of the organ’s
shape and a precise control of the ventilation.

◦ The control of growth and shape of the lung is highlighted by previous works on the scaling laws that
exist and govern the development and function of this organ throughout the entire mammal class.

◦ Through several examples, we demonstrate how these scaling i.e., allometric laws control the venti-
lation, and the respiratory processes in general.

14.1. Optimization of organs and systems
In the previous chapters, the central model of the cell has been deeply explored. On another scale, the
integration of cells into larger structures such as tissues, organs, and entire systems in multicellular organisms
requires an extension of the main concepts presented in this book. Nevertheless, the completion of the
multiple functions of an organ follows the same general principles as for individual cells, including the economic
aspects.

14.1.1. Organs and constraints

The way that a cell population aggregates itself into a high-level structure, as part of a pluricellular organism,
has been determined through evolutionary processes, following a more general path of specialization of
structures and functions. Each organ evolved to fulfill its functions in the most optimized manner. This
observation leads us to interrogate the concept of optimization for such a large structure from a cellular
point of view. In the context of organ function, optimization can be defined through the processes by which
the functions are fulfilled as best as possible while minimizing the associated cost variables. Among those
variables, energy plays a central role. Thus, one possibility for constraining the organ would be to maintain its
function at an optimal level while minimizing its cost in energy. This effect can be expressed mathematically.
Let us define the cost in energy E which depends on one or more variables x ∈ Rn (n > 1). Furthermore, let
us define one or more equality constraints to our problem, c(x) = 0, where c : Rn → Rm. The optimization
problem under constraints comes down to finding an optimal value for x that minimizes the function E(x)
while x satisfies c(x) = 0. This results in

min
x∈Rn

E(x), such that c(x) = 0. (14.1)

The optimization under constraint problem can be solved using the Lagrangian function,

L(x, λ) = E(x) −
m∑

k=1
λkck(x),
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where the λk are Lagrange multipliers. Indeed, if we assume that x∗ is the optimal solution to the prob-
lem (14.1), then thanks to the Lagrange multiplier theorem, there exists a unique Lagrange multiplier λ∗

such that,
∇E(x∗) = λT

∗ Jc(x∗),

where Jc is the Jacobian of the function c. It implies that the optimal solution x∗ is a stationary point of L,
satisfying the condition of minimal energy expenditure.

A study of the constraints on the cardiac system offers an excellent example of energy optimization, due
to high consumption of the heart. The cardiac pump delivers deoxygenated blood to the lung through
pulmonary circulation and brings oxygenated blood to the whole body through systemic circulation [1].
Interestingly, blood pressure developed in both ventricles are not of the same order of magnitude, with a left
ventricular pressure approximately ten times larger than the right ventricular one [1]. This makes sense from
an energetic point of view; the heart requires a non-negligible amount of energy to fulfill its role of blood
pumping. Furthermore, as with any mechanical system, only a fraction of the energy consumed (mainly in the
form of ATP) is converted in mechanical work around 25% [2], the rest being dissipated as heat. Thus, the
pumping work tends to be optimized from an energy consumption point of view. On one hand, the pressure
needed to irrigate the pulmonary circulation is low; the lung presents a small value of resistance to perfusion,
and its apex is located only centimeters above the heart position. And on the other hand, the pressure
developed in the systemic circulation must allow the oxygenated blood to irrigate all the organs, including
high-energy consumers – muscles, brain – that located further above heart position, developing a hydrostatic
pressure that the blood flow has to overcome [1]. It is to be noted that this energetic optimization is also
connected to the metabolism requirements, with a pumping work closely related to the bodys O2 consumption
[3], which ensures an optimized adaptation of the cardiac output to the body energy requirements.

Although often considered as a major aspect, this energetic constraint is far from being the only condition
for a proper functioning of the organ. Other variables such as nutrient consumption, metabolic integration or
physical constraints participate in shaping the organ function. Brain development in primates, and humans
especially, is a prime example of effect that combination of several constraints has on energetic and nutrients
availability. The underlying mechanisms that determine the evolution towards a large and complex brain
structure in humans are still debated [4, 5]. However, it is evident that the development and normal function
of this organ is dependent on adequate and specific energetic and nutrients inputs. From the energetic point
of view, brain metabolism largely depends on glucose consumption. However, in case of high consumption
and/or deprivation, ketones metabolism takes place in order to furnish a fast and rich source of energy for
the organ. Ketones are catabolized mainly in the liver [6], and have the important property of being able to
cross the blood-brain barrier, to the contrary of long chains of saturated fatty acids [7]. In parallel, proper
brain development and function require a large input of specific nutrients that are not common in every food
source [8]. Among those, iodine [9] and iron [10] appear to be essential for the brain, and exert a strong
constraint on its adequate growth and functioning. The notable presence of iodine-enriched food sources
close to the sea shores, compared to traditional terrestrial food sources, is thought to have favored the recent
development of the so-called shore-based paradigm of human brain evolution i.e., that the access to seafood
produce supported and enhanced brain development in early hominid populations, leading to increased brain
mass and cognitive functions in those populations [8]. Among these considerations, let us remind that any
organ has to develop and function in specific localization and body environment. Thus, the constraints
applied to an organ and its development and function can also be of morphometric nature.
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14.1.2. Energy conversion in living systems

When energy is transferred to a system, its response manifests itself at the microscopic level by the excitation
of its individual degrees of freedom, and at the global level when collective excitations are possible. In generic
terms, a thermodynamic machine is defined as a system where an incident energy flow dispersed is converted
into an energy flow aggregated and a loss flow. This conversion is performed by a thermodynamic working
fluid which, carrying entropy, leads to a coupling between the respective potentials through the equations
of state.

In the case of thermal machines, the dispersed form of energy is called heat and its associated potential is
temperature, while the aggregated form is called work and its associated potential is, for example, pressure.
Temperature and pressure are linked by one or more equations of state. The system response results from
the collective response of the microscopic degrees of freedom of the working fluid. Thus, part of the energy
received by the working fluid can be made available to a load on a global, and possibly macroscopic, scale for
a given purpose as useful work, the remainder being redistributed (dispersed) at the microscopic level and
dissipated due to internal friction and any other dispersion processes imposed by the boundary conditions [11].
Conversion efficiency is therefore closely related to the proportion of energy allocated to the system’s collective
modes.

Living organisms are open, out-of-equilibrium and dissipative systems, as they continuously exchange energy
and matter with their environment [12, 13]. Unlike classical thermodynamic engines, for which equilibrium
models can be constructed using extremal principles, such a possibility does not exist in the case of living
organisms due to the absence of truly identifiable equilibrium states and the absence of principle for non-
equilibrium systems. Nevertheless, assuming a global system close to equilibrium, the development of a
tractable thermodynamic model of metabolism can be based on notions from classical equilibrium thermody-
namics. In this approach, the working fluid acts as a conversion medium, characterized by its thermoelastic
properties, or chemicoelastic coefficient for chemical systems.

14.1.3. The example of the lung

As an example of an organ submitted to geometric limitations, the lung has to face, from its early development
to its mature state, multiple constraints on its morphometry and proper functioning. The principal role of this
organ is, as well known, to establish the connection between the respiratory gases in the atmosphere and these
in circulation in the body i.e., O2 as a reactive agent, and CO2 as a by-product that has to be eliminated from
the organism. To fulfill its role, the lung has evolved in a manner that maximizes the gas exchange surface
as diffusion is a surface phenomenon in a reduced thoracic volume. This surface-to-volume requirement

has forged the lung structure has it is known; an intricate dichotomic bronchial tree that conducts the air
inwards and outwards, to and from the alveolar sacs, respectively. This semi-fractal, space-filling structure,
presents the advantages of an extremely wide exchange surface enclosed in a relatively small volume [1].

The mechanisms of development of the lung branching structure in a closed environment is still a debated
question [14, 15]. Indeed, the tree structure presents a series of specific characteristics necessary for a proper
functioning of the organ. Among these, the space-filling aspect of the bronchial tree is remarkable, as it
solves the problem of the surface-to-volume constraint of the organ. In addition, the whole bronchial tree is
a self-avoiding structure, as no bronchus enters in contact with other ones in its local environment, which
ensures a proper circulation of the air in the structure. It is striking that these properties, which can be found
in fractal geometries, are observed in any well-functioning lung structure, leading to important developmental
questionings. For example, the pattern of branching of the bronchi, although strongly stereotyped in the first



4

generations starting from the trachea, appears to follow a space-filling procedural development rather than a
deterministic branching pattern [14, 16, 17]. Accordingly, some authors have developed a set of hypotheses
that tend to explain these mechanisms. A group of restricted genes would encode the steps of branching
and growth of the bronchi during the organ development, ensuring a proper structure of the adult lung [15],
following procedural steps somehow encoded in genes or groups of genes coding for periodicity, bifurcating
and rotating routines [18]. However, to the best of our knowledge, these genes have not been determined
nor a proper molecular mechanism of stereotypical branching.

Among the questions raised by the programmed morphogenesis approach, the link between the molecu-
lar dimensions and the organ world are still elusive. Another path for branching procedure, which could
reconcile the deterministic point of view with the problem of the transfer of information along different
orders of magnitude is the self-organized morphogenesis approach. Several authors [14, 19, 20] suggested
that the branching routine of the bronchial tree is less stereotyped than thought, especially in the central
and distal generations. This hypothesis is supported by the observation that modeling approaches using
stochastic space-filling routines, constructed based on a stereotyped proximal tree, are capable of generating
tri-dimensional branched structures that satisfy the constraints of a morphometric adult lung [21, 22]. On
another side, the core concept of the self-organized morphogenesis approach relies on the observation that
key molecular components are necessary and sufficient for proper growth and branching of the bronchial
epithelium. Among these, the fibroblast growth factor 10 encoded by the fgf10 gene has been demonstrated
to play a central role in epithelial proliferation [23], whose activity is highly regulated [14, 24].

In 2012, Clément et al. [14] proposed a scenario for the spontaneous emergence of a tree structure. This
scenario is based on the sole diffusion of a protein promoting cell proliferation, such as FGF10, in an environ-
ment with two layers that mimic the bronchial epithelium and the lung mesothelium.In addition, the layers
present a resistance to folding and are growing as a function of the received flow of proteins.This scenario
forms a model for the lung development and has been studied using mathematical and numerical tools. To
mimic the diffusion process from the outer layer of the organ (mesothelium) to the inner layer (bronchial
epithelium), Clément et al. solved the Laplace equation applied on the protein concentration c:

4c = 0

Then, they considered that each layer was growing according to a function of the local protein gradient:

dx
dt = fm (||∇c(x)||) for x in the mesothelium
dx
dt = fe (||∇c(x)||) for x in the bronchial epithelium

The functions fm and fe are increasing functions, typically with a sigmoid shape. To avoid the epithelium
to catch up with the mesothelium, fe is kept smaller than fm. A smoothing of the layers based on a fixed
characteristic size is then performed in order to mimic the layers resistance to folding. With this model,
Clément et al. observed the spontaneous formation of branching patterns similar to those observed during
bronchial development, as depicted in Figure 14.1 and, based on an extended model, in Figure 14.2. Hence,
this compact modeling approach is sufficient for observing de novo branching and growth patterns in a
simulated tissular environment. Since then, this self-organized morphogenesis approach has been used as a
framework for other organs [25] and other branched systems [26]. To date, the question of the mechanisms
of development of branching organs is not clearly elucidated. However, the link between the molecular and
cellular components requires further investigation, in order to unveil the determinants at the scale of the
tissues and organs.
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Philosophical remarks 14.A : The origin of shape?

How growth and organ specialization define the shape and structure of the mature organ is a long-debated
scientific question, which has not unveiled all its secrets and mysteries, as we will discuss in Section 14.3.

Lung 
Epithelium

Mesenchyme
Pleural
Mesothelium

Branching mechanism

Increased gradient
favors growth

Avoiding mechanism

Low gradient
prevents growth

∇C → 0

Cmax

Cmin

CmaxCmin

Figure 14.1: Proposed mechanism for the morphogenesis of biological branched structures. In this approach,
the gradient of concentration of a key molecular activator guides the growth of specific tissue layer through
the activation of the associated receptor. In this example, the local gradient of concentration of FGF10
(black arrows) activates the budding of the epithelium layer (branching mechanism – left). As the tissue
curvature flattens, the local concentration vanishes and the growth stops, preventing the tissue overlap
(avoiding mechanism – right) [14].

However, these examples of constrained organ development raises several issues that need to be discussed in
details. Among these, one can notice that the shape of the system appears as central in the developmental
considerations, especially under constraints.

In the next section, the respiratory system, and the lung as its central organ, will be studied in details in light
of the concepts of organ optimization. Indeed, the lung, its structure, its functioning, its efficiency, are all
the result of a series of optimization under constraints that shaped the organ through evolution.

14.2. The lung as a model organ for optimization under constraints
At the core of the respiration process, the lung is the organ that connects the ambient air to the blood,
allowing to transport oxygen from the ambient air to blood and carbon dioxide from blood to the ambient
air. The needs of the body in oxygen and carbon dioxide, the respiratory gases, determines the lung function,
which is based on a complex geometrical structure and on several physical and chemical processes.

14.2.1. Lung morphology, a complex structure

A basic description of the lung structure would consist in dividing it in two parts: the bronchial tree and the
exchange surface with blood. The function of the bronchial tree is limited to the transport of the respiratory
gases and no exchange occurs in this part of the lung. It forms a cascade of bifurcating airways with
cylindrical shapes. There is an average of seventeen successive bifurcations in the human lung. The trunk
of the tree is called the trachea; it is connected to the ambient air through the tracheo-pharyngeal pathway.
The leaves of the tree are called the terminal bronchioles; they are connected to the exchange surface with



6

Figure 14.2: Tridimensional spontaneous emergence of a tree (budding) based on the model of Clément et
al. (2014) [27]. An eighth of the budded sphere has been sliced out to show the branching core (blue).
Notice the self-avoiding and space-filling branching, which are commonly found in biological tree structures.

blood. At each bifurcation the size of the airways is decreasing, with a tracheal diameter of about 2 cm and
a diameter of the terminal bronchioles of about 0.3 to 0.5 mm. The exchange surface with blood consists in
a foam-like structure that is an assembly of exchange units called the acini. Each acinus is also shaped as a
bifurcating airway tree, but the size of the airways is conserved at the bifurcations. There is an average of
six successive bifurcations in a typical acinus. The acinar airways are called the alveolar ducts and their walls
are garnished with bubble-like structures, the alveoli. The alveoli walls are mainly blood capillaries, called
pulmonary capillaries, and they are the location of the respiratory gas exchanges. Each terminal airway of
the bronchial tree feeds an average of two acini. The auto-similar, multi-scaled structure of the bronchial
tree and of the acini allows the lung to contain a very large exchange surface that is folded in the thorax. In
a typical human, the exchange surface is about 70-100 m2 [1].

Since the morphology of the lung is complex, it becomes necessary to make assumptions in order to have a
simple model while conserving the principal geometrical properties. Our model is then based on the assembly
of self-similar trees with cylindrical branches and symmetric bifurcations that mimic the two functional zones
(see Figure 14.3). To account for the core geometrical properties of the lung, we assume that the dimensions
of the branches in the conductive tree decreases from one generation to the next with a ratio h =

( 1
2
) 1

3

[35, 36, 37], while in the acinus we assume that the size of the bronchi remains constant [35]. Note that the
airways spatial distribution such as the branching angles or the orientations of the branching planes is not
taken into account in our model since it is not really relevant for the computation of oxygen transport in the
lung.

14.2.2. Lung dynamics: where physics enters the play

The transport of the respiratory gases to and from blood involves a combination of physical processes which
ensure that the needs of the body in respiratory gases are fulfilled.

Diffusion : no energy costs, but too weak. As blood entering the pulmonary capillaries has an oxygen
partial pressure lower than the oxygen partial pressure in the alveolar air, oxygen flows to the blood by the
process of diffusion that tends to balance the partial pressures between blood and the alveolar air. For the
lung’s point of view, the blood acts as an oxygen sink. The transport of carbon dioxide in the lung relies on
the same processes than that for oxygen, except that blood flowing in the alveoli membranes acts as a source
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Box 14.B : Energy conversion in muscles

Despite the complexity of biological systems, it is possible to apply the Onsager’s phenomenological approach
of locally linearized non-equilibrium thermodynamics Onsager [28]. Through this approach, it is possible to
identify the non-equilibrium processes that link the degradation of the chemical potential of food by its digestion
into a macroscopic form of energy made available for muscular work. By applying Onsager’s approach and
integrating it with macroscopic systems, we can describe the behavior of certain thermodynamic conversion
machines under mixed boundary conditions [11, 29, 30]. In the case of Dirichlet boundary conditions the system
is driven by the potential differences, meanwhile in Neumann boundary conditions the system is driven by the
fluxes. Mixed conditions are located between these two extreme configurations. These lead to feedback effects
and the emergence of complex dynamic behaviors [31].

(A) Illustration of muscle as an energy converter. The incoming energy flow Φ+ is converted into mechanical
power P = FM IM and a waste fraction Φ−. IM is the so-called metabolic intensity. (B) Plot of the system’s
response under varying metabolic intensities IM . The response extends from the basal resting point to the
point of exhaustion, via the point of maximum work production.

If we apply this description to the case of living organisms that have been reduced to chemical conversion ma-
chines, we obtain a thermodynamic formalism (see Figure above) that regains the phenomenological description
of the muscular response proposed by Hill [32, 33]. In Hill’s phenomenology, the metabolic force FM and the
contracting velocity v are linked by three constants represented by the equation FM = c

v+b
− a. The thermody-

namic formulation gives FM = Fiso+Rfb

IM +IT
IT − (RfbIT + RM IM ) where IM ∝ v. The thermodynamic approach

gives us access to the physical meaning of the parameters i.e., Fiso is the isometric force of the muscle, IT

defines the threshold of acceptable metabolic intensity, RM is the viscous resistance to displacement and Rfb

the feedback resistance induced by the mixed conditions previously mentioned .
A proxy for the flow released by the muscle is the quantity of oxygen breathed in during ventilation [34]. To
achieve an effort of a given intensity, the level of O2 adjusts accordingly. Naturally, this quantity cannot grow
indefinitely, and is limited by the absolute size of the organ that enables this exchange and by the relative size
of this organ compared to the size of the individual.
For an individual, this is an intrinsic limitation on the ability to produce effort. So, depending on the size of the
individual, which constrains its volume, the respiratory system must be optimized to maximize the flow of O2.
By comparing inter-species data and using a generic description, it is then possible to find an allometric law, as
we shall see in this chapter.

of carbon dioxide. The diffusion process is passive in the lung i.e., no energy is spent by the organ to perform
the transport. Notice that this is not true from the pulmonary blood circulation point of view, as blood has
to be incessantly renewed to maintain the respiratory gas partial pressure difference between the alveolar air
and the blood. However, at the metabolic time scale, the diffusion process has a limited range in the airway



8

Figure 14.3: Illustration of the lung model used in this work. The tree in beige mimics the bronchial tree,
where oxygen and carbon dioxide are only transported along the branches. The tree in blue mimics the acini,
where the respiratory gases are transported along the branches. They are also captured by the alveoli that
cover the walls of the branches.

tree. Were the transport of the respiratory gas only based on diffusion, the lung could not maintain the
respiratory gas flow at a level compatible with the mammals metabolisms. The reason behind this limitation
stands in the size of the airway tree. The pathways from the ambient air to the respiratory zone are too
long and narrow for the diffusion to provide gas flows compatible with the metabolism of mammals. In the
case of the human lung, the typical length of these pathway is of about Lp = 30 cm [36]. The characteristic
time tp for an oxygen molecule to travel by diffusion through all such a pathway can be estimated using a
dimensional analysis. Using Lp and the diffusion coefficient of oxygen in air D = 0.2 cm2 · s−1 [38], the
order of magnitude of tp can be estimated with:

tp =
L2

p

D
' 4500 s = 1 hour and 15 minutes!

Hence, a pure diffusive transport of the respiratory gas cannot fit the mammals needs. Actually, in human,
the order of magnitude of the length LD traveled by diffusion during the typical time of inspiration i.e.,
ti = 2 seconds, is LD =

√
D × ti ' 6.3 mm. Thus, in the resting human, diffusion can transport oxygen

from the terminal bronchioles to the nearby exchange surface. However, at a time scale compatible with the
metabolism, diffusion cannot reach the upper part of the bronchial tree. It cannot either reach the deeper
parts of the respiratory zone, which is non active at rest. Actually, this last phenomenon, called the screening
effect [38], plays a crucial role in the lung. It is described in details later in this chapter. More generally, the
limited spatial range of diffusion has many consequences on the living systems. An emblematic example is its
role on the size limitation of insects [39], where diffusion in the tracheal tubes is the only mean of respiratory
gas transport. It participates to the explanation of why the increased atmospheric oxygen concentration
during the Palaeozoic era allowed insects to be larger than today as, following Fick’s law, the diffusive flow
is proportional to the gradient of partial pressure between the ambient air and the inner body.

Convection : the rescuer. We have seen that the diffusion process is too weak to transport the respiratory
gas through the whole airway tree. In the absence of other transport mean, the oxygen partial pressure in
the lung would decrease and the flow of oxygen to blood would drop. Similarly, the carbon dioxide partial
pressure would increase and prevent the exchanges with blood to occur. Consequently, the air in the lung
has to be renewed in order to expel the excess of carbon dioxide and to refresh the inhaled air volume with
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oxygen. This phenomenon is called the ventilation. The ventilation is a dynamic i.e., time-dependent, process
based on the succession of inhalation and exhalation of a volume of air, the tidal volume, at a given rate, the
breathing frequency. Ventilation is performed thanks to a set of muscles that surround the lung and modify
its volume. At rest regime, the main acting muscle is the diaphragm, located at the base of the lung. By
first pulling onto the lung, this muscle deforms the lung tissues, creating a negative pressure drop and the
transport a volume of ambient air inside the lung; this is the inspiration phase. At rest, the elastic energy
stored in the tissues during the inspiration phase allows for a passive recoil of the lung and a volume of air
equal to the volume inhaled is expelled; this is the expiration. Then the cycle repeats following the same
procedure, at least at rest. Since the duration of a breath cycle for a resting human is about four to five
seconds, a human performs, on average, about six to seven hundred millions breaths during her/his lifetime.

Modeling the oxygen transport. The transport of oxygen in the lung is then driven by three phenomena:
diffusion, convection by the airflow and exchange with blood through the alveoli walls in the alveolar ducts.
The partial pressure of oxygen averaged over the lumen area is transported along the longitudinal axis x of
the airway. Hence, in each airway of our idealized lung, the mean partial pressure of oxygen P over the
airway section follows,

∂P

∂t
− D

∂2P

∂x2 + u
∂P

∂x
= β (Pblood − P ) , (14.2)

where D is the oxygen diffusion coefficient, u is the velocity of the airflow, β is a reactive term and Pblood is
the partial pressure of oxygen in the capillary blood. The reactive term β mimics the exchanges with blood
through the alveolar membrane. This coefficient depends on the diffusion coefficient of oxygen in water, on
the solubility coefficient of oxygen in water, on the thickness of the alveolar-capillary membrane, and on the
radius of the alveolar duct. It is equal to zero in the bronchial tree since no exchange with the blood happens
in this part of the lung and is positive in the acini. The oxygen partial pressure in blood is determined by
assuming that the flow of oxygen leaving an alveolar duct through the alveolar-capillary membrane is equal
to the flow of oxygen captured by blood, accounting for the oxygen captured by hemoglobin and for the
oxygen dissolved in plasma [1]. Finally, all generations are linked through bifurcations by assuming continuity
between generations and conservation of the quantity of oxygen at each bifurcations.

Experimental methods 14.C : Conditions for the numerical simulations

Our model takes as input the ventilation parameters: the tidal volume VT (in mL) and the breathing frequency
fb (in min−1) and outputs the mean amount of oxygen exchanged with blood over a respiratory cycle. To
validate our model, we performed computations at rest by assuming that a human breathes around 12 times per
minute and inhales around 500 mL of air for each breathing cycle. With these parameters, our transport model
gives an oxygen flow exchanged with blood of 230 mL · min−1, which is close to the average physiological value
of 250 mL · min−1 [1].

14.2.3. The energy expenditure or the cost of breathing

Breathing is part of the basal metabolism, meaning that it is a regular and mandatory energy cost for the
maintenance of the body. Yet, natural selection, one of the main processes driving evolution, tends to select
for minimal energetic cost so that the organisms can allocate most of their resources to their reproduction
[40]. Hence, in order to understand breathing, it is important to determine the origin of the energetic costs
and how they are affected by the breathing process. We already pointed out that diffusion, considered from
the lung point of view, is a passive process. So, most of the energetic costs involved in the lung function
arise from the process of ventilation. Energy is spent through the action of the muscles on the lung. This
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Figure 14.4: Trade-off between elastic energy stored in the tissue and viscous energy dissipated in the air
circulation (exercise regime, computed from our model).

action has two main effects: it deforms the tissues and it displaces the air along the bronchial tree. On the
one hand, the tissues are deformed due to the action of the thoracic muscles, especially the diaphragm. This
deformation is considered as elastic in the normal range of ventilation [41], and energy is dissipated along
the displacement of the tissues. On the other hand, as every gas, air acts as a fluid with specific viscosity.
As the bronchial tree is an assembly of a high number of narrow tubes with decreasing size, the energy spent
for the displacement of the air in the bronchial tree is dominated by the energy dissipated by the friction of
air in the bronchi. The air kinetic energy is negligible relatively to the dissipation. This can be summarized
in term of the power spent by the muscles (energy per unit of time):

Pm︸︷︷︸
muscle power

' Pe︸︷︷︸
elastic power

+ Pa︸︷︷︸
air viscous dissipation

.

These quantities depend on several lung characteristics, on the breathing frequency f and on the amount of
air inhaled during on breath cycle VT . This raises the trade-off shown in Figure 14.4 and, using optimization
theory, optimal ventilation frequencies and tidal volume can be be predicted. The viscous dissipation of air
in the bronchial tree is characterized by the lung hydrodynamic resistance R, which is directly related to
the geometry, size, number and structuring of the bronchi [41]. The hydrodynamic resistance is a physical
quantity that represents how the energy put in the system is divided between kinetic energy and heat energy.
It connects the volume of air displaced per unit of time, also called air flow F , to the force per unit of surface
applied to the air, also called air pressure pa: p = RF . For the same pressure applied on the lung, the
higher the hydrodynamic resistance, the lower the air flow and the higher the dissipation. Then, the power
dissipated by viscous friction of the air inside all the bronchi can be estimated by Pa = pF = RF 2. By
assuming in our case that the velocity of the air follows a sinus function, we can deduce the power dissipated
by viscous friction as follows:

Pa = 1
4R (πfbVT )2

.

The elastic power is characterized by the compliance C of the lung, that relates the force per unit of surface
applied by the muscles (pm) to the volume change of the lung [43]. The compliance depends on the lung’s
volume, especially when the deformation of the lung is high although the compliance can be considered
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constant while healthy. That is why, in our case, we assume that the compliance is a constant and we
neglect the non-linearities arising at large lungs deformations [44]. The elastic power can be estimated by
integration of the volume along the inspiration phase and it gives us,

Pe = V 2
T fb

2C
.

Finally, the total energetic cost of breathing P can be written as the sum of the power dissipated by viscous
friction Pa and the elastic power Pe. The total power has to be minimized relatively to the tidal volume VT

and the breathing frequency fb with a constraint on the oxygen flow to blood that has to match the oxygen
flow demand (see Equation 14.1). Thanks to our model previously defined, we can compute the oxygen
flow to blood as a function of tidal volume and breathing frequency and compare it to the oxygen flow V̇O2

requested by the body at the regime considered.

Our model predicts (see Figure 14.5), for a human at rest, an optimal breathing frequency of 12.2 breaths per
minute and an optimal tidal volume of 497 mL, which are very close to the average physiological values [35].
The model exhibits a robustness in term of frequency perturbation around the optimal. A 5% shift in the
energy brings the frequency into a range between 8 breaths per minute up to 18.5 breaths per minute. This
effect is due to the fact that, at low regimes, a low tidal volume VT is sufficient to perform an optimal
ventilation. When the exercise intensity increases, the power profiles as a function of the frequency become
steeper and steeper and focus the optimal value within a tighter region. It implies that a shift from the
optimal configuration at high intensities is predicted to be costly in term of energy spent. This behavior is
fully compatible with the fact that the control of ventilation is stronger at exercise, preventing even talking.
The question of the optimal conditions of ventilation in human leads naturally to a series of extensions that
need to be considered. We have seen previously that the optimization under constraints occurs in almost
every organ in all the living beings. Thus, could we expect the present model to be extended to all mammals,
as the control of ventilation is, more than probably, present in the whole mammalian class?

Figure 14.5: Total power expenditure during ventilation (W) as a function of the respiratory frequency
(min−1) for different intensities of exercise. Dots correspond to the optimal ventilation frequency i.e., that
minimizes the dissipated power. Adapted from [42].
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Figure 14.6: Distribution of total sleep duration (h) in mammals, based on data from Savage & West [46].
The data are best fitted by the curve indicated in light gray.

14.3. Allometric scaling laws for respiration and ventilation
The answer to this question of generalization leads us to a vast scientific question that will bring us back to
the late 19th century and which is still open on many aspects.

14.3.1. The emergence of scaling relations in nature

In 2007, Savage and West published a seminal work in which they present a collection of data of sleep
duration in a set of mammalian species. Among other major results, their analysis confirmed the previous
observation [45] that the larger the animal, the shorter the duration of its sleep cycle [46]. More precisely, the
sleep duration correlates negatively with the body mass of the mammal and follows, based on the data from
Savage & West, an interesting exponential law of the form ts = 10.1 M−0.103, with ts the sleep duration in
hours during a 24 hours period and M the body mass of the mammal in kilograms, as seen in Figure 14.6 [46].
Thus, by taking the log of both sides of the equation, one can write this sleep-to-mass relation as log ts = log
10.1 - 0.103 log M i.e., a linear relation between the logarithm of the sleep duration and the logarithm of the
mass of the animal, see Figure 14.7. As we will see later, this type of exponential relation is now referred,
in ecological sciences, as an allometric scaling. In general, an allometric law will write Y = Y0M b, where Y

is the studied – physiological, morphometric – property, M the mass of the living organism, Y0 and b the
allometric prefactor and exponent, respectively [47, 48]. Actually, the concept presented by Savage & West
is far from being recent. The history of the study of allometric relations dates back to the 19th century.
Scientists from various disciplines started to analyze the changes in shape and form of living beings in relation
with their overall size [49]. Let us read the fascinating story told by Jean Gayon about the origins of the
allometric concept [50].

14.3.2. A brief history of allometry

In a pioneer work from 1897, Eugène Dubois described the relation that guides the evolution of brain’s mass
and that of the individual in a variety of mammal species [51]. He observed that brain is smaller, relatively to
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Figure 14.7: Distribution of total sleep duration (h) in mammals in log-log plot, based on data from Savage &
West [46]. The data are best fitted by the line indicated in bold black. Confidence intervals are presented as
light gray zones along the regression line. The corresponding allometric relation is presented in its exponential
form.

the their mass, in bigger animals. He then derived an adequate expression for this relation, such as e = c sr,
where e is the brain’s mass, s the body mass and c and r two coefficient that define the relation, with r close
to 1/2, justifying the relative decrease in brain’s mass that he observed. As far as we know, this represents
the first mathematical expression of an allometric law, years before this term was even coined as it. It is in
1907 that Lapicque [52] had the idea to transform Dubois’ relation in a log-log dependency, giving a straight
line representation in logarithmic coordinates that is now familiar to us, cf. Figure 14.7. At that time, this
work was purely descriptive and empirical. However, biological and ecological data started to accumulate
in the following years that led, mainly in animal species, to a variety of scaling laws. Thus, the ubiquity
of allometric relations in every ecological discipline [53] raised the question of the nature of the biological
mechanisms underlying their observation.

In parallel, the question of the emergence of forms in living organisms arose in the literature. One of the major
works at that time came from the Scottish naturalist D’Arcy Wentworth Thompson, whose main contribution
came from his book On Growth and Form, first published in 1917 [54]. In this publication, he adopted the
– still debated – thesis that the living systems as we know are submitted, in addition to the process of
natural selection, to the physical laws of nature that can modify, transform and adapt their form and their
path of development i.e., their growth [55]. This reference publication paved the way to the new disciplinary
research field of biomathematics and, even in present times, is still considered as a major contribution to this
field [56]. However, the D’Arcy Thompson’s approach has not been accepted by the whole community, and
the debate is still vivid more than a century after the publication of the first edition of his work [57]. Indeed,
D’Arcy Thompson was not entirely convinced by the pure Darwinian approach that dominated the field of
developmental biology in his time. Although a strong Darwin’s admirer [58], he rather considered that the
paths of development of the organisms were not dictated purely by acquired mutations and hard-encoded
routines. At the contrary, he was convinced that these paths could only follow a number of sequences, a series
of schemes that, following the laws of physics and chemistry, would allow for the formation of the variety
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of shapes and developments observed in nature [56, 57]. Critics emerged about his teleological – in some
ways [58] – conception of evolution, or at least of emergence of form. In essence, his work was one of his
time, and his theories of forces of development were not supported by the genetic and molecular knowledge
that has since been accumulated [57]. D’Arcy Thompson was an author of his time. He paved the way,
with others developmental naturalists, to numerous concepts in biomathematics that influenced a number
of past [59] and present works, as discussed in Section 14.1. But D’Arcy Thompson was also an author
among his peers. Motivated by his conception of developmental shaping forces, he started to correspond
with a younger British naturalist named Julian Huxley, who will later forge a prolific international career as
a biologist and science advocate, although carrying with him some controversies that are beyond the scope
of this chapter [60].

The scientific correspondence started slightly after one of Huxley’s major publication, dated from 1924. In
this article, Huxley studied the dynamics of growth of chelae in a crab species whose individuals possess one
small and one large chela [61]. What seems at first a highly specific topic is enlarged by the idea to measure
the mass of the chelae relatively to the mass of the individual. Following the steps of Dubois and Lapicque,
Huxley weighted around 400 specimens of crab and plotted in a logarithmic scale the mass of the large
chela against the total weight of the animal minus the weight of the large chela. He then observed that the
experimental data could be joined by a straight line in this logarithmic plot. The originality of Huxley’s work
resides in his interpretation of the results that he obtained. He noticed that the slope k of the regression line
remained larger than one, in accordance with the observation of the relative larger i.e., heterogonic growth
[62] of the chela compared to the growth of each individual. He then provided a proposed mechanism for
this relative growth: the rate of cellular division in the chela is larger than the one in the rest of the body,
more precisely in a k : 1 ratio [61]. With this – still emergent – mechanistic approach, Huxley provided for
the first time a simple method for deciphering heterogonic growth of a characteristic, that will be observed
as a straight line of slope k > 1 when plotted against the normalized mass of the individual in logarithmic
coordinates.

Finally, the works of Lapicque, Dubois, D’Arcy Thompson and all their contemporaries emerged in 1936 in a
joint paper between Huxley and a younger scientist, Georges Teissier, in which they agreed for the terminology
of allometry and the associated law that is now famous y = bxα [63]. Altogether, this brief section on the
historical emergence of the allometric concept in ecological sciences depicts a vibrant and active research
theme, developed in the late 19th century, which extends the Darwinian concept of natural selection towards
the emergence of growth, form and function. However, the reader will notice that the allometric approach of
these times is still largely descriptive, with limited causal explanations of the nature of the scaling coefficients
and the putative mechanisms that drive their behavior.

14.3.3. Allometry: a mechanistic approach

Many years later, a possible approach that compensates for this lack of mechanistic causality would be found
in the work of West, Brown and Enquist (WBE ), published in 1997 [48]. In this major article, the authors
focused on the allometries in metabolic properties that have been described in the past decades, with the aim
of developing a new mechanistic framework that would explain these allometries i.e., be able to derive the
allometric exponents for the numerous physiological properties at stake here. The question of the existence
of a general allometry for the metabolic rate of the living beings is a thrilling question. This would imply that
all the organisms, from the tiny bacteria to the massive trees or mammals, do possess shared mechanisms of
energy expenditure that would reflect on the presence of a common exponent all over the different orders of
magnitudes among the species. Furthermore, the exponent should reflect somehow, by its value, the nature
of the energetic mechanisms, and thus could be derived by a comprehensive modeling approach. WBE answer
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positively to these strong hypotheses, and developed a structured approach that focuses on the modeling of
energy and mass fluxes in biological networks – cardiovascular and respiratory systems for example – which
they consider as the common ground for all the species [48]. The hypotheses of WBE are of strong nature,
and have been discussed largely in the literature (see for example [64, 65]). Although this important – and
still open – debate lies beyond the scope of this chapter, it appears important to emphasize that the WBE
approach created a mechanistic, mathematical framework for the study of allometric relations that, somehow,
acted as a bridge between the traditional descriptive allometry and the modern mechanistic approach.

14.3.4. Allometric relations for the respiratory system

As far as the respiratory system is concerned, the model of WBE appears to act as a promising framework
for the study of the allometric relations of this system [66]. Indeed, the lungs of mammals are built as a
network of mass and energy transfer, as described before, and share morphological and functional properties,
raising the question on whether the previous results for human can be extended or not to all mammals. These
properties are known to be dependent on the mass M of the mammal with allometric scaling laws [47, 48,
63, 67, 68]. Furthermore, the physics of ventilation, and hence its control, is linked to the geometry of the
lung. Consequently, the morphological differences among mammals also affect the control of ventilation.

First, our gas transport model for the human lung presented in the previous section can be slightly modified
to be valid for all mammals. Indeed, we know that the lungs of mammals share invariant characteristics [35]
such as the tree-like structure with bifurcating branches and the decomposition into two parts: the bronchial
tree and the acini. The derivation of a lung model that depends only on mammal mass requires to relate
explicitly the morphological parameters involved in our model such as the tracheal radius and length, with
the animal mass. We used the datasets from [48]. The oxygen transport and exchange now occur in the
idealized lung that has been generalized to fit any mammal. The transport of oxygen in the mammals lung is
still driven by the tree phenomena: convection by the airflow, diffusion and exchange with blood through the
alveoli walls. Hence, in each airway, the partial pressure of oxygen follows the convection-diffusion-reaction
equation (14.2) previously defined. The exchange coefficient β is dependent on the mammals mass since
it depends on the radius of the alveolar duct which follows an allometric law. Finally, we search for the
minimum of the total energetic cost of breathing P relatively to the tidal volume VT and the breathing
frequency fb with a constraint on the oxygen flow to blood that has to match the oxygen flow demand V̇O2 .
Since allometric scaling laws for oxygen flow demands for mammals at basal, field and metabolic rates are
available in the literature [47, 69, 70, 71], we can compute the desired oxygen flow V̇O2 depending on the
mammal mass and on the metabolic regime.

Our model predicts that breathing frequencies and tidal volumes follow indeed allometric scaling laws. Fur-
thermore, these laws can be derived in three different metabolic regimes: basal metabolic rate (BMR), field
metabolic rate (FMR) and maximal metabolic rate (MMR), as seen in Figure 14.8,

fBMR
b ≈ 0.61 M−0.27 Hz, V BMR

T ≈ 6.1 M1.04mL,

fF MR
b ≈ 1.17 M−0.31 Hz, V F MR

T ≈ 11.8 M0.97mL,

fMMR
b ≈ 1.37 M−0.17 Hz, V MMR

T ≈ 29.7 M1.01mL.

It predicts exponents that are in accordance with the values observed in the literature. Indeed, breathing rate
at BMR has been estimated to follow the law fBMR

b ' 0.58 M− 1
4 Hz [72] and tidal volume to follow the law

V BMR
T ' 7.14 M1 mL [48, 73]. At other metabolic rates, less data is available in the literature except for

the breathing rate of mammals at MMR, estimated to follow the law fMMR
b ' 5.08 M−0.14 Hz [74]. The
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(a) Frequency (b) Tidal Volume

Figure 14.8: Predicted ventilation frequency (s−1 – left) and tidal volume (L – right) as a function of the
mammal mass (kg – log-log scale) at different metabolic regimes. BMR: Basal Metabolic Rate, FMR: Field
Metabolic Rate, MMR: Maximal Metabolic Rate.

validation of our model at both minimal and maximal metabolic regimes suggests that its predictions should
be coherent whatever the regime, in the limit of the availability of its input parameters. This indicates that
the mechanical power spent for ventilation might have driven the selection by evolution of the ventilation
patterns.

The idealized representation of the bronchial tree and of the exchange surface used in this study accounts for
five core characteristics common to all the mammals lungs, as identified in the literature [35, 36, 42, 48, 75]:
a bifurcating tree structure; an homogeneous decrease of the size of the bronchi at the bifurcations; the size
of the trachea; the size of the alveoli; and the surface area of the exchange surface. These characteristics
are the main determinants for the tuning of the ventilation in order to minimize its energetic cost. This
indicates that once the metabolic regime is fixed, the morphology of the lung is probably the primary
driver of the physiological control of ventilation. We tested this hypothesis by altering, in our analysis, the
allometric scaling laws related to the geometry of the lung. We observed corresponding alteration of the laws
predicted for tidal volumes and breathing frequencies. Since morphology itself has probably been selected by
evolution in order to minimize the hydrodynamic resistance in a constrained volume [36], morphology and
ventilation patterns are intertwined together in order for the lung to function with a low global energetic
cost i.e., a low hydrodynamic resistance R and a low ventilation cost P(VT , fb) that also depends on R.
Interestingly, our representation of the lung does not account for interspecific differences known to exist
between the lungs of mammals, such as different degrees of branching asymmetry, monopodial or bipodial
lungs, etc. [76, 77, 78, 79].

As in the human lung, the transport of gases in the mammalian lung relies on the two major processes of
diffusion and convection. We know that, in humans, the diffusive transport in the alveolar ducts is submitted
to a physical phenomenon called the screening effect [38, 80]. Indeed, as gas exchanges occur through the
alveoli walls lining the alveolar ducts, the diffusion can transport the respiratory gases only on a limited range
of generations. This range depends on the physico-chemical properties affecting the diffusion of the gas in
the alveolar air and through the alveolo-capillary membrane. This range has been estimated to be of about
four generations for oxygen and one for carbon dioxide [38] in humans. The description of the screening
effect in mammals requires several additional hypotheses. Because of the screening effect, the alveolar ducts
far from the convection–diffusion transition get only a small diffusive oxygen flow, as most of the available
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Figure 14.9: Localization in terms of lung generation index of the conductive zone and of the exchange
surface (acini) as a function of the mammal species mass (kg). Both the green line (rest regime – left) and
the red line (maximal exercise regime – right) represent the transition from a transport of the respiratory gas
by convection to a transport by diffusion. Adapted from [66].

oxygen has been captured by the alveolar ducts closer to the transition. In these deep parts of the acini, the
oxygen partial pressure gradient between the deoxygenated blood and the alveolar ducts, which drives the
oxygen capture by blood, is low. Carbon dioxide is mostly evacuated from the alveolar ducts very close to
the transition: they are refilled by carbon dioxide too quickly for the deeper ducts to be drained of gas by
diffusion. Hence, the ducts far from the transition cannot be relieved of the carbon dioxide and the exchange
with blood in these ducts is low. As a consequence, the deeper part of the exchange surface is not available
for the exchanges. The location of the transition between convective and diffusive transport of the respiratory
gas drives the magnitude of the screening, and this transition depends on the geometry of the airway tree
and of the ventilation regime. The screening phenomenon in mammals has been studied mathematically
in [66]. Within the framework of the models hypotheses, the authors show that the number of conductive
airways NconD and the number of alveolar ducts Nad follow allometric scaling laws:

NconD ∝ Nad ∝ M
7
8 .

Additionally, they show that the number of airways NconV in which the gases are transported by convection
also follows an allometric scaling law. This law depends on the ventilation regime:

NconV ∝



{
M0.56 if M < 150 kg
M0.405 if M ≥ 150 kg

at rest

M0.63 at maximal exercise

These equations translate into linear relationships in terms of log(M), as shown in Figure 14.9. Rest regime
is represented on the left plot and maximal exercise regime on the right plot. The figure indicates that, at
rest regime, the small mammals use their lung very efficiently, as only a few of their acini generations are fed
by diffusion, as indicated by the green curve in Figure 14.9. Hence, the screening effect in small mammals is
weak. However, this suggests that they have few reserve for increasing their metabolism at exercise [38, 66].
As suggested by the red curve on the right plot in Figure 14.9, the shift of the transition between convection
and diffusion to deeper generations does not increase significantly the available exchange surface. To the
contrary, large mammals are submitted to large screening effects at rest regime, and a large part of their
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Box 14.D : Convection–diffusion transition and allometry

It is to be noted that the predictions of our model for the localization of the convection–diffusion transition in
idealized lungs lead to good estimations of the allometric scaling laws for tidal volumes and breathing frequen-
cies, indicating that the morphological parameters included in our model might drive primarily the control of
ventilation.

exchange surface is not used. However, during exercise, the shift of the transition towards a deeper lung
generation allows to recruit a significantly larger exchange surface.

Through this short introduction to allometry of constrained organs, we started to decipher the latent mech-
anisms of development of a constrained organ inside a class of organisms. The example of the lung is
emblematic: how a complex and central organ can develop, specialize and evolve to fulfill the needs of
organisms, while sharing among species its particularities, and efficiency.

14.4. Concluding remarks
Biological optimization, making the most effective use of limited resources within a set of given constraints,
is a multifaceted subject that has been a source of content for countless articles and a stimulus for related
discussion. To make the optimization of biological systems more readily comprehensible, this chapter has
focused attention on a single organ, the human lung, and used it as a stage on which to introduce basic
principles and a canvas on which to illustrate their application. The range of constraints, for the most part
energetic or morphometric in nature, that have conditioned the development of the lung over the long course
of its evolutionary history and given the mammalian respiratory system its particular shape is expansive.
The characteristics of these constraints and the conditions that govern their interplay can be represented as
mathematical equations that form the basis for models that describe the scale of the effect constraints have
on biological systems and illuminate the magnitude of their impact. The insights into the lungs form that
these models yield also provide a more thorough understanding of its function, characterizing, for example,
modulations in the regulation of respiratory ventilation that occur in response to changes in the bodys state
e.g., when the body is at rest or in motion; when it is healthy or when its health is compromised. The

models are also a source of results that can be abstracted and subsequently applied to both human organs
and those of other species that are larger and more complex. Considered within this broader context, they
can also be seen as integral elements of much larger systems and as instances of the general allometric laws
to which those systems adhere. The significance of the larger orthogenetic and phylogenetic implications
that this abstraction of specific models into generalized laws carries cannot be overstated and discussion of
those implications is vigorous and far-reaching. Through these discussions, many aspects of allometry have
been illuminated and a deeper understanding of the complex systems that determine the ways individuals,
species and systems function and interact has been achieved. Yet many of the fields underlying mechanisms
and governing principles remain to be discovered. This chapter is the prelude to a journey into a space at
the intersection of biology, ecology, and mathematics that the allometric universe occupies and the fuel for
the exploration of the mysteries those hidden mechanisms are waiting to reveal.

Recommended readings
◦ For a proper introduction to respiratory physiology, in healthy and pathological conditions: John B. West,

Respiratory Physiology: The Essentials [1].
◦ A reading for a deeper understanding of the lung morphometry: Ewald R. Weibel, Morphometry of the
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human lung [83] and one for the respiratory gases exchange: Ewald R. Weibel, The Pathway for Oxygen:
Structure and Function in the Mammalian Respiratory System [35].

◦ A nice thesis about (in)organic mechanisms of morphogenesis: Raphaël Clément, Morphogénèse et développe-
ment pulmonaire [84].

◦ The old but gold textbook in morphogenesis of living beings: DArcy Wentworth Thompson, On Growth
and Form [54].

◦ On allometric relations, in general: Robert H. Peters, The Ecological Implications of Body Size [47] and
from a modeling approach: G. B. West et al., A general model for the origin of allometric scaling laws in
biology [48].

Problems
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Box 14.E : Cost and energy

The allometric relationship found applies to the pulmonary organ. This is a crucial link in muscular activity,
and therefore in locomotion or any activity requiring an effort, even moderate. As such, its properties must
also be present during physical exercise. A useful quantity, based on oxygen consumption V̇O2 and frequently
used in the literature, is the Cost of Oxygen Transport (COT). This corresponds to the ratio V̇O2 /v with v the
locomotion velocity. Using the correct metabolic conversion factor COT is the energy dissipated per unit length.
It is known empirically that COT shows a local minimum corresponding to an optimal situation in which the
minimum energy is dissipated per unit length. Building on this property, Tucker in 1975 [81] noted that this
minimum follows distinct allometric laws according to the major locomotion families, runners, swimmers and
fliers, see the following Figure, left.

Left is the COT defined here as the ratio P/(M v), with P the power production and v the velocity as a
function of the body mass M for several species (adapted from [81]). Green are swimmers, red are fliers, black
are runners, blue are engines designed by engineers. Continuous lines correspond to linear fits on data shown
with filled markers. Right, top is oxygen consumption V̇O2 of a horse plotted against the speed v/v? for walk
(red stars), trot (blue dots), and gallop (green squares), and their fits with our modeling. Bottom is COT for
the same set of data. The three gaits data are normalized by the muscle fiber ratio leading to a unique master
curve.
Based on the model proposed in Box Energy conversion, it has been demonstrated [82] that a living system
can be described as a collection of N identical, standard, muscle units operating in parallel. Then the COT
expression becomes:

COT = N

NH

(
a0 k + rM k2 v + b

v

)
(14.3)

with a0 k a constant, rM a dissipative term and b the basal consumption i.e., out of effort. This last three
parameters describing the standard muscle unit. We are then allowed to derive the minimum of the COT as an
intrinsic property of energy conversion machines, COTmin ∝

√
rM b. It is found independent of the number of

standard muscle fibers involved in the effort. Thus, effort is a combination of the number N of standard muscle
fibers used and their characteristics b and rM . The parameterization of the standard muscle fiber depends on
the specific implementations for an organism. It can be expected to be identical for a single animal. We have
carried out this work in the case of the horse, which exhibits three well-differentiated gaits: walk, trot and gallop
(see Figure ??, right). We show that the COT curves, or equivalently V̇O2 , of the different gaits can be found
using N as the only adjustable parameter, leaving the muscle fiber parameters unchanged.
As muscle is the most common means of producing power in animals, the typical behavior described here should
be found in the most general way, without barriers between species, genera or classes. Of course, muscular
implementation is specific to each animal, constrained by its own characteristics (intensity of effort, size, etc.),
which suggests the origin of the observed scaling laws.
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