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can be described by continuous-time and discrete-time stochastic processes. There are quantitative relationships
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Chapter overview

◦ Cells require coordination of growth and division, as well as coordination of cell-cycle progression with several
essential sub-tasks, such as chromosome replication and segregation.

◦ Single-cell dynamics data offer correlation patterns that can be used to understand these decisional processes.
◦ The cell-cycle progression and cell-division decisional process can be described by continuous-time and

discrete-time stochastic processes.
◦ There are quantitative relationships that connect growth, cell-cycle progression, and resource allocation.
◦ There are differences and common points in the decisional processes by which single cells of different organisms

commit to divide (sizers, adders, accumulators, titration-dilutors, etc.)

14.1. Introduction: the decision to divide illustrated through single-cell E. coli data.
As nicely put by the Nobel prize winner François Jacob, “the dream of every cell is to become two cells”. Achieving
this dream often requires multiple steps, such as growing by a certain size, replicating DNA, and dividing. The
previous chapters have addressed cell growth as a consequence of optimization of catabolic and biosynthetic fluxes
through optimally regulated resource allocation; this chapter deals with the decision to divide (and to progress the cell
cycle), based on growth and other important cellular processes and cues. Clearly this decision to divide or progress
the cell cycle must be based on a set if inputs (growth, production processes such as DNA replication and cell-wall
biosynthesis, partitioning processes, etc.) and entails several outputs, prominently cell division, but also intermediate
key cell-cycle substeps, such as initiation of DNA replication or construction of a “divisome” organelle. The questions
that we will consider concern the characterization of the known aspects of this decisional process and its coupling to
cell size, to cell growth, and to the chromosome cycle. We will use throughout the chapter E. coli as an example. This
section provides a description of the main problem through an introduction to the data, based on E. coli bacteria.
Sections 2-5 start from a mathematical toolbox of models that are useful in this context and compare them with
data. Finally, section 6 describes applications to other organisms than E. coli.

Capturing the key processes regulating cell division is a fundamental question in biology, which remains open despite
a history of more than 60 years. During the years, scientists have learned a great deal about the size and shape
of bacteria in different nutrient conditions, what most of the molecular players involved in the division process are,
how the DNA replication machinery is formed and how it proceeds along the chromosome, how the septum and the
new cell wall are synthesized. However, the vast majority of these data are based on population averages, out of
which it turns out to be impossible to extract any direct and/or causal link between the different processes involved
in cell growth that set cell division [1]. Today, a new generation of data has the potential to answer several open
questions [1, 2, 3]. These data differ from the previous generation in the ability to measure single bacterial cells
over multiple division events in controlled conditions. At the same time, the expression of a specific gene or the
concentration of specific proteins of interest can be monitored using fluorescent reporters. For example, fluorescent
tags on the proteins involved in replication are used to score the initiation of replication in each cell cycle. Single-
cell data allow for validating mathematical models and thus bring insights into the causal link between the several
processes a cell need to complete before dividing.

By following lineages of cells over multiple generations under controlled environmental conditions, scientists collected
different important pieces of evidence (Figure 14.1): First, within a cell cycle, the cell size s(t) is well-described by a
single exponential in time1 [6, 7]: s(t) = s0 exp(αt), where s0 is the size at birth, α is the growth rate, and t is the
time since cell birth.

If division occurs at time τd, a simple relationship connects the size at division sd with the other cell properties:
1Note that most of the studies today use cell length as a proxy for size. However, different choices are possible such as volume or

mass, and the differences are not fully characterized [4, 5].
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Figure 14.1: Salient quantitative features of cell-division control, explained through E. coli data – (A) E. coli cells
are rod-like. Within a condition they grow by increasing their length, and they divide symmetrically. Following
single-cell lineages, growth in length or volume is close to exponential. (B) Size-growth plots quantify the strength
of division control. For a timer, multiplicative growth quantified by G = log(sd/s0) is uncoupled to birth size, for
a sizer, it is maximally coupled. The single-cell data show an intermediate trend. (C) Since G = log(sd/so) = ατ ,
the size-growth plot can be split into contributions correlationg birth size to growth rate (top) and/or interdivision
time. The data show that E. coli bacteria only compensate by modulating interdivision times. (D) Two equivalent
quantifications of the strength of the division control size. The intermediate control strategy adopted by E. coli adds
a size that is independent from the initial size (“adder”). This strategy is sufficient to achieve size homeostasis.

sd = s0 exp(ατd). All the four parameters of this equation are subject to stochasticity in time and vary across
single cells, even when they grow in controlled conditions. Second, in steady growth, the size distribution of newborn
cells does not change over time, an observation that is referred to as cell-size homeostasis [4]. Equivalently, cells
show specific correlation patterns between size at growth and size at division, which are related to their cell-division
strategy [8, 4].

Let us try to understand more in detail how single-cell correlation patterns can be used to understand cell-division
behaviors. The observation of near-exponential growth immediately suggests a change of variables that is useful to
formulate mathematical models and to understand how single cells control cell division. Indeed, if we can assume
that growth is exponential, we can use logarithmic sizes instead of linear sizes. One robust observation, is that
the elongation G = log(sd/s0) = ατ depends on the size at birth s0 (Figure 14.1B). This allows us to generate
so-called “size-growth” plots (Figure 14.1B), in which the log-multiplicative growth during a cell cycle of a single
cell is plotted as a function of the logarithmic size at birth [8]. Different mechanisms of size control predict different
slopes for this plot. A cell division set by a “timer”, for instance, would predict no relation between G and size. Since
G = log sd − log s0, if instead log sd were independent of the initial size, a “sizer”, one would predict a slope = −1.
The E. coli data typically fall half way in between these two predictions, a negative slope of about 0.5 (Figure 14.1B).

By noticing that the overall logarithmic growth G during a cell cycle is the product of the single-cell growth rate
and inter-division time (G = ατ), we can ask the question of which one of these variables is responsible for the
correlation. This analysis disentangles the contributions to cell division control due to growth rate and inter-division
timing (Figure 14.1C). In other words, the dependency of G on initial size can be further decomposed on the
dependency of growth rate α and division time τ . In E. coli, when growth rate and interdivision times are plotted
separately as a function of the logarithmic size at birth, the negative slope is only observed in the interdivision-time
plot, suggesting that cell control size by adjusting the single-cell interdivision time rather than their single-cell growth
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rates. Hence, E. coli data indicate that τ does depend strongly on initial size, while the growth rate has only a weak
dependency [7].

One can visualize and quantify the mutual dependencies between cell sizes and growth properties in other equivalent
ways (Figure 14.1D). For example, in E. coli data, the scatter plot relating size at division in the y-axis to size at
birth in the x-axis for single cells has a slope of around 1 (and once again this observation holds true for different
strains and under different environmental conditions). In this plot, a slope of 0 would suggest that cells on average
need to reach a threshold in size upon division, a sizer. More technically, the division size sd is independent on the
initial size s0 in the case of a sizer. Instead, a slope of 2 in this plot would suggest that cells on average need to
wait a fixed time upon division, a timer. The observed intermediate slope of 1 can also be understood using the
equivalent plot in which the added size between birth and division is used on the y-axis, studying the dependency of
the added size sd − s0 on s0. This latter way to plot the data is particularly popular, given that, for many datasets
it shows no dependency, suggesting that adding a constant added size is the mechanism of size control effectively in
place. Indeed, for E. coli the experimentally observed slope is always close to 0 [9, 10, 4], an observation that goes
under the name of “adder” behavior since cells appear to add on average a constant size during the cell cycle (Figure
14.1(B,D)).

It is fairly simple to rationalize why, for exponentially growing cells, a cell division strategy based on a timer does
not achieve a homeostatic size. In order to do this, we can call q(i) = log(s0(i)) the logarithmic cell size at birth
of cell-cycle i, and look at its dynamics through subsequent cell cycles. Since s(τ) = s0 exp(ατ), and 〈ατ〉 = log 2,
and assuming that cells divide perfectly in two halves, one immediately gets that

q(i+ 1) − q(i) = ν(i)

where ν(i) is a zero-average random variable independent for each cell-cycle, arising from the size-independent
fluctuations of inter-division times (hence, in technical jargon, we can model ν as a discrete-time Markovian random
process). Since the jumps in logarithmic size between subsequent cell cycles are random and independent, cell size
at birth makes a discrete-time multiplicative random walk, hence, within a population, the distribution of cell sizes
at birth tends to get wider and wider across divisions. The following two sections will explain how size homeostasis
can be achieved by size-coupled cell divisions.

14.2. Hazard rate approach to cell division
As we have seen in the previous section, E. coli cells grow roughly exponentially. Hence, we can describe their growth
by a trajectory for size s (measured as cell mass or volume) of the kind s(t) = s0 exp(αt), where t is time from cell
birth. While experimentally the growth rate α fluctuates with time, we will neglect its variability and assume for
the moment that it is constant. As a consequence, the cell grows as a simple exponential function of time. We will
address different hypotheses regarding this point in the later sections.

A simple way to describe the decision processes leading to division (or other cell cycle progression events) is the
so-called “hazard rate” model [11, 7, 10]. In this framework, as the cell cycle progresses, each cell has a certain
probability to divide, and we call hd the rate of cell division. In principle, this rate can be a function of many different
internal cellular parameters, all the processes that contribute setting cell division. However, since we have in mind
experiments measuring cell size versus time and recording cell divisions, the most general “empirically accessible”
hd can depend on s, t, s0, α with the constraint that s/s0 = exp(αt). This means that there can be at most three
free parameters. We can also consider simplified models, such as hd = hd(s) or hd = hd(s, t). Empirically, the lack
of correlation between α and birth size suggests a smaller role for this parameter. It is important to realize that
this formalism is very powerful, as it can be applied more widely to any sub-cell cycle decision (for example, entry
into a specific phase, such as initiation of DNA replication, mitosis, etc.), and to measurements of different relevant
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Figure 14.2: Illustration of the inverse hazard rate approach on data – Data from many lineages of dividing cells
can be used to estimate the cumulative distribution of non-divided cells, which can also be conditioned on different
variables. The drawn example refers to the case where the tested variable is the added size s− s0. In this case, the
formalism allows to extract mathematically the hazard rate hd(s − s0) from this distribution. Experimental E. coli
data are consistent with this adder scenario, with an hazard rate that peaks at a characteristic added size, after which
the division control weakens.

cell-cycle processes (for example chromosome configurations or the expression of cell-cycle proteins or other factors),
which the hazard rate may depend on.

Given a model for the hazard rate, we are interested in the cumulative probability F (t|s0, α) that a cell born at t = 0
has not divided at time t, given that its initial size is s0 and its exponential growth rate α. Box 14.A discusses the
mathematical formalism to obtain this probability.

The considerations we made so far are sufficient to produce “forward models” where a hazard rate is assumed, and
one explores its consequences on the division dynamics. The simulation of such a model is straightforward. For each
discretized time increment dt, the cell will grow by the prescribed dynamics s(t) and will divide with hazard rate hd.
If a division occurs, the mother’s cell size will halve, and go from s to s/2 (we assume for simplicity perfect binary
divisions, but this assumption can easily be relaxed). What is a “sizer” in this framework? We can define it as a
model where hd = hd(s) [12]. Equally, a timer is a model where hd = hd(t), and an adder has hd = hd(s− s0). At
this stage, it is only intuitive, but not formally grounded, that the scatter plots of the previous section correspond
precisely to these models. This problem will be discussed in section 14.3. Note that not all the choices of hazard
rates will guarantee a steady-state cell size distribution. As a particular case, one can consider a constant division
rate hd(t) = r, which is a simple Poisson process (see the problem above). This is a pure timer and we expect that
it will not maintain a steady-state cell size distribution (the reader can verify it, e.g. by simulations).

Beyond the forward approach, we would like to recognize the trends in the data that favor one model rather than
another. In particular, we can ask which model best describes the E. coli data, presented in the first section of this
chapter. This question is a “reverse problem”, and is equivalent to the inference of the hazard rate hd from data
(Figure 14.2). It is a very common reverse problem for the literature, used for example in the so-called “survival
analysis” in clinical studies [13]. In that case, the hazard rate typically corresponds to a one-time negative outcome
(death of the patient) and the process is not repeated along lineages as in the case of cell divisions. However,
the mathematical ingredients are very similar. Consequently, there are many regression methods available in the
literature, which can be transferred to our case. One of the most famous is Cox regression [14]. However, most of
these regression methods need an ansatz for the parameterization of the model, which might be a nuisance, as it
would require some previous knowledge. Here we consider a simpler, direct inference method, which does not need
any parameterization (but is effective only with a sufficient amount of data, i.e., for many cell divisions).

Suppose for simplicity we deal with a sizer. In this case, it is possible generate an estimator for the functional form
of hd(s) using Eq. (14.5). By inversion, we obtain

hd(s) = −αs d
ds log[F (s|s0)], (14.6)
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Math box 14.A Probability distribution of (un)divided cells

This box derives the probability distribution of (un)divided cells from the hazard rate. The probability that
a cell divides between time t and t + dt is the probability of not having divided so far times the probability
of dividing between t and t + dt, in turn given by the product of the hazard rate and the time interval dt,
F (t|s0, α)hd(s(t), t, s0, α)dt. During the same time interval, the cumulative probability of not having divided
will decrease by the same amount. Hence, we can write

F (t+ dt|s0, α) = F (t|s0, α)[1 − hd(s(t), t, s0, α)dt] . (14.1)

In the limit of dt → 0 we obtain a differential equation, which governs the evolution of our system

d
dtF (t|s0, α) = −hd(s(t), t, s0, α)F (t|s0, α) , (14.2)

and whose formal solution is (for t ≥ 0)

F (t|s0, α) = e
−

∫ t

0
dzhd(s(z),z)

. (14.3)

Since we said that the probability of a cell division event in the time interval [t, t + dt] is P (t|s0, α)dt =
F (t|s0, α)hddt, the corresponding probability density is

P (t|s0, α) = hd(s, t)e−
∫ t

0
dzhd(s(z),z) = − d

dtF (t|s0, α). (14.4)

Alternatively, the size s can be used as a coordinate, considering for s > s0,

F (s|s0, α) = e
−

∫ s

s0
dzh∗

d(z,t(z))
, (14.5)

while F (s|s0, α) = 0 for s < s0. Here, h∗
d(s, t(s))dx is the probability of cell division in the size range between

s and s + ds. The two rates are simply related by h∗
d(s, t(s))ds = hd(s(t), s)dt, where ds/dt = hg(s) = αs is

the rate of growth.

where F can easily be estimated from data, from the cumulative fraction of undivided cells at size s with initial size
s0. In our case, we can use the mean value of the growth rate 〈α〉, since we are neglecting fluctuations in growth
rate.

Since we do not know whether our assumption of a sizer apples to data, we can first combine the data and the
inference to falsify the assumption [7]. In order to do this, we can further condition our histograms in order to fix s0.
If hd depends solely on s, then the inferred function h̃d should not change with varying s0. This is indeed the case
if the procedure is applied to simulated data. However, when we apply the same procedure to the experimental data
shown in the previous section, the inferred hd(s) changes if it is inferred for different bins of birth size s0. Hence, we
conclude that our E. coli data do not behave as a sizer, in the sense of the hazard rate. Instead, if we consider the
adder ansatz for the hazard rate hd(s− s0), and we repeat the procedure, we find that further conditioning by birth
size or time from birth does not change our inferred hazard rate [10]. Hence, we can conclude that a hazard-rate
analysis of the data supports an adder (or at least that the data cannot falsify this simple model).

How does the inferred hd depend on size? Curiously, for any fixed s0, hd increases superlinearly for small cell sizes,
then reaches a maximum after which it decreases. In other words, some cells may “miss” a cell division event and
keep growing until they find a better occasion to divide. This process is called “filamentation” (because the cells
that miss one or more division elongate and end up looking like filaments), and is typically the consequence of stress,
but also present in stress-free growth conditions. experimental observations show that E. coli forms filaments in
response to DNA damage, antibiotics, host immune systems, temperature, starvation, and many other stresses. As a
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consequence, size plasticity may be in many cases an adaptive strategy. The quantitative division rules of filamentous
E. coli cells have been studied experimentally [15], but we lack a comprehensive mathematical model.

One very robust observation of cell division statistics, in E. coli and beyond [16, 10, 17, 18], is that the distributions
of size at birth, size at division, and division times measured across conditions, collapse onto the same curve when
rescaled by their mean. For instance, the distributions around these values are clearly non-overlapping: the single-cell
birth-size distribution in glucose pglu(s0) strongly differ from the one in TSB medium pT SB(s0). In particular, the
typical size at birth for E. coli growing in glucose 〈x0〉glu is about 2/3 the size of E. coli growing in TSB 〈s0〉T SB

and the average division time 〈τd〉T SB is TSB is half the one of E. coli in glucose 〈τd〉glu. This appears to be valid
across different environmental conditions (e.g., nutrient quality, temperature, pH, etc.). The remarkable empirical
observation is that, when comparing two conditions, the rescaled distribution is universal. If we introduce the rescaled
size s̃0 = s0/〈s0〉c, the distribution of s̃0 is universal, independent of the condition. This observation applies also to
size at division, added size between divisions, interdivision time, and, to a certain extent, growth rate [17].

An obvious question that follows from this observation is how the size-scaling properties of cell-size at birth constrain
the mechanisms of homeostasis and the properties of stochasticity at the single-cell level. A necessary consequence of
the distribution collapse is that the processes leading to single-cell heterogeneity and homeostasis must have common
underlying properties across conditions. Conditions differ because they are characterized by different dimensional
scales, but, phenomenologically, division control is governed by the same underlying principles (although the key
molecular players may vary). The collapse of all the distributions, when the variables are rescaled by the mean
has another, stronger, consequence: whatever the division control mechanism is, it depends on only two scales, a
size-scale (setting the typical cell size) and a temporal scale (setting growth rate and division time).

This constraint has strict consequences on the variability of the hazard rate across conditions. In particular, it implies
that the hazard rate must take the mathematical form [19]

hd(s(t), s0, tα) = αh̃

(
s(t)
〈s〉c

,
s0

〈s〉c

)
, (14.7)

where the function h̃(·, ·) is the same across conditions. The dependency on α and t disappears, as the scaling of
division time, implies the existence of a unique time scale. Since h̃(·, ·) is by definition adimensional, it can only
depend on the product αt, which can always be re-expressed as a function of s and s0, as αt = log(s(t)/s0). While
this is a powerful observation, as it allows to naturally connect division mechanisms across conditions, it does not
provide any evidence to a particular decisional mechanism enforcing cell division, which is encoded in the function
h̃(·, ·). Addressing this question needs further experimental details.

14.3. Cell-division control as a discrete-time linear response process
In the previous section, we have seen how the cell-division control mechanism can be mathematically defined using the
hazard-rate framework. This approach uses as a fundamental ingredient the probability per unit time of cell division
hd, which is, a-priori, a function of many internal cellular parameters. This approach is, in some sense, very general,
as it allows to characterize any complex cellular decision process. However, this generality limits the tractability and
interpretability of the model. In this section, we introduce an alternative discrete-time mathematical framework which
greatly simplifies the parameterization and the interpretation of a cell-division control model [20, 21], and easily maps
to the empirical parameters discussed in Figure 14.1.

Specifically, instead of tracking the division rate at different stages of the cell-cycle, it is often convenient to model
directly the cell size at birth across different generations. In this case we can, in full generality, write

si+1
0 = f(si

0, α, . . . ) + ηi(si
0, α, . . . ) . (14.8)
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where si
0 is the birth size of the cell at generation i. The function η(·) represents a random variable whose mean is

equal to 0 and having, a priori, arbitrary probability distribution. The function f(·) described the control over cell
division. Specifically, the function f(·) can be simply (almost tautologically) defined as the conditional average of
the size at birth at generation i + 1 given all the variables that contribute to cell division control (the previous size
at birth, the growth rate, and others),

f(si
0, α, . . . ) := 〈si+1

0 〉|xi
0,α,... . (14.9)

The random variable η(si
0, α, . . . ) characterizes the fluctuations around this conditionally averaged birth size.

This formulation of the process is as general as the hazard-rate formalism as it allows to express any division
probability F (s|s0, α, . . . ). Eq. (14.8) simply isolates the contribution of the (conditional) average size at division
from the deviations from this average. This separation is useful because it allows a clear interpretation of the
mechanism of division control, and because the conditional average size at division is typically accessible from single-
cell experiments. For instance, a timer corresponds to f(si

0, α) ∝ si
0, where the proportionality constant equals

exp(ατd)/2. A sizer corresponds to f(·) being a constant, independent of the initial size si
0. Along the same lines, an

adder is defined as f(si
0, α) = (si

0 + ∆(α))/2, where ∆(α) corresponds to the (average) added size. The formalism
also shows how there is a continuum of possible intermediate behaviors besides these three limit cases.

Given the facts that growth is exponential, and the distribution of sizes at birth is approximately Lognormal [10, 17],
it is once again convenient to introduce the logarithmic size qi

0 = log si
0. One can derive the dynamics of the variable

qi
0 as a function of the dynamics defined in Eq. (14.8) [19]. Since the fluctuations of this variable are small, this

dynamics is fully specified by a set of linear-response parameters λab relating the main observables (i.e. in our case
each of the variables a, b can be q0, α, τ,G).

The linear-response framework offers a flexible and analytically tractable tool to formulate and explore different models
of division control. The models can be constrained by correlation patterns measured in data, quantified for example
by covariances, which relate to the coupling parameters λab. However, the question remains of whether such models
are consistent with data. For E. coli data, the linear-response framework predicts the correct consistency relations
between experimental measurements, thereby confirming its usefulness to characterize empirical data [21]. A second,
more biologically relevant, question is identifying the biological mechanism reproducing the observed dependency
patterns. As already discussed, the observation that λqq ∼ 0.5 is a strong indication of adder-like size-control
mechanisms [20, 10, 19, 21]. Interestingly, one can show that the non-zero correlation between growth rate and log-
initial size 〈δαi+1δqi

0〉 can be explained because of the correlation between mother and daughter single cell growth
rates (the presence of a non-zero value λαα and a dependency of the division size on the growth rate (a non-zero
term λqα). Such a relation between parameters point to some dependency on the size at division on the single
cell-growth rate. For E. coli, it is possible [21] to reproduce the empirical values of these coupling parameters by
assuming an adder model where the added size depends exponentially on the single-cell growth rate, following the
same dependency it has on the population growth rate (this behavior will be discussed in more detail below, and is
sometimes termed Schaechter’s Law [22]).

14.4. Coordination of cell division with different cell-cycle processes
In the previous sections, we learned that E. coli single-cell dynamic data reveal the adder size-control behavior, which
allows bacterial cells to maintain size homeostasis. We also discussed a mathematical framework that describes how
size control is achieved, and, in particular, how the key measured variables (logarithmic size at birth, interdivision
time, growth rate, and total growth during a cell cycle) are connected. Here, we introduce a joint description of the
DNA replication cycle, which at the modeling level makes it necessary to partition the cell cycle into sub-periods.
We then present the key elements and observations around the debate on whether and how DNA replication and
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genome segregation is limiting cell division in E. coli. In presenting this debate we aim to (i) highlight the positive
and innovative aspects of some of the cornerstone studies of recent years, (ii) provide the reader with robust tools
necessary to compare mathematical models against data. Finally, we conclude the section by underlying a few open
questions.

It is a classic question in biology [24, 25] how cells achieve the precise coordination of the cell cycle with chromosome
replication and segregation is necessary for cell survival. DNA replication defines a way to subdivide the cell cycle
into sub-periods. In E. coli, the period between cell division and initiation of DNA replication is normally referred
as the B-period. The C-period is the period needed to complete replication. Bacterial DNA is organized in circular
chromosomes which replicate starting from a well-defined “origin” region (called ori locus). The replication machinery
moves bi-directionally, and the two “replication forks” proceed approximately at the same speed and terminate in a
“terminus” region of the chromosome called ter locus [26, 27, 28]. For E. coli cells dividing at mean interdivision
times from about 20 minutes to about one hour, the replication speed is approximately constant, resulting in an
approximately constant C period of around 40 minutes [29]. The D-period is the period that lasts from the end of
replication to the next division which thus includes segregation and septum formation. Note that the inter-division
time, i.e. the time between two consecutive division events, can be as short as 20 minutes in E. coli. How can a cell
with a division time shorter than the C-period duration have at least two copies of the DNA? Classical studies have
shown that E. coli and other bacteria can set up multiple overlapping rounds of replication, as summarized by Cooper
and Helmstetter in 1968 [25]. For example, a cell at birth is already replicating DNA and has two forks. During the
cell cycle, two new initiation events take place, which will only terminate in the daughter cells [30]. We will refer to
the “G-period” and the “I-period” as the periods between two consequent division and initiation events, respectively.

As briefly mentioned in the introduction of this chapter, the recent single-cell experiments allow to score initiation
and termination of DNA replication by fluorescently tagging proteins involved in the formation of the replication forks
or directly the ori locus [31, 32, 33, 34, 23]. The scoring of initiation and termination makes it possible to produce
the size-growth, and the equivalent adder, plots for any of the sub-periods BCD 2 as well as for the G- and I-periods
(jointly). In the remainder of this section, we will refer to the slope of the size-growth plot of a sub-period X (X=
B,C,D,G, or I) as λX , and to the slope of the corresponding adder plot as ζX . The two slopes are linked by the
equation (1 − λX) = ζX +1

QX
, where QX = exp(〈growth during X〉) (see Mathematical Detail Box 14.B).

Having formally defined sub-periods for the cell cycle and the corresponding linear-response formalism, we now
proceed by discussing a schematic overview of the experimental observations in E. coli that any mathematical model
should reproduce:

◦ The G-period shows an adder behavior, (λG = −0.5, ζG = 0) [9, 10].
◦ The C-period duration is approximately constant across cells and experimental conditions with, a tendency to

increase for slow growth rates and the C-period generally shows a timer behavior3 (λC = 0, ζC = QC −
1) [35, 36, 37, 31, 27].

◦ The I-period shows an adder behavior, (λG = −0.5, ζG = 0)[38, 34, 33].
◦ The CD-period shows an adder behavior (λCD = QCD−1

QCD
, ζCD = 0)[34, 39].

◦ The single-cell growth rate and the duration of the CD period are inversely proportional [32].

Other interesting observations that are considered in the mathematical models we will present shortly are

◦ E. coli cells divide symmetrically with a narrow distribution of division length with CV = 0.05 [7]. Note that this
CV is lower than the CV of both the growth-rate distribution (CV ≈ 0.1) and interdivision time distribution (CV
≈ 0.2).

◦ The growth rate of the mother cell is correlated positively with the growth rate of the daughter cells, with a
2Note that under fast-growing conditions the termination is experimentally harder to score reliably and hence in many studies the C

and D periods of single cells are considered together as a “CD period”.
3Given the difficulty in observing the C-period in single cells, this last question requires further experimental investigation.
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Math box 14.B Linear formalism and adder plots

This box shows how to translate the linear response (“λ-formalism”) to an equivalent formalism based on the
slopes of adder plots (“ζ-formalism”). The interested reader can find more information in [20, 21, 38, 40, 23]. As
discussed previously, Eq. (14.29) makes it possible to estimate the linear-response parameter λ in experimental
data from the covariance of log-size fluctuations between subsequent generations, by noticing that (1 − λG) =〈

δqi+1
0 δqi

0

〉
σ2

q0
, where we refer to λ in Eq. (14.29) as λG, to highlight the fact that this equation refers to the

G-period. Exponential growth dictates that 2si+1
0 = si

0e
αiτ i , where si

0, αi, and τ i are the size at birth, the
growth rate and the interdivision time, respectively. For the cell cycle i one can expand the logarithmic growth
Gi

G := αiτ i around its average value (〈GG〉 ' log 2) in terms of variations around the logarithmic size at birth
qi

0 := log si
0. Following this procedure, the cell size at birth of generation i+ 1 within a lineage can be expressed

as a function of the parameters of generation i, as follows,

2si+1
0 = QG

(
si

0
)1−λG 〈s0〉λG + νi

0 , (14.10)

where QG = e〈GG〉 = exp 〈log sd/s0〉, sd is the cell size at division and νi
0 is a discrete-time Gaussian noise with

mean zero and standard deviation σs0 . Expanding around the average size, for small fluctuations we obtain a
mapping between added size and slope of the size-growth plot,

2si+1
0 = QG 〈s0〉 + (1 − λG)QGδs

i
0 + νi

0

δ∆i
G = + [(1 − λG)QG − 1] δsi

0 + νi
0.

Here ∆i
G = si

f − si
0 is the added size during a cell cycle, and δ∆i

G = ∆i
G −

〈
∆i

G

〉
is its fluctuation. Hence, by

definition, the term in square brackets must be the slope of the adder plot

ζG := (1 − λG)QG − 1. (14.11)

Solving the equation for λG, we get

(1 − λG) = (ζG + 1)
QG

, (14.12)

which can be used (assuming as usual small fluctuations) to convert the slope ζG of the adder plot into the
slope of the size-growth plot λG, and vice-versa.

Pearson correlation of around 0.5 [6].

The mathematical models proposed in the literature can all be described with the general framework we provided
so far. However, they are different in terms of ingredients and relevant variables (Fig. 14.3). Specifically, they can
be grouped into two broad classes with fundamentally different views on the role of DNA replication, its impact on
cell division control, and ultimately on how the cell division and replication cycles are coupled [40, 41, 27, 33, 34].
A class of ‘replication-centric’ models see the completion of DNA replication as the crucial checkpoint for cell-cycle
progression, which fundamentally limits division and initiation events [32, 34]. Instead, ‘replication-agnostic’ models
assume that cell division is limited by a cell cycle-related process such as septum or cell wall formation and not by
DNA replication [42, 33].

The linear-response theory over sub-periods coupled with the new-generation experimental observations on single
cells gives us a powerful tool to compare the different models (see Box 14.C). Crucially, while the slopes of the
size-growth plots are ultimately correlation patterns, the interpretation of the causal link between them changes
across different models. For instance, the replication-centric models generally assume that two parameters among
λI , λB , λCD are input variables, fixed by an underlying molecular mechanism, while λG is an output of the model,
i.e. an emergent correlation pattern predicted by the model. In contrast, the replication-agnostic models assume a
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Math box 14.C Comparing cell-cycle sub-periods models with data

This box describes the quantitative tools necessary to systematically compare cell-cycle sub-periods models with
data using the linear-response formalism and size-growth plots. Since the formalism may become very heavy, to
avoid complications we will present the the case of slow-growth conditions, in which there are no overlapping
replication rounds. In addition, we will assume that the growth rate is a constant parameter and we will assume
perfectly symmetric division.
Replication-centric models assume λCD and either λB or λI to be input parameters in the model. Here, we
focus on the case in which λ∗

CD and λ∗
I are fixed, which is the case for the Cooper and Helmstetter, Ho and

Amir, and Witz et al models [25, 43, 44]. In these models, one has that δqi+1
I = (1 − λ∗

I)δqi
I + ανi

I and
δqi+1

0 = (1 − λ∗
CD)δqi

I + ανi
CD, where qi

0 and qi
I are the logarithmic sizes at birth and initiation of the cell

cycle i, respectively; α is the growth rate, and νi
I and νi

CD are the white noise contribution related to the I and
CD periods, respectively. In this class of models, λG and λB are mathematically linked to λ∗

CD and λ∗
I , which

provides predictions that can be validated or falsified with data:

(1 − λG) :=
〈
δqi+1

0 δqi
0
〉

σ2
q0

=
(1 − λ∗

CD)2(1 − λ∗
I)σ2

qI

σ2
q0

, (14.13)

(1 − λB) :=
〈
δqi

Iδq
i
0
〉

σ2
q0

=
(1 − λ∗

CD)(1 − λ∗
I)σ2

qI

σ2
q0

. (14.14)

Note that by combining (14.13) with (14.14), we also get the relationship

(1 − λG) = (1 − λCD) (1 − λB) . (14.15)

mechanism for the G-period (λG is fixed), and the other correlation patterns are outputs of the model. Hence, the
observed relationships between linear-response constants across conditions can be used to select a specific model. In
the following, we present replication-agnostic theories first, then replication-centric models, then we introduce a class
of models that find a solution of this dichotomy.

The replication-centric models are in line with the classic views on the E. coli cell cycle, but they are challenged
by recent findings [25, 45, 40, 42, 35]. The 1968 Cooper and Helmstetter model was based only on the available
population-average data at that time. The model posits that cell division happens within a defined period (CD) of
time after initiation. Shortly after, Donachie [45] combined the Cooper and Helmstetter observation of a constant
(population average) CD period with the even older observation that population-average cell size increases with the
growth rate with a trend that is compatible with an exponential (Schaechter’s law [22], which we mentioned above)
and postulated that the population-average mass-per-origins is constant with the growth rate. Crucially, the classic
paradigm by which replication limits division rested on indirect conclusions based on population averages, but these
assumptions needed to be verified by single-cell data, which showed that things are much more complex [1].

In recent times, Ho and Amir [43] were the first to connect the Cooper-Helmstetter-Donachie ideas with the new
observation of adder correlation patterns over the G-period. The authors assumed an adder mechanism during the
I-period and a timer mechanism during the CD period. This model produces (in the limit of small noise in the timing
of the CD period) an adder behavior in the G-period. Note that in this model λI = −0.5 and λCD = 0 are inputs
while λG ≈ −0.5 is an output of the model. This model, by definition, fails in reproducing the adder behavior in the
CD period (which was not known at the time). Although it turned out to be an oversimplification, this work has the
merit of connecting the old theories with new single-cell data into a simple and elegant replication-centric model.

The first studies measuring the initiation of DNA replication in single cells [31, 32] brought two new experimental
pieces of evidence into the field: they observed the duration of the CD period was inversely proportional to the single-
cell growth rate and that the C period does not display any size compensation. Based on their data, Wallden and
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coworkers proposed a replication-centric model with a sizer in the B-period (ζB = −1), which was later falsified [38,
34, 33]. A subsequent study by a different group [34] measured consecutive initiation events in single cells and
observed three adders in the G, I, and CD periods. They then designed an improved version of the Ho-Amir model
(already proposed for mycobacteria [46]) in which the initiation of DNA replication triggers both the next initiation
and a division event with an adder mechanism. In this model, the adder in the G-period is an output of the model,
which emerges from the adder in I and CD when the growth rate is a random variable and a sufficiently skewed
asymmetry in cell division is added into the model. This replicaiton-centric model is unable to capture the growth
rate CD period inverse relationship discovered by Wallden and coworkers. However, it has the merit of improving
the Ho and Amir model accounting for both adders in I and CD and introducing a debate over the importance of
asymmetric division.

The replication-agnostic models entered the debate more recently. Based on dynamic cell-wall and cell-geometry
measurements, Harris and Theriot proposed a model in which the completion of the division septum, and not the
chromosome, was the limiting factor for cell division [41, 42]. This model proposes a simple molecular mechanism
for the adder based on three main ingredients: (i) a crucial factor involved in setting division is produced at a rate
proportional to the cell size; (ii) this factor needs to reach a threshold in the number in order the cell to divide; (iii)
the factor in the next generation has to be reset, with no history dependencies on the previous cell cycle (in the case of
the septum, this is natural, as a new septum needs to be produced from zero at every cell cycle). This model structure
is still the basis for different mechanistic models explaining the adder during the G period, but the mechanistic factor
was also proposed to be a protein [47, 48, 33]. Further evidence in favor of a replication-agnostic view came from
experiments performed by the Jun lab [33] aiming to perturb independently the adder correlation pattern in the G-
period, while maintaining intact the adder pattern over the I-period, and viceversa. The perturbations were achieved
by inducing oscillating levels of the FtsZ protein, which forms a contractile ring structure at the future cell-division
site and of the DnaA protein, responsible for the initiation of replication, respectively. The authors interpreted the
results of these experiments as a proof that the replication and division cycles are independently regulated, and in
particular that completion of DNA replication and segregation is not a limiting factor for cell division. Additionally,
the authors re-interpreted the molecular adder model proposed by Harris and Teriot, suggesting that the FtsZ may
be the “adder protein” setting division. This work has the merit of providing precious experimental information.
However, the model fails to explain the adder behavior over the CD period, as well as the correlation patterns related
to how the replication and the division cycles are coordinated [38, 40, 23].

The replication-centric and replication-agnostic views have been firmly opposing each other in recent years (see
e.g. [49, 44, 50]). However, a standpoint that is gaining consensus is that neither of these views is able to capture
the full complexity of the correlation patterns in the data [38, 40, 23, 35, 27, 51]. The recently proposed “concurrent-
cycles” scenario [38, 40, 23] bridges the two opposing views and is in better agreement with the data compared to
all the above models. The key innovative element in this theoretical framework lies in the assumption that there is
no unique process limiting cell division. Rather a set of competing processes have to be completed before division,
and some “downstream control” module (modelled as a logic gate) has to process the input from these processes.
In its original formulation [38, 40], based on the available data the competing processes are the DNA replication
processes defined by an adder in the I-period, a timer in the replication-segregation period cycle, and a cell division
process that adds constant size between two consecutive divisions (division-related cycle). The division is decided by
an AND gate, which triggers when both of two actions are completed, the interdivision period is complete and the
replication-segregation period is complete. Therefore, the AND gate selects the slowest of the two random processes
(which vary across single cells) to set the timing. Note that in this framework the CD period can be set by the intrinsic
replication-segregation period of this is the slowest process, or by the interdivision period in case this other process is
the slowest one. The concurrent-cycles framework makes precise predictions on how the sub-periods correlations of
size change when either the replication-related or the division-related cycles are perturbed. Recently, experiments in
which cell wall insertion is delayed confirmed the prediction of the model [23]. Other recent studies proposed similar
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frameworks, adding mechanistic details, where the onset of constriction at the divisome [51] and/or a “progression
control complex” including the chromosome and the divisome play the role of the gate deciding cell division [35, 27].
Technically, concurrent cycle models need an additional set of parameters compared to the replication-centric and
agnostic models (see Box 14.D). These parameters are ultimately summarized by one extra relevant parameter, which
can be expressed as the probability that the division-related process to sets division (in a given cell cycle). Thus,
the replication-centric and replication-agnostic models can be seen as limit cases of the concurrent-cycles framework,
where this probability is zero or one respectively.

Despite the large improvement that the concurrent-cycles framework provides in the agreement with data, many
questions remain open. For example, we do not know the probability of either of the concurrent processes limiting
division varies under different conditions. Recent surveys of the available data [23, 51] suggest that the probability
of a chromosome-agnostic cycle increases with increasing growth rate. At very slow growth (interdivision times of
300 minutes or more), it has been been suggested that replication-segregation is the limiting process. Additionally,
we currently do not know what tunes such probability and what the role of the growth rate may be. We also do not
know how many concurrent processes there are and which precisely are the relevant players at the molecular level.
Finally, the regulation of initiation of DNA replication could also be set by a “gate” integrating a set of processes, a
hypothesis that remains underexplored in the literature.

Math box 14.D The concurrent-cycles framework

This box provides the mathematical relationships that correspond to the ones appearing in Box 14.C for the
more general concurrent-cycles framework. Given the complexity of this model, we restrict to the case of no
overlapping rounds. In particular, we will show how Eq. (14.15) is no longer valid in the concurrent-cycles
framework (without the need to include additional ingredients such as asymmetric division or mother-daughter
growth rate correlations).
In the concurrent-cycles model, cell division is determined by the slowest of two processes. The first process
is an interdivision, (chromosome-agnostic) cycle that is concluded, for generation i, at a log-size qi

H , which is
expressed as qi

H = q∗
H + (1 − λ∗

H)
(
qi

0 − (q∗
H − log 2)

)
+ ανi

H , with λH size control parameter of this process.
The second process is a chromosome replication-segregation cycle (replication-centric), that is concluded, for
generation i, at a log-size qi

R, which is expressed as qi
R = q∗

R + δqi
I + ανi

I . Note that this equation assumes a
timer for this process, λ∗

CD′ = 0, where CD′ identify the time needed for completing DNA replication, which
is identical to the measurable CD-period only when this second cycle sets division. The cell size at division is
determined by the slowest process, i.e. qi

d = max
(
qi

H , q
i
R

)
. The initiation of DNA replication decides the next

initiation independently on the size at birth or division, generating the fluctuation around the logarithmic size
at initiation that we already found in Box 14.C, δqi+1

I = (1 − λ∗
I)δqi

I + ανi
I .

To calculate the fluctuations of the logarithmic size at division, we assume that the replication-centric process
sets the division of generation i with probability pH independently on qi

0 and qi
I . With this assumption, and

considering λ∗
H , λ∗

I and λ∗
CD′ = 0, the model predicts the following values for the strength of the size-growth

plots in the B-, CD- and G-period,

(1 − λB) = (1 − λCD) (1 − λI)
σ2

qI

σ2
q0

(14.16)

(1 − λCD) = (1 − pH) + pH (1 − λ∗
H) (1 − λB)

σ2
qI

σ2
q0

, (14.17)

(1 − λG) = (1 − pH) (1 − λB) + pH (1 − λ∗
H) (14.18)

Overall, the concurrent-cycles model allows to match the experimental trends in the size-growth plots with an
additional parameter (pH). In particular, it allows to break the relationship in Eq. (14.15) without including
asymmetric divisions or mother-daughter correlations in growth rates [38, 40, 23].
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14.5. Protein sectors and cell division
This chapter focuses on quantitative descriptions of the cell cycle and cell division control, and it is natural to wonder
whether and how these consideration relate to the topic of previous Chapters 8 in [52] and 10 in [52] which deal with
resource allocation models where cell growth is set by catabolism and biosynthesis. There is a strong link between
regulation of growth and cell-cycle progression, which remains a largely open area of investigation both in biology
and in quantitative biology / physics of living systems. This section discusses some recent models aimed to describe
some specific aspects of the coordination between cell growth and cell-cycle progression. We will start by presenting
the main questions that we want to address with the aid of mathematical models. Then we will discuss the main
ideas and ingredients behind the models that address these questions, and present some relevant predictions that can
be tested and validated against experimental data.

The maintenance of an interplay between cell growth and cell cycle is crucial for the correct functioning of the cell.
Specifically, a cell has to adapt both growth and division rates concertedly when either one is perturbed. For example,
the response and adaptation to environmental stresses, such as sudden shifts in nutrient conditions or exposure to
drugs or toxins, requires the ability to reprogram in a coordinated way cell growth and cell division. Consequently,
cells across all kingdoms of life have developed specific mechanisms to precisely coordinate cell cycle progression with
cell growth and biosynthesis [53, 54, 4, 55, 8, 56]. There are many mechanisms involved in this coordination, and
we lack a complete and coherent quantitative understanding of how this coordination works in different contexts.
Sometimes we even lack simple ways to frame questions concerning the effects on cell cycle progression of cell growth
perturbations/inhibitions, or the effects of cell growth of cell-cycle perturbations (such as cell cycle arrest).

To formulate and address these questions quantitatively, we would need a theoretical framework where both growth
physiology (as in “how does a cell grow?”) and cell-cycle decisions/progression (as in “how does a cell decide when
to divide?”) aspects are allowed to play a role and influence each other. However, while both cell growth and cell
cycle progression alone have been subject of intense study in the past (especially in bacteria [2], but see ref. [57]
for a recent review of these themes in eukaryotes), comparatively little effort has been directed so far toward the
development of such unified framework. Nonetheless, recent work has advanced our quantitative understanding of
the cross-talk between cell growth and cell cycle progression in bacteria. The remainder of this section will focus on
discussing these aspects.

Relatively to the bacterium E. coli, recent and current efforts aimed at integrating already existing coarse-grained
models of cell physiology and cell cycle control. More precisely, several studies have extended the classic proteome
allocation theory, (presented in chapters 8 in [52] and 10 in [52]), which has proven successful in describing several
physiological laws, to include also a cell-division proteome sector “X”, whose dynamics should implement cell-division
control (or cell-cycle progression control) strategies at a phenomenological or molecular level (Fig. 14.4). The current
models for E. coli usually include a threshold accumulation process for cell division, i.e., proteins of the division sector
accumulate during cell cycle progression up to a threshold level that triggers cell division. The previous section has
mentioned some candidate molecular players for this accumulation (the FtsZ protein and the cell wall insertion).

Let us take a closer look at the ingredients of this modeling framework. The two main ingredients are (i) the standard
proteome allocation theory extended to include a division sector X, alongside to the standard main sectors (see
Chapter 8 in [52]), Q (house-keeping), R (ribosomes), P (catabolism and transport), together with (ii) a threshold-
accumulation division strategy to set the decision to divide (Fig.14.4A). Note that the fact that the division factor X
is a protein is an implicit assumption in these framework and experimentally things could be more complex. Crucially,
the fact that cell division is a proteome sector couples the rates of cellular growth and division, by controlling the
synthesis of division proteins. Specifically, the models encode a trade-off between ribosomes and division protein
synthesis, which as we will see determines many salient predictions.

Box 14.E shows how these ideas and ingredients can be translated into a mathematical model. The framework that
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Math box 14.E A mathematical model

The model consists of two different layers of dynamical equations, and one relationship connecting them. The
first set of equations describes cell growth and division as cellular processes

ds

dt
= λs ,

dX

dt
= kXs− dX

mX
X, X(τd) = Xth =⇒

{
s(τd) → s(τd)/2
X(τd) → 0

, (14.19)

where cell size s (mass or volume) grows exponentially at a rate λ ([λ] = [T ]−1), while division proteins X, of
mass mX being synthesized and degraded at rates (kX ([kX ] = [s]−1[T ]−1), dX([dX ] = [M ][T ]−1)), accumulate
until a threshold amount of them is reached and cell division occurs, after that cell size is divided exactly in half
and division proteins number is reset to zero.
The second set of equations describes the dynamical allocation of the proteome and the biosynthesis layer
underlying cell growth, as follows

dA

dt
= 1
ma

knP − aktRfa +
∑

Pi∈{Q,P,R,X}

dPi
Pi

 ,

dPi

dt
= 1
mPi

(aktfPiRfa − dPiPi) . Pi ∈ {Q,P,R,X} .

(14.20)

According to Eq. (14.20), free amino-acids (A) are produced from import/catalysis of nutrients at a rate kn

([kn] = [M ][T ]−1)) per number of catabolic/transport proteins P , and from protein degradation, occurring at
a rate dPi

Pi (where dPi
([dPi

] = [M ][T ]−1) is the degradation rate) for each specific sector. Free amino-acids
are taken up to synthesise each proteome sector Pi at a rate equal to the number of active ribosomes (Rfa),
times the fraction of ribosomes synthesising the specific sector fPi

, times an overall protein translation rate,
which in this particular model is equal to a constant translation rate per ribosomes kt ([kt] = [s][T ]−1) times
the concentration of free amino-acids a ≡ (maA)/ ([a] = [M ][s]−1).
Finally, there must be a connection between the two levels of description, in the sense that cellular rates should
be regarded as the result of the underlying biosynthesis dynamics. To make this connection explicit, we write
the equation

s = γM = γ(mAA+mPP +mRR+mQQ+mXX) , (14.21)

representing mass conservation (if "size" stands for "mass" s = M), or the assumption of constant density (if
"size" stands for "volume" s = V ), verified in E. coli for population averages but not for single cells, or for
certain perturbations [5, 58]. Together, Eqs. (14.19), (14.20) and (14.21) fully specify the model.

we are now going to discuss is consistent with different models recently developed in the literature [59, 60, 61, 62, 55].

In order to exemplify how this framework can generate relevant predictions, we dedicated an appendix "Growth
Laws" at the end of this document where some concrete examples taken from the literature are discussed. The
mathematical derivations are not exhaustive, but aimed to give the reader a feeling of the "recipe" followed to obtain
a given prediction starting from the model’s ingredients. The interested reader should have sufficient information to
work out the mathematical calculations autonomously or follow the complete derivation in the cited references (for
example by Serbanescu et al. [59, 60]).

14.6. Control of cell division across species and kingdoms
The concepts described in the previous sections are widely applicable, but there are many relevant species-specific
aspects, so that different crucial assumptions that we have taken so far might break down for different species and
kingdoms. Additionally, it should be noted that the approach described here is purely phenomenological, while a
biological investigation might be concerned with the detailed molecular players responsible for the cell division and
cell-cycle progression decisions. Even in this case, the approach is useful and is being applied in recent work. For
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example, if the goal is to understand how the size control phenomenon is regulated, the phenomenological analyses
can quantify how the phenomenology of size correction behaves under different mutants and perturbations, helping
to identify molecular players and their effects on cell-cycle decisions.

Let us consider briefly some important variations of the approach used so far, relevant for the understanding of
different species-specific behaviors. First, it is not granted that single cells grow exponentially, or even that exponential
growth is a good approximate description. Even in the cases where exponential growth appears to be a good average
description, these averages may emerge from more complex behaviors at the single-cell level or in cell cycle sub-
periods. For bacteria, most studies conclude that exponential growth is a sufficiently good description, although recent
accounts show deviations [63, 64]. In budding yeast (S. cerevisiae), the average growth rate was reported to change
at regulatory checkpoints with the cell-cycle phase [65, 66, 67]. In the fission yeast S. pombe, a systematic study
of single-cell growth concludes that the majority of growth trajectories are best described by a bi-linear growth [68].
In cell lines of animal cells, most studies suggest that, on average, cells grow exponentially until a certain saturation
size after which they slow down, but this mean behavior hides many details [4]. For example, it seems that cells in
the G1 phase of the cell cycle grow at a slightly slower rate than in later stages of the cell cycle [69].

A second important aspect to consider is whether division is symmetric or not. In E. coli, cells divide symmetrically,
giving rise to two daughter cells that are nearly equal in size, with a precision of a few percent [7]. However, different
species use very different strategies for cell division, which increase variability or explicitly aim for asymmetry. For
example, S. cerevisiae reproduces through budding (hence the term “budding yeast”). The parent cell creates a
small outgrowth that eventually becomes a daughter cell. Both division strategies are common among unicellular
organisms (many filamentous fungi grow via budding). Budding creates a parent/offspring distinction in which age-
related aspects are not transmitted equally. Since aging may correspond to a decrease in fitness/growth rate, it can
also create diversity along lineages. A third important aspect to consider is that the growth rate may be coupled to
size and enforce size homeostasis. In other words, homeostasis can be achieved by modulating cell-cycle duration
based on size at birth, but also if large-born cells grow slower than small-born ones.

As an example of how different issues can be analyzed with extensions of the phenomenological approaches discussed
so far, it is instructive to discuss in more detail how one can use the linear-response framework to detect indications
of growth-based size homeostasis. As we mentioned previously, the overall multiplicative growth of a cell in one cycle
is quantified by G = qf − q0 = log sf

s0
=: ατ . The slope λ of the size-growth plot is equivalent to considering the

conditional average of G over logarithmic size q,

〈G〉q = 〈G〉 − λδq (14.22)

As we have seen in Fig 14.1, we can consider the separate contributions of timing and growth to the coupling by
taking separate scatter plots with growth rate and cell division time. We can give a more formal quantification of
their contributions as follows. We call θ the coupling strength derived from the slope the first plot quantifying control
by modulation of interdivision time,

〈τ〉q = 〈τ〉 − 〈τ〉θδq , (14.23)

and γ the slope quantifying modulation of growth rate based on birth size,

α− 〈α〉 = −〈α〉 (γδq) + να . (14.24)

For positive values of γ, cells that are born larger than average can correct their sizes by growing with a slower growth
rate, and cells that are born with a smaller size than average can correct by growing at a faster rate. Conversely, for
negative values of γ, birth-size related specific growth rate variations increases systematically size variability.

Intuitively, we can understand that θ γ and λ must be related. First, the overall homeostasis must be the result of
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the one enforced by growth-rate modulation and the one enforced by interdivision-time modulation. More formally,
the slopes of the correlation plots illustrated in Fig. 14.1 for G, α and τ versus logarithmic birth size must be related,
because G = ατ .

Using the linear response approach defined in section 14.3, one can derive the following equation

λ = θ〈α〉〈τ〉 + γ〈α〉〈τ〉 . (14.25)

Eq. (14.25) states that the overall correction to size over a cell cycle has to be the sum of a correction due to
modulation of timing and a correction due to the modulation of specific growth rate based on size at birth. For
example, if the overall strength is an adder, and the size coupling of the duration of the cell cycle is already an adder,
the growth rate must be uncoupled from initial size.

Going back to the data, one can use Eq. (14.25) to evaluate the different strategies, by evaluating the couplings θ,
γ and λ from the different scatter plots. Importantly, the constraint imposed by Eq. (14.25) is realized in data from
several bacterial species and growth conditions, indicating that the framework is sufficient to describe the data. Work
on different bacteria shows widespread adder correlations [2], hence λ ' 0.5. What is more surprising is that adder
behavior has been reported for in budding yeast and cultured human cells. Hence, for many species, the inter-division
correlation patterns are nearly always close to an adder. One interesting exception is the fission yeast S. pombe,
discussed below. The widespread adder patterns may suggest common general principles underlying the division
control of microorganisms and cultured single mammalian cells. Considering the couplings θ, γ shows a different
scenario, with a clear distinction between microorganisms and cultured mammalian cells. In the studied unicellular
microbes, the inter-division adder is always due to the modulation of cell-cycle duration. Instead, cultured mammalian
cells also rely on growth rate modulation to correct their size. In particular, this rejects the hypothesis that adder
behavior may be favored by common underlying mechanisms. Additionally, for budding yeast and mammalian cells,
the overall adder behavior emerges from homeostatic regulations acting close to the initiation of replication (G1/S
transition) during the cell cycle, and from a weaker regulation of the subsequent parts of the cell cycle [4]. Cell growth
outside of G1 is critical in setting the average cell size but appears to be less significant for the size homeostasis effect
setting cell-to-cell variability in birth size. This is not the case in bacteria, where we have seen that key questions
regarding the specific events in the cell cycle where homeostasis is exerted are still under debate.

The fission yeast S. pombe is an interesting case to discuss. This rapidly dividing microorganism is a yeast but uses
symmetric division (hence it is sometimes called “fission yeast”), and was the central model system in pioneering
studies of the cell cycle. Its size-correction mechanism is the strongest observed in nature, because it can correct
size fluctuations in a single cell cycle. Its inter-division size pattern is close to a sizer, but recently the study of
mutants with different cell widths has shown that the mechanism that triggers division is based on a surface-area
sensor, triggered at a critical cell surface. The molecular effector of this sensing, a protein called Cdr2, has been
indentified [70]. Curiously, genetic knockout of this protein does not lead to an ablation of size homeostasis. Rather,
fission yeast cells fall back to a volume-based mechanism, suggesting that multiple biochemical circuits play a role
in the decision to divide.

Finally, since cells of different species and in different conditions use a range of ways to control cell division, for
example sizers or adders. An important question is why a particular species would implement one particular strategy.
One possibility is that this trait is under selection, and the fitness of individual cells decreases away from the optimal
size. In this case sizers would be favored, because they can compensate for deviations in one cell cycle and minimize
fluctuations. A second, more likely, possibility is that intrinsic physiological constraints linking cell cycle and growth
are important in determining cell division control. For example, it has been argued that in bacteria size control is a
result of a cell’s attempt to exert a tight control over the initiation of DNA replication rather than cell division [71].
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14.7. Concluding remarks
This chapter focused on modeling the cell cycle. The reader should have acquired an overview of some of the key
recent experimental results in this area, as well as the basic mathematical toolbox to address biological questions
motivated by single-cell dynamic data, concerning (i) decisional processes during the cell cycle and primarily the
decision to divide, (ii) coordination between different cell-cycle processes, and primarily the chromosome cycle with
cell division and (iii) the coordination of cell cycle progression with growth.

This chapter is connected with Chapters 8 in [52] and 10 in [52] describing resource allocation models used here
to describe growth, and with Chapter 12 in [52], describing models of growth rate variability, because it provides a
framework to include a description of the division rate variability.

Problems
Problem 14.1

Show that for cells that grow linearly in time an adder and a timer are the same.

Problem 14.2
Analyze the consequences of a constant per-size hazard rate h∗

d = 1/s̃ and compare them to the consequence of a
constant per-time hd = r (a Poisson process).

Problem 14.3
Analyze the forward hazard rate model for cell division where hd(s) = (s/s̃2) by simulation and/or analytical
calculations.

Problem 14.4
Find the hazard rate corresponding to the process defined by appendix Eq. (14.29).

Problem 14.5
Write an explicit expression of the four parameters λab appearing in appendix Eqs (14.32) and (14.31) as a function
of the covariances between the fluctuations of growth rates and log-size at the same or different generations.

Problem 14.6
Prove that the adder strategy rapidly achieves cell size homeostasis (that is, a controlled cell size at birth) after a
few cell generations, independently of the starting initial size. Prove that convergence to homeostasis and loss of
memory of the initial cell size is exponential in the number of cell cycles. Write down a simple numerical code to
simulate this process and verify your analytical predictions. What is the role of noise in setting the inter-division
added size?

Problem 14.7
Write the equivalent of Eq. (14.29) for the I-period and for sub-periods B and CD, and prove the following
relationships:

(1 − λI) =
〈
δqi+1

I δqi
I

〉
σ2

qI

, (1 − λB) =
〈
δqi

Iδq
i
0
〉

σ2
q0

, (1 − λCD) =
〈
δqi+1

0 δqi
I

〉
σ2

qI

,

where the log-size fluctuation at initiation for the cell cycle i is δqi
I := qi

I − 〈qI〉 ≈ log
(
si

I/ 〈sI〉
)
, with si

I the cell
size at initiation.

Problem 14.8
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Write the equivalent of Eq. (14.12) for the I-period and for sub-periods B and CD.

Problem 14.9
Write the predicted λG and λI for a model in which λ∗

CD and λ∗
B are input parameters of the model. Does

Eq. (14.15) still hold?

Problem 14.10
Extend the models in Box 14.C for:

(a) Overlapping rounds of DNA replication. This case is more difficult to address analytically, but can be easily
simulated.

(b) The ζ-formalism (without overlapping rounds). Use the model to answer the question: can an adder in the I-
and CD-period provide the adder behavior in the G-period4?

Problem 14.11
Run numerical simulations of Eqs. (14.19). Prove that in order to obtain an adder, the ingredients of a size-specific
(rather than constant) production rate of the division protein kX and a reset to zero (rather than partitioning in
half in the two daughter cells) of the division factor X turn out to be essential.

Problem 14.12
Rewrite the system of equations (14.20) in terms of protein fractions, either defined as protein mass fractions
φi ≡ Mi/Mprot or protein number fraction ψi ≡ Pi/

∑
i Pi, where Mprot = mQQ + MPP + mRR + mXX =

M −mAA. In both cases one has the obvious constraint
∑
ψi = 1 =

∑
i φi. Find the connection between ψi and

φi. What can be generally said about the stationary composition of the proteome? How does the senario change
if degradation can be neglected?

Problem 14.13
For the mathematically curious readers, show that the model described in Box 14.E far can be written in more
general mathematical terms as

dXi

dt
= fi(X); dZ

dt
= h(X, Z)

V (X, Z) =
N∑

i=1
viXi + vZZ

(14.26)

where V is the volume of the cell and Xi, Z its chemical constituents. Identify the functions fis and h. Show that
the fis satisfy the property of homogeneity, fi(βX) = βfi(X). The predictions of this model have been studied
in the wider framework of dynamical systems theory [72, 73].

Problem 14.14
By directly integrating Eq. (14.19), derive the following expression for the threshold number of division proteins
Xth ≡ X(τd)

X(t) = kXs0

λ+ dX

mX

(
2

t
τd − 2− dX

mX λ
t

τd

)
=⇒ Xth = kX

λ+ dX

mX

(
sd − s02− dX

mX λ

)
. (14.27)

4Note that the adder behavior can be recovered introducing asymmetric divisions [34]
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Appendix sections

14.8. Equations for birth size
Here we derive the dynamic equations of the birth size qi

0 across generations (indexed by i) in the discrete-time
formalism. We define 〈q0〉α as the average value of q0, and the log size deviation δqi

0 := qi
0 − 〈q0〉α. The dynamics

for the log-size deviation takes the form

δqi+1
0 = g(δqi

0, α) + ζi(δqi
0, α) , (14.28)

where ζi(δqi
0, α) is a random variable with zero mean. This equation has the same degree of generality of Eq. (14.8)

and can express any arbitrary division control model (or equivalently any shapes of the hazard rate function). In order
to make further mathematical (and biological) progress, we need to simplify the equation and make the comparison
with data possible. There are several possible choices. In the following, for simplicity, we first neglect the fluctuation
of the growth rate α. Assume that the size at birth is the only variable influencing cell division (g(·) is a function
of δqi

0 only) will allow us to introduce a linear-response framework. We will then describe how to consider the
heterogeneity of multiple growth parameters.

The main empirical observation that comes to our help is the fact that the coefficient of variation of qi
0 is small

(typically around 0.15) [2, 10, 20, 17, 19]. The small value of the coefficient of variation strongly suggests the possi-
bility of Taylor-expanding the function g(δqi

0) around δqi
0 = 0 [20]. In this limit, the function g(δqi

0) is approximately
linear and the random variable ζi(δqi

0, α) can be well approximated by a Gaussian random variable with zero mean
and constant variance [19]. The resulting equation reads

δqi+1
0 = (1 − λ)δqi

0 + σξi , (14.29)

where ξi is a Gaussian random variable with zero mean and unit variance. The two parameters λ and σ encode,
respectively, the relevant information about the mechanism of size control and the level of stochasticity. The
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parameter σ simply corresponds to ζi(0, α). The parameter λ, which quantifies the strength of size control, has
a direct relationship with the mechanism at its origin. It is defined as λ = 1 − g′(0, α). For instance, the sizer
corresponds to λ = 1 and an adder to λ = 1/2. The case λ = 0 does not lead to a stationary process and
corresponds to a timer. Consequently, this parameter can easily be inferred from the plots in Figure ??.

Eq. (14.29) can be solved analytically [19]. In particular one can show that the conditional probability of observing a
log-size deviation δqi

0 from the average at generation i given a deviation at generation 0, is a Gaussian with mean

〈δqi
0〉δq0

0
= (1 − λ)iδq0

0 . (14.30)

This result clearly shows how different mechanisms correspond to different strengths of cell-size homeostasis, leading
to fluctuations persisting across a different number of generations. For a sizer, λ = 1, the expected deviation of the
daughter cell is independent of the mother cell fluctuations. A timer, with λ = 0, does not lead to homeostasis, as
the expected deviation of size at birth of a daughter cell is the same as the deviation of the mother. The adder,
λ = 1/2, leads on average to a halving of the size at birth deviation at each generation, as approximately observed
in experiments [10].

One can generalize the linear-response framework to consider fluctuations of different growth parameters [21]. In
general, one can assume that the size at birth of the daughter cell depends on both size at birth of the mother and
her individual growth rate fluctuations.

δqi+1
0 = (1 − λqq)δqi

0 − λqαδα
i + ξi

q . (14.31)

Along the same lines, one can assume that the growth rate fluctuations obey a similar equation

δαi+1 = −λαqδq
i
0 − λααδα

i + ξi
α . (14.32)

This kind of equation can be written in multiple forms, i.e. including multiple variables. For example, one can write
an equation explicitly for the elongation rate between divisions δG := δqi+1

0 − δqi
0 or for the division time. Since

the linear-response equations assume that the fluctuations around the means of these variables are small, all these
choices turn out to be mathematically equivalent. This is also the reason why the different plots in Figure ?? are
equivalent. While a linear dependency of growth rate α and division time τd on (log-)size at birth q0 would induce
a non linear dependency of the elongation G = ατd on the initial size, such non-linearities can be neglected in the
limit of small fluctuations, leading always to linear dependencies [20, 21].

The values of the parameters λab can be easily inferred using the standard tools of linear regression. Notably, the best
(maximum likelihood) estimates of these parameters can be directly obtained from the variable covariances [19, 21].
For instance, 〈δqi+1δqi〉 = λqqσ

2
q + λqα〈δαiδqi〉. By writing the expressions for other correlations (e.g., 〈δqi+1δαi〉

or 〈δαi+1δqi+1〉 ) one can map the coefficient λab with the measured covariances.

14.9. Growth laws
Growth laws and trade-offs between protein sectors. Prototypical predictions are the so-called "growth laws",
general quantitative relationships linking proteome composition and rates of cellular processes. The reason why
relationships of the kind λ = λ(φR, φX , . . . ) and kX(φR, φX , . . . ) naturally emerge in the framework is due to cell
growth and division rates being coupled to proteome allocation dynamics.

Growth law for the ribosome sector. For example, the first growth law, stating that the ribosome mass fraction
increases linearly with the nutrient-imposed growth rate, that is λ = λ(φR) = K(φR − φmin

R ), is obtained straight-
forwardly by noting that upon differentiation of Eq. (14.21) with respect to time and substitution of Eq. (14.19) and
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Eq. (14.20) one finds the dynamical relation λ(t) = knP (t)
M , which at equilibrium reads (neglecting degradation)

λ∗ = knP
∗

M
= aktR

∗fa

M
= akt

mR

Mprot

M

(
φR − φmin

R

)
, (14.33)

since at equilibrium the amino-acid import flux knP
∗ matches the biosynthesis flux aktR

∗fa (dA/dt = 0 in absence
of degradation). Note that we have used the definitions φi ≡ (miPi)/Mprot = (miPi)/(M − Ma) and Rfa =
Ractive = R−Rinactive and we have identified φinactive

R = φmin
R .

Trade-Offs between Ribosomes and Division Protein Synthesis. Following Refs. [59, 60], we re-write Eq. (14.33) as
kn = akt

mR
mP

φR−φmin
R

φP
and use the constraint φmax

R = 1 − φQ = φR + φP + φX to obtain

φX = −Kn +Kt

Kn
φR + Ktφ

min
R +Knφ

max
R

Kn
, (14.34)

where Kn ≡ kn/mP ([Kn] = [T ]−1) and Kt ≡ akt/mR ([Kt] = [T ]−1). Eq. (14.34) shows a negative correlation
between the ribosome and division sectors under nutrient or translational perturbations, in agreement with recent
published data [74]. Also, since the rates of growth and division protein synthesis are respectively proportional to the
ribosome and the division sector, this negative correlation reflects a trade-offs between allocating ribosomal resources
towards growth or division (see Fig.1F in Ref. [59]).

Growth law for the division sector. So, the larger the fraction of ribosomes making division proteins the smaller the
fraction of ribosomes making ribosomes. In other words, there is a negative correlation between the growth rate
and the division protein sector. Indeed, the ribosome sector is related to the growth rate via the first growth law
φR = Mλ

MprotKt
+ φmin

R , but it is also related to φX via Eq. (14.34) φR = Ktφmin
R +Knφmax

R

Kn+Kt
− Kn

Kn+Kt
φX . Equating

the two terms yields
λ = KnKt

Kn +Kt

Mprot

M

(
φmax

R − φmin
R − φX

)
, (14.35)

which is Eq. (9) in Ref. [59].

We now discuss how two known steady-growth size-related behaviors emerge in the unified framework from the
interplay between cell growth and cell division.

Adder mechanism. As we discussed, E. coli cells regulate their size by adding a constant volume between consecutive
cell divisions (adder mechanism). In a previous problem, we investigated with numerical simulations the range of
validity of this property. In the following one, we instead show analytically that the adder property is naturally
embedded in the unified framework.

It can be seen then that whenever λ � dX/mX (e.g. fast growth conditions), ∆s1cycle ≈ λ
kX
Xth = const which is

the adder property. Notably, in increasingly slower growth conditions, where degradation becomes with the growth
rate, deviations from the adder are predicted, up to the point λ � dX/mX where sd ≈ XthdX/(kXmX) = const.

“SchaechterMaaloeKjeldgaard” (SMK) growth law. According to this law, the population-averaged cellular size
scales with growth rate in an approximately exponential fashion [75]. Interestingly, deviations from the exponential
trend have recently been reported, particularly at slow growth, leading to a different proposition [35]. Notably,
deviations from this law are accounted in our framework. Indeed, in an exponentially expanding population the
average cell size can be expressed as 〈s〉 = 2 log 2〈s0〉 [2], which, combined with Eq. (14.27) and 〈sd〉 = 2〈s0〉 leads
to

〈s〉 =
λ+ dX

mX

k̃X

(
2 − 2− dX

mX λ

) (14.36)

where, following Ref. [59], we have defined k̃X ≡ kX/(2 log 2Xth). Note that since λ ∝ φR and kX ∝ −φR the
average cell size increases with ribosome abundance, a trend observed in experiments. Notably, upon determining
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the model parameters and making full explicit the growth rate dependence, the authors in Ref. [59] with no further
fitting showed that Eq. (14.36) recapitulates the experimental data [35, 59], a remarkable achievement of the unified
framework.

Non-steady relationships. Finally, we contextualize within the unified framework some predictions of a model
recently proposed to unify cell division and growth in non-steady growth conditions [48]. As we saw, although
there is consensus on an inter-division adder at the phenomenological level, the mechanisms regulating cell division
dynamics in the bacterium E. coli are still widely debated. In particular several mechanistic models based on different
mechanisms for division control were proposed for the adder [42, 76, 33, 32]. In order to help selecting different
scenarios, experiments beyond steady-state growth help comparing the specific causal relationships underlying different
models with data. Following this philosophy, and aiming to shed more light on cell division dynamics, Panlilio et al.
[48] ran multiple long-term E. coli microfluidics experiments jointy monitoring size-division dynamics and reporters
of ribosomal and constitutive genes through nutritional up-shifts. The fluorescent reporters can be seen as proxies for
the dynamics of the R and P sectors during the shift. Remarkably, in their experiments they observed highly-complex
multiple-timescale dynamics in different cell-division variables (particularly inter-division time, division rate, added
volume and added-to-initial volume ratio) during the nutritional up-shift. Notably, in spite of this complex dynamics,
they found the division control strategy to be unaffected by the shift. The transient observed division dynamics in
their shift data falsifies several scenarios, such as the Harris-Theoriot septum-limited division and the classic scenario
of replication-limited division. Instead, the authors found that a threshold accumulation model such as the one
described by Eq. (14.19) could not be falsified,

ds(t)
dt

= α(t)s(t) dN(t)
dt

= rX(t)s(t) . (14.37)

This the usual scenario where a constitutive X-sector protein accumulates to a threshold value N∗ and at that point
triggers cell division. The regulation of cell division from a constitutive sector is coherent with the observation that
ppGpp is a cell size and cell division regulator [77]. These results are also in line with independent conclusions based on
steady-state data [60, 33, 47] and isolate FtsZ as a likely candidate cell-division trigger, although the previous section
has clarified how the complexity of the decision to divide is likely higher than described by the chromosome-agnostic
cell-division models that are used in integrated frameworks. Future efforts will have to integrate this complexity in
a description that also accounts for the interplay of different processes relevant for cell cycle progression with cell
growth.
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Figure 14.3: Comparison of different cell-cycle models including chromosome sub-periods proposed in the literature
for E. coli – (A) The DNA replication-segregation cycle divides of the cell cycle into sub-periods. The B-period is the
period between cell birth and initiation of DNA replication; the C-period is the period needed for completing DNA
replication; and the D-period is the period between the termination of DNA replication and cell division. Finally, the I-
period is the period between two consecutive initiations of DNA replication, which usually spans two generations. (B)
Scheme of the ‘replication-centric class of models in which DNA replication-segregation sets division (first column).
These models usually assume that the CD and the I periods are adders (blue lines in the third and fourth column,
respectively), in agreement with data (red lines in the same panels). The G-period correlation pattern is a prediction
of the model in general agreement with data (yellow vs red lines in the second column). (C) Schematic for the
‘replication-agnostic class of models in which a process starting at cell birth drive division (first column). These
models assume the G and I periods to be adders (blue lines in the second and fourth panels, respectively). The C+D
period correlation pattern is a prediction of this model which does not agree with the available data (yellow vs red
lines in the third panel). (D) Schematic for the ‘concurrent cycles class of models in which two processes compete
to set division through an AND gate (first column). These models assume the I periods to be an adder (blue lines in
the fourth column) and using additional parameters predict both adders in the G and C+D periods (yellow lines in
the second and third column). (E) Plotting the slope of the G versus the C+D-period allows to compare the different
models with data. Schematic similar Figure 4 in [23].
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Figure 14.4: Ingredients and predictions of modeling frameworks integrating sector models with cell-division control
– (A) The framework unifies growth and cell division by extending the standard proteome allocation model to include
a division sector X, implementing a threshold-accumulation process setting the decision to divide. (B) The model is
naturally suited to uncover general relationships and growth laws involving proteome composition and growth rate,
as well as trade-offs between different proteome sectors. The inclusion of a division protein sector X regulating cell
division allows the model to make predictions on cell size control and study the transient dynamics in nutrient shifts.
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