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Chapter overview

◦ Resource balance analysis models are cell models based on three basic constraints formulated at
genome-scale: stationary fluxes (balancing production and consumption fluxes, uptake and excretion
fluxes, as well as compound dilution by cell growth); flux coupling constraints relating fluxes to
the amounts of catalyzing enzymes (or other machines); and density constraints, limiting molecule
amounts in cell compartments, or molecule concentrations.

◦ These constraints narrow down the solution space predicted by FBA towards more physiological
solutions

◦ Large resource allocation models build on the same principles, and have been implemented as different
variations (RBA models, ME-models, and pc-models).

9.1. Overcoming the limitations of FBA in predicting phenotypes
In the previous chapters, we have discussed two principal approaches to modeling biochemical systems. To
keep the number of variables low, but with intention of well-parametrizing the model, one can construct
small, coarse-grained models of growing cells (Chapter 8). On the contrary, Flux Balance Analysis (FBA)
models can accommodate a very large number of variables (Chapter 5), making them an excellent choice to
model metabolic networks at genome-scale.

The small, coarse-grained models are a very suitable platform for investigation of base principles of life.
Likely the best example to illustrate this is the work of Douwe Molenaar and co. [1], where a self-replicator
model was used to proposed that the low-yield, or substrate-inefficient ("wasteful") metabolic strategies are
adopted as a consequence of these pathways being more efficient in terms of protein use, compared to the
high-yield pathways. In other terms, the growth output of the "wasteful" strategy per unit protein is higher
than the "efficient" one. Thus we now believe that fermentation of glucose, often called under an umbrella
term "overflow metabolism", will take place in many organisms if the substrate in their environments is
abundant enough.

However, we know that the chemistry of life is extremely diverse, and even such a familiar concept as
fermentation can become complicated. Take three representatives of the tree of life: a bacterium Escherichia
coli, budding yeast Saccharomyces cerevisiae, and mammalian, say, human cells. All three exhibit overflow

1
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metabolism - even when enough oxygen is available in the environment - yet the underlying biochemistry tells
us that E. coli ferments glucose into acetic acid, S. cerevisiae - into ethanol, and human cells - into lactate.
Bringing more contrasts on the table, there might be extreme differences in a single taxon already: some
yeasts, for instance, will never produce ethanol when oxygen is present; some of them have lost the ability
to do respiration at all over the course of evolution. This might sound like playing a trivia game, but in
many cases, meaningful modeling of complex biological systems requires both taking and making biochemical
insight. Therefore, when we aim not only to uncover the underlying principles, but also to learn biochemistry,
FBA models have an upper hand.

Yet we already know that the predictions of canonical FBA models are limited to substrate-efficient metabolic
states. Continuing with the example of the overflow metabolism, FBA models would predict E. coli or S.
cerevisiae to respire on minimal medium with glucose as the main carbon source – irregardless of the maximal
flux of glucose into the cell. Thus the prediction of substrate-inefficient metabolism using FBA over the years
used to rely on introducing additional, mainly empirical (e.g. maximal oxygen uptake), constraints onto the
system [2]. Moreover, we can impose only linear constraints in FBA models, and this greatly reduces our
options.

Overall, we frequently seek to take the advantageous points of both "schools of modeling", however, this is
where we need to start doing compromises. In the ideal world, the self-replicator models from the Chapter
8 would have to be extended with explicit kinetics and thermodynamic constraints to obtain a detailed cell
model. However, the number of variables would increase tremendously, and non-linear optimization is very
inefficient already past even small systems. On the contrary, we could try to advance on the FBA-type
models by introducing the concepts of protein economy (Chapter 7) at genome-scale. Following our best
understanding, these, again, would constitute non-linear relationships (e.g. enzyme kinetics), yet large-scale
non-linear programming is not a viable option either. Thus simplifications are currently necessary to keep
linearity (and convexity) to solve optimization problems for large-scale models.

So can we make large-scale models tractable? If we linearize all formulae, then instead of a biconvex or
convex/concave problem, we obtain a linear problem (a bit like FBA); more precisely, a system of linear
equalities and inequalities that define a set of feasible states. This set is a polytope, and linear optimality
problems on this set can be solved easily. More specifically, to model metabolism in a growing cell, we need
to consider dilution of metabolites in the growing cell volume, or simply - the growth rate µ of the cell.

9.1.1. Why growth rate?

Under the assumption of the balanced growth, the number of copies of every metabolite in the cell is doubled
between two consecutive cell divisions. If metabolites are described by their concentration, dilution by growth
can be effectively modeled of every metabolite by a "consuming reaction", with a flux given by vdil = µ c, the
compound concentration multiplied by the growth rate. By adding these hypothetical dilution reactions to
the metabolic network, we obtain a new stationarity condition N v = µ c that connects the vectors of fluxes
and compound concentrations, and in which the growth rate µ appears as a parameter. For each choice of
the parameter µ, we can ask whether a feasible steady growth state – i.e. a feasible combination of v and c
exists. Furthermore, the feasible combinations (µ, v, c) form a convex set, with possible solutions (v, c) for
low values of µ and no solutions above a critical value µmax, the maximal possible growth rate for our model.
Finding this critical value as well as the corresponding optimal fluxes v and compound concentrations c is
relatively easy, and can be done by bisection: solving a series of Linear Programming problems (checking for
potential solutions (v, c) for different values of µ).
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9.1.2. Replacing complex kinetics by catalytic constraints

The main downside of this approach is that all relationships between models variables need to be linearized.
This concerns, most importantly, all catalyzed processes, in which we assume a linear dependence between
catalyzed flux and catalyst (enzyme or machine) concentration, but ignore the dependence on the concen-
trations of substrates, products, cofactors, or additional regulators. What does this mean in practice? As we
know from Chapter 3, typical enzymatic rate laws have the form v = e k(c): the rate v is proportional to
enzyme level e and enzyme efficiency k, which is given by a kinetic rate law k(c), a nonlinear function of the
metabolite concentrations. Depending on the context, k is also called catalytic rate or apparent kcat. The
kinetic rate laws k(c) have typical shapes, as described in Chapter 3.

To linearize the expression for v, while keeping the dependence on e, we need to replace the relationship
k = v/e by a fixed number, and so k becomes a model parameter. If the metabolite concentrations were
known (experimentally, or from kinetic models under optimality assumptions, see Chapter 6), the value of k

could be computed. Otherwise, it can also be determined experimentally, by measuring v and e and setting
k = v/e [3], which is feasible for a limited number of enzymes, however. Obviously, in reality, neither c
nor k will be fixed and given, but for our linearized model, we need to assume this. This holds both for
metabolic reactions (with enzymes as catalysts) and for macromolecular reactions (with molecular machines
as catalysts). Under this assumption, we can replace all kinetic constraints by two linear constraints on the
enzyme. If we consider coefficients k and k

′ to approximate enzyme kinetics in the forward and backward
direction, respectively, the flux the enzyme e catalyzes should satisfy −e k

′ ≤ v ≤ e k. We set k
′ = 0 for

irreversible reactions, and, for simplicity reasons, we usually assume k = k
′ for reversible reactions, unless

kinetic measurements are available that suggest otherwise. This relationship can be formulated as enzyme
capacity constraints in order to replace the kinetic rate laws in the FBA model. By writing down such
constraints for each enzyme in the model, we can couple the metabolic fluxes with the demand for enzymes,
needed to operate these fluxes.

9.1.3. Overview of existing FBA extensions

The linearization approach described above can be successfully used for very large models, making the
genome-scale models of resource allocation possible. What we commonly refer to as "resource allocation
models" therefore formalize the mathematical relationships defining the interactions and allocation of re-
sources between the cellular processes to describe optimal resource allocation using constraint-based models.
All these relationships take the form of linear, growth-rate dependent equalities and inequalities, and, when
linearized, form a convex feasibility problem [4, 5, 6].

By itself, the idea of constraining metabolic models to represent limited metabolic capacity of cells is not a
new one. There are two ways to approach this budgeting problem: "protein budgeting", where a fixed amount
of protein needs to be partitioned in the optimal manner (maximizing growth), and "resource budgeting",
where models include both the protein budgeting and the descriptions of demands for protein synthesis.
However, "protein budgeting" problems assume that investments in protein production follow the budget,
and not vice versa.

Some extensions of FBA account for extra empirical constraints on the total concentration of metabolic
enzymes (FBA with molecular crowding, or FBAwMC [7]), or on proteome sectors (Constrained-Allocation
FBA, or CAFBA [8]). While these can predict metabolic states more reliably, the empirical constraints
come as model assumptions and thus cannot be understood by the models themselves. In these models,
the primary assumption is that the cell phenotype is obtained by genetic regulations, and the main goal



4 Large resource allocation models of cells

and utility of genetic regulation can be interpreted as ways of saving resources. Thus in many cases when
we predict cell phenotype maximizing growth, we find predictions in good agreement with the experimental
observations. Therefore, resource allocation models extend and embed the ideas of proteome partitioning
beyond frameworks like CAFBA and GECKO [9], or representing metabolic capacity limitations beyond
FBAwMC.

Currently, there are three main implementations of large-scale resource allocation models: Resource Balance
Analysis (RBA) [10], Models of Metabolism and Macromolecular Expression (ME-models) [11] and proteome-
constrained models (pc-models) [12]. All these implementations are formalized as LP feasibility problems
at fixed growth rate. Originally, ME-models were considered as an extension of M-models, by including
predictions for mRNA, protein, and ribosome levels. Importantly, they do not consider density constraints
that, for instance, RBA does. Therefore, limitations on the capacity of exchange fluxes (as in FBA) are
necessary to obtain a solution.

9.2. Types of constraints in resource allocation models
As indicated above, fine-grained models of resource allocation build on the genome-scale metabolic models
(GEMs) to encompass all the reactions that potentially could happen in a metabolic network. The tech-
nical advance, when constructing such models, is to impose sets of additional constraints onto GEMs to
couple the metabolic fluxes with investment into metabolic pathways (production of enzymes). To the date,
different implementations of this concept were proposed to predict optimal resource allocation in different
microorganisms [13].

The general description of these constraints in fact is the same as for small, coarse-grained self-replicator
models, only the number of individual constraints increases. Moreover, every of the constraints described
can be split into a number of constraints, considering only a subset of fluxes in the model (e.g., fluxes taking
place in a certain cell compartment). Although the precise formulations vary, resource allocation models
build on three principal types of constraints (Figure 9.1):

(1) Mass-conservation constraints
(2) Flux coupling constraints
(3) Compartment capacity, or protein density, constraints

Alongside these three major classes there is another set of constraints, which we could call "environment"
constraints - these correspond to, e.g. the composition of growth medium, biomass composition at at given
growth rate µ, etc. They are implemented by setting target values for amounts and/or fluxes defining a
viable cell in a given (or several) environmental conditions, but they are not structural constraints. These
constraints usually are added ad hoc and do not need to bear any functional meaning per se. We will now
expand on the three types of constraints used in resource allocation models; note that the description is not
exhaustive and peculiarities may vary among different formulations.

9.2.1. Mass-conservation constraints

The mass-conservation constraints define the metabolic network (stoichiometry and relation between fluxes).
The initial building blocks of these extended models are GEMs, and thus the metabolic network stoichiometry
is already there; what remains to be defined are the protein turnover processes. We consider 4 types of
protein turnover reactions in fine-grained resource allocation models: protein synthesis, folding, degradation
and dilution-by-growth. So, for every protein present in such a model, we add these four reactions: two of
them, translation and degradation, include the stoichiometry of amino acids needed for its translation and
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Figure 9.1: Overview of biological components and mathematical constraints in large-scale resource allocation
models. Here, Resource Balance Analysis (RBA) model is taken as an example. (A) Typically, an RBA
model describes metabolisms and macromolecule production in a growing cell (yellow blocks). Precursors
from metabolism are needed to produce macromolecules, and some macromolecules serve as enzymes to
catalyze metabolic reactions. In addition, macromolecules are diluted and are localized in cell compartments.
(B) Sets of mathematical constraints. The variables and processes described by an RBA model must satisfy
a number of constraints, include mass-balance constraints (between production, degradation, and dilution
of compounds); capacity constraints (relating process velocities to the concentrations of catalysts); density
constraints (on the total amount of compounds in a cell compartment); and possibly empirical physiological
constraints on any types of "target variables", to ensure realistic models.

released during degradation based on the protein sequence. The reactions which represent either protein
folding modeled as the conversion of the "unfolded" protein species into the "folded" ones, and the dilution-
by-growth is modeled as a sink for the "folded" protein species ("folded" → ∅).

9.2.2. Flux coupling constraints

Next, the flux coupling constraints couple the metabolic fluxes with protein usage: usually, the usage scales
with the catalytic turnover value kcat of the enzyme. In this step we have to collect the kinetic informa-
tion (in most cases, kcat values), which are used as model parameters. We establish the coupling between
fluxes and protein synthesis by setting v = kcat e η, where e is the enzyme concentration and 0 < η ≤ 1
is an efficiency term summarizing the effects of reaction thermodynamics, enzyme saturation, and possibly
small-molecule regulation. The value for η can be either assumed or fitted from experimental data, and
when η = 1, the enzyme is considered to operate at its maximal rate. Coupling constraints are introduced
to couple both (i) the metabolic reactions with enzyme usage (as described above) and (ii) protein turnover
reactions with the respective macromolecular machinery (e.g. sum demand of ribosomes for protein trans-
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lation, vtranslation = [Ribosome] × kcat,ribosome). The sheer number of the kinetic parameters needed for
formulating the coupling constraints in the fine-grained models requires the modeller to consider different
assumptions and simplifications when building and parameterizing these models, as briefly discussed below.

The number of processes described in a fine-grained manner directly translates to the number of reactions
and metabolites in the model. For instance, transcription is modelled explicitly in the ME-models [11]. The
modellers’ decision is key here: under assumption that transcription and translation form a linear pathway
with fixed scaling factors (i.e. there is a fixed ratio of peptides translated per mRNA transcribed), the
flux through mRNA translation reaction can be computed post-optimization based on the flux through the
protein translation reaction. Explicit modelling of transcription would require describing processes of mRNA
transcription, processing, export from nucleus, and then cytosolic degradation after the mRNA is translated
– for each of the transcripts, with precise stoichiometry and a new set of coupling constraints.

The next issue is kinetic parametrization of these fine-grained models. We currently can use only very
simplified kinetics in the models (flux coupling v = kcat e η), and simplify such factors as enzyme saturation
and thermodynamic driving force into a single value of factor η. Two approaches are used to deal with
this, as a large fraction of parameters are not even available. First, condition-dependent kinetic parameters
("apparent catalytic constants", kapp) are fitted from experimental (mostly quantitative proteomics) data
(setting keff = kcat α, where 0 < α ≤ 1) with a value α chosen to match predicted enzyme abundance
and experimental measurements. Otherwise, for the enzymes with measured kcat values, we can assume
that enzymes work at their maximal rate, i.e. the saturation function η = 1. Then the model computes
the minimal protein requirement to sustain the flux through the metabolic reactions. The comparison of
minimal predicted vs. observed protein abundance can represent the "apparent saturation", or "overcapacity"
of enzymes. For instance, it is common in yeast S. cerevisiae that the flux and not protein expression varies
across conditions, and the relationship between predicted and measured expression can suggest the nature of
the observed protein expression [14].

9.2.3. Protein density constraints

The final layer of information in the fine-grained resource allocation models is a set of protein density
constraints. These constraints describe the [upper] limit of cellular process(es), e.g. maximal protein capacity
of a compartment. These constraints are formulated as weighted sums of protein abundance, and usual
weighing multipliers are proportional to the molecular weight of the protein. Usually, the density constraints
are expressed in terms of (usually maximal) mass, area, and volume of the compartment (e.g. "what is
the maximal mass the mitochondrial proteins can take up in gDW of cells?"). Based on the biological
interpretation of the constraints, we formulate the weighing multipliers to represent either of the metrics
(mass/area/volume) that every protein occupies.

The capacity constraints can be both equality and inequality constraints: more frequent are the latter
(usually defining the "upper limit" of, e.g. amount of protein targeted to mitochondria). However, some cell
properties should be described through equality constraints: one of these is the protein density of biomass,
defining the "target" protein translation per gram dry cell biomass.

9.2.4. Interpreting the consequences of the additional constraints

We have briefly discussed what types of additional constraints need to be implemented to extend FBA models
to account for cellular resource allocation, and now let us recap on what these sets of rules mean in biological
terms. The constraints described above shall couple the metabolic fluxes with the production of enzymes
that operate these functions, so the model has to produce amino acids and generate ATP in order to use
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Box 9.A : Protein abundance versus concentration in fine-grained resource allocation models

Here we would like to include a relevant note for interpretation of the output of the fine-grained resource
allocation models. Both the classical FBA and these extensions do not consider "metabolite concentration" as
a concept: optimization variables are all fluxes. Frameworks discussed in this chapter model protein synthesis
from amino acids and energy equivalents explicitly, with a typical flux dimension of mmol gDW −1 h−1 (as for
any other fluxes). To compute the amount of protein that has to be produced in the steady-state growth, we
should consider the flux balance for the protein e: vsynthesis,e = vdegradation,e + vdilution,e, or, rewritten with the
respective parameters, vsynthesis,e = (kdeg,e + µ) e. Here, kdeg,e is the degradation rate for the protein e, and µ

is the specific growth (= dilution-by-growth) rate. The [e] in the rewritten equation holds dimension of mmol
gDW−1, which is protein abundance, rather than concentration.
The predicted amount of protein in cells can be compared to experimental measurements in two ways. First
option is to convert abundance to concentration using the relationship between the cell volume and dry weight
(e.g. VgDW = 1.7 mL gDW −1 in Saccharomyces cerevisiae, [15]). Alternatively, proteome mass fractions are
a popular unit in label-free mass spectrometry-based protein quantification, a popular method in quantitative
microbiology. Respectively, predicted proteome mass fractions can be inferred by converting protein abundance
in mmol to g, and scaling to the protein content in dry cell biomass. Here, it is important to consider the
conversion factors (protein content in dry biomass). E. coli maintains rather constant protein content in dry
weight across growth rates (ca. 0.55 (g protein) gDW −1) [16, 17]. On the contrary, the protein content is
known to vary in S. cerevisiae as a function of growth rate [15].

them for protein translation. Moreover, the enzyme demand will be coupled with the production of the
macromolecular machines required to produce, fold, and degrade these enzymes (ribosomes, chaperones,
and proteases, respectively), requiring the same building blocks (see Chapter 2). These constraints therefore
formalize a self-replicating molecular system in balanced growth subject to different structural constraints:

1. the metabolic network has to produce all metabolic precursors necessary for biomass production and mass
conservation must hold for all intracellular molecule species - i.e. intracellular metabolites and molecular
machines.

2. the capacity of each type of molecular machine must be sufficient to ensure its function, i.e. to catalyze
chemical conversions at a sufficient rate;

3. the intracellular density of compartments and the occupancy of membranes must not exceed the defined
limits.

As highlighted before, the biological interpretation of the additional constraints discussed above is rather
universal for different implementations of resource allocation models, with minor deviations in terminology
and/or formulation. To illustrate how resource allocation models are built from conventional GEMs, and
how the respective models are formalized in mathematical terms, in the following we will consider one of the
popular formulations of resource allocation models in more depth.

9.3. Resource Balance Analysis (RBA) models
Resource Balance Analysis (RBA) has been developed as (and is considered to be) a flexible and generic
modeling framework which describes the functioning of an organism using the most relevant set of linear
equality and inequality constraints, described in general terms in Section 9.2. As a consequence, an RBA
model includes all known metabolic reactions coupled to relevant cell processes with major protein investments
(production of biomass precursors; including, but not limited to protein translation, protein folding, protein
transmembrane transport, and protein degradation). Where applicable, circumstantial information can be
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included into the model to establish the dependency of enzyme activity on metal ions, vitamins, and/or
cofactors. Which metabolic reactions and cell processes are regarded as relevant may vary between organisms
and is a modeler’s choice.

9.3.1. Building a draft RBA model

The software package RBApy [18] contains all the routines needed to build and simulate RBA models. In
order to build a new RBA model, it takes a genome-scale metabolic network in SBML format [19] as an
input, together with additional information to formulate the additional constraints described in the previous
section. Different types of biological data, are needed to build an RBA model for an organism:

◦ Amino acid sequences for metabolic enzymes and macromolecular machines (e.g. ribosomes and chaper-
ones),

◦ If applicable, stoichiometry of known cofactors (e.g. metal ions),
◦ Efficiencies of metabolic enzymes,
◦ Molecular weights and localization of proteins (for density constraints),
◦ Any empirical constraints on concentrations or fluxes ("targets", see previous section).

The software routine first extends the input GEM to include the description of protein turnover in the cell.
The software extracts information from the input files on (i) protein sequences and cofactors, (ii) the subunit
stoichiometry of protein complexes, and (iii) protein localization (using information from public databases
such as UniProt). Using this information, reactions corresponding to protein synthesis, folding, degradation,
and dilution by growth are added. Finally, the software maps enzymes to the reactions they catalyze and to
the proteins they consist of, and the output of the routine is a draft (uncalibrated) RBA model.

9.3.2. Mathematical description of a RBA problem

Notation. Below AT refers to the transpose of the matrix A. Rn
>0

∆=
{

x ∈ Rn |xi > 0 for all i ∈
{1, · · · , n}

}
, R>0

∆= R1
>0, Rn

≥0
∆= {x ∈ Rn | xi ≥ 0 for all i ∈ {1, · · · , n}} and R≥0

∆= R1
≥0.

In a standard RBA model, we consider balanced growth (see Chapter ??), that is, the average state of a
cell in a cell bacterial population growing exponentially at the specific (constant) growth rate µ ≥ 0, i.e. the
amount of produced biomass per biomass per cell per unit of time. Our simulated average cell is composed
of different molecule species:

1. ny types of molecular machines, which can be subdivided further into ne enzymes and transporters involved
in the metabolic network E ∆= (E1, . . . , Ene) at the concentrations e ∆= (e1, . . . , ene)T and metabolic fluxes
ν

∆= (ν1, . . . , νne)T ; and nm macromolecular machines M ∆= (M1, . . . , Mnm) involved in non-metabolic
cellular processes, such as the translation apparatus, at the concentrations m ∆= (m1, . . . , mnm)T ;

2. np proteins P ∆= {P1, . . . , Pnp} belonging to unspecified cellular processes. p ∆= (p1, . . . , pnp)T denotes
the set of concentrations of P;

3. ns intracellular and mass-balanced metabolites S ∆= (S1, . . . , Sns). Within the set S, we distinguish a
subset B ∆= (B1, . . . , Bnb

) of abundant metabolites which have fixed growth-independent concentrations
b̄ ∆= (b̄1, . . . , b̄nb

)T (and usually coincide with biomass macro-components such as DNA, cell wall or
plasmic membrane). We also consider a set of extracellular metabolites Sext

∆= (Sext,1, . . . , Sext,next) of
concentrations sext

∆= (sext,1, . . . , sext,next)T that are not mass-balanced.

Finally, let us introduce the vector yT ∆= (eT , mT ) of concentrations of molecular machines of size ny.
Typical units of concentrations e, m and p are in millimoles per gram of cell dry weight, and fluxes ν in
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millimoles per gram of cell dry weight per unit of time.

For a given cell growth rate µ ≥ 0, the RBA optimization problem (named Prba(µ)) can be formalized
mathematically as follows.
For a fixed vector of concentrations p ∈ RNnp

>0 and the given growth rate µ ≥ 0,

find possible cell states y ∈ Rny

≥0, ν ∈ Rne ,

subject to
(C1) −Ων + µ(CS

Y y + CS
B b̄ + CS

P p) = 0

(C2a) µ(CM
Y y + CM

P p) − KT y ≤ 0

(C2b) −K′

E y ≤ ν ≤ KE y

(C3) CD
Y y + CD

P p − d̄ ≤ 0

where all the inequalities are defined component-wise and:

◦ Ω is the stoichiometry matrix of the metabolic network of size ns × ne, where Ωij corresponds to the
stoichiometry of metabolite Si in the j-th enzymatic reaction;

◦ CS
Y (resp. CS

P) is an ns ny (resp. ns np) matrix where each coefficient CS
Yij

corresponds to the number
of metabolite Si consumed (or produced) for the synthesis of one machine Yj (resp. Pj); CS

Yij
is then

positive, negative or null if Si is produced, consumed or not involved in the the synthesis of one machine
Yj (resp. Pj);

◦ CS
B is an ns × nb matrix in which each coefficient CS

Bij
corresponds to a metabolite Si consumed (or

produced) for the synthesis of one Bj;
◦ KT (KE and K′

E, respectively) are matrices of size nm×ny (ne×ny, respectively) in which each coefficient
kTi (kEi and k′

Ei
, respectively) is positive and corresponds to the efficiency of molecular machine Mi ,

i.e. the rate of the process per amount of the catalyzing molecular machine, (the efficiency of the enzyme
Ei in forward and backward sense, respectively);

◦ CM
Y (resp. CM

P ) is an nm × ny (resp. nm × np) matrix in which each coefficient CM
Yij

typically corresponds
to the length in amino acids of the machine Yj (resp. Pj). In some cases (for instance for the constraints
on protein chaperoning), the length in amino acids can be multiplied by a coefficient, such as the fraction
of the whole proteome that necessitates chaperoning;

◦ d̄ is a vector of size nc, where nc is the number of compartments (compartment membrane and/or
compartment interior for which density constraints are considered. d̄i is the density of molecular entities
within the volume or surface area. Densities are typically expressed as a number of amino-acid residues by
volume or surface area.

◦ CD
Y (resp. CD

P) is an nc×Ny (resp. nc×np) matrix in which each coefficient CD
Yij

corresponds to the density
of one machine Yj (resp. Pj) in the compartment i. By construction, we have one unique localization per
machine.

For given growth rate and medium composition, all equalities and inequalities in our RBA problem Prba(µ)
is linear in the decision variables (y, ν) and is proven to be convex [4, 6]. At given µ, Prba(µ) is a feasibility
optimization problem, where constraints (C1-C3) define the feasibility domain. The feasibility domain can
be empty or non-empty. If there exists a solution (y, ν) to Prba(µ) -i.e. the feasibility domain is non-empty-,
then there exists a feasible resource distribution compatible with the given growth rate. In other words, the
cell can grow at this growth rate value. By construction, the feasibility domain of Prba(µ) corresponds to
the set of all possible phenotypes of the cell at a growth rate µ ≥ 0.
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We conclude this with some remarks:

1. In practice, the vector b̄ contains non-zero values only for the concentrations of macro-components such as
DNA, cell wall, and lipid membranes, and for a few set of metabolites. These values are usually extracted
from the biomass formation reaction used in FBA models (see Chapter 5).

2. To model reversible enzymes, we introduced two diagonal matrices containing the enzyme efficiencies,
i.e. KE and K′

E, describing the capacity constraints of enzymes in both directions. If an enzyme Ei is
considered irreversible, k′

Ei
is set to 0.

3. In [5, 20], an RBA model was built for Bacillus subtilis. It integrates two macromolecular processes in
constraint C2a, the translation and chaperoning of proteins, and two density constraints, the limitation of
the cytosolic density and of the membrane occupancy. An RBA model can be refined by integrating for
instance other cellular processes and molecular machines, such as the transcription machinery, the protein
secretion apparatus (see [20, 18]), or molecule turnover [21], as well as other types of constraints.

9.3.3. Simulation and analysis of RBA models

How to incorporate the medium composition. We represent the medium composition in two aspects,
namely (i) qualitatively, by allowing exchange of the medium metabolites in the model (UBExchange,n > 0).
Note that some metabolites, although not explicitly represented by the growth media, should also adhere
to this rule (e.g. oxygen, water, and protons). The (ii) quantitative composition of the growth medium is
determined by extracellular concentrations, which, in turn, dictate the efficiencies of metabolic transporters
via Michaelis-Menten-like rate laws (as nonlinear k(c) functions; see section 9.1.1). For an extracellular
nutrient Sext,i with concentration sext,i ≥ 0, the efficiency of the corresponding metabolic transporter(s) is
given by kE(sext,i) = kcatsext,i

Km+sext,i
, with parameters kcat and Km for the turnover number and the affinity of

the transporter, respectively.

Calibration of model parameters. An RBA model may contain a high number of model parameters. First,
the global parameters to be estimated are related to cell composition: (i) the concentrations of bulk biomass
components b̄, which is usually deduced from the biomass reaction of the genome-scale metabolic network
of the organism. Using quantitative proteomics data [22], one can infer (ii) the protein densities in different
compartments (d̄), and (iii) the abundance of housekeeping (unspecified) proteins (p).

The next set of parameters we need to collect concerns the efficiencies of molecular machines (KE, K′

E,KT).
As we learned in Chapters 2 and 3, the rate of an enzymatic reaction v depends on the enzyme’s efficiency
or "apparent catalytic rate", given by v = e kapp, with kapp = f(c) = k+

cat · ηrev(c) · ηsat(c) < k+
cat. The

kapp values are always below the kcat value, but may vary from state to state depending on metabolite
concentrations. Since internal metabolite concentrations c are unknown and difficult to measure at genome-
scale, we cannot estimate kapp from the explicit kinetic law f(c). We need to obtain these kapp parameters
empirically, for example by measuring the flux v and the protein abundance e in one condition and taking
their ratio.

Hence, for a given environmental condition, efficiency parameters can be estimated using quantitative pro-
teomics in combination with fluxomics [20] or FBA to estimate the flux distribution [18]. To account for
variable enzyme efficiencies, one may make the simplifying assumption that enzyme efficiencies depend mostly
on growth rate. By estimating the enzyme efficiencies at different growth rates and interpolating between
them, one obtains empirical relationships between efficiency and the growth rate [20] to be used in Prba(µ).
For instance, several estimates of enzymatic efficiencies obtained in contrasting growth conditions will provide
a relationship KE(µ) instead of a constant KE value.
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Obtaining the RBA solution for a given parameter set. For an RBA problem with given parameters,
there exists a maximal growth rate µ∗ ≥ 0, such that for any µ, Prba(µ) is feasible if and only if µ ≤ µ∗

[4, 6]. For a given medium composition, the maximal growth rate µ∗ can computed by using a bisection
algorithm, in which a series of LP problems are solved to narrow down the exact growth rate at which the
problem becomes infeasible. A real-life example would be simulating growth in glucose-limited chemostat
cultures under different dilution rates D. With increasing D, the glucose availability increases, and a set of n

different glucose uptake rates qGlc (qGlc,1, qGlc,2, . . . , qGlc, n) can be subjected to an RBA model to obtain
a set of optimal metabolic states (µ∗

1, µ∗
2, . . . , µ∗

n).

Together with the maximal feasible growth rate one obtains the optimal cell configuration maximizing growth
(µ∗, y∗, ν∗). The principle of optimal performance, in this case, that a cell phenotype should maximize growth
rate, in fact, coincides with the principle of parsimonious resource allocation between cellular processes.

Exploration of the feasibility domain. Although RBA models inherently reduce the solution space due
to principle of parsimonious resource allocation, the solutions obtained might still contain considerable flux
variability. In the same vein as Flux Variability Analysis ([23], see Chapter 5), the feasibility domain can be
explored at optimal (µ∗) or sub-optimal (µ ≤ µ∗) growth rates. For one decision variable yi (resp. νi), two
LP problems are solved, where (i) constraints C1, C2 and C3 remain unchanged; (ii) the decision variable yi

(resp. νi) is maximized (LP 1) and minimized (LP 2). This operation is repeated for each decision variable
to obtain in fine the feasibility domain of all decision variables.

It was proven that the feasibility domain becomes smaller with increasing growth rate [4, 6], so it might
be worthwhile to probe the solution space at slow-growth regimes. In practice, at the optimum, the cell
configuration (µ∗, y∗, ν∗) is often unique. Indeed, non-unique solutions will exist if two alternative metabolic
pathways have exactly the same cost in resources. Since all enzymes have different amino acid sequences,
use different cofactors, are differently localization, etc, this is highly unlikely. A caricatural example of a
model with non-unique solutions would be one in which an enzyme pool is arbitrarily split into two, and the
two new "enzyme species" are given different names, although they are physically exactly the same.

9.3.4. Use of -omics data-informed kapp vs. naïve kcat values

The three most popular formalisms of fine-grained resource allocation models, RBA [10], ME-models [11],
and pc-models [12], are variations on the same theme, as shown in the general discussion of the underlying
constraints in Section 9.2. Thus most of the ideas, concepts, and constraints are equivalent (or at least
highly similar) in their biological interpretation. Most of the differences arise from the approach taken
towards parametrization of these models, and consequently, interpretation of model output. Here we will
discuss an example where implementations differ significantly.

In resource allocation models, two types of constraints define the proteome capacity at given growth rate µ,
the protein density vector b̄, and the fraction of housekeeping proteins p in the proteome. The remaining
proteome space is to be distributed among the proteins that are explicitly defined in the model. The RBA
formalism requires to formulate the function kapp(µ) (or KE(µ) in the RBA problem, Section 9.3.2) for every
protein in the model using -omics data (see Section 9.3.3), and the fraction of the "housekeeping" proteins
in the proteome is determined from data for each simulation.

Conversely, the formulation of pc-models [12] allows more flexibility to the "unspecified" protein UP , rep-
resented by a single artificial protein of average size and amino acid composition. Instead of setting a fixed
amount allocated to p which changes across conditions, one can determine the minimal fraction of this protein
in proteome UPmin, and formulate the demand to produce UP as an inequality constraint UP ≥ UPmin.
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Interestingly, in Saccharomyces cerevisiae, the proteome mass fraction occupied by non-metabolic proteins is
relatively constant under different glucose-limited conditions, as determined by quantitative proteomics data
(see [12], Fig. S1 for a plot).

This inequality constraint can be interpreted as the upper limit of available protein space, i.e., under fixed
protein density y + p = const., the proteome not occupied by y ∆= e + m is allocated to p. Since now the
model can distribute the proteome among explicitly-defined vs. unspecified protein freely, the procedure of
fitting kapp values is no longer a prerequisite. Using kcat values, collected from literature/databases/own
experimental measurements, rather than apparent kapp values, has consequences both for predictions and
the data use: first, the model prediction on the protein use is the "demand" of the enzyme and is strictly
coupled to the flux through the enzyme (equivalent to the ECM1 layer of enzyme costs in the Enzyme
Cost Minimization method, Chapter 6). Second, the condition-dependent quantitative proteomics data can
be used as validation dataset for model predictions instead [24], as the predicted protein abundance is not
dependent on these datasets.

Using less data for parameter fitting and redirecting these data-rich datasets towards validation of model
prediction strengthens the argument for using resource allocation models for learning new biology, and already
has real-life examples. For instance, the discrepancies in predicted vs. observed levels of glycolytic enzymes
at glucose-scarce conditions in [12] inspired the same team to revisit the question whether the high levels
of glycolytic enzymes represent the optimal expression given very low thermodynamic driving force and
undersaturation of glycolytic enzymes. Comparing predictions of Enzyme Cost Minimization models with the
results of the pc-model and experimental data, [14] proposed that S. cerevisiae expresses genuine excess of
glycolytic enzymes in glucose-limited conditions, meant to amply consume any glucose as soon as it appears
in the environment.

9.4. Biomass composition: both a constraint and a prediction
Cell models describe, among other things, what a cell is composed of (see Chapter 2). In FBA, specifically,
biomass refers to the proportions of different molecule classes (e.g. lipids, protein, DNA, RNA, cofactors)
in 1 gram dry weight of cells, and biomass composition needs to be defined prior to optimization. Since, at
least for FBA models of microbes, biomass production usually is the optimization objective, the literature
frequently refers to the mathematical description of cell composition as "biomass objective function" (BOF).
In most cases, it is assumed that the proportions of biomass constituents are fixed, only the total production
(flux through BOF) changes.

For the predictions of FBA models to be reliable, a high-quality BOF is a must (see Chapter 5). Therefore,
there is a sustained effort to experimental determination biomass composition, even for E. coli [25]; for more
details on the usual experimental measurement methods, see the box in Chapter 2. In case supporting data
are available, the cell composition in the BOF may be described in a more fine-grained manner for individual
molecule types (e.g., individual lipids, proteins, mRNA species, etc), or even in terms of atomic composition
(which in turn gives clues about the amounts of molecule classes). So, overall, the biomass composition acts
as a global, and one of the most stringent, constraint on the predicted solution space in FBA-based models.

However, cell composition may greatly vary not only between (micro-)organisms, or different cell types
within the same organism, but also for a the same organism/cell type across different conditions. Budding
yeast S. cerevisiae, for instance, exhibits rather linear relationships between the proportions of bulk biomass
constituents as a function of growth rate in glucose-limited cultures [26]. This variable composition often
poses a challenge for models: just like the uptake rates, the varying biomass composition reflects complex
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global rearrangements of resources (for instance, different ribosome content at different growth rates [27]
leads to changes in RNA-to-protein ratio in the cells), and choices between metabolic strategies (e.g. depletion
of storage carbohydrates in glucose-fermenting S. cerevisiae [15]).

A main advance of resource allocation models, compared to conventional FBA models, is that only a part
of the biomass composition is given as input information just like in FBA (b̄ in RBA). The proteome
composition, on the contrary, becomes a genuine prediction of the optimization procedure. Unlike small self-
replicator models (see the models in Chapter 8), this prediction is very detailed, as the the predicted proteome
composition is represented by the sum of individual protein abundances. Moreover, if proteins require trace
elements or cofactors (e.g. iron in iron-containing proteins) for function, the demand and contribution to the
overall biomass of these metabolites will also be predicted by the model (as it will vary with the expression
level of those proteins).

In theory, the abundance of biomass constituents other than proteome could be formulated in the way they
become predictions of the resource allocation models, rather than hardcoded inputs. Following the idea
implemented in the small, coarse-grained models of [1], one could set relationships between, e.g., protein
density in the cells and production of lipids (in [1], the biological interpretation was to maintain the surface
area-to-volume ratio constant). Currently this is not widely accepted as a standard practice, and, as we
can see from the example above, requires comprehensive experimental evidence, which, by itself, could be
interpreted still as "input to the model".

9.5. Concluding remarks
In this chapter, we have considered the resource allocation models, the extensions of FBA models which
couple metabolic networks with the macromolecular machinery that is required to operate them. These
models append existing FBA models with a large number of additional reactions, metabolites, constraints,
and model parameters, and, overall, offer a fine-grained representation of cellular economy. Many of kinetic
parameters cannot be accurately measured for individual enzymes, and/or are condition-dependent. The
quantitative nature of the predictions of resource allocation (and the most cellular decisions/phenotype
shifts), however, are largely governed by global constraints: for instance, when the protein density g gDW −1

in a compartment reaches its upper limit (=that compartment is fully packed with protein), the cells switch
from fully-respiratory to respiro-fermentative growth (see [11] for E. coli, or [12] for S. cerevisiae). Unlike
the kinetic parameters, which are rather uncertain, these "global" constraints are based on more trustworthy
evidence.

Thus these models still retain a reasonable compromise concerning numerical tractability and model complex-
ity, and can accurately predict complex adaptations, which cannot be captured by GEMs in an autonomous
way, i.e. without the addition of empirical constraints on fluxes. A successful use case of using resource allo-
cation models is dissecting iron economy, using RBA models: some proteins require iron for their function,
and the cell growth can become iron-limited in some conditions. The RBA model was used to predict cell
behavior under iron starvation, and the predictions suggested couple of scenarios, (i) the cell may increase
the import of iron, but also (ii) avoid using proteins that contain iron (and the pathways in which they
operate) [20, 28].

As with the biomass composition, another aspect of resource allocation models (and FBA-based models
in general) with some duality in its interpretation is the objective function. Although its validity has been
always debated since conception, maximization of instantaneous growth rate as the optimization objective
has shown incredible success in predicting microbial physiology. The current approach we apply for resource
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allocation models still remains the FBA-based assumption that the desired cell phenotypes are the ones
maximizing instantaneous growth rate µ. This time, however, the µ is also a model variable, so we have to
apply bisection to obtain the optimal solution for each parameter set we use in resource allocation models.

It is becoming more and more evident that a lot of phenotypes (and microbial species!) we try to predict
divert from the principle maximization of instantaneous growth rate. For instance, the most experimental
microbial physiology research has been focused on carbon-limited (C-limited) cultures, especially the yeast
work in Delft, the Netherlands (see [26, 15] for examples). It seems that the maximization of growth rate
work very well in C-limited case, and the success of resource allocation models to quantitatively capture these
phenotypes [11, 20, 12] affirms this assumption. But is C-limitation descriptive of natural environments? Let
us continue the argument with yeasts as an example.

Yeasts in the wild, for instance, very frequently are subjected to feast-famine cycles in terms of carbon
availability, and one could argue that these yeasts should act as glucose-limited in the famine phase of the
cycle. Yet the current opinion in the yeast ecology seems to see feast-famine cycles as a continuous, although
reduced, supply of carbon, and steer towards embracing a higher role of nitrogen (N) limitation in natural
environments instead. Currently, our understanding of N-limited growth is not very comprehensive, and
N-limitation is also a case where the instantaneous growth rate maximization breaks down: the pc-models
of S. cerevisiae cannot quantitatively capture the cell behavior under N-limited conditions (Pranas Grigaitis,
unpublished).

So the selection of a suitable optimization objective can be a choice followed by huge success, but also, the
optimal solution might end up contradicting the existing knowledge. How can we try to mitigate that? One
huge advance of resource allocation models is that at any condition, the available solution space is greatly
reduced, compared to conventional FBA. We can argue that we have introduced a whole new set, a whole
new type of constraints into the model by accepting assumptions stemming from the metabolism-molecular
machinery coupling. In theory, we should be able to reason further regarding any additional (even empirical/ad
hoc) constraints and/or additional optimization objectives which would bring our model predictions closer to
observed biology. Just remember: fitting models is not a sin; but nontransparent/reckless fitting is! After
all, modeling is an art, and there is no one cookbook that represents the ground truth: we should be free to
explore the secrets of biology, as unrealistic as our assumptions are at times.

A final remark on modeling being an art. In this book, we have explored several types of cell models of different
size, detail, and assumptions behind. This whole hierarchy and diversity of different implementations and
formalisms might seem overcomplicated and unnecessary, although it is a mere reflection that "one size does
not fit all". In the following chapters we shall continue discussing further model types, and we invite (future)
modelers to be creative, mix, match, and tailor different models (and modeling types) to advance biology.
The compromise between fine-grained but liner modeling vs. complex kinetics that materialized into resource
allocation models is an inspiring example of how one can push bounds of different methods.

Recommended readings
RBA website Website rba.inrae.fr for further details on RBA. Under Tools, there are example models
and Jupyter notebooks for running them.

Review article on large-scale resource allocation models K. de Becker et al. "Using resource constraints
derived from genomic and proteomic data in metabolic network models" Curr Opin Syst Biol 2022, 29:100400

rba.inrae.fr
https://rba.inrae.fr/tools.html
https://doi.org/10.1016/j.coisb.2021.100400
https://doi.org/10.1016/j.coisb.2021.100400
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Problems
Problem 9.1 The role of metabolite concentrations The available cell space for proteins depends on the
assumed space occupied by small metabolites.

1. What if the metabolite content of the cell has been underestimated? Assume that the amount of small
metabolites in cells is currently underestimated. What problems in model predictions would arise from the
fact? In what way would predictions (by FBA or other methods) be distorted?

2. In what way would a cell, in reality, profit from a lower small metabolite content? Can we assume that the
ratio between small metabolites and proteins is optimized? Describe possible aspects of this compromise!
For inspiration, see [29].
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