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Abstract

A living cell can take up nutrients from its environment and chemically convert these substrates into products that it
needs for its survival. The chemical conversion of these products is done by catalyzing so-called metabolic reactions.
The whole of metabolic reactions that a cell can catalyze forms its metabolic network, and determines the metabolic
versatility of the cell. In this chapter, we will investigate such metabolic networks and we will find that all metabolic
capabilities of a cell can be captured in a mathematical space: the flux cone. Moreover, we will show that this
flux cone can be decomposed into minimal metabolic modes, called elementary flux modes. To make this more
precise: elementary flux modes are the minimal combinations of metabolic reactions out of which all other possible
combinations of metabolic reactions that can be steadily catalyzed by a cell can be built. We show some applications
of the analysis of a metabolic network through its elementary modes. Despite the benefits of elementary flux mode
analysis, it cannot always be done because of its computational complexity, for those cases we describe alternative

methods to explore the flux cone.
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Chapter overview

O The metabolic capabilities of an organism can be related to the individual chemical reactions it can catalyze
O Elementary flux modes are minimal metabolic strategies that together span all metabolic capabilities.
O When the analysis of elementary flux modes is prohibited by computational limits, alternatives could be used,

such as elementary conversion modes, flux sampling and minimal cut sets.

4.1. Modeling metabolic fluxes in cells

In the previous chapters we have seen that cells can convert substances from their environment into building blocks
for cell components: their metabolism allows cells to grow, reproduce, repair themselves, and produce compounds
needed to resist environmental stresses. But how does a cell manage this in detail, and does it have alternative

metabolic strategies in case one does not function properly?

The overall metabolic conversion, for example from nutrients and oxygen to all necessary cell components and carbon
dioxide, that a cell can use to grow and reproduce is in fact the consequence of many smaller chemical reactions
working in concert. All chemical reactions that a cell can catalyze by expressing its enzymes form a very versatile
‘metabolic network’, which enables a cell to survive and grow, even when the availability of nutrients in its environment
changes. There are various (semi-)automatized methods available that can be used to reconstruct this metabolic
network from an organism's genome sequence (for a review of the various methods, see [1]). In this chapter we will

zoom in on this metabolic network and study the fluxes (reaction rates) through all individual reactions.

We call the combination of all reaction rates in a cell a ‘metabolic flux distribution’, and this flux distribution
determines if and how a cell succeeds in taking up and converting the right nutrients to sustain itself. For a growing
cell, we may ask: what will its flux distribution be, and how does this distribution change when its environment
changes? Modeling metabolic fluxes allows us to answer specific questions, for instance about the change of a cell's
metabolism after a gene is deleted: will it survive, and if so, will it take up different nutrients or produce different
products? In contrast to the previous chapters, in the current and following chapters we are not satisfied with verbal

descriptions, but seek predictive models that allow us to compute the state of a cell.

So how can we model metabolism in detail? Our main task is to describe and predict the uptake, conversion,
and production of metabolites, as described by the metabolic fluxes. The rate at which a chemical reaction runs
depends (through kinetics and thermodynamics) on metabolite concentrations and enzyme activities. Since enzymes
are synthesized by the cell itself, the reaction rates are not only controlled by external nutrient supply, but also
by gene expression. These dependencies make this a complicated field of study: the metabolic fluxes depend on
the enzyme levels and metabolite concentrations, while the metabolite concentrations are again determined by the
balance of fluxes through reactions that produce and consume the metabolites. In turn, enzyme levels are determined
by gene expression, which is dependent on both external conditions and internal needs (e.g. the enzyme expression
may change when different macromolecules need to be made in different phases of the cell cycle). To make matters
even less transparent, most of the parameters (e.g. enzyme kinetic constants and details of enzyme regulation) are

unknown.
For the moment, we therefore make some simplifying assumptions in order to obtain tractable models:

1. Focus on small molecules We focus on a subsystem of the cell, the metabolism of small molecules, which
generates macromolecular precursors and energy carriers. All other processes (such as macromolecule synthesis)
that happen “outside” our metabolic network are ignored.

2. lgnore spatial structure We largely ignore the spatial structure of cells: metabolite concentrations and reaction
rates are assumed to be homogeneous across the cell. The exception to this rule occurs when there are cell com-



partments, in which case we describe the metabolites in both compartments as if they were separate compounds
(e.g. cytosolic ATP vs mitochondrial ATP), which can be converted in each other through transport “reactions”.

3. Focus on fluxes as the only variables Instead of considering metabolite concentrations, enzyme levels and
metabolic fluxes together, we will only focus on metabolic fluxes. This has important consequences for the
mathematical models that we will construct: many variables, and the corresponding equations, will be ignored.
Additionally, fluxes cannot be computed through enzyme kinetics, so that we need to find other, non-mechanistic

ways to compute the fluxes!

4. Focus on steady-state metabolism In a simplified picture of balanced growth (see the chapter on Balanced
Growth), all metabolic processes are balanced: the rate at which material flows into the cell matches the rate
at which it is converted, which again matches the production rate of macromolecule precursors. In addition,
we assume that these fluxes are constant, such that the whole metabolic network is in a ‘steady-state’. Taken
together, we thus assume that the metabolic network can take up and produce external metabolites (e.g. extracel-
lular metabolites and macromolecular precursors), but that all internal metabolites (inside the metabolic network)

are mass-balanced, that is, for each of these metabolites, production and consumption cancel out.

5. Describe precursor demand by a “biomass reaction” We assume that cell growth (or: biomass production)
requires a fixed set of macromolecule precursors in fixed proportions, corresponding to the average mixture of
cell components that are necessary to make a cell. For metabolism, this means that the production of more
macromolecule precursors only leads to more biomass production when the production of all precursors is scaled
up proportionally. We formally express this by a hypothetical “biomass reaction” that consumes a mix of precur-
sors and energy carriers in the predefined proportions. Hence, in the metabolic models we will describe the term
“biomass” has a special meaning: while it usually means “the totality of compounds in a cell”, here we use it for
“the totality of compounds outside our metabolic model, which metabolism needs to produce”.

6. Ignore dilution of small molecules When a cell doubles its size but does not produce a certain metabolite, the
concentration of this metabolite will halve. This basic principle is called ‘dilution by growth’, and in principle
affects all compounds in the cell. During balanced growth, the production of macromolecules that are produced
but not degraded should balance dilution, i.e. the number of each macromolecule should double when the cell
doubles its size. This requires the rate of precursor supply to match the dilution rate, and hence the cell’s growth
rate. Similarly, small molecules are diluted, but since these are also degraded by consuming reactions, the rate of
dilution is usually negligible compared to the production and consumption by metabolic reactions. Therefore, the

models below will usually ignore the dilution of such metabolites.

7. Constrain solutions by modeling limited resources Since each enzyme has a maximal catalytic rate (the kcat
value), a reaction flux will require a certain (minimal) amount of enzyme, which takes up cellular space; since
cellular space is limited, fluxes cannot increase infinitely since there is always an upper bound on a weighted sum
of reaction fluxes. This constraint implies compromises between different reaction fluxes: one flux can only be

increased at the expense of others.

With these assumptions, we are converging on a mathematical model: we know which variables to describe (the
metabolic fluxes in steady-state metabolism), which constraints to apply (the balance of production and consumption
of all internal metabolites) and what main input information we need (the metabolic network, described by a list of
chemical reaction equations). Importantly, the model will be able to describe compromise: for example, with a given
carbon influx and assuming mass balance, the carbon atoms can either be used to generate energy or biomass; if one

function increases, the other one goes down. To obtain realistic predictions, we may introduce additional constraints,



for example known flux directions or experimentally measured uptake rates. All this information will not suffice to
predict metabolic fluxes precisely, but it allows us to narrow down the possible flux distributions. Importantly, all
formulae in these models are linear, which makes them tractable even for very large model sizes (with thousands or

even hundreds of thousands of variables).

Notably, all these assumptions depend only on the list of chemical reaction equations (the stoichiometry of the
metabolic network), and nothing needs to be known about enzyme kinetics. So if the networks are already known,
what do we gain from this kind of modeling? Even if a metabolic network structure is known reaction by reaction,
this does not mean that we understand the network-wide behavior, i.e. which overall flux distributions are possible,
and what overall flux distributions are useful for the cell. Our aim here is to make the step from structural information
(about the network) to physiological insights about how the network can be used. We can learn, for example, how
much biomass can be made from a certain amount of glucose, and whether an enzyme deletion is lethal because a

certain precursor cannot be produced anymore.

Metabolic network structures (in the form of stoichiometric matrices) are approximately known for many microbial
species, and to some extent for higher organisms. Together with the constraints outlined above, this network
determines a range (or space) of possible flux distributions. In this chapter we will characterize this space of possible
flux distributions according to our assumptions, and since we characterize fluxes entirely by constraints the models
will be called “constraint-based models”. We will get to know mathematical tools to characterize this space in a
simple way: for instance, to describe all possibilities that a metabolic network provides we can use Elementary Flux
Modes (EFMs).

In the next chapter, we will combine such constraint-based models with optimality principles: out of the space of
possible flux distributions, specific “optimal” flux distributions will be selected because these are supposedly “most
profitable”, either for the cell or for metabolic engineering purposes. Some of the flux prediction methods that we will
describe refer also to concentrations; for instance, metabolite concentrations play a role in thermodynamic constraints
that exclude certain flux directions, and enzyme concentrations come into play in models that associate fluxes with
an enzyme demand. However, in all cases, the connection between fluxes and concentrations is very simple, and real
enzyme kinetics are ignored. In later chapters, we will then see how the models change when more and more of the

complex details are added about metabolite concentrations, enzyme kinetics, and thermodynamics.

4.2. The flux cone

4.2.1. Mass-balance constraints

As described in the introduction, our models will be built on the metabolic network of all chemical reactions that
an organism can catalyze. We can conveniently summarize all these chemical reactions as an (m x n)-dimensional
stoichiometric matrix N where each of the m rows corresponds to a metabolite and each of the n columns corresponds
to a reaction. The entry IN;; is the coefficient of the i-th metabolite in the j-th chemical reaction. Then, we can
gather all n net reaction rates in an n-dimensional flux vector: v = (vq,... ,vn)T. This is convenient because the
multiplication N v now captures the net production and consumption of all m metabolites at this flux distribution,
and is therefore equal to the time derivative of the metabolite concentrations: ds/dt = N v. Therefore, the steady-
state assumption, combined with the assumption that dilution of metabolites due to growth is negligible, can be

mathematically captured in a set of linear equations that we call the mass-balance constraints for v,

Nv=0. (4.1)

Since in a typical metabolic reaction network the number of metabolites is smaller than the number of reactions

(m < n), the equations for v are under-determined. This means that there are infinitely many solutions, v, that



satisfy the mass-balance constraints. The space of all such v is called the nullspace of N.

4.2.2. lrreversibility constraints

In principle, all reactions in a metabolic reaction network are able to run in both directions, but in many practical
examples certain thermodynamic arguments can be used to justify treating a subset of reactions as irreversible,
meaning that in a given model they can run in only one direction. The choice of which reactions to assume irreversible

depends on the experimental conditions and affects the results of the downstream constraint-based analysis.

Due to microscopic reversibility, the net reaction rate v; (of reaction @) is the difference of the forward and backward

reaction rates, that is, v; = vy — v,

o (with both v;~ > 0 and v;~ > 0 if all reactants are present), and v; can

be either positive, zero, or negative. As stated above, thermodynamics may determine the direction of certain
reactions, that is, the sign of the net reaction rate. In this sense, if a reaction proceeds in the forward reaction,
one adds the nonnegativity constraint v; > 0. (Conversely, if a reaction proceeds in the backward reaction, one
redefines the reaction by exchanging forward and backward and again adds v; > 0.) For a compact notation, let
R~ C{1,...,n} be the index set of the irreversible reactions (and R= C {1,...,n} be the reversible reactions).
We require v? :=vr— >0, thatis, v; > 0ifi e R™.

4.2.3. The flux cone
Mass balance and irreversibility constraints together define the flux cone

C={v|Nv=0, v’ >0}. (4.2)
Elements of the flux cone are called flux modes. The flux cone C is called an s-cone (subspace cone) in Miiller and

Regensburger (2016) [2], since it arises from a linear subspace and nonnegativity constraints.

To provide a concrete example, we consider the simple representation of central carbon metabolism presented in
Figure 4.1. In this example there are four external metabolites, Gex, O, P1, P> and two internal metabolites: G and
P. In our model we only require mass-balance for internal metabolites, such that the steady-state constraint can be

written as

1 -1
Nv<O 0 0) 21 =o, (4.3)

where each column thus corresponds to one of the four (reversible or irreversible) reactions, and where the rows
correspond to G and P respectively. The entry 1 in the first row of the first column thus corresponds to the import
of one glucose molecule G. The mass-balance equations

v —v2 =0, 2wvy—v3—1v4=0, (4.4a)

and the non-negativity conditions
U1,V2,03 2 07 (44b)

induced by the irreversible reactions 1, 2, 3, define the flux cone C as the space of all flux vectors v that satisfy all

of these constraints simultaneously.

4.3. Elementary flux modes

Equation (4.2) gives a mathematical definition of the flux cone (via equations and inequalities). Here, we will provide

an equivalent characterization of this space (via generators, see Math box 4.A). Note that definition (4.2) makes it



Z Math box 4.A Generators of a polyhedral cone

For every polyhedral cone, and hence for every subspace cone such as the flux cone C, there exists a finite,
minimal set of generators (minimal in the sense that no proper subset forms a generating set). In particular, for

the flux cone C, there exists a finite set {f(l), cee f(g)} of n-dimensional vectors such that
¢
C= {v|v:Z)\kf(k) with Akzo},
k=1

that is, any flux vector v in the flux cone C can be expressed as a conical (non-negative) linear combination of
generators {f(1), ... fO}

Remark. The generators f(*) can be multiplied with scalars, that is, any A f*) with A > 0 could replace f*)
in the set of generators.

Remark. For a general polyhedral cone, there is no unique minimal generating set. However, there is a unique
minimal set of conformal generators; see [2, Section 3.4]. For subspace cones (such as the flux cone), these are
the support-minimal vectors (EFMs); see Theorem 1 below.

easy to check if a given steady-state flux distribution v lies in C. However, it is not clear how to generate the flux
cone. As a set of generators, we will introduce “minimal” flux distributions, called elementary flux modes (EFMs),
that can be combined to generate all possible flux distributions in C. These EFMs generate the flux cone, similar to
how basis vectors generate a linear subspace (but with non-negative coefficients).

In order to define EFMs formally, we introduce the support of a vector v as the index set supp(v) = {i | v; # 0},
that is, the support of a flux vector is the set of reactions that have a nonzero rate.

Definition 1. A nonzero vector v € C is an EFM if it is support-minimal, that is, if supp(v’) C supp(v) for any
nonzero vector v' € C implies supp(v’) = supp(v).
Remark. If v is an EFM and supp(v’) = supp(v), then further v/ = A v for some scalar \.

Definition 1 states that v is an EFM if there is no nonzero flux vector in the flux cone that uses only a strict subset
of the reactions that are active in v. This also means that if any of the flux-carrying reactions in an EFM is deleted,
the flux through the remaining reactions must violate the mass-balance constraints and can therefore not occur in
steady-state metabolism; the EFMs are thus minimal in the sense that they cannot be reduced further.

To illustrate the concept of EFMs, we return to the simple representation of central carbon metabolism presented in

1 -1 0 0
() o

and the flux vector v = (vq, v2,v3,v4) ", where v1,v9,v3 > 0. As it turns out, the set of EFMs is given by

Figure 4.1 with the stoichiometric matrix

0
O = , 8= N (4.6)

N O ==
S N ==

and these are depicted in Figure 4.1 (B). From our understanding of central carbon metabolism, we see that these three
EFMs represent the “minimal” metabolic pathways of (f(l)) glycolytic fermentation, (f(Q)) oxidative metabolism of
glucose, and (f*)) oxidative metabolism of the fermentation product.
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Figure 4.1: A simple representation of central carbon metabolism as a metabolic network. (A) Extracellular glucose,
Glex, is imported into the cell via reaction 1, and intracellular glucose, G, is converted to pyruvate, P, via reaction
2, having stochiometric coefficients of two pyruvate molecules for one glucose molecule. Pyruvate is then either
converted to a fermentation product, P, via reaction 4 or, in the presence of oxygen, O, converted to an oxidative
phosphorylation (OXPHOS) terminal product P; via reaction 3. The fermentation product P; can also be converted
back to pyruvate via the backward reaction of 4. (B) EFMs O, £@ £G3) - From our understanding of central
carbon metabolism, f(!) represents glycolytic fermentation, f(2) the oxidative metabolism of glucose, and £ the
oxidative metabolism of the fermentation product.

In Math box 4.A, we have characterized a polyhedral cone (the flux cone C) in terms of its generators (the EFMs).
In our toy carbon metabolism network, this means that any flux vector v can be viewed as a conical combination
of these three minimal metabolic pathways. This interpretation remains true for any metabolic reaction network:
elementary flux modes represent the minimal metabolic pathways through the metabolic reaction network at steady

state.

In Math box 4.A, we have also mentioned that EFMs need not form the unique minimal set of generators, but they
form the unique minimal set of conformal generators. We first motivate conformality by thermodynamic arguments
and then provide a formal definition. For every reaction, Gibbs free energy determines its direction, and hence for
every flux, it determines its sign (—, 0, +). Now, since any flux vector is the conical combination of EFMs, the signs
of the flux vector determine the signs of the EFMs. In particular, if a certain flux component is zero, then this flux
component is zero in all EFMs. (Zero flux cannot arise from a cancellation of positive and negative fluxes.) If a
certain flux component is nonzero, then this flux component has the same sign or is zero in all EFMs. (Zero flux can

arise from a zero enzyme concentration and hence is thermodynamically sound.)

The above argument can be formalized as follows: For a vector v € R™, we obtain the sign vector sign(v) €
{—,0,+}" by applying the sign function componentwise, that is, sign(v); = sign(v;). In order to capture “conformal
signs”, we define the partial order 0 < — and 0 < + on {—,0,+}, which implies the inequalities 0 < 0 (zero flux
conforms to zero flux), +,0 < + (positive or zero flux conforms to positive flux), and —, 0 < — (negative or zero
flux conforms to negative flux). The partial order on {—,0,+} induces a partial order on {—,0,+}": for two sign
vectors 0,7 € {—,0,+1}", we write o < 7 if the inequality holds componentwise, and we say that o conforms to 7.
If o <7 (and 7; is given), then o; = 7; or o; = 0. To summarize, if o conforms to 7, then it has the same entries

Oor some more zeros.

Now, we can refine the characterization of a flux cone in terms of generators, as given in Math Box 4.A. Indeed, we

have the following conformal sum theorem, see [2, Theorem 3].

Theorem 1. Let C be the flux cone and {f1), ..., f©} be the set of EFMs. Then,

¢
C= {v |v= Z/\k F® with A\ > 0 and sign(f®) < sign(v)} .

k=1



That is, any flux vector v in the flux cone C can be expressed as a conformal sum of EFMs {f(l), . .,f(e)}.

Again, we illustrate the theoretical concepts in the simple representation of central carbon metabolism. The flux
distribution v = (1,1,1,1)7 lies in the flux cone, cf. (4.4), and hence can be written as a conical linear combination
of EFMs (in a non-unique way):

—_ = =
N O = =

1 1
_Lem Lo
SRR

= O NI =
O = NI= N

Note that the first sum is not conformal: The fourth component of v is positive, whereas the corresponding component
of £® is negative. That is, the contributing EFMs have different signs in the net reaction rates of the fourth
reaction, which leads to cancellation and is not meaningful thermodynamically. (Gibbs free energy determines reaction
directions, see Section 4.4.3.) Still, the second sum is conformal: no cancellation occurs, and the decomposition is

thermodynamically meaningful. Theorem 1 states that a decomposition as a conformal sum is always possible.

On the one hand, we introduced EFMs as the support-minimal vectors of the flux cone, corresponding to minimal
metabolic subnetworks. On the other hand, EFMs form the (unique minimal) set of (conformal) generators of the flux
cone. Indeed, the beautiful thing about EFMs is that they have several equivalent (but complementary) definitions,
see Math box 4.B for examples and proofs.

Viewing EFMs as minimal metabolic subnetworks enables us to interpret an EFM in terms of its biological function;
an EFM can be seen as a metabolic strategy that a cell can use to obtain steady-state metabolism, and which it can
combine with other strategies to reach its purpose. The interpretation as conformal generators allows us to write an
arbitrary flux vector v € C as a combination of EFMs in a thermodynamically meaningful way, see Theorem 1. This
also means that we can learn something about all flux vectors v by learning something about all EFMs. For example,
if we know that there is no EFM that produces compound Y without using reaction r, this immediately implies that

there is no flux vector at all that can do this, and that reaction r is thus essential for the production of Y.

Finally, after reaction splitting, as described in Section 4.3.2, the flux cone is contained in the non-negative orthant
and hence is pointed. Then, EFMs agree with the extreme vectors and can be computed via algorithms based on the
double-description method, as discussed in Section 4.4.4.

So far, we did not consider a limit on the amount of flux that a particular EFM may carry, since A f*) is an EFM
for any A > 0 and any EFM f(*), and consequently the absolute value of any flux vector v in C is unbounded. In

Section 4.4, we will see that this is not necessarily true when additional constraints are introduced.

4.3.1. Practical relevance of EFMs

EFMs represent the full set of possible metabolic capacities of an organism, which can therefore make EFM analysis
a useful tool for biology. To this end, application of EFM analysis to bioengineering has been proposed to guide
the genetic manipulation of microorganisms to perform desirable properties such as synthesis of a bio-compound or
efficient production of a recombinant protein (e.g. [3, 4]). From a more theoretical point of view, EFMs have also been
used in attempts to quantify cellular robustness [5], in particular regarding robustness under genetic perturbations
[6]. The relevance of elementary flux mode analysis to cellular robustness stems from the fact that there is rarely

a unique conical combination of elementary flux modes for any given flux vector, which implies there are multiple



Z Math box 4.B Equivalent Definitions of Elementary Flux Modes (EFMs)

In the main text, we have introduced EFMs as the support minimal vectors of the flux cone, see Definition 1.
In fact, EFMs can be defined as the support-minimal, support-wise non-decomposable, sign-minimal, sign-wise
non-decomposable, and conformally non-decomposable vectors of the flux cone; cf. [2]. Here, we consider the
latter definition for three reasons: (i) it matches Theorem 1 on the decomposition of flux distribtions into
conformal sums of EFMs, (ii) it also applies to general polyhedral cones (not just s-cones such as the flux cone)
and even to polyhedra and polytopes, and (iii) it establishes a link to the case when the flux cone is contained
in the negative orthant. (In the latter case, the cone is pointed and generated by the extreme vectors.)

Definition 2. A nonzero vector v € C is conformally non-decomposable if v = v! +v? for any nonzero vectors
vl vZ € C with sign(v!), sign(v?) < sign(v) implies v1 ~ v? (that is, v = Av?).

As stated above, EFMs can be defined as the conformally non-decomposable vectors of the flux cone. Indeed,
we have the following equivalence.

Proposition 1. A nonzero vector v € C is conformally non-decomposable if and only if it is support-minimal.

Proof. Assume that v € C is conformally decomposable, that is, v = v! 4+ v? for nonzero v!, v2 € C with
sign(vl), sign(v?) < sign(v) and v! % v2. Then also v! # v, and there exists a largest A > 0 such that the
nonzero vector v/ = v — Av! fulfills sign(v’) < sign(v). For this A, v/ € C (thatis, N v/ = 0 and v/~ > 0)
and sign(v’) < sign(v) (in particular, v} = 0 and v; # 0 for some 4). Hence, supp(v’) C supp(v), that is, v is
not support-minimal.

Conversely, assume that v € C is not support-minimal, that is, supp(v’) C supp(v) for a nonzero v/ € C.

Then, there exists a largest A > 0 such that the nonzero vectors vl = %V + A\ and v2 = %V — v/ fulfill

sign(vl), sign(v?) < sign(v). For this A, either sign(v!) < sign(v) or sign(v?) < sign(v); in any case,

vl,vZ € C and v! £ v2. Clearly, v = v! +v?2, that is, v is conformally decomposable. O

Conformally non-decomposable vectors are closely related to extreme (or non-decomposable) vectors.

Definition 3. A nonzero vector v € C is extreme if v = v! 4+ v?2 for any nonzero vectors v', v2 € C implies

V1 ~ V2.

If the flux cone is contained in the non-negative orthant (in particular, after reaction splitting, as described in
Section 4.3.2) and hence is pointed, EFMs can be defined as the extreme vectors.

Proposition 2. LetC C RY. A nonzero vectorv € C is extreme if and only if it is conformally non-decomposable.

Proof. If v,v!,v* € C C R%, then v = v' + v* implies sign(v'), sign(v?) < sign(v), and Definitions 2 and 3
agree. O

combinations of minimal metabolic pathways to achieve the same desired effect. This redundancy can be interpreted
as a measure for the metabolic robustness of an organism, in terms of preserving essential metabolic functionalities

under loss of a gene, for example.

There have also been several ways that EFM analysis has been incorporated into analysis of multi-omics data. For
example, on the basis of transcriptomic profiling of microorganisms, metabolic pathways associated with elementary
flux modes have been scored according to their probability of carrying flux [7]. The principle here is that, although
levels of RNA often serve as a poor proxy for flux through the reaction associated with that particular enzyme's
gene, by creating a gene set associated with an entire EFM there might be a better chance of concretely assessing
whether the metabolic pathway as a whole is likely to carry flux. The study [7] suggested that the integration of
EFM analysis with gene expression data enabled the identification of certain metabolic pathways activated during
stress conditions, and that the organization of elementary flux mode utilization in Saccharomyces cerevisiae involves a
disparate combination of highly specialized and multi-tasking roles. Beyond transcriptomic profiling, isotope tracing

experiments in principle provide a much more direct insight into quantifying metabolic flux. To interpret isotope



tracing data, an extension of the concept of an EFM was introduced in [8].

4.3.2. Reaction splitting for EFM computation

The computation of EFMs via the double description (DD) method as well as the solution of linear programs (LPs)
via the simplex algorithm assume that the flux cone is given in certain standard forms. (Note, however, that the
computation of EFMs via lexicographic reverse search (Irs) does not involve such an assumption.)

Recall that the flux cone is given by the mass-balance constraints N v = 0 and the irreversibility constraints v~ > 0,
whereas standard forms are given by A v =0 (for DD) or A v > 0 and v > 0 (for LP) with a matrix A of appropriate
dimensions. To bring the flux cone into standard form, we will split reversible reactions into irreversible forward and
backward reactions. First, we order reactions such that

Nv= (N> N=) (:;) , (4.8)

where the superscripts — and = refer to the irreversible and reversible reactions, R and R=, respectively. Next,
for every reversible reaction i € R™= with net reaction rate v;, we define a forward reaction with “rate” w;” > 0 and
a backward reaction with “rate” w;~ > 0 such that v; = w;” —w; . (In vector form, v— = w— — w".) Note that
the “rates” w; ", w;  do not denote the (microscopic) forward and backward reaction rates v; ", v;  that determine
the net reaction rate v; = v;- — v; . They are auxiliary quantities, and only their difference w;” — w;~ = v; has
a biochemical meaning (and is the subject of constraint-based metabolic modeling). Further, for every irreversible

reaction ¢ € R, we write v; = w;” to obtain a uniform notation. (In vector form, v> = w™.) Now,
Nv=(N" N= -N=)|w" | (4.9)

By introducing the augmented stoichiometric matrix N and the corresponding non-negative flux vector w, we can

write
WH
Nv=Nw with N= (NH N= fNi), w=[w"|. (4.10)
we
As a consequence, the augmented flux cone is given by
C={w|Nw=0,w>0} (4.11)
or, in LP standard form, by
S , N
C={w|Aw>0,w>0} with A= NIE (4.12)

after writing equations as non-strict inequalities.

Obviously, C is contained in the non-negative orthant and hence pointed. As an important consequence, EFMs can
be defined as the extreme vectors of the flux cone, see the 'Math box’, and be computed by algorithms based on the
DD method.

For examples of pointed polyhedral cones (in the non-negative orthant), see Figure 4.2. Note that the cone in
Figure 4.2 (A) is not an s-cone and hence not a flux cone. In particular, its generators/extreme vectors lie in the interior

of the non-negative orthant. On the other hand, the cone in Figure 4.2 (B) is an s-cone. lIts generators/support-
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Figure 4.2: Pointed polyhedral cones. (A) A pointed polyhedral cone that is not a flux cone; all its generators lie in
the interior of the non-negative orthant. (B) A pointed polyhedral cone that is a flux cone; its generators arise from
the intersection of a subspace with the boundaries of the non-negative orthant.

minimal vectors/EFMs arise from the intersection of a subspace (the nullspace of the stoichiometric matrix) with the

boundaries of the non-negative orthant.

Again, we return to the simple representation of central carbon metabolism presented in Figure 4.1. After reaction

splitting, the mass-balance constraint can be written as

wy’

L 21 0 o o\|™
Nw= wy | =o0. (4.13)

0 2 -1 -1 1 3

Wy

wy~

In particular, the reversible fourth reaction has been split into irreversible forward and backward reactions with reaction
vectors (%), (9) and “rates” wj", wi, see Equation (4.5). Now, algorithms based on the DD method can be applied
to the mass-balance and irreversibility constraints in standard form, Nw = 0 and w > 0. As it turns out, the set of

EFMs (support-minimal vectors) is given by

@) = . g® = and gW = (4.14)

S N O ==
SO O NN ==
Q
=
Il
= o = O O
== 0 O O

EFMs g, g g correspond to EFMs f(1), f(2) £(3) before reaction splitting, see Equation (4.6). Just recall
vy = wy —wi . However, EFM g*) corresponds to zero flux. More specifically, it represents the fourth reaction
having equal forward and backward “rates” and hence zero net reaction rate. Such EFMs are artifacts of reaction
splitting and need to be discarded when translating the EFMs of the augmented flux cone back to the EFMs of the

original flux cone.
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4.4. Extra constraints and flux polyhedra

4.4.1. Inhomogeneous linear flux constraints

We have so far been working exclusively with mass-conservation and irreversiblity constraints, which are captured
entirely by the stochiometric matrix where each row is associated with a metabolite concentration at steady state.
We also saw that these considerations alone result in a flux cone that is by definition unbounded, meaning that a
flux vector in this space is allowed to take on any absolute value (i.e. multiplying a flux vector in the flux cone by an
arbitrarily large positive number again returns a flux vector in the flux cone). However, there are physical constraints
limiting the magnitude of flux vectors, especially on the values of flux through exchange reactions that may depend
on concentrations of extracellular substrates, numbers of transporter molecules in the membrane, or for which we
might have direct experimental measurements. Typically, such bounds on flux values are imposed using inequality
constraints of the form v!? < v; < vi® where v!® and vi® are lower and upper bounds, respectively, for the flux
through the ith reaction. When reactions have been decomposed into forward and reverse directions, both upper

and lower bounds are non-negative where the latter is usually zero.

In the example from Figure 4.1, one may impose an upper bound on the flux value vy, suggesting that there is a
maximal rate at which the cell or organism can import glucose from the extracellular environment. In this case the

total set of constraints on the flux vector v take the form
Nv=0 v’>0, v <uv', (4.15)

where v4° is the maximal glucose uptake rate. It is important to note that the new constraint is of a different kind
than the mass-balance and irreversibility constraints: the right-hand side of the constraint is nonzero. Constraints

that involve a nonzero are called inhomogeneous constraints. \We can write these constraints in matrix form as
Gv>h, (4.16)

where in this particular case
G=(-1 0 0 0), h=(-up). (4.17)

In general, the matrix G will have ¢ rows corresponding to ¢ inhomogeneous linear constraints of the form
Zszszhya ]:17£ (418)
i

That is, for constraint j, there are n entries Gj; (¢ = 1,...,n) of the matrix G and the component h; of the
{-dimensional vector h. Many constraints can be written in this general form. For example, after reaction splitting,
one may impose a bound on the total flux that a cell can catalyze, by setting all entries (in the corresponding row of
G) to 1.

Altogether, the constraints on v define a flux polyhedron that is necessarily contained within the flux cone given by
the homogeneous constraints N v = 0 and v > 0. The additional inhomogeneous constraints serve to further
restrict the cone such that various (if not all) dimensions become bounded, thus bounding the total magnitude of

the flux vector v.

4.4.2. From the flux polyhedron to the EFM weight polyhedron

Via the conical sum v = Zi:l i F*), constraints on the fluxes v define constraints on the EFM weights A and
hence a corresponding EFM weight polyhedron. Whereas elements v of the flux polyhedron have entries v; for every
reaction i € R, elements X of the EFM weight polyhedron have entries \; for every EFM f*) k=1,... ¢ (and
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(A) (B)

AN

A

Figure 4.3: Feasible regions in the space of EFM weights - (A) Possible combinations of EFM weights A; and X2, given
by the inequality A; + Ao < v§® (and A1, A2 > 0). (B) Geometry of the EFM weight polyhedron (blue) representing
any flux vector that satisfies the mass-balance, irreversibility, and maximal glucose uptake rate constraints. While
bounded in Ay, Ao, it is unbounded in As.

hence can be very high-dimensional).

In the example from Figure 4.1, let A1, A2, A3 > O be the weights of the corresponding EFMs in the (conformal)
sum v = 2?21 X £, Bounding the extracellular glucose uptake rate puts an upper bound on the weights of EFMs

FO, @ (involving the glucose uptake reaction),
AL+ Az < 0P, (4.19)

see also Figure 4.1 (B). However, the weight of EFM f() (associated with uptake and oxidation of the fermentation
product) can remain unbounded.

For this simple example, it is quite straightforward to interpret the geometric consequences of the maximal glucose
uptake rate. Any flux vector v in the resulting flux polyhedron now corresponds to a point (A1, A2) in the (projected)
EFM weight polyhedron depicted in Figure 4.3 (A). However, the weight A3 remains free, and the (full) EFM weight
polyhedron is depicted in Figure 4.3 (B). In terms of the flux polyhedron, the maximal glucose uptake has restricted

the flux cone along vy, vo while leaving vs3, v4 unbounded.

In order to obtain a bounded flux polyhedron (a flux polytope), we impose an upper bound on the uptake rate of
the fermentation product, that is, —v4 < v4°. In terms of the EFM weights, we obtain the bound —2)\; + A3 < v4P.
Since conformal sums are sufficient to generate the flux cone, this simplifies to A3 < v4°. Altogether, the EFM weight
polyhedron is given by

MoA2, A3 >0, A+ A < o8P A3 <o (4.20)

Indeed, all EFM weights and hence all fluxes are bounded.

More general constraints, for larger metabolic reaction networks will be more difficult to interpret and visualize in
such simple geometric terms. Quite quickly the combinatorial complexity associated with combinations of multiple
constraints and EFMs will become unmanageable. The intuitive treatment of inhomogeneous linear constraints is
partially assisted using the concept of elementary flux vectors on which we will add a section in a later version
of this book, but both geometrically and biologically these objects are nowhere near as easy to interpret as their
EFM counterparts. We shall see that alternative computational methods for exploring flux space therefore become

imperative.
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As a final remark, we clarify once more that the general form of constraints (4.16) is by no means restricted to sums
on the left hand side that involve just a single reaction and can of course include constraints on weighted sums of flux
values for different reactions. These weighted sums are often associated with particular biological interpretations: in
the example from Figure 4.1, we might want to restrict our search of flux space to those flux vectors v that produce
adenosine triphosphate (ATP) at a rate of at least vATP. Although a more elaborate model would of course include
ATP as one of the metabolites, in this example we can use our biological understanding of central carbon metabolism
to see that ATP is produced in reactions v, and vs. A lower bound on ATP production would thus be a lower bound
on a combination of vy and v3 with coefficients determined by stoichiometry (depending on the organism under
investigation). We could write such a constraint as

ATP
1 > .
o1v1 + agvs > v (4.21)

with appropriate coefficients a3, 3. Such a constraint forms an additional row of the matrix G and we leave it
as an exercise for the reader to explore how this affects the geometry of the flux polytope for various values of the
coefficients, minimal ATP production rate and maximal glucose and fermentation product uptake rates. Particular
combinations of constraints will be impossible to satisfy simultaneously (i.e. when the minimal rate of ATP production
is impossible to achieve under the given bounds on glucose and fermentation product uptake rates), resulting in a

flux polytope that is empty. In such cases the set of constraints on v are called infeasible.

4.4.3. Thermodynamic constraints

In Chapter 3 in [9] the basic concepts of chemical thermodynamics were introduced, in particular, the Gibbs free
energy of a metabolic reaction was defined in terms of the concentrations of its products and substrates. For a
metabolic reaction network with stochiometric matrix N, the vector of Gibbs free energies (one for each reaction in

the network) A, G’ can be written in matrix form as
A,G'=A,G +RT-NTln(s) (4.22)

where R is the gas constant, T' the temperature and s the vector of metabolite concentrations at steady state. The
components of the vector A, G’® are the changes in standard Gibbs free energy for each corresponding reaction.
Typically, these values are not known precisely for reactions in the network, but can be estimated or approximated from
experimental data using methods beyond the scope of this chapter. Similarly, although it is often difficult to accurately
measure all metabolite concentrations, in principle the vector s can be obtained experimentally. However, in practice
experimental data on s and A.G’° are almost never available. Various methods have therefore been developed to
combine estimation of A,G’°® (sometimes with partial measurements of s) with advanced computational techniques

that allow simultaneous optimization (see next chapter) or sampling (see below) of v and s (or equivalently: A,.G’).

The second law of thermodynamics applied to chemical reaction networks can be summarized by saying that every

component of the metabolic flux vector v must satisfy the condition
sign(v;) = —sign(A,G’;) (4.23)

where v; and A, G’; are the ith components of v and A, G/, respectively, and sign(z) denotes the sign of a variable
z, and sign(0) = 0. It is important to point out that this notation is different to that used previously, where
we had assumed all v; to be non-negative by decomposing each reaction into irreversible forward and backward
reactions. Returning to this reversible notation simplifies the inclusion of thermodynamic constraints into constraint-
based models and also their interpretation. According to the second law, a reaction can only proceed in a direction
where the change in Gibbs free energy is negative. Thus, to be consistent with mass-balance and the second law of
thermodynamics, a flux vector v must simultaneously satisfy both (4.1) and (4.23), with A,G’ defined in (4.22).
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The consequence of these additional constraints on the geometry of the space of metabolic flux distributions is to
exclude quadrants incompatible with the signs of A.G’. Equivalently, imposing the second law of thermodynamics on
metabolic flux distributions removes regions of the space that are associated with combinations of thermodynamically-

infeasible reaction directionalities.

The resulting space of feasible flux vectors is almost always non-convex, which means more advanced computational
methods are required to explore it efficiently. The intuitive reason for this is that imposing thermodynamic constraints
on top of the mass-balance constraint is usually done in terms of Boolean variables, which breaks the linearity of
the problem that we had and exploited so far. Relating this to the EFMs that were discussed previously, it for
example becomes clear that any EFM representing an internal cycle —not including any exchange reactions— will
never be thermodynamically feasible. Thus, thermodynamic constraints also reduce the set of EFMs that are possible
in a metabolic network. Interestingly, it turns out that any thermodynamically-feasible metabolic flux vector can be
expressed solely in terms of thermodynamically-feasible EFMs [10], but the converse statement is not true: a linear
combination of thermodynamically-feasible elementary flux mode does not necessarily satisfy the thermodynamic
constraints. This shows how the workable properties of convex spaces break down as the mathematical models
become more complex, in this case by accounting for thermodynamics.

4.4 4. Computational challenges for EFM analysis

Enumerating EFMs for large networks can be computationally challenging if not impossible. In principle, EFMs can
be found by removing one reaction at a time and solving the resulting mass-balance constraint problem until it is no
longer possible to remove a reaction and still obtain a flux vector that satisfies the steady state conditions. However,
the equivalence of EFMs and extreme vectors of the flux cone (after reaction splitting) described in Section 4.3.2
enables the use of algorithms that are specialized in the efficient enumeration of extreme rays of polyhedral cones,
such as the double description method [11]. Various tools have been developed for elementary flux mode enumeration
based on this algorithm (e.g. EFMTOOL [12] or MetaTool [13]). However, when the size of the metabolic reaction
network grows, the number of EFMs scales disproportionately, leading to a combinatorial explosion that effectively
makes enumeration impossible for genome-scale networks containing several thousands of reactions [14]. Currently,
EFM analysis is therefore restricted to medium-scale reconstructions containing on the order of several hundreds of
reactions, and results in the identification of several hundred million EFMs (e.g. enumeration based on the Escherichia
coli core model results in approximately 272 million EFMs).

Approaches to reduce the complexity of dealing with so many EFMs even for metabolic reaction networks of modest
size have also been proposed. These include invoking transcriptional regulatory constraints to eliminate most of the
EFMs to be considered in downstream analysis. Imposing additional constraints based on thermodynamic conditions
similarly reduces the set of EFMs considerably. A problem with these approaches is evidently that they do still depend
on an initial calculation of all EFMs, and so do not solve the problem of enumeration complexity. A rigorous study
of the complexity of EFM mode enumeration was performed by Acufia and colleagues [15]. They showed that the
decision problem if there exists an EFM containing two specific reactions is NP-complete whilst the complexity of

enumerating all EFMs remains open.

Later in this chapter we will explore some alternatives to EFM enumeration that reduce the difficulty of enumeration,
cf. Section 4.5.

4.4.5. Reducing combinatorics of EFMs computation

In order to reduce the combinatorics of EFM computation to a feasible order, the search space may be limited to
the biologically relevant EFMs only. This can be done by considering additional biological constraints before, during,
or after the computation of EFMs. One way to restrict the search space is to remove all ‘irrelevant’ reactions in a

metabolic network, that is,
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Figure 4.4: Metabolic model from [16]. Transcriptional regulation shown in Figure 4.5.

reactions that are not essential for the cell (not part of the core metabolism),
reactions that are not performed for chemo-physical, kinetic, or thermodynamic reasons,

reactions that are too expensive in terms of enzymatic resource allocation,

0O O O O ©°O

reactions that transport metabolites which are not present in the growth medium (‘environmental regulation’),

reactions that are catalyzed by enzymes whose expression is inhibited by transcriptional regulation.

The purpose of incorporating biological constraints, from the perspective of a modeler, is to reduce the number

of pathways the biologist needs to analyze. Additionally, the computation of EFMs becomes much more efficient
because fewer solutions need to be computed.

Below we are going to illustrate the last two types of constraints: environmental and transcriptional regulation. Both
types can be expressed using Boolean constraints. A Boolean constraint is a Boolean function f : B¥ — B, where
B = {0, 1}, which takes in k Boolean inputs z € B¥ and produces a Boolean output b € B such that b = f(z). In
our case, Boolean functions determine whether reactions are allowed or not in EFMs based on biological conditions.

To this end, reactions are associated with a Boolean indicator. The value of this indicator (either 0 or 1) determines
whether that reaction can participate in an EFM.

The following relationship, for a set of reactions R with corresponding fluxes v and indicators z, determines how
Boolean regulation affects the presence of reactions in EFMs:

VreR: (z-=0) = (v, =0)

As an example, we consider the following small metabolic model from [17, 16], which involves transcriptional and
environmental regulation. The network contains 18 reactions and 18 metabolites (10 internal and 8 external) and
has 80 EFMs. For an illustration, see Figure 4.4. The formulae describing reaction stoichiometries and regulation

rules are shown in Figure 4.5. This model makes for a good basis for studying the effect of Boolean constraints on
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(A) Variables

Internal metabolites: M = {A,B,C,D,E,F,G,H, O,, ATP,NADH}
External metabolites: E = {carbonl, carbon2, Dext, Eext, Fext, Hext, 0Xygen, biomass}

G = {mcarbonla Mcarbon2, MH, TNF, moxygen}
Reactions: R = {rl,r2a,12b, 13,14, r5a,r5b, 16,17, r8a, r8b, 11es, tcl, tc2, td, te, tf, th, tox, growth}
Flux vector: v = {vy1, Ur2a, Vrab, - - - }

L= {Zrla Zr2as Zr2b; - - }

(B) Stoichiometry

Internal reactions

rl: A+ ATP — B Transport reactions
r2a,12b : B «<» 2 ATP +2 NADH + C tel : carbonl — A
r3:B—F tc2 : carbon2 — A
r4:C— G td : D — Dyt
rba: G — 0.8 C+ 2 NADH te: E — Eoy
rbb: G — 0.8 C+ 2 NADH tf: Fext = F
16:C—2ATP+3D th: Heyte — H
r7:C+4 NADH - 3 E tox : oxygen — Osg
r8a,r8b : G+ ATP + 2 NADH + H growth : C+F 4+ H 4 10 ATP — biomass

rres : NADH + Oy — ATP

(C) Regulation

Zrab = T2r2a

Moxygen = TZr5a TMcarbon2 = TZtc2
Moxygen == TZr5b TMcarbonl = TZtcl
Zrob = %7 My = T'Zth

My == TZ8a TMEp = T2t
Moxygen = T'Zrres Moxygen = TZtox

Mcarbonl = 2tc2

Figure 4.5: Formulae for the metabolic model from Figure 4.4. Stoichiometry is given for reactions and metabolites;
simple arrow or double arrow represent reversibility, for instance reaction r1 consumes one A and one ATP to produce
one B. The names r2a,r2b and r8a, r8b denote the forward and backward directions of the respective reactions, while
rba, rbb represent isozymes. Boolean inputs for the Boolean functions can be either growth medium metabolites or
reactions.

a small scale: out of 80 EFMs, only 26 are consistent with the regulation in the most permissive growth medium —
and even fewer are found when the growth medium gets restricted [16].

As mentioned above, we distinguish two types of Boolean functions. First, environmental regulation applies to uptake
transporters and is automatically constructed from the defined growth medium. For example, the oxygen transport
reaction can only be active if external oxygen is present in the growth medium (—moxygen == —Ztox). Second,
transcriptional regulation is reconstructed from a literature review and curated by the modeler. For instance, r7 is
regulated by the level of metabolite B in the cell, its enzyme cannot be expressed at the same time as B is being

produced by r2 (2,2, = —2z;7). Some individual constraints mimic the behavior of E. coli: the activation of
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respiration reaction r5a, r5b, rres depends on the presence of oxygen (motivated by the transcriptional factors ArcA
and FNR); tc2 is deactivated when faced with carbonl, mimicking the behavior of glucose catabolite repression
by CRP. Ultimately, these transcriptional and environmental constraints serve to filter out EFMs. For instance,
the elementary mode {r2b,r3,r4, r5b, r8b, rres, th, tox, growth} is not consistent with regulation. Indeed, we have:

Zr5b == TMoxygen aNd Ziox = Moxygen, a contradiction.

Regulation Boolean constraints could be incorporated into the EFM computation by the method regEFMTool, as well
as in the tools SMTTool and aspefm [18, 19, 20]. These constraints lend themselves naturally to logical encoding,
making logic programming such as Answer Set Programming (ASP) well suited to this type of problem. Unlike
traditional double description methods, which struggle with the combinatorial explosion of EFMs by the number of
reactions and do not inherently handle regulatory constraints, ASP allows for an intuitive representation of Boolean
constraints and efficient pruning of infeasible solutions early in the computation. In the simplest cases reactions that

cannot respect the regulation constraints are directly deactivated in pre-processing.

Adding environmental regulation and restricting the analysis to a limited growth medium is crucial for reducing the
computational load of the analysis. The software regEFMTool from Jungreuthmayer et al. was tested on Orth,
Fleming and Palsson’s E. coli core model [18, 21], a central carbon metabolic model of 95 reactions containing a
complete transcriptional regulation network. The analysis was performed with all uptake reactions allowed. The total

number of EFMs was reduced from 226.3 million to 2 million EFMs after post-processing.

Using aspefm, Mahout et al applied environmental regulation, transcriptional regulation, as well as thermodynamic
constraints in order to further reduce that set to a subset of only 10% EFMs for post-processing analysis of optimal
uptake rates [20, 22]. In general, we therefore recommend to routinely incorporate basic regulation constraints
checking in order to drastically reduce the complexity of search of EFMs on metabolic models. This is particularly
true for genome-scale models, which number of reactions reach thousands and number of EFMs reach billions. Ideally

the procedure should be done in pre-processing, coupled with network compression.

Instead of inactivating reactions, one might be interested by computing all EFMs containing a specific reaction, such
as the biomass, or several reactions, e.g. biomass synthesis and ATP maintenance. This is not a good idea to try to
incorporate these constraints directly into the computation as such a constraint adds an hyperplane on the solution
space, changing the resulting solutions [23, 24]. As a result, these kind of candidate constraints are best left for

post-processing.

4.5. Alternative methods for flux space exploration

As we described above, exploration of all possible flux distributions using EFMs can become very complex for larger
models. A genome-scale model, which comprises all metabolic reactions that an organism can catalyze, typically
contains thousands of reactions, which prohibits the enumeration of EFMs. At the moment, it is unclear whether,
even if we would have an enormously fast computer that could compute all EFMs, the number of EFMs would not
be so large that we cannot store the EFMs anywhere, nor analyze it in any meaningful way. Here we discuss several
alternatives for exploring the metabolic capabilities of a cell that try to avoid the combinatorial complexity that

hinders EFM analysis.

4.5.1. Elementary conversion modes

If we are interested in the metabolic capabilities of an organism, is it always necessary to know all possible flux
vectors? For example, what if we want to lab-culture an organism of which we have a reconstructed metabolic
network, but no idea what nutrients it needs to grow. Then we only need to know from what combinations of
nutrients it can make all its cell components. Or, what if we want to model the possible cross-feeding interactions

between several microbial species? Then we are mostly interested in what each of them can consume and produce,



18

and not really in how they do that. Elementary conversion modes (ECMs), introduced in 2005 by Urbanczik and
Wagner [25], capture all possible overall conversions from nutrients to products that an organism can catalyze, while

ignoring which individual reactions are used for this.

ECMs focus on the net results of metabolism, i.e. on the uptake and production of compounds external to the
metabolic network, such as sugars, nitrogen sources, fermentation products but also ‘biomass’. To get information
about these compounds we need to extend our metabolic network by including the external compounds as rows in
the stoichiometry matrix; this is in general easy to do since we already had exchange reactions (reactions where an
external compound was imported or exported) so we only have to find the stoichiometric coefficient in which the
external compound was involved in these reactions. Let us denote the original stoichiometry matrix by N;,; and the

submatrix that we add by Ne,; together they form Ny,.. We can then define the conversion cone:

ds
C= {dt = NextV | Niev = 0, v > 0} ) (4.24)
If we look carefully at this definition we can see that the flux vectors v need to satisfy exactly the same constraints
as in the flux cone (Eq. (4.2)). The only difference between flux and conversion cones is that we are either interested
in the fluxes themselves, or rather in the conversions that they induce: ds/d¢t = NeqVv.

Definition 4. The set of ECMs is the minimal set of conversions {ecm',...ecm‘} (where ecmi is the amount of

metabolite k produced in the ith elementary conversion mode), such that

1. all conversions ds/dt € C can be written as a positive sum of these elementary conversion modes: ds/dt =
>, Aiecm®, with \; > 0,

2. without the production of any metabolite being canceled in that sum, i.e. for all metabolites k we either have for
all \; > 0 that ecm|, > 0 or for all \; > 0 that ecm, < 0.

We will explain both parts of this definition below, but let us first remark that the definition is in fact perfectly
analogous to the definition of EFMs: EFMs are the elementary vectors (or precisely: conformally non-decomposable
vectors) of the flux cone, and ECMs of the conversion cone. The reason that the definition of ECMs has an additional
requirement (2.) is just that the analogous requirement was automatically satisfied for EFMs because we assumed

all reactions to be irreversible.

In Figure 4.6A we show a small metabolic network with external metabolites A, B and BM, and internal metabolites
C, D and E. We can find 9 EFMs in this network: one that goes from A to B, four that produce BM starting
from A and four that produce BM from B. We get four EFMs to go from A to BM because there are two ways
of going from C' to D and again two for converting D into E. This makes clear that having a number of modules
of alternative reactions can quickly give rise to large numbers of EFMs, even though the overall conversion from

nutrients to products remains the same. In contrast, we will explain that we only get three ECMs.

In Figure 4.6B we see the conversion cone in gray. Note that this cone does not live in flux space, but rather in the
space of external metabolite changes, or conversions. We recognize that the cone can be spanned by two extreme
rays, which correspond to converting A into B (blue) and to using 2B to produce BM (yellow), so these rays
correspond to elementary conversion modes following the first part of Definition 4. Now why do we have a third
ECM, when the blue and yellow one already span the whole conversion cone? Indeed, the third vector in Figure 4.6B
can be obtained by summing the yellow vector and two times the blue vector: 2(—1,1,0) + (0,—2,1) = (-2,0,1).
However, note that the production of metabolite B would cancel in this sum, which is not allowed according to the
second part of Definition 4. The reason that this second part of the definition is important, is that the elementary
conversion modes are intended to capture all metabolic capabilities of an organism, so taking only the first two modes
would not be enough: we also want to account for the possibility of making BM from A even if we decide that the

elementary conversion mode from B to BM is not possible in the current environment, for example because B is
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dBM/dt

Tk’ A . (-2,0,1)
(C)—» BM oo ]
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ECMs '
( ) —— dB/dt
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2B—BM
= 2A—BM

dA/dt

Figure 4.6: Elementary conversion modes — (A) Small toy network with three ECMs shown in blue, yellow and red.
Note that the red mode can be decomposed as a positive combination of the blue and yellow elementary conversion
modes, but that would cancel the production of B so this is not allowed. (B) The conversion cone is shown in gray,
and the blue and yellow arrow correspond to the blue and yellow ECMs are the extreme rays. The red ECM needs to
be added because it is on the intersection with the dB/dt = 0-plane.

not present as a nutrient in the medium.

Because many EFMs result in the same overall conversion, the exploration of metabolic capabilities can now be done
in larger networks, at the cost of ignoring information about which reactions are used [26]. This way of thinking can
be pushed even further: what if one is not interested in the conversions between all nutrients and products, but only
between a subset of these? In that case, one would want to compute the ECMs only between the external metabolites
of the most interest. This can be done with a small trick. Say that we are not interested in the production of external
metabolite X. Before we start the enumeration algorithm we add a virtual reaction to the network that consumes
and produces X from nothing, i.e. we add X = (), and then we change X from an external metabolite to an internal
metabolite. Consequently, it now has to satisfy the mass-balance constraint (which can always be done trivially using
the added virtual reaction), and will thus never show up in the computed elementary conversions. In this way it was

possible to compute all ECMs between glucose, oxygen and biomass for a real genome-scale network of E. coli.

4.5.2. Flux sampling

In addition to the computational complexity of EFM enumeration for large metabolic networks, these objects are not
necessarily related to experimentally-derived flux measurements. This is because when a vector of experimentally-
measured flux values v would be decomposed into EFMs, this generally does not give a unique solutions because
it can be done in many ways. Flux sampling methods can be employed to solve both the computational and
interpretability problems simultaneously, exploring the set of flux vectors (i.e. directly measurable in principle) by
computationally sampling from the flux space. The goal of flux sampling in general terms is to produce a sequence
of flux vectors that satisfy the steady state constraints until enough samples have been generated to provide an
approximate representation of the entire flux space. The flux polyhedra defined by mass-balance and additional
inhomogenous linear constraints are convex, and therefore uniform sampling of these flux spaces can be achieved
using variants of an algorithm developed for convex analysis called the coordinate hit-and-run (CHR) algorithm [27].
Briefly, the most basic implementation of the CHR algorithm generates a Markov chain of flux vectors by starting in
a random position within the flux polytope, picking a direction at random (uniform), and moving a random distance
(uniform) in that direction from the current point. The resulting point is returned as a flux vector instance and the
process repeats from there. It has been proven that the CHR algorithm converges to a stationary distribution of

the Markov chain that is a uniform distribution in the flux space. Alternatives to uniform sampling (i.e. alternative
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distributions across the flux polytope) can also be achieved using variants of the CHR algorithm.

As highlighted previously in Section 4.4.3, mass-balance and inhomogeneous linear constraints alone often do not
contain enough information to sufficiently reduce the space of biologically-feasible flux vectors. For example, ther-
modynamic constraints on flux vectors are important for ruling out a large proportion of the sampled flux vectors as
infeasible, but this may disproportionately dominate the resulting sampling distributions. Unfortunately, for mathe-
matical reasons too deep to go into here, simply removing these infeasible flux distributions post-sampling will not
result in a uniform distribution over the thermodynamically-feasible portion of flux space. In fact, this relevant subset
of flux space cannot be defined explicitly, and is usually neither convex nor connected meaning that no Markov chain
methods exist for sampling. As an alternative, a recent method [28] has been developed to combine thermodynamic
constraints, physiological observations and estimated thermodynamic parameters, with mass-balance and inhomoge-
neous linear constraints to provide a probabilistic thermodynamic analysis of metabolic reaction networks. Advances
such as these will almost certainly aid a more complete characterization of flux space as data and methods become

available.

4.5.3. Minimal cut sets

A minimal cut set (MCS) is a set of reactions that, when disabled, disables a set of modes, which in turn can represent
a biological function, such as the secretion of a side product. This enables the prediction of gene deletion targets,
given that the genes coding for the involved reactions are known. A cut set is minimal if the removal of one or more

reactions from the set leads to at least one of the targeted modes not being disabled.

In order to avoid also disabling desired functionalities, such as product secretion and growth, the concept of constrained
minimal cut sets (cMCSs) has been developed. cMCSs enable targeting a set of modes while at the same time making

sure that some elements of another set of modes will remain active.

Motivation for (constrained) Minimal Cut Sets The concept of MCSs was introduced by Klamt and Gilles in
2004 [29] and subsequently generalized and improved [30, 31, 32]. As briefly outlined above, the idea is to define
a set of EFMs which should be disabled, for example because they generate an unwanted side product or because
they don't generate the product of interest with a sufficiently high yield. Since EFMs are minimal, removing a single
reaction will disable it. A cut set is a set of reactions of which at least one is active in each of the EFMs in the
targeted group. Thus, disabling the reactions contained in the cut set will disable all of the targeted EFMs, and each
cut set therefore represents the prediction of a set of gene deletions. Since it would be pointless to remove reactions
which only target EFMs that were already targeted by other reactions, cut sets are required to be minimal. This
means that removing a single reaction from the cut set would lead to one or more of the targeted EFMs to survive
the intervention and also that adding a single reaction to the cut set would have no additional effect on the set of
target EFMs.

The pitfall when using MCSs is that while they guarantee the elimination of the targeted EFMs, all other EFMs may
be affected as well. This means that modes with desired phenotypes, such as high growth and/or high product yield,
may become impossible. Therefore, cMCSs were developed [33]. In this extension of the concept of MCSs it is now
possible to additionally define a set of EFMs which are desired, i.e. which can not be disabled by the cMCSs. This is
usually implemented by the requirement that at least a specified minimum number of EFMs of the desired set need
to remain active. Summarizing, cMCSs are sets of reactions which guarantee that (i) the full set of target EFMs is
disabled and (ii) a certain minimum of desired EFMs has to remain unaffected. The drawback, with both MCSs and
cMCSs, is that the target (and desired) EFMs need to be defined. This is generally achieved by defining cut-offs in

terms of product yield and growth, which is, however, ultimately arbitrary.

Calculation of (constrained) Minimal Cut Sets Since minimal cut sets in a metabolic network are EFMs in a
dual network [34], methods used for calculating EFMs can be used to calculate MCSs. Among other approaches

[35] one based on binary integer programming has been developed [36, 37]. While it requires that the EFMs are
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calculated before it can be applied, the advantage is that the algorithm is very intuitive. After having calculated
the modes, each is represented as a binary vector which is zero for reactions with zero flux and one otherwise. The
EFMs are then divided into either targeted or desired. A binary vector, corresponding to the cMCSs being calculated
is introduced. It will have a one if the corresponding reaction remains active and zero if the reaction is disabled.
The first requirement is that cMCS needs to disable all target modes and thus the vector must have zero elements
such that each target EFM must have at least one corresponding non-zero element. The second requirement is that
at least a defined minimum of desired modes must remain active. This is achieved by introducing a second binary
vector. This vector has an element for each EFM and is calculated so that it has a zero when the mode is disabled
by the cMCS and one otherwise. By adding the constraint that the number of ones in this vector must at least equal
the previously defined minimum, the second requirement is met. Maximizing the vector corresponding to the cMCS
yields the first solution. The next solution can be found by adding constraints to make sure that the current one is

excluded.

4.6. Concluding remarks

In this chapter we studied how the individual reactions that an organism can catalyze together give rise to the overall
conversion of nutrients into cell components and secretion products. For that, we studied the cell’s metabolism under
a number of simplifying assumptions, most notably, we model metabolism in steady-state. Given this steady-state
constraint, we explained how all feasible flux distributions form a space of a specific type: a pointed polyhedral cone.

By exploring this ‘flux cone' we can chart the metabolic capabilities of an organism.

We have seen that an exhaustive charting of these metabolic capabilities is the computation of all elementary flux
modes: minimal subnetworks that can individually give rise to steady-state flux distributions, and that may be
interpreted as minimal metabolic strategies. An especially important use of EFM analysis can be found in the
prediction of the effect of gene knockouts: when all EFMs that produce compound Y use reaction 7, then the
organism cannot make this compound when the gene is knocked out that codes for the enzyme that catalyzes r.
And conversely, sometimes gene knockouts can be found such that the cell cannot grow anymore without producing
a certain compound of interest. Clearly, these analyses can be very useful for the design of organisms in bio-industry.

On the other hand, we also saw that for large models the computation of all EFMs becomes impossible. There
are simply too many of these minimal subnetworks. We presented several alternatives. One could use elementary
conversion modes if one still desires an exhaustive list of the metabolic capabilities of the cell. The ECMs are easier
to enumerate because one can choose to focus only on all possible conversions between (a subset of) the nutrients
and products, instead of requiring all information about which reactions are used to get these conversions. For the
design of gene knockouts specifically, minimal cut sets may be used. Finally, we discussed that the flux cone can be

sampled randomly to characterize the flux cone, if this characterization does not need to be exhaustive.

In many cases we have additional information that determines that part of the flux cone is infeasible. For example,
some metabolic fluxes may have been measured so that these reaction rates can be fixed to their observed value.
In other cases, one may want to use thermodynamic properties to prohibit reactions from occurring that would
violate the second law of thermodynamics. These additional constraints can be imposed on top of the mass-balance
constraint to further bound the space of feasible flux distributions; each correctly-imposed constraint narrows down

the space of feasible fluxes, and thus increases our knowledge of the metabolic state of the cell.

All explorations of the space of feasible flux distributions show one unavoidable conclusion: the metabolic network
is incredibly flexible. Even when several constraints are imposed, a genome-scale metabolic model will allow for an
almost incomprehensible number of modes in which the metabolic network can function. Consequently, to predict
the metabolic state of a cell in more detail we need to make an additional assumption. In the following chapter, we
will study what predictions we can make when we assume that the metabolic state is optimized to perform a certain

function.
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Figure 4.7: Spirallus insilicus network, adapted from [38]

Recommended readings

Elementary flux modes and their applications are introduced in an intuitive way in: J. Zanghellini, D. E. Ruckerbauer,
M. Hanscho, C. Jungreuthmayer (2013). Elementary flux modes in a nutshell: Properties, calculation and applications.
Biotechnology Journal 8 (9), 1009. doi: 10.1002/biot.201200269

Elementary Flux Vectors were introduced as an analog of Elementary Flux Modes in the case that the flux mode
is further bound by at least one inhomogeneous constraint. A nice review of these EFVs is can be found in:
S. Klamt, G. Regensburger, M. P. Gerstl, C. Jungreuthmayer, S. Schuster, R. Mahadevan, J. Zanghellini, and
S. Miiller (2017). From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary
linear flux constraints. PLoS Computational Biology, 13(4):e1005409, doi: 10.1371/journal.pcbi.1005409.

Problems

Computer exercises for this chapter can be found on the book website.

Problem 4.1 A small metabolic network (1)
Spirallus insilicus, a completely fictional organism [39], is characterized by the metabolic network depicted in
Figure 4.7 X, S and P represent the biomass, one substrate and one product, while metabolites A to E denote

intracellular metabolites. One directional arrows indicate irreversible reactions (all but v4)

(a) How many intracellular metabolites, intracellular reactions and transport reactions are involved in the model?

(b) Obtain the stoichiometric matrix (IN) and the vector of fluxes. How many elements are in the product N v
and what do they represent?

(c) Is the matrix N of full rank? How many fluxes should be specified to have a unique solution?

(d) Transform the set of constraints so that they define a pointed cone. Determine the number of variables

(fluxes) and constraints.

Problem 4.2 A small metabolic network (2)


https://doi.org/10.1002/biot.201200269
https://doi.org/10.1371/journal.pcbi.1005409
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Consider the following small metabolic network:

U%OSC

U1

— P,

U3

Se
Se
P. 2= C,
P, — D,
Ce

P.+2C. 25X

Metabolites with a ¢ subscript are located in the cytosol (intracellular) while e stands for extracellular and X

represent biomass. All fluxes are positive.

(a) Represent the model as a reaction network (a sketch with metabolites and reactions)
(b) Obtain the stoichiometric matrix (IN) and list the variables of the metabolic model (v)
(c) Show that there is no solution to the mass balance equation N v = 0 producing metabolite D. Identify why

this is so and modify the model so the production of D is allowed (v3 > 0)

Problem 4.3 Elementary Flux Modes (1)
Assume reaction vy is irreversible from A to D in Spirallus insilicus (Problem 4.1). Calculate all the Elementary
Flux Modes.

(a) By hand.
(b) Using a software of your choice (e.g. pypi.org/project/efmtool/)

Problem 4.4 Elementary Flux Modes (2)

Consider the following metabolic network

o o o
Do
o
|
—_
|
[\
o
o

Please note that some stoichiometric coefficients in N are different from 1 (not shown in the graphics).

(a) In the network drawing, gray dots denote carbon atoms. Check that carbon atoms are conserved in all
reactions. What's the carbon content of the byproduct (not shown) of the reaction from A to D?

(b) Al metabolites are treated as internal, that is, they need to be mass-balanced. Find all EFMs (by pure
reasoning or by using a software). Determine all EFMs in which all fluxes are in forward direction, i.e. along
the conventional directions indicated by arrows.

(c) Which of the EFMs are thermodynamically realizable? Explain why.

Solutions to problems
Problem 4.4 (Elementary Flux Modes (2))

EFMs containing forward fluxes only:


https://pypi.org/project/efmtool/
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EFMs containing forward and backward fluxes:
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