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Abstract

Cells in a well-mixed and nutrient-rich environment can be expected to experience selection on their growth rate.
Such cells optimize their metabolic state to achieve a high growth rate. Metabolic states that lead to a high growth
rate are states that realize a maximal biomass production rate at a minimal enzyme cost. Metabolic states that
optimize a specific flux at minimal enzyme cost are called enzyme-efficient metabolic states and in this chapter we
refer to them as optimal metabolic states. The calculation of optimal metabolic states is facilitated by the result
that, in models without further constraints, the flux distributions in enzyme-efficient states are Elementary Flux
Modes (EFMs). This result allows for an algorithm to find enzyme-efficient states by: 1) Enumerating the EFMs, 2)
calculating the minimal enzyme cost per EFM, and 3) choosing the one with the lowest enzyme investment. This
algorithm finds optimal metabolic states for larger models which cannot be optimized by ’brute force’, but are still
small enough to enumerate the EFMs. Finding optimal metabolic states uncovered the effect of changing external
nutrient conditions: As growth conditions are changing, the optimal flux profile either changes continuously (and
metabolite and enzyme concentrations change continuously as well) when the same EFM remains optimal, or fluxes
change discontinuously together with metabolite and enzyme concentrations when a different EFM becomes optimal.
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Chapter overview

◦ Optimal metabolic states in this chapter refer to enzyme-efficient states, which are metabolic states that
realize a given objective flux at a minimal enzyme cost.

◦ In models without further flux constraints, flux distributions of enzyme-efficient states are Elementary Flux
Modes (EFMs).

◦ Elementary Flux Modes can be used to find enzyme-efficient states in networks that would be too large to
optimize metabolic states "by brute force".

◦ Biomass per enzyme efficiency can be converted to cell growth rate by simple approximate formulae.
◦ The Elementary Flux Mode that is realized in an enzyme-efficient state depends on the external conditions.
◦ As growth conditions change, either the flux profile changes continuously (together with metabolite and

enzyme concentrations), or fluxes change discontinuously, implying jumps also in metabolite and enzyme
concentrations.

7.1. Introduction
In a simple economic picture of cells, we assume that cells adjust their metabolic state in each environment to
obtain a maximal fitness advantage. This may be impossible in reality, but it remains an interesting question what
this best metabolic state would look like, according to our knowledge of cells. So what is the best metabolic state
overall (comprising metabolic fluxes, metabolite concentrations and enzyme levels)? What pathways should a cell
use, which enzymes should be induced or repressed, and how should this change in a new environment? To answer
these questions, we need to remember that all metabolic variables (fluxes, metabolite levels, enzyme levels, and
enzyme efficiencies) depend on each other. Physically, fluxes depend on metabolite concentrations through kinetics
and enzyme regulation (e.g. competitive inhibition) and metabolites are produced and consumed by the fluxes until
a steady state is reached. Hence, if we think in terms of cellular economics (treating enzymes as control variables),
then all metabolic variables must be optimized together.

In the previous chapters we saw some ways to predict optimal metabolic fluxes, metabolite concentrations and enzyme
levels separately: in Flux Balance Analysis (FBA, Chapter 5 in [1]), we optimized fluxes by maximizing an objective
function (typically biomass) while in Enzyme Cost Minimization [2, 3] (Chapter 6 in [1]) metabolite concentrations
were optimized by minimizing cost (or, equivalently, maximizing the enzyme efficiencies). Each of these methods
is based on a strong assumption: FBA requires measured flux ranges and/or apparent catalytic rates and assumes
enzyme saturation effects can be neglected, while enzyme cost minimization requires a given flux distribution. But
what if we don’t know any of the variables in advance? How can we predict all of them from first principles?

Before thinking about this, let us briefly step back: what do we actually mean by an “optimal state”? What quantity
should be maximized in metabolism? There could be very different aims (e.g. production in biotechnology, versus
number of offspring and survival in a wild-type cell). However, in both cases an important aim is cell growth – or
at least, avoiding strong growth deficits. Below we will see that cell growth depends, to a good approximation, on
biomass/enzyme efficiency, that is, biomass production per total enzyme invested. Hence, whenever fast growth is
important, cells should maximize this efficiency.

In conclusion, we will consider the following optimality problem: maximize biomass/enzyme efficiency, defined as the
production flux per invested enzyme with respect to all metabolic variables (metabolites, enzymes and fluxes) and
under all constraints (steady state, enzyme kinetics, etc.). Solutions to this problem are considered optimal states.
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7.2. Enzyme-efficient metabolic states use elementary flux modes
The optimization problem in this chapter is to reach maximal objective flux with minimal enzyme investment. The
biological interpretation is that this would lead to the highest growth rate, because it optimizes the ratio between gains
(fluxes) and costs (enzymes). When we solve this optimization problem with mathematical tools, it is convenient to
either find the minimal enzyme investment for a certain flux, or the maximum flux for a fixed enzyme investment.
Although one could think of different biological explanations for those two ways to state the optimization problem,
mathematically they are equivalent. For the outline of the proof that optimal states are elementary flux modes, it is
convenient to fix the objective flux to an arbitrary value (we choose 1) and then minimize the enzyme investment.
This leads to the following optimization problem over the fluxes (v), enzymes levels (e) and internal metabolite
concentrations (s):

minimize
v,e,s

r∑
i=1

hi ei (7.1)

subject to: N · v = 0 steady state

∀i : vi = ei κi(s) enzyme kinetics

e, s ≥ 0 positive concentrations

vr = 1 fixed objective flux

s ≤ smax metabolite bounds

where hi are the weights, N is the stoichiometry matrix, i is the index of the reactions (ranging from 1 to r), with the
last reaction (with index r) representing the objective. This optimization problem states that by adjusting the fluxes
(v), metabolite concentrations (s) and enzyme concentrations (e), the total cost (sum of costs – hiei – for every
reaction) is minimized, while keeping the objective flux constant (any arbitrary constant can be chosen, here we chose
1). The weights (hi) can be thought of as the size or production costs of the enzymes (measured, for example, in
molecular weight or gene length) We require certain constraints: (i) the metabolic network needs to be in steady state
to avoid built-up of intermediates, (ii) enzyme kinetics – the flux of each reaction (vi) has to be equal to the enzyme
concentration (ei) times a metabolite dependent (e.g., saturation) term (κi(s)), (iii) all enzyme and metabolite
concentrations have to be positive, (iv) the objective flux is equal to 1, and (v) the metabolite concentrations are
within their given bounds. The latter constraint is optional and is mostly necessary when dealing with irreversible
kinetics. Reversible kinetics usually lead to bounded metabolite levels because very high concentrations of products
inhibit the reaction that forms the products.

In this section, we will explain why the optimal state is reached at an Elementary Flux Mode (EFM). One important
starting point is that, as we have seen before in Chapter 4 in [1], convex optimization problems with only positivity
or equality constraints (no other inequalities) lead to an optimal solution at an extreme point of the feasible solution
space, and those extreme points are Elementary Flux Modes. However, the optimization problem (7.1) is not convex,
mainly due to the hyperbolic dependence of reaction rates on the concentrations of metabolites (κi(s) is usually not
linear in the internal metabolite concentrations).

There are several ways to prove that the solution of this optimization problem is an EFM, of which some are outlined
in the papers by Wortel et al. [4] and Müller et al. [5]. Here we will outline a proof by contradiction: assuming a
solution to the optimization problem that is not an EFM and showing that this leads to a contradiction.

Theorem 1. The flux distribution that maximizes an objective flux over the total enzyme cost in a metabolic network
without additional constraints is an Elementary Flux Mode.

Proof. Assume we have some optimal state where the flux distribution is not an EFM. Any optimal solution is
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Figure 7.1: Translation from flux to enzyme space retains EFMs as extreme rays – The top left panel shows the feasible
flux space with the steady state constraints, all fluxes positive (using splitting of fluxes, as explained in the text, if
necessary) and a fixed objective flux. The extreme points here are points where one flux becomes 0 and are elementary
flux modes (see Chapter 5 in [1]). Here we show that when we have assumed metabolite concentrations, such as when
we keep them at an optimal solution, we get a linear transformation and the extreme rays are maintained. Different
metabolite levels, for example solutions to different environmental conditions, can lead to different transformations
and therefore different optima (minimal total enzyme), but those are always located at an EFM.

associated with a set of fluxes, enzyme concentrations and metabolite concentrations. Now we set the metabolite
concentrations to the concentrations of the assumed optimal state. Then all metabolite-dependent terms (κi(s))
become constants, and we return to a convex problem. As explained in Chapter 10 in [1] and Figure 7.1, the optimum
of this problem (now in terms of enzyme concentrations and fluxes) is a flux distribution that is an EFM. But this
contradicts our initial assumption that the optimal state from which we took the set of metabolite concentrations
was not an EFM. The proof by contradiction shows that the optimal state must be an EFM.

7.3. Enzyme-efficient states in an example network
To illustrate the proof, we study a simple network representing growth on glucose and pyruvate that we have seen
previously in Chapter 5 in [1] (Figure 7.2). We use G and P for glucose and pyruvate in the equations, we use the
subscript ex when a metabolite is extracellular and square brackets to denote a concentration. For the use in this
chapter, we add enzyme kinetics to this network. We will use the factorized rate law as in Chapter 6 in [1], but then
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Box 7.A Kinetics of the example network

The detailed kinetic equations for the example model (Figure 7.2) using the factorized rate law (see Equation
(7.2) and Chapters 3 in [1] and 6 in [1]) are:

v0 = e0 · k
+
cat,0 ·

[Gex]/KGex
1 + [G]/KG + [Gex]/KGex

·
(

1 − e∆rG′0/RT
)

v1 = e1 · k
+
cat,1 ·

([G]/KG)([ADP]/KADP)

1 + ([P]/KP)([P]/KP)([ATP]/KATP) + ([G]/KG)([ADP]/KADP)
·
(

1 − e∆rG′1/RT
)

v2 = e2 · k
+
cat,2 ·

[P]/KP
1 + [Pex]/KPex + [P]/Kp

·
(

1 − e∆rG′2/RT
)

v3 = e3 · k
+
cat,3 ·

([P]/KP)([ADP]/KADP)([O2]/KO2 )

1 + ([CO2]/KCO2 )([ATP]/KATP) + ([P]/KP)([ADP]/KADP)([O2]/KO2 )
·
(

1 − e∆rG′3/RT
)

v4 = e4 · k
+
cat,4 ·

[Pex]/KPex
1 + [Pex]/KPex + [P]/KP

·
(

1 − e∆rG′4/RT
)

vBM = eBM · k
+
cat,BM ·

([P]/KP)([ATP]/KATP)

1 + ([BM]/KBM)([ADP]/KADP) + ([P]/KP)(ATP/KATP)
·
(

1 − e∆rG′5/RT
)

(7.3)

Note that P is a product twice in v1, as v1 produces 2P. Note that v2 and v4 are the same reaction, but defined
in the opposite direction. The standard set of parameters we used for the toy model is all k+

cat,i = 10 s−1 except
k+

cat,3 = 0.1 s−1, all ∆rG
′◦

i/RT = −440 and all KM = 1 mM. For the external metabolites [Pex] = 1 mM,
[Gex] = 0.05 mM, [O2] = 0.1 mM, [BM] = 1 mM and [CO2] = 10 mM unless mentioned otherwise.

generalized for ns substrates and np products (also compare Eq. (3.10 in [1]) in Chapter 3 in [1]):

v = e · k+
cat ·

∏j=1
ns

sj/KS,j

1 +
∏k=1

np
pk/KP,k +

∏j=1
ns

sj/KS,j

·
(

1 − e∆rG′/RT
)

(7.2)

See Box 7.A for all detailed rate laws of the example network. We can simplify this equation by combining the
forward catalytic constant, the thermodynamic efficiency factor, the saturation efficiency factor, and the regulation
efficiency factor (if that exists) in a function κ(s), which only depends on the metabolites, and not on the enzyme
concentrations. We will below write κ for κ(s).

vi = ei · κi (7.4)

Now we take vBM = 1 and optimize all fluxes, enzyme concentrations and metabolite concentrations to minimize the
enzyme costs (etot =

∑
i ei), while satisfying the constraints posed in Equations (7.1), for different levels of external

glucose and standard levels of the other external metabolites. We see that for different concentrations of external
glucose, lead to different optimal fluxes, enzyme levels and metabolite levels (Table 7.1).

The table shows that the total enzyme needed for a biomass flux of one decreases with increasing glucose levels,
as we expect. In addition, the optimal level of internal glucose increases with increasing external glucose. This is

[Gex] etot v0 v1 v2 v3 v4 vBM e0 e1 e2 e3 e4 eBM [G] [P] [ATP] [ADP]
0.01 156.2 5 5 0 9 0 1 54.4 4.4 0 94.4 0 2.9 0.08 15.14 0.05 20.09
0.1 91.3 50 50 99 0 0 1 61.3 11.3 14.2 0 0 4.4 0.13 4.55 0.11 20.09
1 36.2 50 50 99 0 0 1 13.0 8.0 12.5 0 0 2.7 0.60 7.65 0.11 20.09

Table 7.1: Outcomes of the optimization of the example network with standard kinetics, parameter values and
external concentrations (see Box 7.A) for varying levels of [Gex].
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because a higher external glucose allows for a higher internal glucose while still maintaining a steady glucose influx,
and a higher internal glucose allows fewer enzymes to drive further metabolism. Moreover, the fluxes of the solutions
follow an EFM (see Figure 7.2b).

We can now reformulate the problem for only the flux and enzyme levels while keeping the metabolite levels as they
are in the table. With the metabolite levels in the first row of the table, we can linearly relate the enzyme and flux
levels (with the factors κi that have become constants now we have set the internal metabolite concentrations), and
thus the extreme rays of the enzyme and flux space will be equal and EFMs, as pointed out above (see also Chapter
5 in [1] and Figure 7.1). Optimization in this space will lead to the optimal flux distributions following an EFM (see
Box 7.B for the detailed calculations). As fixing part of the optimal solution should lead to the same optimal solution,
this required the flux distribution of the optimization over all variables to follow an EFM, as was indeed the case.

We point out two important aspects, using the network (Figure 7.2) as an example. First, it is convenient to split
reversible reactions such that fluxes are always positive. In this case, that means that the reversible reaction from P
to Pex is split into the forward reaction v2 and the reverse reaction v4, both of which can have only positive flux.
This splitting makes sure that EFMs are the extreme rays of the flux space (see Chapter 5 in [1]). This splitting
is purely a mathematical convenience; we still assume this to be one reaction in the biological sense, and therefore
the kinetic equations of both the forward and the backward reactions will be exactly the same. Depending on in
which direction the flux goes, either one of the reactions will be positive and the other zero. Any solution with both
reactions positive is infeasible, but minimizing enzyme levels will never lead to such a solution; therefore we do not
need to set additional constrains to avoid this. Second, the feasibility of EFMs can depend on external concentrations.
In this network, the biomass reaction (vBM) is the objective flux and there are three EFMs leading to the production
of biomass: EFM1 consisting of v0, v1, v2 and vBM, EFM2 consisting of v0, v1, v3 and vBM and EFM3 consisting
of v4, v3 and vBM. However, if Pex is absent in the environment, the uptake flux v4 will always be 0 and therefore
EFM3 will not be feasible.

7.4. Calculation of optimal states
We can now use the result that states of maximal enzyme efficiency are reached at an elementary flux mode to
calculate optimal states in a metabolic network using the following steps:

1. Enumerate the elementary flux modes that include the objective flux
2. Calculate the minimal enzyme for each EFM scaled to an objective flux of 1
3. Compare the EFMs and select the one with minimal enzyme demands

Step 1 is possible for relatively large networks, although usually not for genome scale metabolic networks. Step 2 is
a convex optimization problem as we have seen in Chapter 6 in [1] and Step 3 is straightforward. These three steps
together are called Enzyme Flux Cost Minimization, because it is similar to Enzyme Cost Minimization, but while
that is focused on fixed fluxes, Enzyme Flux Cost Minimization simultaneously finds the optimal fluxes, enzyme and
metabolite levels. In this section we will show the method on the example network of Figure 7.2.

First, we describe the network with the stoichiometric matrix (N) and the concentration vector (s):

N =


1 −1 0 0 0 0
0 2 −1 −1 1 −1
0 2 0 10 0 −100
0 −2 0 −10 0 100

 , s ≡


[G]
[P]

[ATP]
[ADP]

 (7.6)

And with the stoichiometric matrix we can describe the steady state constraints:
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Box 7.B Optimal metabolic states in the example network

We minimize the enzyme investment for vBM = 1 with [Pex] = 0 (and therefore v4 = 0 and EFM3 is not
feasible) for the network in Figure 7.2 (the optimization problem in Equation (7.1)). Assuming all hi = 1, the
objective function

∑r
i=1 hi ei = e0 + e1 + e2 + e3 + eBM. The constraints vBM = 1 and e, s ≥ 0 in Eq. (7.1)

are straightforward. The steady state of all internal metabolites (G, P, ADP and ATP) leads to the following
equalities (the steady states of ADP and ATP lead to the same equality):

Steady state ATP =⇒ 100 vBM = 2 v1 + 10 v3

Steady state P =⇒ 2 v1 + v4 = v2 + v3 + vBM

Steady state G =⇒ v0 = v1

Substituting vBM = 1 and v4 = 0 and solving this set of linear equations, we can write all fluxes as functions
of v2: v0 = v1 = 5 + 5

11 v2 and v3 = 9 − 1
11 v2 (there is only one independent flux in this system). This means

we can draw the feasible flux space on the v2 line and we can express the objective function in terms of v2:
r∑

i=1
hiei = e0 + e1 + e2 + e3 + eBM

= v0/κ0 + v1/κ1 + v2/κ2 + v3/κ3 + vBM/κBM

= (5 + 5/11v2)/κ0 + (5 + 5/11v2)/κ1 + v2/κ2 + (9 − 1/11v2)/κ3 + 1/κBM

= (5/κ0 + 5/κ1 + 9/κ3 + 1/κBM)︸ ︷︷ ︸
α

+ (5/(11κ0) + 5/(11κ1) + 1/κ2 − 1/(11κ3))︸ ︷︷ ︸
β

v2

= α + βv2

(7.5)

The kinetic functions (κi) depend on several parameters (external metabolite levels [Gex], O2, [CO2] and [Pex],
catalytic constants, Michaelis constants and Gibbs free energies) and the variables [G], [P], [ATP] and [ADP].
That means that once we have a set of internal metabolite concentrations s, the enzyme levels in the objective
function can be written as a constant times the flux: ei = vi/κi, with κi a constant. For a set of parameters,
α and β are positive or negative depending on the choice of s. It is clear that when we minimize this objective
function by adjusting v2, we will always have an optimum at v2 = 0 (when β is positive) or v2 = 99 (when β is
negative). v2 = 99 is the maximum of v2 because then v3 = 9 − 1

11 v2 = 0, and higher values of v2 would lead
to negative values for v3.
In conclusion, the optimum cannot be at a value of 0 < v2 < 99. If there would be an optimum with
0 < v2 < 99, we can determine s and calculate whether β > 0 to find a lower objective value at v2 = 0 or
v2 = 99, contradicting that we started with an optimum. Only if β = 0 there is a range of optima, but this
requires very precise parameter values. v2 = 0 and v2 = 99 correspond to EFMs of this network (Figure 7.2).

d
dt

s = N v =


1 −1 0 0 0 0
0 2 −1 −1 1 −1
0 2 0 10 0 −100
0 −2 0 −10 0 100





v0

v1

v2

v3

v4

vBM


=


0
0
0
0

 (7.7)

Now we find the EFMs (for example with EFMtool [6]). It can easily be checked that the following EFMs (denoted
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Figure 7.2: States of maximal efficiency in an example model – (A) Example network from Chapter 5 in [1] with
added stoichiometry. (B) Three elementary flux modes of this network. (C) Calculated enzyme investment needed
for a biomass flux of 1. At a very low concentration of extracellular glucose ([Gex]), EFM3 has the lowest cost. But
as we move along the x-axis, at around [Gex] = 0.02 there is a switch to EFM1 and later, at around [Gex] = 0.07,
EFM2 becomes the one with the lowest cost. (D) Specific fluxes (flux divided by total enzyme) associated with the
optimal EFM for different levels of Gex. Note that v1 is not shown as it is always equal to v0. The rates show a
discontinuity when there is a switch from one optimal EFM to another.

by vectors f (i)) are in the nullspace of the stoichiometric matrix:

f (1) =



5
5
0
9
0
1


, f (2) =



50
50
99
0
0
1


, f (3) =



0
0
0
10
11
1


(7.8)
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Figure 7.3: Translation of enzyme-specific biomass rate to growth rate – (A) Both from experimental data and
a cell-optimization point of view, the ribosomal fraction of the proteome increases with the growth rate, while the
metabolic fraction decreases. (B) This leads to a hyperbolic dependency of the growth rate on the biomass production
rate per amount of enzymes.

The next step is to perform the convex optimization over the metabolite levels for each one of the three EFMs.
Therefore, we express the enzyme levels as a ratio of the flux and the function f(s), using Equation 7.4. Summing
over all enzymes, we get a function for the total enzyme cost (level) as a function of fluxes, metabolite concentrations
and parameters:

etot =
∑

i

ei =
∑

i

vi

κi(s) . (7.9)

We use the standard parameters (Box 7.A) and replace vi by the values given by each EFM. We are then left with
a convex optimization over the metabolite levels, an Enzyme Cost Minimization problem as in Chapter 6 in [1]. For
[Gex] = 0.05 we obtain a total enzyme of 111.1 for EFM1, of 146.3 for EFM2 and 136.5 for EFM3. That means
that for these conditions we will conclude that EFM1 is optimal. From the optimization we obtain the metabolite
concentrations: [G] = 0.08, [P] = 3.93, [ATP] = 0.11 and [ADP] = 20.09 (that the internal glucose concentration
is higher than the external is because we described the transport with regular enzyme kinetics instead of transporter
enzyme kinetics, which would have been more realistic). We can next use the rate equations to calculate the enzyme
levels from the fluxes and metabolite levels, using the values for the parameters and external concentrations.

We can repeat this procedure for different levels of external concentrations and see that the optimal EFM can change
depending on the external concentration (Figure 7.2c). When the optimum shifts to using a different EFM, there is a
discontinuity in the fluxes at the external metabolite concentration (Figure 7.2d). Many cells show shifts in metabolic
strategies depending on the external conditions and Enzyme Flux Cost Minimization is one way of explaining those
shifts.

Above, Enzyme Cost Flux Minimization was used to find the metabolic state with the maximum enzyme efficiency.
Although in our calculation we obtain the enzyme concentrations last, it is by enzyme concentrations that cells
actually control metabolism. If cells produce enzymes at the concentrations we calculated and reach a steady state,
this state will realize the fluxes and metabolite levels that lead to our optimal state.

7.5. Translating enzyme efficiency into cell growth rate
In the section above, we learned how to optimize metabolic states for a maximal overall enzyme efficiency. Why is
this quantity relevant? One reason is that overall enzyme efficiency, according to some simple reasoning, determines
the cell’s growth rate. If microbes compete by growing fast, their fitness is largely determined by their momentary
growth rate in their respective environment. In such environments, the biomass/enzyme efficiency will be under
selection, which makes it one of the important objective functions in this book. If higher enzyme efficiency means
higher growth rate, and if we have a conversion formula for this, we can plot the growth rate of the different EFMs
instead of overall enzyme efficiency.
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Figure 7.4: Optimal growth rates of the two EFMs for different levels of the external metabolite Gex, computed using
Equation (7.10) from the enzyme demands (at a unit biomass production rate) shown in Figure 7.2 (C).

Enzyme-efficient metabolic states allow us to compute specific biomass production rates, i.e. the rate of biomass
production per metabolic enzyme invested. If biomass consisted only of enzymes, the ratio "enzyme production
rate per total enzyme demand" would give us directly the growth rate. However, biomass does not only consist of
metabolic enzymes, but includes ribosomal enzymes, RNA, DNA, lipids, and other compounds. Therefore we need a
formula for converting biomass/enzyme efficiency into cellular growth rate.

Mathematically, a cell’s growth rate is given by µ = vBM/sBM, where vBM is the biomass production rate (biomass
produced per cell volume and time) and sBM is the biomass amount per cell volume. If a cell contained nothing
but metabolic enzymes (more precisely, the enzymes described in our model), the biomass/enzyme efficiency κBM =
vBM/henz would directly describe the cellular growth rate. Since that is not the case, we need to convert henz to sBM.
The metabolic protein fraction decreases with the growth rate, leading to a hyperbolic dependency of the growth rate
on the biomass production rate (Figure 7.3). We may use the empirical approximation henz/sBM = κprot(a − b µ),
where κprot = 0.5 is the fraction of protein mass within the cell dry mass and the parameters a = 0.27 and b = 0.2 h
were fitted to describe the metabolic enzyme fraction in proteomics data, assuming a linear dependence on growth
rate [7]. This yields the conversion formula (see also [8]):

µ = a κprot vBM

henz + b κprot vBM
. (7.10)

This formula has been used to convert the minimal enzyme cost per biomass flux for different external concentrations
in the toy model (Figure 7.2c) to the maximal growth for each EFM (Figure 7.4).

7.6. Application to central metabolism in E. coli bacteria
In the previous sections, we saw that finding enzyme-efficient metabolic states can be done by iterating through
all possible EFMs and performing the enzyme cost minimization on each one. We demonstrated it on a toy model
comprising only 3 EFMs. In Wortel et al. [8], this method was scaled up and applied to a more realistic model covering
the central metabolic network, as shown in Figure 7.5A. For this larger network, there are 1566 biomass-generating
EFMs. Each reaction is assigned to a single enzyme along with its molecular weight, k+

cat, KM, and ∆rG
′◦, and

follows the generalized factorized rate law as in Equation (7.2). These parameters are listed in Appendix section 7.8,
and the full procedure for obtaining them is described in Wortel et al. [8], along with other model parameters.
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Figure 7.5: Model of central metabolism in E. coli bacteria. (A) The metabolic network of the E. coli model used
by Wortel et al. [8]. Note that only for the purpose of visualization, the network shown here has been condensed by
lumping consecutive reactions that are fully coupled (e.g., the reactions between DHAP and PEP are now represented
by a single arrow). Furthermore, some groups of metabolites have been merged to a single node: H6P – representing
the hexose phosphates G6P, F6P, and FBP; T3P – representing the triose phosphates G3P and DHAP; P5P –
representing the pentose phosphates R5P, X5P, and Ru5P. The metabolites that are direct substrates of the biomass
reaction are marked in bold. (B) A Venn diagram showing statistics of biomass-producing EFMs in the model and
their reliance on oxygen.

First, Wortel et al. [8] wanted to study the effect of environmental conditions on the growth rate of E. coli, and see
whether the model would be able to recapitulate empirical phenomena. The external glucose concentration was set
to 100 mM and oxygen levels were varied between 1 µ and 10 mM. They selected 4 flux modes as representatives
(the EFMs max-gr, ana-lac, and aero-ace, and exp, which is based on experimentally measured fluxes; the flux
distributions are shown in Figure 7.6), and calculated their predicted growth rates in each condition, using Equation
(7.10). The results are shown in Figure 7.7. When focusing on a single flux mode, one can see that as the oxgyen
level increases so does the growth rate. The increase saturates at some point, which depends on the flux modes and
on the kinetic parameters in the model. Indeed, it has long been known that growth rate dependence on a limiting
substrate concentration has this specific shape – a relationship generally called the Monod curve.

In this specific example, it is interesting to see the Monod curves of the different EFMs, and try to understand the
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Figure 7.6: The four flux modes chosen for drawing the Monod curves in Figure 7.7: (A) max-gr – the EFM with the
highest growth rate under the standard conditions chosen in the study, (B) aero-ace – an EFM which mixes between
respiration and acetate fermentation, (C) ana-lac – an EFM that does not require oxygen (i.e. anaerobic) and uses
lactate fermentation, and (D) exp – which is not an elementary flux mode, but rather one based on the measured
flux distribution for E. coli growing on minimal media and glucose. The active reactions are highlighted in color (with
the flux direction indicated by the arrowhead). The magnitude of each flux is not shown here but can be found in
the Supplementary section of Wortel et al. [8]. The biomass reaction is not shown here due to space limitations, but
is always active.

differences. First, the EFM called ana-lac (red curve), is a flat line. This makes sense because cells that use this EFM
do not utilize the oxidative phosphorylation system and therefore do not require oxygen at all for growth. max-gr,
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Figure 7.7: Monod curves (cell growth rate as a function of oxygen level) computed using the model shown in
Figure 7.5 – Each curve was computed using one of the EFMs and the associated (oxygen-dependent) enzyme
demands. The ana-lac strategy (anaerobic growth with lactate secretion) does not use oxygen, therefore it curve is
flat.

on the other hand, is very sensitive to the level of oxygen mainly because of the high flux going through oxidative
phosphorylation. It is also the EFM with the highest growth rate in standard oxygen levels (0.21 mM), even when
taking all the other ∼1500 EFMs into account (not shown here).

Instead of screening only external oxygen levels, we can also screen several model parameters and compute "winning
EFMs", their enzyme demands, and the resulting growth rates for our parameter combination. By screening glucose
and oxygen concentrations, we obtain the Monod landscape shown in Figure 7.8 (A). Just like in Figure 7.7, there
are distinct parameter regions in which optimal growth is reached by specific EFMs. While the max-gr EFM remains
best when glucose and oxygen levels are high, at low oxygen levels we see a large number of different EFMs, one
of them ana-lac (see the EFM phase diagram in Figure 7.8 (B)). More results for this model (fluxes plotted in the
EFM phase diagram and in flux space, as well as ideal and real enzyme costs for all EFMs), are shown in Appendix
Section 7.9.

7.7. Concluding remarks
In this chapter we considered the metabolic network of a cell - and enzyme levels, metabolite concentrations, and
fluxes as the state variables - and studied its maximally efficient states. Finding such states can be difficult because
fluxes, metabolite concentrations, and enzyme levels are tightly coupled: metabolite concentrations determine enzyme
efficiencies, enzyme efficiencies determine optimal enzyme levels, and enzyme levels determine fluxes and metabolite
concentrations, which in turn determine enzyme efficiencies. To find an optimal state, all variables need to be
optimized at the same time, which is a non-linear optimality problem with (possibly) many local optima. In small
toy models, solutions can be found numerically, but for large detailed models, the computational effort becomes
enormous. Instead of simplifying the problem (as in the previous chapters) we here used the insight that (in models
without extra flux bounds) the optimal solutions must be EFMs.

Recommended readings
◦ M.T. Wortel, H. Peters, J. Hulshof, B. Teusink, and F.J. Bruggeman. Metabolic states with maximal specific rate

carry flux through an elementary flux mode. FEBS Journal, 281(6):15471555, 2014.



13

(A) (B)

Figure 7.8: Monod landscape – (A) Similar to the 1-dimensional Monod curve (Figure 7.7), the graphics shows the
cell growth rate as a function of external glucose and oxygen concentrations, predicted from the E. coli model in
Figure 7.5. The growth rate of the “winning” EFM – i.e. the one with the highest growth rate under the glucose and
oxygen levels matching the x and y values – determines the height of each point. Each color represents the region
in which a certain EFM is the “winning” one. (B) EFM phase diagram. The same plot as in (A), seen from above.
The “winning EFMs” form a sort of phase diagram. At the boundary between every two regions, the two EFMs lead
to the same growth rate (similar to the intersections between curves in Figure 7.7). The EFMs from Figure 7.6 are
marked by their names. Note that the colors in this figure do not match the previous colors marking these select
EFMs.

◦ S. Müller, G. Regensburger, and R. Steuer. Enzyme allocation problems in kinetic metabolic networks: Optimal
solutions are elementary flux modes. Journal of Theoretical Biology, 347:182190, 2014.

◦ M.T. Wortel, E. Noor, M. Ferris, F.J. Bruggeman, and W. Liebermeister. Metabolic enzyme cost explains variable
trade-offs between microbial growth rate and yield. PLoS Computational Biology, 14 (2):e1006010, 2018

Problems
Computer exercises for this chapter can be found on the book website.

Problem 7.1 Effect of oxygen concentration
Consider the model in Figure 7.2. What would be the qualitative effect of a change in oxygen concentration on
the enzyme cost of the three EFMs and on the choice of the optimal strategy?

Problem 7.2 Effect of external metabolites
Consider the model in Figure 7.2 under standard conditions (Box 7.A and [Gex] = 1, such that EFM2 is optimal,
and EFM1 second best (remember that the higher the enzyme cost, the less optimal the EFM). What might happen
when we gradually increase the concentration [Pex]? What is the qualitative effect on the enzyme cost of the three
EFMs?

Problem 7.3 States of maximal growth rate
Consider the following small toy network:
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We want to optimize the specific pathway flux for the production of P (which is v3/etot, where we assume all
enzymes to have equal costs: i.e. etot = e1 + e2 + e3) at steady state. We assume mass-action kinetics, meaning
the rate is the enzyme concentration times the forward rate constant times the substrate minus the backward rate
constant times the product: v = e(k+s − k−p). Unless mentioned otherwise, we use the values s2 = 10, k+

1 = 2,
k−

1 = 1, k+
2 = 3, k−

2 = 1, k+
3 = 1, k−

3 = 0.1, p = 0 (concentrations are denoted by lower case letters).

(a) Write out the rate equations for all three rates in terms of the parameters and the concentrations.
(b) Give an expression of the total enzyme concentration in terms of fluxes and the metabolite concentrations s1

and x.
(c) Find the concentration of X for which the specific flux v3/etot is maximal for e1 = 0 and s2 = 10, and also

give the corresponding value of v3. HINT: Is is easiest to set etot = 1 and maximize v3, replacing e3 using
the equation for the total enzyme cost and the steady state assumption.

(d) Find the concentration of X for which the specific flux v3/eT is maximal for e2 = 0 and s1 = 10, and also
give the corresponding value of v3/etot.

(e) Find the concentration of X for which the enzyme cost is minimal for e1 = e2 and s1 = s2 = 10, and also
give the corresponding value of v3/etot.

(f) What was the best distribution of enzymes from the three options above for s1 = 10?
(g) Find the concentration of X for which the enzyme cost is minimal for e1 = 0 and s1 = 50, and also give the

corresponding value of v3/etot.
(h) Find the concentration of X for which the enzyme cost is minimal for e2 = 0 and s1 = 50, and also give the

corresponding value of v3/etot.
(i) Find the concentration of X for which the enzyme cost is minimal for e1 = e2 and s1 = 50, and also give the

corresponding value of v3/etot.
(j) What was the best distribution of enzymes from the three options above for s1 = 50?
(k) Interpret the results from this problem in light of the proof shown in this chapter about the optimal specific

flux being attained at an EFM.

Appendix sections

7.8. A model of central metabolism in Escherichia coli
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Metabolite name Biomass stoichiometric coefficient
AcCoA -41
ADP 547
2-oxoglutarate -14
ATP -547
H2O -547
Pi 547
CO2 2
CoA 41
DHAP -5
G6P -4
NAD+ 178
NADH -178
NH3 -139
2-oxoglutarateAcetate -24
PEP -32
Pyruvate -38
E4P -5
R5P -13

Table 7.2: Stoichiometry of biomass reaction – R70

Reaction ID EC number Reaction name Formula
R1 2.7.1.69 pts Glucose + PEP 
 G6P + Pyruvate
R2r 5.3.1.9 pgi G6P 
 F6P
R3 2.7.1.11 pfk F6P + ATP 
 FBP + ADP
R4 3.1.3.11 fbp FBP + H2O 
 F6P + Pi

R5r 4.1.2.13 ald FBP 
 DHAP + G3P
R6r 5.3.1.1 tim G3P 
 DHAP
R7ra 1.2.1.12 gap G3P + NAD+ + Pi 
 BPG + NADH
R7rb 2.7.2.3 pgk BPG + ADP 
 3PG + ATP
R7rc 5.4.2.11 / 5.4.2.12 pgm 3PG 
 2PG
R8r 4.2.1.11 pgh 2PG 
 PEP
R9 2.7.1.40 pyk PEP + ADP 
 Pyruvate + ATP
RR9 2.7.9.2 pps Pyruvate + 2 ATP 
 PEP + 2 ADP + Pi

Table 7.3: Glycolysis

Reaction ID EC number Reaction name Formula
R10a 1.1.1.49 zwf G6P + NAD+ 
 6PGL + NADH
R10b 3.1.1.31 glh 6PGL 
 6PGC
R10c 1.1.1.44 pgd 6PGC + NAD+ 
 NADH + CO2 + Ru5P
R11r 5.1.3.1 rpe Ru5P 
 X5P
R12r 5.3.1.6 rpi Ru5P 
 R5P
R13r 2.2.1.1 txt1 R5P + X5P 
 S7P + G3P
R14r 2.2.1.2 tal G3P + S7P 
 E4P + F6P
R15r 2.2.1.1 txt2 E4P + X5P 
 G3P + F6P
R60 4.2.1.12 edd 6PGC 
 KDPG
R61r 4.1.2.14 eda KDPG 
 G3P + Pyruvate

Table 7.4: Pentose Phosphate Pathway

Reaction ID EC number Reaction name Formula
R20 2.3.1.54 pfl Pyruvate + CoA 
 AcCoA + Formate
R21 1.2.4.1 / 2.3.1.12 pdh Pyruvate + NAD+ + CoA 
 AcCoA + CO2 + NADH
R22 2.3.3.1 csn 2-oxoglutarateacetate + AcCoA 
 Citrate + CoA
R23r 4.2.1.3 acn Citrate 
 iso-Citrate
R24 1.1.1.41 icd iso-Citrate + NAD+ 
 2-oxoglutarate + NADH + CO2
R25 1.2.4.2 kgd 2-oxoglutarate + NAD+ + CoA 
 NADH + Succinateinyl-CoA + CO2
R26r 6.2.1.5 scs Succinateinyl-CoA + ADP + Pi 
 Succinateinate + ATP + CoA
R27 1.3.5.1 sdh Succinateinate + ADP + O2[e] + Pi 
 Fumarate + ATP
R27b 1.3.5.4 frd Fumarate + NADH 
 Succinateinate + NAD+

R28r 4.2.1.2 fum Fumarate 
 Malate
R29r 1.1.1.37 mdh Malate + NAD+ 
 2-oxoglutarateacetate + NADH

Table 7.5: TCA Cycle
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Reaction ID EC number Reaction name Formula
R40 4.1.1.31 ppc PEP + CO2 
 2-oxoglutarateacetate + Pi

R41 1.1.1.38 me Malate + NAD+ 
 Pyruvate + NADH + CO2
R42 4.1.1.49 ppck 2-oxoglutarateacetate + ATP 
 PEP + ADP + CO2

Table 7.6: Anaplerotic Reactions

Reaction ID EC number Reaction name Formula
R53r 1.1.1.27 ldh Pyruvate + NADH 
 Lactate + NAD+

R54ra 1.2.1.10 ada AcCoA + NADH 
 Acetaldehyde + NAD+ + CoA
R54rb 1.1.1.1 adh Acetaldehyde + NADH 
 ETOH + NAD+

R55a 2.3.1.8 pta AcCoA + Pi 
 Acetyl-P + CoA
R55b 2.7.2.1 ack Acetyl-P + ADP 
 Acetate + ATP

Table 7.7: Redox-associated reactions

Reaction ID Reaction name Formula
R80 oxphos NADH + 2 ADP + 0.5 O2[e] + 2 Pi 
 NAD+ + 2 ATP + 3 H2O
R82 atpmain ATP + H2O 
 ADP + Pi + ATPmain

Table 7.8: Oxidative phosphorylation

Reaction ID Reaction name Formula
R90 exetoh ETOH 
 ETOH[e]
R91 exace Acetate 
 Acetate[e]
R93 exNH3 NH3[e] 
 NH3
R94 exlac Lactate 
 Lactate[e]
R95 exsuc Succinateinate 
 Succinateinate[e]
R96 exfor Formate 
 Formate[e]
R97r exCO2 CO2 
 CO2[e]

Table 7.9: Membrane Transport Reactions
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Reaction ID k+
cat [1/s] Keq [unitless] Enzyme molecular weight [Da]

R1 100 N/A 2.6·105

R10a 240 N/A 5.6·104

R10b 410 N/A 3.6·104

R10c 110 N/A 1.0·105

R11r 130 2.3 2.5·104

R12r 1400 2.3 1.9·104

R13r 46 3.7 7.3·104

R14r 17 0.9 3.5·104

R15r 75 38 7.3·104

R20 4800 N/A 8.5·104

R21 38 N/A 2.8·105

R22 360 N/A 9.6·104

R23r 33 0.074 9.6·104

R24 110 N/A 4.6·104

R25 150 N/A 1.2·106

R26r 89 0.52 7.1·104

R27 78 N/A 7.9·105

R27b 180 N/A 1.8·105

R28r 280 4.7 6.0·104

R29r 210 6.1·10−5 3.2·104

R2r 320 0.51 6.2·104

R3 110 N/A 1.4·105

R4 25 N/A 3.7·104

R40 120 N/A 2.0·105

R41 76 N/A 6.3·104

R42 51 N/A 6.0·104

R53r 140 2.1·104 3.7·104

R54ra 0.35 2.3·10−3 9.6·104

R54rb 320 2.8·103 9.6·104

R55a 91 N/A 7.7·104

R55b 59 N/A 4.3·104

R5r 8.0 3.0·10−4 3.9·104

R60 250 N/A 6.5·104

R61r 80 9.6·10−3 2.2·104

R6r 7800 11 5.4·104

R70 99 N/A 6.0·104

R7ra 230 0.088 3.6·104

R7rb 390 730 4.1·104

R7rc 53 0.16 2.9·104

R80 4.0·106 N/A 9.1·105

R82 180 N/A 6.0·104

R8r 210 3.5 4.6·104

R9 510 N/A 5.0·104

R90 100 N/A N/A
R91 100 N/A 5.9·104

R93 100 N/A 4.5·104

R94 100 N/A 5.9·104

R95 100 N/A 4.5·104

R96 100 N/A 3.1·104

R97r 100 N/A N/A
RR9 13 N/A 8.7·104

Table 7.10: Kinetic parameters associated with reactions
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Reaction ID Metabolite name KM [mM]
R1 G6P 0.102
R1 Glucose 0.116
R1 PEP 0.0983
R1 Pyruvate 0.102
R10a G6P 0.314
R10a 6PGL 0.129
R10a NAD+ 0.863
R10a NADH 0.129
R10b 6PGL 0.168
R10b 6PGC 0.0594
R10c CO2 0.0626
R10c 6PGC 0.101
R10c Ru5P 0.0626
R10c NAD+ 0.0591
R10c NADH 0.0626
R11r Ru5P 0.0878
R11r X5P 0.114
R12r R5P 1.25
R12r Ru5P 0.558
R13r G3P 1.23
R13r R5P 0.972
R13r S7P 2.11
R13r X5P 0.157
R14r E4P 0.175
R14r F6P 0.888
R14r G3P 0.578
R14r S7P 0.206
R15r E4P 0.0934
R15r F6P 0.737
R15r G3P 1.27
R15r X5P 0.152
R20 AcCoA 0.0352
R20 CoA 0.0168
R20 Formate 6.35
R20 Pyruvate 2.18
R21 AcCoA 0.159
R21 CO2 0.159
R21 CoA 0.0629
R21 Pyruvate 0.291
R21 NAD+ 0.0629
R21 NADH 0.159
R22 AcCoA 0.0867
R22 Citrate 0.0756
R22 CoA 0.0756
R22 2-oxoglutarate 0.0287
R23r Citrate 3.49
R23r iso-Citrate 2.42
R24 2-oxoglutarate 0.483
R24 CO2 2.02
R24 iso-Citrate 0.0227

Reaction ID Metabolite name KM [mM]
R24 NAD+ 1.06
R24 NADH 0.0119
R25 2-oxoglutarate 0.0670
R25 CO2 0.108
R25 CoA 0.0927
R25 Succinyl-CoA 0.108
R25 NAD+ 0.0927
R25 NADH 0.108
R26r CoA 0.00731
R26r Succinate 0.237
R26r Succinyl-CoA 0.0105
R26r ADP 0.0560
R26r ATP 0.0812
R27 Fumarate 0.0812
R27 O2[e] 0.371
R27 Succinate 0.0756
R27 ADP 0.371
R27 ATP 0.0270
R27b Fumarate 0.0201
R27b Succinate 0.205
R27b NAD+ 0.0431
R27b NADH 0.232
R28r Fumarate 0.314
R28r Malate 0.615
R29r Malate 3.19
R29r 2-oxoglutarate 0.0283
R29r NAD+ 0.460
R29r NADH 0.0321
R2r F6P 0.162
R2r G6P 0.273
R3 F6P 0.116
R3 FBP 0.113
R3 ADP 0.113
R3 ATP 0.141
R4 F6P 0.171
R4 FBP 0.0161
R40 CO2 0.115
R40 2-oxoglutarate 0.0426
R40 PEP 0.364
R41 CO2 0.0885
R41 Malate 0.361
R41 Pyruvate 0.0885
R41 NAD+ 0.0691
R41 NADH 0.0885
R42 CO2 5.21
R42 2-oxoglutarate 0.571
R42 PEP 0.0643
R42 ADP 0.0484
R42 ATP 0.0750
R53r LACTATE 0.517

Michaelis constants – part I
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Reaction ID Metabolite name KM [mM]
R53r Pyruvate 0.0193
R53r NAD+ 0.517
R53r NADH 0.0193
R54ra AcCoA 0.0242
R54ra Acetaldehyde 1.80
R54ra CoA 0.00786
R54ra NAD+ 0.0415
R54ra NADH 0.113
R54rb Acetaldehyde 0.0593
R54rb ETOH 5.49
R54rb NAD+ 0.169
R54rb NADH 0.0593
R55a AcCoA 0.0424
R55a Acetyl-P 0.313
R55a CoA 0.0860
R55b Acetate 3.44
R55b Acetyl-P 0.154
R55b ADP 0.402
R55b ATP 0.0714
R5r DHAP 0.0782
R5r FBP 0.204
R5r G3P 0.0782
R60 6PGC 0.0434
R60 KDPG 0.150
R61r G3P 0.00146
R61r KDPG 0.561
R61r Pyruvate 0.00146
R6r DHAP 0.0750
R6r G3P 0.745
R70 AcCoA 0.462
R70 2-oxoglutarate 0.352
R70 BIOMASS 0.0998
R70 CO2 0.0996
R70 CoA 0.891
R70 E4P 0.0144
R70 G6P 4.31
R70 NH3 0.0151
R70 2-oxoglutarate 0.00672
R70 PEP 0.169
R70 Pyruvate 0.319
R70 R5P 0.881
R70 ADP 0.0293
R70 ATP 0.342
R70 NAD+ 1.43

Reaction ID Metabolite name KM [mM]
R70 NADH 0.0913
R7ra DPG 0.0576
R7ra G3P 0.687
R7ra NAD+ 0.0558
R7ra NADH 0.0576
R7rb DPG 0.0426
R7rb 3PG 0.235
R7rb ADP 0.0426
R7rb ATP 0.235
R7rc 3PG 0.132
R7rc 2PG 0.0755
R80 O2[e] 0.116
R80 ADP 0.136
R80 ATP 0.0737
R80 NAD+ 0.0859
R80 NADH 0.116
R82 ATPmain 0.130
R82 ADP 0.130
R82 ATP 0.0769
R8r PEP 0.131
R8r 2PG 0.108
R9 PEP 0.291
R9 Pyruvate 0.0476
R9 ADP 0.218
R9 ATP 8.45
R90 ETOH 0.100
R90 ETOH[e] 0.100
R91 Acetate 0.100
R91 Acetate[e] 0.100
R93 NH3 0.0999
R93 NH3[e] 0.100
R94 Lactate 0.100
R94 Lactate[e] 0.100
R95 Succinate 0.100
R95 Succinate[e] 0.100
R96 Formate 0.0999
R96 Formate[e] 0.100
R97r CO2 0.0999
R97r CO2[e] 0.100
RR9 PEP 0.0934
RR9 Pyruvate 0.0864
RR9 ADP 0.0873
RR9 ATP 0.0350

Michaelis constants – part II
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Figure 7.9: Metabolic strategies in the E. coli model, depending on external glucose and oxygen concentrations,
In the EFM pahse diagram. Each region represents the winning EFM as explained in Figure 7.8. Here, the colors
represent the flux in one specific reaction based on the winning EFM in that region. (A) The lactate secretion flux is
strikingly equal to 0 in most regions. The only conditions where lactate is secreted is at low oxygen and medium/high
glucose concentrations. (B) The biomass yield is, in general, high if and only if lactate is not secreted. This makes
sense because the carbon coming from the glucose is often the limiting nutrient for growth, and there is a trade-off
between using it for biomass versus fermentation products such as lactate. Interestingly, the region with high glucose
and high oxygen levels (upper right quadrant) is occupied by an EFM that doesn’t achieve the highest possible yield
(i.e. max-gr). In low glucose and high oxygen, or in medium oxygen levels, the winning EFMs are the ones with
relatively higher biomass yields.

7.9. More results for the E. coli central metabolism model
This section contains additional results for the E. coli central metabolism model from Chapter 7 in [1], in particular,
fluxes plotted in the EFM phase diagram and in flux space, as well as ideal and real enzyme costs for all EFMs.

Each point in the Monod landscape in Figure 7.8 (A) corresponds to a state of the model, and the calculations that lead
to the growth rate and the "winning EFM" shown yield a full description of this state, including all fluxes, metabolite
concentrations and enzyme levels. These data can be explored and visualized in many ways. For illustration, Figure
7.10 shows a variant of Figure 7.8 (A) in the horizontal axes do not describe the external concentrations of glucose
and oxygen, but their uptake rates, and the vertical axes shows the biomass production rate. Since uptake rates are a
function of external concentrations, and the growth rate directly depends on the biomass production rate, we might
have expected that this yields the same picture, just a bit stretched along each of the axes. However, the picture
looks very different: instead of forming a continuous surface, the points now fall on disconnected rays, apparently
with one ray for each colored region of the surface. In fact, when looking at the picture closely, we can see that each
of the winning EFMs gives rise to exactly one ray. But this, after all, is logical. In the new plot, all axes refer to
reaction rates, and for each EFM all rates come in fixed ratios, giving rise to a ray. So, if our solutions are EFMs, this
picture cannot be continuous – in line with the fact that, in the original Monod landscape 7.8 (A), when moving from
one region to the other one, one would notice a discrete jump of the reaction rates. But why is the new picture not a
continuos surface, if uptake rates depends smoothly on external metabolite concentrations? In fact, they do not only
depend on these concentrations, but also on resource allocation to the transporter. If this allocation shows a discrete
jump (again, when moving from one region to another one), then also the rate shows a jump. The comparison
between the two plots shows us what we gain by considering enzyme kinetics as compared to a pure stoichiometric
model. With the biomass rate as a proxy for cell growth, each EFM defines fixed ratios between this growth rate and
each of the metabolic fluxes, including the uptake rates. When continuously scaling an EFM, the glucose uptake,
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Figure 7.10: Proportional scaling of fluxes within each EFM – In the diagram with glucose uptake, oxygen uptake, and
biomass production rate on the axes, each colored line corresponds to one EFM, and shows the possible combinations
of fluxes obtained from the model behind Figure 7.8 (which also shares the EFM colors with this figure). Importantly,
here the x and y axes represent uptake rates and not substrate concentrations. Therefore, as expected, each EFM
yields a straight line (because of the proportional scaling of different fluxes for each EFM). Since – according to our
reasoning – optimal flux distributions must be EFMs, only these combinations of fluxes are actually possible. When
glucose and oxygen concentrations are varied smoothly in Figure 7.8, the corresponding movement in this plot would
be along the lines and sometimes, jumps between different lines (when the system moves from one region to another
one in Figure 7.8).

oxygen uptake, and biomass production will scale proportionally. So the rays in Figure 7.10 reflect what we can know
about possible metabolic fluxes based on network structure alone; but to get to the Monod landscape, as a function
of concentrations, we had to use kinetic information and a extra principle of economical enzyme usage.

The phase diagram of “winning EFMs” can also be used to visualize other (optimized) quantities as functions of
glucose and oxygen concentrations. Figure 7.9 shows as example the (biomass-specific) lactate secretion (showing
that also a number of other winning EFMs, apart from ana-lac, secrete lactate) and the biomass yield on glucose.

Finally, a statistics over all EFMs shows that the range of possible enzyme demands per biomass production rate
is quite large: as shown in Figure 7.11, they vary over more than two orders of magnitude, making some EFMs a
hundred-fold more enzyme-expensive than others. The same plot also shows how enzyme costs depend on the fact
that enzymes do not operate at their full capacity (reaching their kcat value), but at best at the enzyme efficiencies
predicted by enzyme cost minimization. For our E. coli model and the aerobic glucose conditions studied, if all
enzymes could operate at their kcat values, this would decrease to overall enzyme demand by a factor of at least 1.4,
or maximally 4.7, depending on the EFM in question. But still, in this case, for determining enzyme costs the choice
of the right EFM (even assuming "ideal" enzymes) is much more important than considering the actual, "non-ideal"
way in which enzymes operate. But this may not always hold: under low-oxygen conditions, the enzyme demands of
some EFMs may increase much more drastically.

Solutions to problems

Problem 7.1 (Effect of oxygen concentration)

The oxygen concentration affects only the rate v3, and an increase in oxygen increases this rate for the same enzyme
concentration. Since EFM2 does not contain v3, the enzyme cost of this EFM will not change. EFM1 and EFM3
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Figure 7.11: Ideal and real enzyme costs of elementary flux modes – For each EFM (shown as a cyan dot), the ideal
enzyme cost per biomass production rate (i.e. assuming that all the enzymes are saturated) is compared to the actual
cost (calculated using Enzyme Cost Minimization, assuming standard aerobic glucose conditions). The costs span a
wide range from the most enzyme-efficient EFMs on the lower left to the least enzyme-efficient ones on the upper
right. For different EFMs, the ratio of actual and ideal costs varies between 1.4 and 4.7. Here, the EFM with the
minimal actual cost is among the top 5 in terms of ideal cost.

benefit from an increase of the oxygen concentration, because they will have to invest less enzyme in v3 to obtain
the same rate. Therefore, those EFMs can become more beneficial and the optimal EFM could shift to one of those
EFMs.

Problem 7.2 (Effect of external metabolites)

Increasing [Pex] will benefit EFM3 and decrease the benefit of EFM2 (because for EFM2 [Pex] will inhibit reaction
v2 and therefore more enzyme is needed for reaction v2 and the enzyme cost of EFM2 will increase. Qualitatively,
with increasing [Pex], EFM2 might become more expensive, and either EFM1 or EFM3 will become beneficial, or
both at different Pex concentrations, depending on the kinetics of the reactions.

Problem 7.3 (States of maximal growth rate)

(a) v1 = e1(k+
1 s1 − k−

1 X), v2 = e2(k+
2 s2 − k−

2 x) and v3 = e3(k+
3 x − k−

3 p)
(b) etot = v1

(2s1−x) + v2
(30−x) + v3

x

(c) When e1 = 0, v1 is also 0 and to achieve steady state v2 = v3 and using the rate equations and filling in the
parameters we get etot = v3

(30−x) + v3
x . We now set etot = 1 to obtain v3 = (1− v3

30−x )x which we can rewrite to
v3 = x

1+ x
30−x

. We can take the derivative to x and set it equal to 0 to find the optimum, which leads to x = 15
and v3/etot = 15

2 . Note that in this specific case we did not need to set etot = 1 and could have maximized
v3/etot directly, but in general this does not always work. In the rest of the answers we assume we set etot = 1
and therefore v3 = v3/etot.

(d) e2 = 0 implies v2 = 0 and filling in s1 = 10 leads to v3 = (1 − v3
20−x )x, which can be rewritten to v3 = x

1+ x
20−x

.
This is optimal when x = 10 and v3/etot = 5.

(e) e1 = e2 implies v1
20−x = v2

30−x . From the steady state we know that v2 = v3 − v1. Filling this in and solving for
v1 leads to v1 = v3

x−20
x−50 . From the total enzyme and by replacing e1 by e2 we get e3 = 1 − 2 v1

20−x . Putting
this in the equation for v3 and using the previous equality to replace v1 leads to: v3 = (1 + v3

x−25 )x. Solving
this for v3 gives v3 = x − x2

25 , which is optimal for x = 12.5 with v3/etot = 25
4 .

(f) It was optimal to invest all enzyme in e2 and none in e1, because that lead to the highest specific flux v3 (namely
v3 = 7.5).

(g) Since v1 = 0, S1 is not involved in any reaction and the solution is the same as above, x = 15 and v3/etot = 15
2 .
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(h) Similar calculations as above but now with s1 = 50 lead to v3 = x
1+ x

100−x
, which is optimal when x = 50 and

gives v3/etot = 25.
(i) Similar calculations as above but now with s1 = 50 lead to v3 = x − x2

65 . v3/etot is maximal at x = 32.5 and
takes the value 16.25.

(j) Now s1 increased the optimal strategy would be to invest all enzymes in e1, and have e2 = 0, because that
leads to the highest specific flux of v3, namely v3/etot = 25.

(k) The two EFMs in this pathway that produce P are v1 = v3 with v2 = 0 and v2 = v3 with v1 = 0. In the problem
we saw when we optimize the specific flux, we always obtained one of those EFMs as the best solution, from
the options that we tested. Therefore, these results are in agreement with the proof outlined in this chapter.
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