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Chapter overview

This chapter introduces cell metabolism as a dynamical system. While the previous chapter gave an
overview of the constituents of this system, i.e. enzymes, metabolites, etc., this chapter focuses on
conceptual abstraction of the metabolic system as a whole and how to model its dynamics over time.
The key areas introduced are:

◦ Conceptualizing cell metabolism as a dynamical system (section 3.1)
◦ Dynamics and regulation of metabolism (section 3.2)
◦ Toolbox for modeling dynamics of metabolism - Biochemical reaction rate equations and their deriva-

tions (section 3.3)
◦ Dynamics of metabolism: Examples of experimental evidence and model-based explanations (section

3.4)
◦ Mathematical derivations and example models (appendix sections 3.6 and 3.7)

This chapter links to the rest of this book by introducing dynamic of metabolism and highlighting possible
dynamical features as constraints or self-regulation mechanisms on metabolic fluxes. Exploring the latter
possibility is challenging, requiring both theoretical and experimental efforts. The understanding of dynamics
is at the forefront of the study of cell metabolism and physiology and we hope that this chapter provides a
notion in the reader to explore this area of research further.

In this chapter we will switch back-and-forth between a high-level view on metabolism, considering all of
it, and a more focused, low-level view focusing on modeling individual reactions or small sets of reaction
systems (e.g. pathways or motifs). These two viewpoints constitute two ends of a wide spectrum, and our
aim in jumping back-and-forth between them is to allow the reader to obtain the skills to model dynamics of
reaction systems that make up metabolism, while at the same time to invite them to think about the overall
function of the metabolic system.

3.1. Conceptualizing cell metabolism as a dynamical system
Cell metabolism is a dynamical process that converts available metabolites from the environment into biomass
and other products. The metabolism of a typical cell involves thousands of biochemical reactions and

1



2 The dynamics of metabolic systems

Economic analogy 3.A

We can make an analogy that presents metabolism as an assembly line in a factory. Metabolites enter the
line from outside the cell and are processed i.e. acted upon by enzymes to create new metabolites that are
ultimately incorporated into cellular biomass. This picture is reinforced by the common textbook illustration
of metabolism as a set of isolated pathways that are placed upstream or downstream of each other, and that
produce or consume outputs for each other. A key shortcoming of this analogy is that it conveys a picture in
which events are strictly linear and progressive in their nature, ignoring the cyclic and inter-connected nature
of metabolism (Fig. 3.1). Despite this shortcoming, this analogy captures the point that the flux of materials
through the system can attain a steady-state of equal in- and out-flux across individual reactions (see further
discussion of the steady-state concept in the main text). One important difference however between an assembly
line and metabolism is that the rate at a given assembly stage in a factory is not a function of how many units
are waiting to be processed because factory machines tend run at fixed rates. In metabolism, the rate of a
reaction is a function of the substrate concentration until saturated. This leads to distinctive behavior not found
in factory assembly lines. Another important difference with a factory assembly line is that unlike an assembly
line, metabolism in some cases is able to in both directions along the line. The most well known of these is the
bidirectionality of the glycolytic and gluconeogenic pathways.

metabolites. What would be a useful way to think about such a complex, dynamical system? We need a
conceptual picture of metabolism to help us formulate more specific ideas about how it functions, how it
can be manipulated, or even how it has evolved. Here, we first highlight a few such ‘pictures’, or ways of
thinking about metabolism.

3.1.1. Metabolism as a collection of pathways

The common and historical view of a metabolic system stems from pioneering biochemical studies from the
1930s onwards, which identified collections of reactions as so-called pathways [1]. Known mostly through
the names of their discoverers, these include the EntnerDoudoroff (ED), EmbdenMeyerhofParnas (EMP)
and pentose-phosphate (PP) pathways involved in glucose uptake and conversion into pyruvate, and the
Krebs pathway (a.k.a. tricarboxylic acid cycle, TCA) involved in the conversion of pyruvate into amino acid,
nucleotides, and biomass precursors [2]. This pathway-centric view of cell metabolism lends itself readily to
an assembly line analogy and the notion of (linearly) connected pathways (see Economic analogy 3.A).

Pathways, yes, but not so linear! The identification of well-established pathways and the subsequent
focus upon them gives the false impression that cell metabolism consists of a series of neatly organized and
serially connected pathways. This impression is facilitated by pictures of isolated linear pathways, common in
textbooks and even research papers. In reality, these pathways are highly interconnected with other pathways
(Fig. 3.1).

Part of these interconnections within metabolism arise from co-substrates and specific metabolite pairs that
participate in many reactions. For example, co-substrates such as ATP and NADH link many parts of
metabolism through reactions in which they are generated or consumed (Fig. 3.2), while the glutamate
- α-ketoglutarate pair is involved in the TCA cycle as well as acting as a group donor in all amino acid
biosynthesis pathways.

The pathway view provides a useful starting point to think about metabolism, but a complete understanding
of metabolism dynamics and metabolic phenotypes requires us to come to terms with the highly connected
nature of these pathways (see below, Philosophical Remarks Box 3.C).
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Figure 3.1: Metabolic pathways and complexity. (A and B) Upper glycolysis pathway as a linear pathway,
with or without co-substrates. Note that the co-substrates ’connect’ this pathway to a large number of
other reactions that also use these same co-substrates. (C) Upper glycolysis pathway, together with the
pentose-phosphate pathway. Notice metabolites participating in both.

3.1.2. Metabolism - coarse grained views

The highly connected nature of metabolism makes it difficult to understand its overall dynamics just from
individual pathways. It also makes it hard to conceptualize metabolism as a single, linear process, or as serially
connected pathways. Here, a coarse-grained viewpoint, focusing on the overall function of cell metabolism,
might prove helpful. There have been several such views developed, with two highlighted here.

Metabolism as biomass generator. A widely applied coarse-grained view of metabolism considers it as a
vehicle to biomass production. In this view, metabolism is considered as two coupled processes, one producing
energy and compounds that can act as building blocks (e.g. amino acids), and one that uses these to create
larger macro molecules (e.g. proteins and lipids) needed to make a new cell. These two processes are
called catabolic and anabolic metabolism respectively, and their coupling presents the whole cell metabolism
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Figure 3.2: A simplified map of central metabolism, particularly highlighting interconnections among different
processes (i.e. pathways) through the NAD(P)+ / NAD(P)H co-substrate pair.

(Fig. 3.3 A). This coarse-grained model is widely used (e.g. [2, 3]. However, it is not always clear how to
partition various pathways and reactions as anabolic and catabolic, and the notion of metabolism organized
solely to satisfy for biomass production does not capture certain metabolic phenotypes, such as no-growth
states or excretion of high-energy metabolites (i.e. metabolic overflow).

Metabolism as electron flow. An alternative coarse-grained view of metabolism is obtained from a more
chemical standpoint. When one writes down an overall reaction for cellular metabolism, considering com-
pounds taken up from the environment and created at the end of various metabolic processes, one realizes
that this is a redox reaction, a type of reaction where electrons are exchanged between participating reactants
(see Fig. 3.3 B and Box 3.B). This means that the actual reactions within metabolism that enable this overall
reaction must compose also of some redox reactions. In other words, we can argue that metabolism consists
of (besides other reactions) a series of redox reactions that enable flow of electrons. Metabolism is thus an
inter-connected system of reactions that allows flow of electrons from readily oxidized compounds (electron
rich compounds with low or negative reduction potentials) towards readily reduced compounds (electron
poor compounds with positive reduction potentials) [4, 5]. (Fig. 3.3 B). As the Nobel laureate Albert Szent-
Györgyi (1893 1986), who studied the TCA cycle and discovered vitamin C biosynthesis pathways, once
said, “Life is an electron looking for a place to rest.”.

Emphasizing its redox reactions, the metabolic system can be visualized on a reduction potential chart, which
is sometimes called a ‘redox ladder’ (Fig. 3.4 and box 3.B). This potential chart shows reduction potential
of redox half reactions (usually in reduction direction) and allows us to readily visualize the thermodynamic
feasibility of redox reaction pairs. The chart is ordered in such a way that any reduction half reaction can
be paired with any other placed below it, resulting in a thermodynamically feasible redox reaction, but not
with those above it. We notice that cell metabolism, in order to maintain electron flows, needs to maintain
thermodynamic feasibility of the overall and all intermediate reactions. The key requirement for this is to
have access to electron donors (e.g. carbohydrates) and terminal electron acceptors (e.g. oxygen). One must
also note that the redox ladder depicted in Fig. 3.4 is derived for standard concentrations of metabolites,
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Figure 3.3: Coarse-grained models of cell metabolism. (A) A conceptual drawing of cell metabolism as
provider of precursors (catabolism) and generator of biomass from those (anabolism). (B) A conceptual
drawing of cell metabolism as enabling an abstract redox reaction between a pair of electron donors and
acceptors. The electron donor can at the same time be the carbon source for biomass generation, or there
can be a separate ‘carbon-donor’. This overall redox reaction is an abstraction, in the sense that in real
metabolism electrons are not directly transferred from the original donor to biomass precursors but rather
there are many intermediary redox reactions such as those involving key carrier co-substrate metabolite pairs
NAD(P)+/NAD(P)H.

whereas the reduction potentials would depend on actual concentrations in the cell.

3.1.3. Keeping flows in a system of interconnected fluxes

It is noticeable that both coarse-grained views presented above involve interconnected fluxes that are ulti-
mately enabling an overall flux. In the biomass-based view, the flux between catabolism and anabolism is
connected to enable flux into biomass. In the electron-flow based view, there is again a set of interconnected
flows to enable the overall electron flow from initial donors (e.g. glucose) to final acceptors (e.g. oxygen).

The interconnection of fluxes in metabolism is most clearly visible in reactions involving co-substrates,
such as NAD(P)+ / NAD(P)H and ADP/ATP pairs (see below, philosophical remarks box 3.C). The
NAD(P)+/NAD(P)H pair form either the oxidation or reduction half-reaction in various redox reactions
thereby enabling the aforementioned electron flows within the metabolic system. The ATP+/ADP pair
forms an energy carrier, providing driving energy to reactions that would be thermodynamically infeasible
(see section 3.2.1 below on what we mean by this). This pair is seen as forming the flux connection between
catabolism and anabolism, where the former is considered to result in ATP production, and the latter is
considered to consume this.

Co-substrates are thus essential in connecting different fluxes, and therefore processes, within metabolism
and their dynamics must be important to keep overall metabolic flow. It is tempting to speculate that key
co-substrates might be an evolutionary outcome that ensures stable electron flows in the face of chang-
ing conditions. While this possibility is difficult to prove or disprove, it is interesting to note that the
NAD(P)H/NAD(P)+ pairs can attain a broad range of reduction potentials that could enable their redox
partnering with many of the different reaction types found in cell metabolism [7] - in other words, these two
redox pairs seem to be a versatile tool to connect a wide range of redox reactions to each other and ensure
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Box 3.B : The redox ladder in metabolism

We can highlight the overall redox reaction implemented by the cellular metabolism further, by writing it as two
separate reactions consisting of an oxidation reaction (involving a molecule releasing electrons) and a reduction
reaction (involving a molecule accepting electrons) (see Fig. 3.3). The feasibility of the paired, overall redox
reaction can be measured by the Gibbs free energy, or the closely related reduction potential, where a positive
reduction potential (or a negative Gibbs free energy) indicates a thermodynamically feasible reaction. Thus, a
redox reaction with a positive reduction potential implies electrons ‘flowing’ from a molecule with high reduction
potential towards that with a low reduction potential a point that can be visualized using a “reduction ladder”,
a chart of reduction potentials (Fig. 3.4). Notice that considering redox reactions as composed of individual
reduction and oxidation reactions is merely a conceptualization, however, this provides a useful analogy in which
we can view a metabolic system as enabling the flux of electrons across many reactions, and between an initial
electron donor and a final electron acceptor [1]. While glucose and oxygen are possibly the most well-known
electron donor and acceptor pairs, cells, especially microbial cells, can use a wide-range of donors and acceptors,
including nitrogen and sulfur containing compounds, thereby contributing significantly to biogeochemical cycles
of these compounds [6].

Philosophical remarks 3.C

The involvement of co-substrate and key metabolites results in the coupling of many different parts of the
metabolism and in the emergence of cyclic reaction systems - for example, by connecting different parts of
the metabolism, the NAD(P)H/NAD(P)+ pairs result in cycling between their different forms. This means
that in order to capture the concentration of all the other molecules involved in these reactions, we need to
consider dynamics of a series of intertwined cyclic reaction systems, rather than linear pathways akin to an
assembly line. Indeed, it has been argued that cyclic reaction motifs should form the basis of developing a
dynamic understanding of cell metabolism [11]. It must also be noted that co-substrates, and possibly other key
metabolites, can have conserved concentrations in the time scales of metabolic flux dynamics. In other words,
these metabolites form conserved moieties within the system, similar to enzymes, such that altering of the total
pool size of these co-substrates or the ratio of their different forms (e.g. the NAD+/NADH ratio) can possibly
affect the flux distribution across different pathways that they are connected to [12, 13, 8, 14, 11, 15].

electron flows.

3.1.4. Metabolic system and recurring motifs

Within the highly inter-connected system that is metabolism, specific reaction arrangements seem to recur
frequently, so-called “reaction motifs”. We have already mentioned the cyclic reaction systems, involving
co-substrates as one such motif. Other reaction motifs that have been highlighted include autocatalytic
cycles [8] and branch points [9]. As we will discuss below, these reaction motifs can give rise to specific
nonlinear dynamics and act in auto-regulatory capacity or create constraints on the metabolic system. In
general, however, it is difficult to ascertain the evolutionary significance of reaction motifs. While automated
approaches, involving graph theoretical analysis of metabolic systems represented as networks, highlighted
certain metabolic motifs as significant compared to random networks, it was subsequently shown that this
result is dependent both on the original network representation used and the randomized networks used for
comparison [10].
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Figure 3.4: Metabolism on a redox ladder. Cartoon representation highlighting the role of electron flows
through redox reactions for a functioning metabolism, and a reduction potential chart listing key redox
reactions found in cellular metabolism. Notice that the reduction potential chart shows reduction potentials of
half-reactions in the reduction direction and using metabolite concentrations under standard conditions, hence
the actual potentials would be different and dynamically changing within the cells. A thermodynamically
feasible reaction would need to combine one half reaction (run in reverse, oxidation direction) with another
one lying below it (i.e. at a higher reduction potential). Two example feasible redox pairs are shown with the
blue and red data points.

3.2. Dynamics and regulation of metabolism
Independent of our conceptual views on metabolism, the fact remains that the metabolic system involves
flux of matter. A myriad of metabolites are combined, converted, broken apart, and re-assembled. These
biochemical reactions are catalyzed by enzymes so to improve kinetic rates, and the entire system must obey
the laws of thermodynamics (more on these later in section 3.2.1). In summary, metabolism constitutes a
‘system’ of metabolites and their reactions, together with enzymes. Its dynamics over time ensures fluxes of
matter.

3.2.1. Biochemical reactions and thermodynamics

Metabolism consists of individual biochemical reactions of the form:

νaA + νbB −−⇀↽−− νcC + νdD (3.1)

where νi are the so-called stoichiometric coefficients, determining the number of molecules of the i ’th
chemical species taking part in the reaction (Box 3.D). While these reactions are catalyzed by enzymes, they
still need to obey thermodynamic laws. We will not provide a full treatise of the thermodynamics of chemical
reactions here - we refer the reader to excellent books on physical chemistry for this (e.g. [16]) and also to
books for a conceptual introduction to thermodynamics (e.g. [17]). Here, it suffices for us to define the key
thermodynamic equation, the Gibbs free energy of reaction, involving the chemical potential of substrates
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and products. Chemical potentials are related to concentrations, where the relation depends on the ionic
strength of the solution. Assuming an ideal solution, we will write here the Gibbs free energy of reaction
directly in terms of concentrations:

∆Gr = ∆G◦
r + R · T · ln cνc · dνd

aνa · bνb
, (3.2)

where the small letters indicate the concentrations of the substrates and products as given in the above
reaction. Notice that specifying ‘products’ and ‘substrates’ automatically specifies a ‘forward’ direction
to the reaction (Box 3.D). In the above expression, the term in the natural logarithm is the ratio of the
concentration of the products to the concentration of the substrates (considering the forward direction of
the reaction) and is commonly denoted as the mass action ratio, Γ. The term ∆G◦

r is the difference between
the standard Gibbs free energy of formation of products and substrates.

The Gibbs free energy of a reaction is the key thermodynamic equation we introduce here, as it is this
equation that determines whether a reaction would run in the forward direction or not. If the Gibbs free
energy of reaction, for a given set of substrates and products concentration, is negative (∆G◦

r < 0), the
reaction will be spontaneous in the forward direction as it is written (i.e. in the way the ‘substrates’ and
‘products’ are defined). In other words, chemical reactions proceed in the direction of lower energy - they
minimize the internal energy of the system. We will see later (in section 3.3.2) that Gibbs free energy will
also feature in rate equations for biochemical reactions.

It is important to introduce here the concept of thermodynamic equilibrium, which is attained when ∆Gr = 0.
Re-arranging equation 3.2 under this condition, we can obtain:

∆G◦
r = −R · T · ln

cνc
eq · dνd

eq

aνaeq · bνbeq
, (3.3)

where the subscript “eq” denotes the concentrations of each species at the thermodynamic equilibrium. The
ensuing ratio is known as the equilibrium constant, Keq = cνc

eq ·dνd
eq

aνa
eq ·bνb

eq
. Re-arranging equation 3.3, we can derive

an expression for Keq as follows:
Keq = e

−∆G◦
r

R·T (3.4)

Notice that Keq depends only on ∆G◦
r , which is the difference between the standard Gibbs free energy of

formation of products and substrates involved in a reaction, and which can be calculated from tabulated
values (where available). A good source of Keq values of many biochemical reactions is the eQuilibrator tool
(equilibrator.weizmann.ac.il) [18, 19].

This thermodynamic treatment, showing that the equilibrium state of a reaction is captured by a constant
relating to the ratios of product and substrate concentrations at that state, is fully supported by seminal
experimental works from the second half of 1800s conducted on chemical reactions by Peter Waage (1833
- 1900) and Cato Guldberg (1836 - 1902), and their contemporaries. These works were concerned with
the equilibrium, or steady-state, of chemical reactions attained under different conditions and when initiated
from various starting concentrations of substrates. The key contribution of these studies was the finding
that the equilibrium state in a reaction, that is the ratio of the concentration of substrates and products at
steady-state, is characterized by a constant [20].

This finding, referred to as the “mass action law”, later gave rise to the notion (rather erroneously) that
reaction rate of a chemical reaction at constant temperature is ‘proportional to the product of the concen-
trations of the reacting substances’ [21]. This derived statement actually is not a law but presents a possible

https://equilibrator.weizmann.ac.il
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rate model that would be compatible with the experimentally observed equilibrium state (i.e. with the mass
action law of equilibrium) [20, 21] (see Box 3.D and the Appendix 3.6).

Mathematical details 3.D : Mass action law for chemical reactions
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Kinetic interpretation

Backward reaction rate:

k− · cνc · dνd

Forward reaction rate:
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k+ · aνa
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eq = k− · cνc
eq · dνd
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=

cνc
eq · d
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eq

aµa
eq · b

νb
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= Keq

Cartoon representation of Gibbs free energy of reaction and the thermodynamic equilibrium. As a chemical
reaction proceeds, the concentrations of substrates and products change, which in turn affects the ‘energy in
the chemical system’. We can, thus, capture the reaction advancement in a graph, where the x-axis represents
the reaction advancement (i.e. the concentrations of substrates and products at different times in the reaction
course) and the y-axis the internal energy of the system. The Gibbs free energy of reaction, in a way, indicates
the position of the system in this graphical representation, where the thermodynamic equilibrium would be the
energy minima. At equilibrium, reaction Gibbs free energy would be zero, allowing us to derive the relation
between substrate and product concentrations at that point and their free energy of formation. This relation
is known as the equilibrium constant of the reaction. The same relation can be derived using a rate model to
describe the forward and backward reactions that make up the overall reaction. The thermodynamic result (or
derivation) shows that a given reaction (under a given temperature) would always have the same substrate and
product concentrations at equilibrium, a point that is empirically verified by experiments and that is known as
the “mass action law”. The rate-based interpretation of this thermodynamic result (or law) is known as the
“mass action rate model” and assumes that rate of a given reaction is proportional to the concentrations of
substrates and products to the power of their stoichiometry, and adjusted by a rate constant (shown as k+ and
k− above).
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3.2.2. Stoichiometric matrix and ordinary differential equations

As mentioned above, metabolic systems consists of many reactions. When describing multiple reactions in
a biochemical ‘system’, it is convenient to represent the stoichiometries of individual reactions in a compact
form called the stoichiometric matrix, N. The rows and columns of this matrix corresponds to m species
(i.e. the metabolites), and to n reactions, found in the system respectively:

N is a m × n matrix

The intersection of a row and column in the matrix indicates whether the species represented by that row
takes part in the particular reaction represented by that column, or not. The sign of the element determines
whether there is a net loss or gain of substance, and the magnitude describes the relative quantity of substance
taking part in the reaction. It is important to appreciate that the elements of the stoichiometry matrix do
not concern themselves with the rate of reaction, and just indicate the quantities taking part in the reaction.

A full description of a biochemical network, including the time-varying, dynamical behavior of metabolite
concentrations, will augment the stoichiometry matrix with a rate vector, v, forming a so-called system
equation:

ds
dt

= N v(s) (3.5)

This equation represents a system of ordinary differential equations (ODEs) that describe the time evolution
of the species, s. In other words, the ODE for species s describes the rate of change in the concentration
of s with a given (infinitesimal) change in time. The ODEs can be solved numerically (i.e. simulated) by
computer or studied analytically.

Notice that in mathematics, the time varying entities in a dynamical systems - in our context, the concen-
trations of chemical species - are known as ‘variables’, while any elements of the system that stay constant
over time are known as ‘parameters’. For an insightful and accessible mathematical treatment of differential
equations and system dynamics, the reader is referred to these two excellent books [22, 23], while for a
metabolic view of variables and parameters, the article on the Control of Flux, by Kacser and Burns, offers
a valuable perspective [24].

3.2.3. Dynamic steady state

As stated above, the ODEs describe the time evolution of all variables s in the system. An informative
approach to any dynamical system is to consider its steady state, a state where consuming and generating
processes on each variable would have the same rate, i.e. the ODEs are equal to zero, and there would be
no change in the variable amounts. For example, a water tank filling at a constant rate but emptying at a
rate proportional to the height of water in the tank will eventually reach a steady-state where the output
flow equals the inflow of water (Fig. 3.5). Under these conditions the height of water remains constant, or
at a steady state.

It is important to note that the thermodynamic equilibrium mentioned above is also a type of steady-state,
but this does not mean that steady-state is only attained at thermodynamic equilibrium. In other words,
there can be a steady-state where the system is out of thermodynamic equilibrium but the concentrations
of metabolites are not changing. An example of this would be a linear metabolic pathway of connected
reactions, with influx and outflux of an initial and endpoint metabolite (as seen in Fig. 3.5). In such a
system, we can readily consider a scenario where there is influx of the first metabolite, outflux of the last
metabolite, and forward flux through each of the reactions in the pathway. Thus, we would have a situation



Dynamics and regulation of metabolism 11

(A) Thermodynamic steady state
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Figure 3.5: Illustration of thermodynamic equilibrium and dynamical steady state. (A) Thermodynamic
steady state. (B) Dynamic steady states – non-equilibrium thermodynamics. While the former happens only
at chemical equilibrium, the latter can arise in systems that are far from chemical equilibrium. A cartoon
of a flowing water through a tank and a reaction involving co-substrate cycling are shown as examples of
systems that can attain dynamical steady states.

where all reactions are out of thermodynamic equilibrium, but all metabolite concentrations in the pathway
attain a dynamic steady-state, where their influx and outflux are equal (Fig. 3.5). The distinction between
systems that are both at steady-state and thermodynamic equilibrium, and those that are at steady-state but
out of thermodynamic equilibrium, is an important one. It has been shown that complex dynamics, such as
bistability and oscillations (as discussed below) are only possible in the latter case [25, 26, 27].

Mathematically speaking, the steady-state is defined when the ODE system, i.e. the system equation, is set
to zero:

ds
dt

= N v(s) = 0 (3.6)

For simple systems, such as a tank of water filling and emptying, there is only one unique steady-state. This
is perhaps better illustrated with a simple biochemical example. Consider a two step pathway where the first
step has a constant rate k1 and the second step a variable rate determined by a first-order reaction rate, k2.

v0 = k1−−−−−→ S v1 = k2·s−−−−−−→ (3.7)

The differential equation describing this system is given by:

ds

dt
= k1 − k2 · s (3.8)
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Figure 3.6: Cartoon of a simple pathway that features allosteric enzyme regulation and that can show multiple
steady-state solutions (see Appendix 3.6). The metabolite ‘x’ positively regulates the first step, v1. The
resulting positive feedback can result in a bistable system under a certain parameter regime.

Setting this equation to zero and solving for s yields the steady-state level of S:

s = k1

k2
(3.9)

This solution indicates there is only a single steady-state for this system dependent on the parameters k1

and k2.

3.2.4. Multiple steady-states and oscillations

In the previous section it was shown that a simple two step pathway admitted a single steady-state. There
can be, however, metabolic systems that can show multiple steady states. As a simple example, consider the
system shown in Figure 3.6. This shows a linear pathway of two reactions, with the first reaction activated
by the species x.

Under certain parameter and model choices, such a system can admit three steady-states. Details of a model
that can be simulated can be found in Appendix 3.7). Other examples of metabolic systems with multiple
steady-states will be given below. In bi-, or multi-stable systems, there can be multiple sets of steady state
concentrations and flux rates that the system can settle at. Which set of steady-states is realized is usually
determined by initial concentrations or can be caused by a change in one of the concentrations or parameters.
Thus, the system can change its steady-state value abruptly at a threshold value of a specific parameter of
the system. For a metabolic system displaying bistability, we can expect a rapid switch in multiple fluxes
with changes in the concentration of one or few metabolites [23]. Furthermore, when bistability is combined
with noise in some parameters (e.g. enzyme expression level) there can be a multi-modal distribution of flux
states across genetically identical cells (e.g. see [28, 29] and section 3.4).

3.2.5. Regulation of fluxes

How does the cell ‘regulate’ the flux of matter in metabolism? How does it decide, for example, to make
more of an amino acid or rather more of a lipid? Or do these decisions happen automatically, through system
dynamics of the metabolic system? The question of regulation of metabolism is a major research area in
its own right. Several hypotheses have been formulated and some have been supported by experimental
measurements. It is highly likely that many of these hypotheses are true under some conditions, and actual
regulation of metabolism involves multiple mechanisms. Two of the key mechanisms we can highlight here
and that we will touch upon in this and other chapters are: flux regulation through control of enzyme levels
or enzyme activity. The former is achieved via control of an enzymes’ expression level, while the latter can be
achieved via substrate-level allosteric regulation (Fig. 3.7). Notice that the latter case involves regulation of
enzyme activity by metabolites, thereby providing a ‘dynamical regulation’ that does not require additional
elements (such as gene regulatory factors). Additional examples of such dynamical regulation, which is
sometimes referred to as ‘self-regulation’, can also emerge from specific pathway structures and are being
proposed and explored continually, e.g. [8, 14, 11, 15]. We will discuss this topic further in the section 3.4.
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Figure 3.7: Enzymes and flux regulation. (A) Schematic representation of a biochemical reaction, highlighting
the involvement of a catalyzing enzyme. For such enzyme-catalyzed reactions, the flux has an upper limit
relating to total enzyme concentration and kinetic parameters of the enzyme (see section 3.3 and Appendix
3.7 for enzyme catalyzed reaction rate models). (B) Cartoon representation of enzyme structure and possible
mechanisms of allosteric or competitive regulation. Such regulation can emerge either by the substrate of
the enzyme or other metabolites binding the enzyme and altering its overall reaction rate (either through
competition with the substrate or by altering the enzyme structure and affecting its kinetic parameters).

3.3. Toolbox for modeling dynamics of metabolism
As explained so far in this chapter, cell metabolism involves biochemical reactions involving metabolites
(and often catalyzed by enzymes). Thus, understanding metabolism involves studying the dynamics of this
system, trying to predict how metabolite levels will go up or down, or settle to a steady state as cell physiology
changes in response to external or internal processes (e.g. cells encountering glucose or undergoing division).
Obtaining such understanding requires us to develop models of biochemical reaction systems and predict the
‘dynamics’ of those systems. In this section, we will learn how to model one biochemical reaction, and how
we can readily expand these models to capture multi-reaction systems. The ‘art’ of developing and analyzing
dynamical models falls under the branch of mathematics known as calculus and nonlinear dynamics. Many
introductory books to these subjects are available, but we find that two particularly useful ones are those by
Silvanus Thompson on calculus [22] and by Steven Strogatz on nonlinear dynamics [23]. Here, we will not re-
introduce these topics but focus solely on various reaction rate models for metabolic systems that have been
developed based on ODEs. We will highlight relations between these models and reaction thermodynamics
and explore their possible limitations and applications in different cases. There are also books that are solely
dedicated to models of biochemical reaction kinetics and enzyme kinetics more broadly - the reader is advised
to further explore the topic with the help of such books, particularly [30, 31, 32]

3.3.1. Enzymes - a brief note

We mentioned many biochemical reactions to be catalyzed by enzymes. It is therefore worth briefly explaining
enzymes. Enzymes are proteins, chains of amino acids, that fold in the cell in various 3D structures. For
our purposes, we do not need to understand all the intricacies of how enzymes are made or how they fold
into their structures (the reader is directed to excellent books on these subjects [30, 33]). Suffice to say that
in their folded-state, enzymes can bind a set of target metabolites in such a way that puts these metabolites
in a specific physio-chemical environment and physical orientation, where their specific biochemical reaction
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is facilitated. Thus, enzymes are catalysts that facilitate a chemical reaction among metabolites. As we
will discuss further below, modeling of biochemical reactions catalyzed by enzymes requires developing a
‘mechanistic’ picture of how enzymes function. Such models can be developed based on numerous studies
on enzyme structure and function. Here, we will only state that a generally accepted model involves enzymes
binding their substrates - thereby forming a enzyme-substrate complex - and then transitioning to a state
enabling catalysis. We can expand this model by also considering so-called allosteric binding sites, where
specific molecules (including sometimes the enzyme’s own substrate or product) can bind and alter the kinetics
of either enzyme-substrate binding or catalytic activity. These allosteric sites, thus, provide a mechanism for
regulation of enzymatic reactions (Fig. 3.7).

3.3.2. Modeling reaction fluxes - reaction rate models

Metabolic reactions can involve diverse biophysical mechanisms (uncatalyzed, enzyme-catalyzed, etc.) and
can take place under diverse biophysical conditions inside a cell (membrane-bound, cytosolic, extracellu-
lar, coupled across membranes, etc.). As such, mechanistically complete, biophysical representation of all
metabolic reactions in dynamic, mathematical models might never be possible [34]. Dynamical models of
metabolic systems, as with all mathematical models, must therefore balance abstraction of real mechanistic
features of a system with achieving a still useful and insight-providing model. At the core of all dynamical
metabolic models are rate equations that aim to capture the kinetics of biochemical reactions.

Non-enzymatic reactions - The reversible and irreversible mass action rate models All rate models
used in metabolic modeling are based on the so-called ‘mass action law’ described in Box 3.D above. As
discussed in that section, the “mass action law”, which is derived from thermodynamic principles, is com-
patible with a rate model that assumes reaction rate of a chemical reaction at constant temperature to be
‘proportional to the product of the concentrations of the reacting substances’ [21, 20] (see Box 3.D). This
‘mass action rate model’ is commonly used, especially in the context of elementary reactions (i.e. reactions
involving one single step), and has been shown empirically to apply in the case of some non-elementary re-
actions [20]. According to the mass action model, the net rate of any reaction of the form given in Eq. (3.1)
is given by;

v = k+ · aνa · bνb − k− · cνc · dνd , (3.10)

where small letters denote concentration of the relevant species of the same letter, νi denote the stoichiometric
coefficient for species i (as introduced above), and k+ and k− denote kinetic rate constants relating substrate
concentrations to reaction rate.

The mass action rate expression is such that if the first term is larger than the second then v > 0, and
more reactant will convert to product than product converting to reactant (Box 3.D). This situation will
continue until some point, where the second term will be larger than the first, and the opposite will occur.
Consequently, this expression makes the system converge towards an equilibrium point, or steady-state, where
v = 0. As long as the reagents are free to move, they will collide and interconvert (in both directions) at the
microscopic level, even when the equilibrium is reached. However, at equilibrium, the amount of reactant
converting to product equals the amount of product converting to reactant per unit of time, therefore there
is no net consumption and production of metabolites (Box 3.D). When we have the concentrations that lead
to the thermodynamic equilibrium of the reaction, i.e. equilibrium concentrations, we will have;

v = 0 = k+ · aνa · bνb − k− · cνc · dνd

k+

k−
= cνc · dνd

aνa · bνb
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This ratio is known as the reaction’s equilibrium constant Keq and hence the ‘mass action rate model’ is
consistent with the empirical observations of Waage and Guldberg. As we have shown in Eq. (3.4) above,
the equilibrium constant is equivalent to the reaction’s Gibbs free energy under standard conditions. Note
that when considering a biochemical system (rather than a chemical one), it is customary to report Gibbs
free energies for standard conditions adjusted for a pH of 7, and denoted with superscript ◦′. Thus, we can
write;

k+

k−
= Keq = e− ∆G′◦

R·T (3.11)

where ∆G′◦ is the Gibbs free energy under biological standard conditions, and R and T denote the molar gas
constant1 and temperature (in Kelvin) respectively (see Box 3.D). It is important to note here that, given Keq

is a constant determined by thermodynamics, the parameters k+ and k− cannot be chosen independently,
i..e k− = Keq/k+.

Following on from this last point, it is important to consider a reaction with large Keq, i.e. a reaction for
which ∆G′◦ is highly negative. In this case, the value of k− can become small to the extent that the reverse
reaction can be negligible. In this case the reaction could be considered as effectively irreversible and the
rate model can be approximated by;

v = k+ · aνa · bνb (3.12)

Enzymatic reactions The mass action rate discussed above forms also the basis of modeling enzymatic
reactions. This approach is justified by considering each enzymatic reaction as a series of ‘elementary steps’,
each obeying the mass action rate model. To this end, many alternative elementary steps, or ‘enzyme mecha-
nisms’, can be considered to ‘capture’ an enzymatic reaction and subsequently many alternative assumptions
can be made to simplify the resulting system of steps. It is also possible to include allosteric regulation
or other types of inhibition or activation steps within these elementary steps, allowing generation of a rich
variety of enzymatic models and rate equations. Here, we will cover some of the most common of such
models, noticing that the construction of these models follows the same general principles of (i) drawing up
elementary reactions, (ii) writing down mass action based kinetic rates for the system, and (iii) simplifying
the system with assumptions on kinetic parameters (see Appendix 3.6). The reader can consult additional
books (e.g. [31]) for more specific, elaborate enzymatic reaction schemes, or can attempt them as a exercise.

Single substrate, irreversible enzymatic rate model (Michaelis-Menten model) A possible representa-
tion of an enzyme mediated reaction consisting in the conversion of a reactant S to a product P could be
the following reaction scheme:

S + E k1−−⇀↽−−
k2

ES kcat−−→ P + E.

This reaction scheme is rather specific, for example, it ignores the possibility that substrate bound enzyme
can be converted into product, while remaining bound on the enzyme. Thus, the above reaction scheme is
derived from a more complete and more complex reaction scheme through application of several assumptions
relating to individual reactions. The resulting rate model from the above scheme is usually known as the
Michaelis-Menten model, named after the biochemists Leonor Michaelis and Maud Menten who studied
enzyme kinetics in the early 1900’s, but several studies of that time and afterwards arrived at a similar model
using different assumptions. Implementation of the specific assumptions, as we detailed in Appendix 3.7,
allows one to arrive at the above reaction system, which can be represented by a reduced ODE system,
compared to the full system. In this reduced ODE system, the ODE describing the rate of formation of the

1The molar gas constant (also known simply as the gas constant) is the molar equivalent to the Boltzmann constant, expressed
in units of energy per temperature increment per amount of substance (quantified in moles rather than single particles). Its
value is about 8.31 J · K−1 · mol−1.
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Figure 3.8: Michaelis-Menten rate law. The x- and y-axis show the substrate concentration (normalized by
KM) and reaction flux (normalized by vmax) respectively. The dashed horizontal line corresponds to vmax,
i.e. εtot · kcat.

product, which is equivalent to reaction rate, becomes:

v = s · εtot · kcat

KM + s
(3.13)

where εtot represents the total enzyme concentration, kcat is known as the catalytic rate of an enzyme, and
KM is known as the Michaelis-Menten coefficient of the enzyme and is equal to (k2 +kcat)/k1 (we note that
depending on the assumptions used, the expression for KM can vary). Plotting the above rate of formation
of product against increasing substrate concentration (see Figure 3.8) shows that the rate is a ‘saturating
function’ of substrate, i.e. the rate approaches a threshold point - given by vmax = εtot · kcat as substrate
concentration increases. Thus, we can see that the enzymatic nature of the reaction introduces a limiting
factor on the reaction rate that depends on vmax, i.e. total enzyme concentration and enzyme’s catalytic
rate. This fact underpins the regulation of metabolic flux through regulation of enzyme levels or enzyme’s
catalytic rate, and is a key conceptual point for the constraint-based methods discussed later in this book.

Single substrate, reversible enzymatic rate model (Haldane model) Considering that all chemical
reactions are — at least, in theory — reversible, it is also possible to express the rate of an enzyme-mediated
reaction as a function of the concentration of both substrate and product. A method to do so has been
introduced by Haldane [35]. It considers the following reaction scheme:

S + E k1−−⇀↽−−
k2

ES k3−−⇀↽−−
k4

EP k5−−⇀↽−−
k6

P + E.

Deriving the rate equation for this reaction scheme is slightly more involved, but it follows the same strategy
as explained above, of creating elementary steps, treating them as obeying mass action rate, and making
additional simplifying assumptions. As shown in Appendix 3.6, we can follow this strategy to derive the
reversible rate equation as follows:

v = εtot · k+
cat

KS
·

s − p · k−
cat/KP

k+
cat/KS

1 + p

KP
+ s

KS

(3.14)
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where KS and KP are composite constants relating to the substrate and product binding to the enzyme, and
k+

cat and k−
cat are Haldane coefficients (again, composite parameters of other kinetic constants) describing

catalytic rate of the enzyme (see Appendix 3.6 for further details of these parameters).

As done in the above section on kinetics of the non-enzymatic reversible reaction, we can consider the
equilibrium condition for this enzymatic reversible reaction. This would allow us to derive the corresponding
relation between Keq and reaction Gibbs free energy. Recognizing the relation between the Haldane composite
parameters and Keq (see Appendix 3.6) and the flux-force relation (see below), we can then re-formulate the
reversible rate equation as:

v = εtot · k+
cat · s/KS

1 + p/KP + s/KS
·
(

1 − e
∆G′

r
R·T

)
(3.15)

where ∆G′
r is the Gibbs free energy of reaction for a given substrate and product levels under biological

conditions and considering the forward direction of the reaction. This rate equation shows that forward
reaction rate will be independent of thermodynamics, when the reaction free energy is highly negative (i.e.
when the reaction is far from thermodynamic equilibrium, ∆G′

r � 0). However, as the reaction Gibbs free
energy gets close to zero, the reaction rate will decrease, and as such, there will be a dependency of reaction
rate to reaction free energy.

Another way of writing equation 3.15 is this one:

v = εtot · k+
cat ·

s/KS ·
(

1 − e
∆G′

r
R·T

)
1 + s/KS ·

(
1 + k+

cat
k−

cat
· e

∆G′
r

R·T

) (3.16)

where we replace p/KP with an expression that depends on s and ∆G′
r. This alternative expression, developed

in the context of modeling microbial metabolism [36, 37], can be useful because it shows us that when the
reaction is far from equilibrium (∆G′

r � 0), the term e∆G′
r/(R·T ) will approach zero and the above formula

can be approximated by the irreversible Michaelis-Menten rate law (Equation 3.13). In this case, we further
notice that the Haldane coefficient Ks becomes equivalent to KM introduced above in the irreversible reaction
scheme (see section 3.3.2).

It is important to note that many reactions within cell metabolism are experimentally shown to be reversible,
indicating that they operate close to thermodynamic equilibrium [38, 39, 18].

Rate models for representing allosteric effects Rate models for representing allosteric effects, i.e. binding
of additional molecules - or their own substrates - on the enzyme and affecting the enzyme-mediated reaction
rate, can be created either by adjusting the rate laws given above empirically, or by considering the additional
binding events at ‘allosteric sites’ of the enzyme and deriving a new ‘mechanistic’ rate model. To give an
example of the former strategy, we can consider a Michaelis-Menten rate model adjusted for an inhibitory
effect of the substrate on the enzymatic reaction rate. This adjusted rate model can be expressed as:

v = vmax · s

KM + s + s2/KI
(3.17)

where KI represents the saturation coefficient for the binding of the substrate at an allosteric site on the
enzyme. Notice that we used such a model in the small multi-stable system example introduced above
(section 3.2.4) and discussed in Appendix 3.7.
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For the same example, the alternative approach (the latter case mentioned above) would be to develop a
mechanistic model involving multiple binding reaction on an enzyme. The resulting elementary reactions
and their mass action implementation can be then carried out. This process would result in a set of ODEs,
which can then be further simplified to draw a rate model for the proposed allosteric regulation. An example
of this type model is developed in the context of multi-substrate binding enzymes, and shown to lead to
multi-stability under certain parameter conditions [40].

Flux-force relationship All chemical reactions, including biochemical reactions, must obey thermodynamic
laws. This fact manifests itself in several ways in dynamical modeling. Firstly, reaction direction (or, rather,
feasibility) is determined by the sign of the reaction Gibbs free energy. Second, the kinetic constants associated
with the elemental reaction steps are constrained by thermodynamics (section 3.3). To see the third relation
arising from thermodynamics, we consider again the simple non-enzymatic mass action model we used above
– reaction schematic given in Eq. (3.1) and the reaction Gibbs free energy given by Eq. (3.2).

We now re-consider the net rate of reaction as given above in Eq. (3.10), and break this into its components
of forward reaction rate (or flux) and reverse reaction rate (or flux), which are given by;

v+ = k+ · aνa · bνb

v− = k− · cνc · dνd

and then, we can express the net forward flux (J) as:

J = v+ − v− = v+ ·
(

1 − v−

v+

)
= v+ ·

(
1 − k− · cνc · dνd

k+ · aνa · bνb

)
= v+ ·

(
1 − k−

k+
· Γ

)
In this re-organized form of the net forward flux, we notice that the expression in parentheses on the right
hand side can be re-expressed in terms of reaction free energy (using Eq. (3.11)) as follows:

J = v+ ·
(

1 − k−

k+
· Γ

)
= v+ ·

(
1 − Γ

Keq

)
= v+ ·

(
1 − e

∆G′
r

R·T

)
Thus, we find that the net forward flux of the reaction is given by the forward reaction rate multiplied by a
thermodynamic factor. When the reaction is energetically favored, i.e. has large negative Gibbs free energy,
the thermodynamic factor diminishes and the net forward flux is fully determined by forward reaction rate
alone (see Figure 3.9). When the reaction is closer to equilibrium, i.e. small negative or near-zero Gibbs free
energy, then the net forward flux will be determined by a combination of forward and reverse flux rates. This
relation between net forward flux and thermodynamics is referred to as the flux-force relation [26, 41] and
holds also for the enzymatic reversible reaction model described above (see section 3.3.2).

A note on choosing a reaction rate model In the above sections, we have introduced several biochemical
reaction rate models. These models fall into two main categories, namely those that model enzyme action
(i.e. enzymatic models) and those that ignore the enzyme action (i.e. non-enzymatic models). Notice that
derivation of both categories of models rely on the mass action law. In the non-enzymatic case, we model
reactions as single-step forward and backward reactions using mass action, while in the enzymatic case, we
consider multi-step reaction mechanisms, but still use the mass action for each individual step. For each
category, we can consider the reaction thermodynamics and model reactions as reversible, but as we discussed
above we can also choose to approximate reactions as ‘irreversible’ when the overall reaction’s Gibbs free
energy is very negative (i.e. when Keq is large).

In a given modeling context and metabolic system, it would be a valid question to ask – which model should
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Figure 3.9: The ratio of net forward flux (J) to forward reaction rate (v+) as a function of the negative
reaction Gibbs free energy

one use? This question can be answered in parts. In the first instance, we can make a decision about the use
of reversible or irreversible rate models. As already mentioned, this decision should be based on the value of
Keq – a reaction with a very large Keq can be modeled as irreversible, as long as the product concentrations
are known not to reach very high levels (in a cell). However, to represent a metabolic reaction as irreversible is
not without consequences even if the reaction always runs in the same direction (notice that the assumption
of irreversible reaction means that the reaction rate cannot go negative). Reversible kinetics can capture
the negative feedback of reaction products on reaction rate, and irreversible reaction models would lose this
feature [42]. A recent study by Shen et al [43] showed how important it can be to include product inhibition
to create a predictive metabolic model.

In the case of lower Keq value – in combination with a consideration of possible product concentration –
the modeler should opt for the reversible rate models, which are thermodynamically consistent. The decision
about use of enzymatic or non-enzymatic reaction models can be made in a practical manner. If the enzyme
associated with the modeled reaction has measured kinetic rates, it would be sensible to opt for a enzymatic
model (noting that in vivo enzyme kinetics might differ from those measured in vitro and that many enzyme
kinetics studies use parameter derivations assuming an irreversible Michaelis-Menten model). Consequently,
it may not be possible to find all the required parameters in the literature, so to model a reaction using
reversible rate model. In the absence of measured enzyme parameters, the modeler can use ‘guesstimated’
parameters, based – for example – on the distribution of known enzyme kinetic parameters, or alternatively,
use the non-enzymatic model.

Given the discussion in the preceding paragraph, it is a useful exercise to consider when the non-enzymatic
and enzymatic models might behave in the same way. We have introduced above the concept of flux-force
relationship, where we have shown that the net flux in a reversible reaction would be given by the forward
flux multiplied by a thermodynamic factor:

J = v+ ·
(

1 − Γ
Keq

)
If we consider this equation for the reversible non-enzymatic and enzymatic models, we would notice that
the thermodynamic factor would show the same behavior for both models, depending only on reaction Keq
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value and substrate and product concentrations. Where the models would differ, would be in the behavior
of the v+ term, which takes the form:

For the reversible enzymatic case:

v+ = εtot · k+
cat · (s/KS)/(1 + s/KS + p/KP)

And, for the reversible non-enzymatic case:

v+ = s · k+

Where kcat, KS, and KP are the enzyme kinetic parameters for the enzymatic model and k+ is the forward
reaction rate coefficient for the non-enzymatic model. Thus, the two models would behave in a similar
way, when there is correspondence between these two terms, which are sometimes referred to as “saturation
terms” [41]. By re-arranging the above terms, we can show that correspondence between the two models
can be expressed as:

εtot · k+
cat · (1/KS)/(1 + s/KS + p/KP) ≈ k+

We can see that in the regime, where s � KS and p � KP, both models would behave in a linear
fashion and their behavior would correspond exactly with the right choice of parameters (i.e. assuming
(εtot · k+

cat/KS) = k+). Outside of this regime, correspondence would be dependent on both parameters
and concentration of S and P . One interesting case to consider is when total amount of S and P would
be conserved, for example, with cycling reaction schemes. In this case, we can introduce a new parameter
C to describe the total pool of the cycled metabolite (e.g. C = S + P ) and the correspondence would be
expressed as:

(εtot · k+
cat/KS)/(1 + (s · KS − s · KP)/(KS · KP) + C/KP) ≈ k+

Thus, in this case of the sum of substrate and product concentrations being conserved, we can have corre-
spondence between the non-enzymatic and enzymatic models when S is small or when KS = KP.

3.4. Dynamics of metabolism: experimental evidence and model-based expla-
nations

The high-level of connectivity among reactions, together with the plurality of molecular level mechanisms
that can arise in enzyme-mediated reactions, gives metabolic systems the capacity to display rich dynamic
behaviors [11, 27]. Here, we highlight some of the illustrative experimental observations on these metabolic
dynamics, and their possible model-based explanations.

3.4.1. Flux switching / regulation

We have introduced above the redox-based, electron flow view of metabolism. A common electron donor in
metabolism is glucose, while a common electron acceptor is oxygen together with the associated, membrane-
bound electron transport chain (ETC). The ensuing metabolic pathway linking glucose oxidation to oxygen
reduction is termed as respiration, resulting in formation of CO2 (from full oxidation of glucose) and water
(from reduction of oxygen, cf. Fig. 3.1). However, it is possible for cell metabolism to stop the sequential
oxidation of glucose (or other sugars) at an intermediate level. In this case, the ensuing metabolism is
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Figure 3.10: Respiration-fermentation switch. Cartoon representation of the respiration and fermentation
pathways. There is an observed switch of metabolic fluxes between these pathways, from full respiration to
fermentation or a combination of respiration and fermentation, as glucose levels (and consequently growth
rate) increases. It is postulated that this relates to a limitation in the respiration and ETC system, but the
molecular basis of the switch is not fully clear with several, equally plausible hypotheses postulated.

termed as ‘fermentation due to production of partially oxidized carbon compounds such as acetate and
ethanol (Fig. 3.10) [1].

One of the earliest observation on metabolic dynamics is a shift from pure respiration into fermentation or
respiro-fermentation with changing conditions. This shift, known as contre-Pasteur, Warburg, or, Crabtree
effect, is described initially in yeast and mammalian cells, especially cancerous cells [44]. The respiration to
fermentation shift happens under lack of electron acceptors or with increasing growth rate [44, 45, 46, 47,
48, 49, 50]. While a shift into fermentative pathways due to lack of electron acceptors can be intuitively
understood as the only route to sustain electron flow, a similar shift due to increased carbon availability or
growth rate are non-intuitive as they occur under the continued presence of strong electron acceptors such
as oxygen.

A dominant concept to explain the switch to respiro-fermentation has been the idea of ‘overflow metabolism.
It postulates that this switch should be seen as an overflow, arising due to limitations in respiration not
being sufficient in sustaining metabolic fluxes in the face of increasing substrate availability [51]. The
dynamic regulation and origin of this respiro-fermentation switch is still a focus of significant systems biology
research. Hence, this topic is discussed further in other chapters of this book with several alternative models
presented for its underlying causes.

It must also be noted that, while respiro-fermentation switch is commonly referred to as ‘overflow metabolism’
(due to excretion of fermentation products such as acetate, lactate and ethanol), the phenomenon of overflow,
i.e. excretion of energy rich compounds is not limited to fermentation. Excretion of amino acids and vitamins
seem particularly common [52, 53, 54, 55], and it is not clear in these cases what type of metabolic flux
switching happens or how it happens.

Flux switching / regulation - flux sensors, branch point dynamics and dynamical flux regulation How
can we understand cells switching their metabolic fluxes with changing external or internal conditions. As
discussed above, one possibility is that cells alter the expression levels of their various enzymes, so to achieve
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a re-distribution of fluxes (given that enzyme levels are directly involved in the determination of fluxes, see
Eq. (3.13)). This kind of enzyme-level regulation can be mediated through regulation of transcription factors
by specific signaling molecules, including metabolites [56]. The latter case is explored in models of central
metabolism [57], and it was shown that fructose-1,6-bisphosphate could act as a "flux sensor", conveying
information about glycolsyis flux onto key transcription factors regulating glycolytic enzymes [58].

While regulation of enzyme levels can alter flux levels, this type of regulation can be made more sensitive
if the coupling between enzyme and flux levels can be made more nonlinear. It has been shown that such
nonlinear coupling of flux and enzyme levels can arise at branching points in metabolism [9]. In particular,
branch points (as a metabolic motif) have been shown to give rise to ultrasensitivity - a system dynamics
feature that describes the situation when a given input to a system results in more than a proportional change
in its output. When enzymes at the two branches of a branching point have highly differing affinities for
the substrate (i.e. different Km values, see Eq. (3.13)), then alterations of the maximal rate of one enzyme
with higher affinity to the substrate can result in a nonlinear effect on the flux into the other branch of
the branching point [9]. Thus, branching points can be one structural motif that can result in switch-like,
nonlinear flux changes within metabolism.

It is clear that changing of enzyme levels can regulate fluxes, and can do so in an abrupt, switch-like fashion
through structural motifs such as branching points. However, regulation of enzyme levels via transcription
factors is found to not capture all observed flux changes in experiments (e.g. [59, 60]). This suggests that
cells might be able to regulate fluxes by other means as well. Recently, one such possible mechanisms is
proposed to be the co-substrate pools [15]. For example, in a metabolic branch point, where the two branches
involve different co-substrates, regulating the pool sizes of those two co-substrates can induce flux switching
at the branch point.

3.4.2. Bistability

Bistability is introduced above, and refers to a dynamical system having three steady state, two of which
are dynamically stable and can be attained by the system. When bistable systems exist in cell metabolism,
their combination with population level variance (i.e. noise) in enzyme levels or activity can lead to bimodal
distribution of metabolic fluxes (i.e phenotypes) in isogenic population of cells. In this context, it is notable
that significant level of variance is seen in several metabolic parameters, including sugar uptake [61, 62], ATP
levels [63], and expression levels of the enzymes involved in glycolysis and the TCA cycle [29].

Bistability in metabolic responses is experimentally implicated in the context of respiration to fermentation
switch [64], and when carbon metabolism is initiated on glucose [65] or when it switches from glucose
to other carbon sources [66, 28, 67]. In particular, the latter studies found sub-populations, within isogenic
populations (i.e. no mutations), that show different metabolic responses to changing conditions. Experiments
with isotope labeled carbon indicated that these sub-populations emerged at the time of the shift in carbon
source is induced, i.e. in response to changing conditions, and in a manner dependent on the concentration
of the new carbon source [66]. This suggests that the metabolic system implements bistable dynamics, such
that changes in external glucose concentrations can lead some cells to shift to a new metabolic steady-state
flux distribution, while others remain at their original steady state.

Bistability - negative feedback via substrate inhibition There have been many theoretical studies indicat-
ing the possibility of bistability within simple enzymatic reaction systems. Bistability is shown to be possible
even in a single enzymatic reaction, involving allosteric regulation, or in a system of few coupled enzymatic
reactions [11, 27]. A particular ‘reaction motif’ that has been studied extensively is a two-enzyme cyclic
reaction system, where a substrate is converted into a product and then back again, with both forward and
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backward reactions usually involving different enzymes (see Fig. 3.11). It is common, in these models, that
the enzyme catalyzing the forward reaction is assumed to be regulated by substrate inhibition, or by substrate
inhibition coupled with product activation [68, 69, 70, 71, 72]. This motif is found in several locations within
metabolism, particularly around dehydrogenases, such as lactate dehydrogenase [70], and kinase/phosphatase
pairs, such as those involved around fructose-6-phosphate [73], that can convert different metabolites back
and forth, using the NAD+/NADH or ADP/ATP pairs as reaction partners.

These theoretical findings are supported by several in vitro re-constitution experiments that confirmed bista-
bility experimentally using enzyme preparations of pyruvate kinase, lactate dehydrogenase, and isocitrate
dehydrogenase enzymes and their corresponding partners resulting in cyclic reaction schemes [69, 70, 74].

It is notable that many of these models incorporated negative feedback via empirical alteration of a Michaelis-
Menten type reaction rate model (i.e. one of the approaches we mentioned in the paragraph above on allosteric
rate models, see 3.17). This raises the question about the actual biochemical mechanisms that can lead to
bistability in a enzyme-mediated reaction model. In a recent study, it was shown that the presence of multiple
enzyme-substrate complexes, as would be the case in an enzyme with multiple substrate binding sites, creates
a potential in the reaction system for bistability [40] (see Fig. 3.11). Thus, multi-site enzymes could be points
of multistability generation in metabolic systems and any larger models featuring such enzymes or inherently
including feedback regulation can demonstrate bistability (e.g [75]).

3.4.3. Oscillations

Sustained and damped oscillations are common dynamics in nonlinear systems and can arise from a combi-
nation of positive and negative feedbacks [23]. In metabolic systems both types of oscillations are seen in
vivo or in situ, with cell extracts, where concentrations of all observed metabolites are found to oscillate over
time [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]. In the case of experiments involving cell extracts, these
metabolite oscillations had a period ranging from few to tens of minutes [84, 85, 86]. In these experiments,
oscillations are verified not to be due to artificial changes in ATP dynamics arising in the cell extract prepa-
rations [85], and oscillations could be entrained by controlled glucose additions [84]. This shows that there
is an inherent ability for oscillatory dynamics in the underpinning enzymatic reaction system. This ability is
suggested to be linked to the enzyme phosphofructokinase (PFK), which catalyzes the phosphorylation of
fructose-6-phosphate into fructose-diphosphate in the glycolysis pathway and is allosterically regulated [73].

In vivo, oscillatory dynamics are observed to occur within the central carbon pathways and displaying a phase
of tens of minutes [76] up to several hours [81, 83]. Metabolic oscillations were demonstrated at single cell
level and are found to be autonomous of, but coupled with, the cell cycle oscillations [83]. Additional studies
across cell populations found that cells can synchronize metabolic oscillations under some conditions [76, 77],
and proposed several possible mediators for such synchronization, including acetaldehyde, hydrogen sulphide,
carbon dioxide, and media pH [78, 79, 80, 82].

Oscillations - intertwined negative and positive feedbacks Several mathematical models of the reaction
catalyzed by the enzyme phosphofructokinase (PFK) in the glycolysis pathway has shown that oscillations are
possible to arise from the dynamics of this reaction alone. These models incorporate some of the observed
allosteric regulation of PFK both by its substrates and products, resulting in intertwined negative and positive
feedbacks [87, 88, 89].

It must be noted that some of these models, and others, use the same basic models that show bistable
behavior (as discussed above) and extend them with in- and out-fluxes of involved metabolites, to display
oscillations [87, 88, 71, 90, 91]. While these theoretical demonstrations of specific enzymatic schemes leading
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(A) Allosteric enzyme model
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Figure 3.11: Cartoon representations and brief analysis results of two enzymatic models capable of bistability.
(A) Allosteric enzyme model. The first model considers an enzyme that can convert a substrate (S) into
a product (P) and that is allosterically regulated by its own substrate. This regulation takes the form of
inhibition and is implemented mathematically in the rate of the enzyme - black colored equation. This
model results in a nonlinear curve for the relation between rate of production of P at steady state and
the total concentration of substrate and product in the system, Stot (black curve on the top right panel).
The intersections of this curve with the linear curve for the relation between rate of consumption of P at
steady state and Stot (red curve on top right panel). We can see that the model is capable of resulting in
three intersections, i.e. three steady states of the system. (B) Multi-site enzyme model. The second model
considers instead of allostery, an enzyme that binds multiple substrates. This results in several enzyme-
substrate complexes depending on the number of binding sites - 3 sites in the model shown. The resulting
model can be solved for the steady state values of flux through each enzyme complex against Stot (shown
in red and blue colors on the bottom right panel). The sum of these gives the rate of production of P at
steady state (black curve on the bottom right panel). This model can also result in a non-linear production
curve and three steady states. For further discussion of these models, see relevant citations.

to oscillations have not been explored in detail experimentally, metabolic oscillations are readily observed both
in vivo and in vitro, as discussed above. Models, involving some of these proposed synchronization molecules,
were also developed [92, 93, 94] and could reproduce experimental findings.
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3.5. Concluding remarks
In this chapter, we set out to introduce cellular metabolism as a dynamical system. We have seen that
metabolism comprises many biochemical reactions, that are historically cataloged and described into path-
ways. These pathways are usually not linear, composing of serial conversions of metabolites, but rather
display branching points and inter-connections through metabolites participating in many reactions. This
inter-connected nature of metabolic systems, together with the large numbers of participating metabolites
and reactions, makes them a complex system to study and conceptualize.

We have introduced both simplified, coarse-grained viewpoints for describing metabolism, and mechanistic
approaches for detailed dynamical modeling of it at the level of single reactions. The former can be used
to guide specific ideas on how to study metabolism, or to develop analogies to other disciplines, while the
latter can provide a toolbox for constructing dynamical models of small or large metabolic systems. We
have provided specific examples of such dynamical models and shown how they can allow us to relate system
behavior - steady state or temporal behavior - to specific reaction mechanisms or parameters (e.g. allosteric
interactions between metabolites and enzymes, cyclic reaction schemes, branching points).

There are many challenges remaining in the analysis and understanding of metabolism as a dynamical sys-
tem. Recent studies found for example that many fluxes, where measured, are lower than predicted from a
enzymatic irreversible reaction rate model (introduced in Eq. (3.13)) [95], and changes in flux patterns with
changing conditions cannot be explained by enzyme levels alone [60]. These findings lead to the question
on what determines/limits reaction fluxes and how reaction fluxes are regulated besides regulation of en-
zyme levels. There are several possible answers, including effects relating to allosteric interactions between
metabolites and enzymes, reaction thermodynamics, and substrate-related effects. The experimental study
and model incorporation of these possibilities is ongoing in systems biology, with increasing interest to in-
clude also more of the physico-chemical aspects of the cellular environment into the study of metabolism -
such as diffusion of molecules, involvement of radical chemistry (especially generation of oxygen radicals in
respiration) and membrane potential [96, 34]. As such, we are increasingly hoping to move from metabolic
reactions studied in isolation, to cell-scale models and physico-chemical concepts that unite cell metabolism
and physiology. Some of this emerging movement is captured in subsequent chapters of this book.

Recommended readings
Enzyme kinetics and reaction models

◦ “Enzymes” by J. B. S. Haldane [35]. Historically important book on enzyme kinetics and enzymatic
reaction models.

◦ “Fundamentals of Enzyme Kinetics” by A. Cornish-Bowden [31]. General introductory book on enzymes
and enzyme catalysis.

◦ “Enzyme Kinetics for Systems Biology” (2012) by H. M Sauro [32]. In addition to covering enzyme
kinetics, this book also discusses stochastic kinetics and the kinetics of gene regulatory systems with an
emphasis on systems biology models.

◦ “Structure and Mechanism in Protein Science: Guide to Enzyme Catalysis and Protein Folding” by A.
Fersht [30]. General introductory book on enzymes and enzyme catalysis.

Metabolic system dynamics

◦ “Energy metabolism of the cell : a theoretical treatise” by J. G. Reich and E. E. Sel’kov [11]. Provides an
early view of the importance of reaction dynamics as a ’self-regulatory’ element in metabolism. Emphasizes
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the importance of cyclic reaction schemes and interconnections among metabolic processes.
◦ “Chemical Biophysics: Quantitative Analysis of Cellular Systems” by D. A. Beard and H. Qian [96].

Provides a rare approach of attempting to combine - co-study the more physical aspects of cell physiology,
including membrane potential and compartmentalization, with metabolism dynamics.

◦ “Systems Biology: An Introduction to Metabolic Control Analysis” (2018) by H. M Sauro [97]. Discusses
biochemical network dynamics from the perspective of metabolic control analysis.

Calculus, differential equations, and nonlinear dynamics

◦ “Calculus made easy” by P. T. Silvanus [22]. A historic, yet excellent, book on introduction to calculus
and differential equations. If you are unsure or shy of these mathematical topics, make sure you read this
book and you will get an intuitive introduction!

◦ “Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering” by S.
Strogatz [23]. As it says on the tin - an excellent book introducing nonlinear dynamics within the applied
sciences context. A brilliant book. If you don’t read anything else, read the introduction chapter and be
inspired!

Thermodynamics and physical chemistry

◦ “Understanding thermodynamics” by H. C. van Ness [17]. An excellent book that de-mystifies thermo-
dynamics. It provides a conceptual treatise, leaving the mathematics to the side and focusing on what
actually the thermodynamic laws mean.

◦ “Principles and Problems in Physical Chemistry for Biochemists” by N. C. Price [16]. An introductory
book on thermodynamics, physical chemistry, and biochemistry.

Problems
Problem 3.1 An irreversible reaction with simultaneous binding

1. Write the reaction scheme for an irreversible enzymatic reaction with two substrates. Assume both sub-
strates bind the enzyme simultaneously (forming one complex ES1S2), and both products are released
simultaneously from this complex (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system.

Problem 3.2 A reversible reaction

1. Write the reaction scheme for a reversible enzymatic reaction with two substrates. Assume both substrates
bind the enzyme simultaneously (forming one complex ES1S2), and both products are released/absorbed
simultaneously from/into this complex (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system.

Problem 3.3 An irreversible reaction with sequential binding

1. Write the reaction scheme for an irreversible enzymatic reaction with two substrates. Assume the substrates
bind sequentially (forming complexes ES1 and ES1S2), and both products are released simultaneously
from ES1S2 (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system.

Problem 3.4 An irreversible reaction with random-order binding

1. Write the reaction scheme for an irreversible enzymatic reaction with two substrates. Assume the substrates
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bind the enzyme in any order (forming complexes ES1, ES2 and ES1S2), and both products are released
simultaneously from this ES1S2 (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system. Note that symbolic math tools such as Mathematica,
Maple or the SymPy Python library will be helpful for this question (though not essential).
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Appendix

3.6. Derivation of enzymatic reaction rate models
Enzymatic reactions can be modeled using a mechanistic model of enzyme binding and catalysis. The general
approach is to develop a ‘cartoon’ model of the physical steps in a reaction. This cartoon model usually takes
the form of a series of reactions, involving either binding / unbinding events or chemical conversions. Once
a model is developed one can write down ordinary differential equations (ODEs) based on these reactions,
and assuming each reaction to be governed by mass action kinetics (see Section 3.3). The ODEs can
be simplified using certain assumptions, or sometimes just kept as is, before applying a quasi steady-state
assumption (which states the enzyme-substrate complexes to be in steady-state). This assumption would
allow us to solve the ODE for the enzyme-substrate complex(es) at steady-state. We then enter these
solutions into the ODE for the product, so to obtain a reduced system and a specific rate equation for
product formation. This approach forms the basis of obtaining simplified rate equations, that is, a reduced
ODE for the rate of product formation, for enzymatic reactions.

3.6.1. Derivation of the single substrate, irreversible rate equation

This is the most generic model of an enzymatic reaction that has been developed/studied by Leonor Michaelis
(1875 1947) and Maud Leonora Menten (1879 1960), and their contemporaries. It involves the following
reaction scheme, where a substrate binds to an enzyme to form a enzyme-substrate complex, gets converted
into a product, and then released from the enzyme:

S + E k1−−⇀↽−−
k2

ES k3−−⇀↽−−
k4

EP k5−−⇀↽−−
k6

P + E. (3.18)

We can simplify this reaction system by assuming that (1) the transition between enzyme complexes ES and
EP are instantaneous and are therefore considered as a single entity, e.g. ES, and (2) that the release of
product and enzyme is irreversible. The scheme now becomes:

S + E k1−−⇀↽−−
k2

ES k3−−→ P + E. (3.19)

We can now write a set of ODEs to describe the dynamics of this reaction system - using mass action kinetics.
The ODEs are as follows:

ds
dt

= −s · e · k1 + es · k2

de
dt

= −s · e · k1 + es · (k2 + k3)

dc
dt

= s · e · k1 − es · (k2 + k3)

dp
dt

= es · k3
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where we used the small letter notation to represent the concentration of each species, e.g. “e” for the
concentration of the enzyme, E, and “es” for the concentration of the enzyme-substrate complex, ES. At
this stage, we can see that if we can formulate "es" as a function of “s”, we can provide a simpler rate model
that relates production of the product, P, to the level of the substrate, S. To achieve this we make several
additional assumptions. First, we will assume that the total level of the enzyme is conserved, i.e. e+es = C,
where C is a constant (referred to as εtot in the main text). This assumption effectively means that total
enzyme levels are fixed in the timescale of reaction dynamics. This assumption already allows us to re-define
the ODEs and reduce their number to three from four - since, we can now express e, as a function of es.
The new ODEs look like this:

ds

dt
= −s · (C − es) · k1 + es · k2

des

dt
= s · (C − es) · k1 − es · (k2 + k3)

dp

dt
= es · k3

Second, we will assume that the binding/unbinding of substrate to the enzyme happens much faster than
release of product from the enzyme-substrate complex. This assumption, together with the additional as-
sumption that enzyme levels are much lower than substrate levels, allows us to consider the enzyme-substrate
complex to remain constant throughout the reaction. In other words, we consider the enzyme-substrate com-
plex to be in a ‘quasi steady-state’. This allows us to solve the second ODE from above for steady-state:

des

dt
= 0 = s · (C − es) · k1 − es · (k2 + k3)

es · (k2 + k3) = s · (C − es) · k1

es · (k2 + k3) = sC · k1 − s · es · k1

es · (k2 + k3 + s · k1) = s · C · k1

es = s · C · k1

(k2 + k3 + s · k1)

We have now an expression for “es”, which we can simply introduce to the ODE system. We have effectively
reduced our ODE system from a three variable system into a two variable one:

ds

dt
= −s · (C − s · C · k1

(k2 + k3 + s · k1) )k1 + s · C · k1

(k2 + k3 + s · k1) · k2

dp

dt
= s · C · k1

(k2 + k3 + s · k1) · k3

The second ODE describes the rate of change in product, P, as a function of substrate, S. It is a rate model
for this enzymatic reaction, and holds under the assumptions we made in its derivation. It is known as the
Michaelis-Menten kinetic rate model and is commonly expressed as:

v = s · εtot · kcat

KM + s

where εtot is equal to C and represents total enzyme concentration, kcat is equal to k3 and is known as the
maximal catalytic rate of an enzyme, and KM is equal to (k2 + k3)/k1 and is known as the Michaelis-Menten
coefficient of the enzyme. Plotting this rate against increasing substrate concentration would show that the
rate is a ‘saturating function’ of S, i.e. the rate approaches a threshold point - given by vmax = εtot · k3 as
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substrate increases. The enzymatic nature of the reaction introduces a limiting factor on the reaction rate!
This saddle point is actually a underpinning point for some of the constraint-based methods discussed in this
book.

3.6.2. Derivation of a two substrate, irreversible rate equation

See Problem 3.2

3.6.3. Derivation of the single substrate, reversible rate equation

We now return to the reaction scheme we considered in the above section:

S + E
k1−−⇀↽−−
k2

ES
k3−−⇀↽−−
k4

EP
k5−−⇀↽−−
k6

P + E.

The corresponding ODE system, written only for the key variables ES, EP, and P, is as follows:

des

dt
= e · s · k1 + ep · k4 − es · (k2 + k3)

dep

dt
= e · p · k6 + es · k3 − ep · (k4 + k5)

dp

dt
= ep · k5 − e · p · k6

As above, we will now introduce the assumptions of (1) total enzyme being conserved, and (2) the quasi
steady-state, but this time for both of the enzyme-substrate and enzyme-product complexes. We will denote
total enzyme concentration as C, as before, and use these two assumptions to express es and ep in terms of
each other, and the other variables. Let us first proceed with es;

des

dt
= 0 = e · s · k1 + ep · k4 − es · (k2 + k3)

es · (k2 + k3) = (C − es − ep) · s · k1 + ep · k4

es · (k2 + k3 + s · k1) = (C − ep) · s · k1 + ep · k4

es = C · s · k1 + ep · (k4 − s · k1)
(k2 + k3 + s · k1)

We carry the same derivation for ep;

dep

dt
= 0 = e · p · k6 + es · k3 − ep · (k4 + k5)

ep · (k4 + k5) = (C − es − ep) · p · k6 + es · k3

ep · (k4 + k5 + p · k6) = (C − es) · p · k6 + es · k3

ep = C · p · k6 + es · (k3 − p · k6)
(k4 + k5 + p · k6)

We see that we have a symmetry in the expressions for es and ep, in that the two expressions can be derived
from each other by a replacement of variables (k1, k4, k2, s) → (k6, k3, k5, p). Keeping this symmetry in
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mind, we now attempt to eliminate one of the complexes from the equation for the other:

ep · (k4 + k5 + p · k6) = C · p · k6 + es · (k3 − p · k6)

ep · (k4 + k5 + p · k6) = C · p · k6 + C · s · k1 + ep · (k4 − s · k1)
(k2 + k3 + s · k1) · (k3 − p · k6)

ep · (k4 + k5 + p · k6) = C · p · k6 + C · s · k1k3 − C · s · k1 · p · k6 + ep · (k4 − s · k1) · (k3 − p · k6)
(k2 + k3 + s · k1)

ep · (k4 + k5 + p · k6) · (k2 + k3 + s · k1) = C · p · k6 · (k2 + k3 + s · k1) + C · s · k1k3 − C · s · k1 · p · k6+

ep · (k4 − s · k1) · (k3 − p · k6)

ep · (k4 + k5 + p · k6) · (k2 + k3 + s · k1) = C · p · k6k2 + C · p · k6k3 + C · s · k1k3 + ep · (k4 − s · k1) · (k3 − p · k6)

ep · ((k4 + k5 + p · k6) · (k2 + k3 + s · k1) − (k4 − s · k1) · (k3 − p · k6)) = C · p · k6k2 + C · p · k6k3 + C · s · k1k3

ep = C · p · k6 · (k2 + k3) + C · s · k1k3

(k4 + k5 + p · k6) · (k2 + k3 + s · k1) − (k4 − s · k1) · (k3 − p · k6)

ep = C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

Note that, in the above equation set, we have dropped the dot notation from multiplication of parameters
for simplicity of expression. Based on the above argument of symmetry, or by following the same steps for
“es”, we can show that we will have a similar expression with different parameters in the numerator:

es = C · s · (k1k5 + k1k4) + C · p · k6k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

With these expressions for es and ep at hand, we can now derive an expression for e:

e = C − es − ep

e = C − C · s · (k1k5 + k1k4) + C · p · k6k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

− C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

e = C − C · s · (k1k3 + k1k5 + k1k4) + p · (k6k2 + k6k3 + k6k4)
(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

e = C · k3k5 + k2k5 + k2k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

We are now ready to substitute all these expressions into the ODE for the product, so to obtain our rate
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equation:

dp

dt
= C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4) · k5

− C · k3k5 + k2k5 + k2k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4) · p · k6

dp

dt
= C · s · k1k3k5 − p · k2k4k6

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

We can somewhat simplify this expression by defining the following composite rate constants:

KS = k3k5 + k2k5 + k2k4

k1 · (k3 + k4 + k5)

KP = k3k5 + k2k5 + k2k4

k6 · (k2 + k3 + k4)

k+
cat = k3k5

k3 + k4 + k5

k−
cat = k2k4

k2 + k3 + k4

and substituting them into the rate expression from above, to get:

dp

dt
= v = C · k+

cat
KS

·

s − p ·
k

−
cat

KP
k

+
cat

KS

1 + p
KP

+ s
KS

This reaction rate is referred to as the Haldane kinetic rate equation, named after Jack Burden Sanderson
Haldane (5 November 1892 1 December 1964). It can be re-expressed by recognizing the fact that the fraction
entering as a multiplier for the product concentration is actually equivalent to the equilibrium constant of
the reaction scheme drawn above, at the beginning of this section, when we assume the reaction proceeding
in the forward direction, i.e. towards product formation:

k−
cat

KP

k+
cat

KS

= k2k4k6

k1k3k5
= 1/Keq

This allows us to re-express the Haldane rate equation as:

v = C · k+
cat · s/KS

1 + p
KP

+ s
KS

· (1 − p/s

Keq
)

This re-arranged expression is interesting because we can recognize that the last term is related to the
thermodynamic Gibbs free energy of the reaction, allowing us to finally derive:

v = C · k+
cat · s/KS

1 + p/KP + s/KS
· (1 − e∆G′/RT )

where ∆rG′ is the Gibbs free energy of reaction for given substrate and product levels, considering forward
direction, and R and T stand for the gas constant and temperature respectively. This rate equation shows
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that forward reaction rate will be independent of thermodynamics, when the reaction free energy is highly
negative (i.e. thermodynamically highly favored), but the reaction rate will decrease as Gibbs free energy
gets close to zero.

A second, faster derivation of this rate equation is found by noting that the ODEs for des
dt and dep

dt are linear
in e, es and ep, and can therefore be solved with linear matrix algebra. One may write:sk1 −(k2 + k3) k4

pk6 k3 −(k4 + k5)
1 1 1


 e

es

ep

 =

 0
0
C

 , (3.20)

where the first two rows of the matrix correspond to des
dt = 0 and dep

dt = 0, and the last row represents
conservation of total enzyme concentration. The equilibrium concentrations of e, es and ep are then found
by left-multiplying both sides of the equation by the inverse of this matrix. The obtained results are the same
as given above.

3.6.4. Derivation of two substrate, reversible rate equation for simultaneous binding of sub-
strates

The two-substrate case is described by the following reaction scheme:

S1 + S2 + E k1−−⇀↽−−
k2

ES1S2
k3−−⇀↽−−
k4

EP1P2
k5−−⇀↽−−
k6

P1 + P2 + E,

Where we assume that binding and unbinding of the substrates and products occurs simultaneously. Pro-
ceeding as above we let e, es1s2, ep1p2, s1, s2, p1 and p2 denote the concentrations of E, ES1S2, EP1P2,
S1, S2, P1 and P2 respectively. The differential equations for es1s2, ep1p2 and p1 + p2 are:

des1s2

dt
= e · s1 · s2 · k1 + ep1p2 · k4 − es1s2 · (k2 + k3)

dep1p2

dt
= e · p1 · p2 · k6 + es1s2 · k3 − ep1p2 · (k4 + k5)

d(p1 + p2)
dt

= ep1p2 · k5 − e · p1 · p2 · k6.

Proceeding as in the single substrate case, we note that the the ODEs for des1s2
dt and dep1p2

dt are linear in e,
es1s2 and ep1p2, and that the total enzyme concentration e + es1s2 + ep1p2 is constant, denoted C.s1s2k1 −(k2 + k3) k4

p1p2k6 k3 −(k4 + k5)
1 1 1


 e

es1s2

ep1p2

 =

 0
0
C

 . (3.21)

We therefore see that the results for the two-substrate case are the same as for the single substrate case, with
s replaced by s1s2 and p replaced by p1p2. This result is dependent on the assumption that binding/unbinding
of substrates/products occurs simultaneously.
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3.7. Example metabolic models

3.7.1. A simple model illustrating product activation

This model demonstrates that allosteric regulation of an enzymatic reaction by its product can create a
bistable system. In this simple example, we consider enzymatic production of a metabolite (labelled ’x’) and
its non-enzymatic consumption. It is assumed that the metabolite allosterically regulates the enzyme that
produces it. The listing uses the Antimony format [98] which can be easily converted into SBML [99]. An
online converter can be found at https://sys-bio.github.io/makesbml/

1 // The following model admits three steady-states at:

2 // x = 0.325, x = 1.671, and x = 0.873

3 // The first reaction step ‘-> x’ uses a rate law that models

4 // positive feedback via the product x. The constant 0.2

5 // is to ensure that the lower steady-state is non-zero.

6 // The statement ‘ext Xo’ indicates that the species Xo is fixed.

7

8 ext Xo

9 Xo -> x; (vo*x^n)/(1 + x^n) + 0.2

10 x ->; k1*x

11

12 k1 = 0.65

13 n = 4; vo = 1

14 x = 0

Listing 3.1: Model illustrating bistability

1 # Equivalent model as a differential equation in python:

2 def ode (x, t):

3 vo = 1

4 n = 4

5 k1 = 0.65

6 return [((vo*x**n)/(1 + x**n) + 0.2) - k1*x]

Listing 3.2: Equivalent model as a differential equation in python

Solutions to problems
Problem 1 (An irreversible reaction with simultaneous binding)

(a)
E + S1 + S2

k1−−⇀↽−−
k2

ES1S2
k3−−→ E + P1 + P2 (3.22)

(b)
dp

dt
= k3

s1s2C

s1s2 + k2+k3
k1

, (3.23)

where p = [P1 + P2] and C = [E] + [ES1S2].

Problem 2 (A reversible reaction with simultaneous binding)

https://sys-bio.github.io/makesbml/
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(a)
E + S1 + S2

k1−−⇀↽−−
k2

ES1S2
k3−−⇀↽−−
k4

E + P1 + P2 (3.24)

(b)
dp

dt
= k3

C(s1s2 − k2k4
k1k3

p)
s1s2 + k4

k1
p + k2+k3

k1

(3.25)

where p = [P1 + P2] and C = [E] + [ES1S2].

Problem 3 (An irreversible reaction with sequential binding)

(a)

E + S1
k1−−⇀↽−−
k2

ES1

ES1 + S2
k3−−⇀↽−−
k4

ES1S2
k5−−→ E + P1 + P2 (3.26)

(b)
dp

dt
= k5

s1s2C

s1s2 + s1
k4+k5

k3
+ s2

k5
k3

+ k2
k1k3

(k1 + k5)
, (3.27)

where p = [P1 + P2] and C = [E] + [ES1] + [ES1S2]

Problem 4 (An irreversible reaction with random-order binding)

(a)

E + S1
k1−−⇀↽−−
k2

ES1

ES1 + S2
k3−−⇀↽−−
k4

ES1S2

E + S2
k5−−⇀↽−−
k6

ES2

ES2 + S1
k7−−⇀↽−−
k8

ES1S2

ES1S2
k9−−→ E + P1 + P2 (3.28)

(b)
dp

dt
= k9

Cs1s2
(
k1k3(k6 + k7s1) + k5k7(k2 + k3s2)

)
s1A(s1) + s2B(s2) + s1s2C(s1, s2) + D

(3.29)

where p = [P1 + P2], C = [E] + [ES1] + [ES2] + [ES1S2], and

A(s1) = k1k6(k4 + k8 + k9) + k7(k0 + k4)(k2 + k1s1)

B(s2) = k2k5(k4 + k8 + k9) + k3(k0 + k8)(k6 + k5s2)

C(s1, s2) = k1k3(k6 + k8 + k7s1) + k5k7(k2 + k4 + k3s2) + k3k7k9

D = k2k6(k4 + k8 + k9)
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