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Diversity of metabolic flux distributions

Roberto Mulet

bz DO FiZEHNUM eurff &



The Problem
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The simplest math

aX; _
prai > Syri(X)
i

> X, concentration of metabolite ¢ € [1,..M]
» v; velocity of reaction j € [1,..N]

» S;; Stoichiometric Matrix

» N>M
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Stationarity

Constraint modelling




Stationarity

Constraint modelling

Constraint modelling




Graphical Representation
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Additional Assumption

» Maximize: F = Zj hjv;
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Additional Assumption

> Maximize: £ =3, h;v;

Flux Balance Analysis = Linear Programming




Graphical Representation
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Experimental Support
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Figure 1 Growth of £. coliK-12 on malate. a, The malate—oxygen phenotype phase plane
(PPP) Phase 1 is characterized by metabolic futile cycles, whereas phase 2 is
characterized by acetate overflow metabolism. The line of optimality (LO, in red) separates
phases 1 and 2 (ref. 21.) Data points (open circles) represent malate concentrations
ranging from 0.25-3¢1~"; and temperatures ranging from 29-37 °C. The two data
points in blue represent the starting point (day 0) and endpoint (day 30) of adaptive
evolution respectively, at a malate concentration of 2¢1™" and a temperature of 37°C.
These data points represent a span of 500 generations. b, Three-dimensional
representation of growth rates. The xand y axes represent the same variables asin a. The
Zaxis represents the cellular growth rate (h~"). OUR, oxygen uptake rate; MUR, malate
uptake rate.
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But Life is more complex than that
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Figure 3. (a—c) Snapshots at different time points (at t, =9 min, t; = 151 min, and ¢, = 264 min after the cell culture is settled, all frames are
reported in the Supporting Information Figures $1-5) of the same square visual field (length L = $00 #m) during a typical experiment.
Cells are represented schematically as disks of diameter 10 um whose color intensity scales with the flux (side bar, blue vs red for importing
vs exporting flux). Probes not shown. (d,e) Quality of the reconstructed pH gradient profile. In (d), the error between the pH calculated
from the inferred fluxes and the experimentally observed pH is plotted against the latter for each probe (at time f, = 264 min, all frames are
reported in the Supporting Information Figures $6—$10). In (e), the time trace of the pH measured by a given probe is reported alongside
the reconstructed trend at that spatial point. Shaded areas represent the experimental error on the pH at the probes. (f) Time trends of the
bulk [H'] dots and continuous line, left y lcz.lz) and lnﬁuud bulk acidic efflux (dashed line,
righty scale). (g) Time trend i measured bulk | in a biological te. (h) Single-cell lu intensity
(in mmol/gdw/h) as a function of time (in min, sampling every 10 min) of the cells forming the dipole nmnﬂughlnghked in the upper right
corner of the frames in (a—c). (i) Single-cell experimental flux distribution (in mmol/gdw/h, (dots) and its Gaussian approximation (lines)
in linear-logarithmic scale. The histogram is built from all single-cell flux values (100200 cells per frame) and time frames (36 frames
resulting from a 6 h experiment sampled every 10 min) tracked in one visual field of one experiment.

ers, ACS Nano 2023, 17, 4,

pH-Sensing Hybrid Nanofi

V. Onesto el al, Probing Single-Cell Fermentation Fluxes and Exchange Networks
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But Life is more complex than that
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A. Traven et al, Transcriptional profiling of a yeast colony provides new insight into the heterogeneity of multicellular fungal communities. PLoS One.

2012;7(9):e46243.



But Life is more complex than that

REVIEWS

Physiological heterogeneity in biofilms

Philip S. Stewart*" and Michael J. Franklin*$
Abstract| Biofilms contain bacterial cells that are in a wide range of physiological states.
Within abiofim population. cels with diverse genotypes and phentypes that express

tress specific biological activities are
juxtaposed. The isms that d
heterogene\tymclude ‘microscale chemical gradients, adaptation to local environmental
ndition ion and the genotypi fon that occurs through

mutation and selection. Here we discuss the processes that generate chemical gradients in
The ISME Jounal (2018) 121199-1209
Pitps2idolorg/10.1038/541396-017-0036-2 (SM e
I ]
The gence of bolic h ity and diverse growth

responses in isogenic bacterial cells

Emrah Simsek' - Minsu Kim'?

Available online at v sciencedirect.com Current Opinion in

ScienceDirect Microbiology

IER
Metabolic heterogeneity in clonal microbial populations
Vakil Takhaveev and Matthias Heinemann ®°w<“='k

In the past decades, numerous instances of phenofypic extreme case of subpopulations having distincrly differ-
diversity were observed in clonal micrabial populations, ent activities of metabolic parhways [4-6]. Furthermore,
ey ich less is, d how that even under

particularly, on the e expression ley
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Building a Probability Measure

Diversity of metabolic flux distributions 10/35



Building a Probability Measure
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Building a Probability Measure
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Maximum Entropy Principle

S=- JP P(v)log P(v)
Among all the probability densities compatible with the data (or knowledge), the one
having the largest value of S is the one that best represents our knowledge of the

system




Derivation

mazp(,) — [[p P(v)log P(v)]
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Derivation

mazp(,) — [[p P(v)log P(v)]

subject to: [, P(v) =1 and Jp fW)P(v) =< f >
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Derivation

£=- /P P()log P(v) — o /P Pw)— 1)~ B[ F0)Pw)— <)

P
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Derivation

£=- /P P()log P(v) — o /P Pw)— 1)~ B[ F0)Pw)— <)

P

P(v) ~ P1W)
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Summarizing

Probability densities over the flux polytope 267
B=0 B>0 B— oo
— >
p(v) ~ const. p(v) ~ eftv p(v) ~ d(v-v*)
uniform Boltzmann optimum

Figure 19.3: Boltzmann distribution on the flux polytope. The Boltzmann distribution, Eqn (19.10), morphs
from a uniform probability density to a d-distribution concentrated on the flux vector that maximizes the
function f as 8 varies from 0 to +oc.
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Problem One
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Mathematical framework

by, < rq < uby

dX D
_— = (,u — 0 — D)X —Li S (7% S mm{Vl,cl}}

dt
ZTk < K
k

= p(u,r) o=o0(s)
> Sirk — i — yip+ 1 =0
k
ds; The cell maximizes biomass

—_— = —UiX — (81; — Ci)D

dt production g
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Small Network

Sym= .’
Vazquez et al.. Macromolecular crowding explains overflow metabolism in cells. Scientific Reports 6, 31007 (2016)
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Toxicity is the key point

bistable regime
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General Picture
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(a) Overflow. At high enough nutrient uptake the respiratory flux hit s the upper bound Tmax and the remaining nutrients are exported as W. (b)

Respiration. The nutrient is completely oxidized with a large energy yield. (c) Threshold values of £. £( delimits the nutrient excess regime

(€ < &p) from the competition regime (§ > £(). £sec delimits the transition between overflow metabolism (§ < £sec and respiration (£ > Esec)-
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Homogeneous Chemostat

dX
= (-0 —D)X =
It (w—o ) 0
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Homogeneous Chemostat

dX

= (u—0-D)X =
g = (w—o-D)X=0

If stationary p(u,r) — o(s*) = D
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Hetergeneous Chemostat

X
D=2=
§

— / (u(v) — o(s")) Ps+(u, r)d(u,r)
I

St=ci—€ /H i (v) Poel(u, )
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Small Network again
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Effect of the heterogeneity
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Genome Scale Metabolic Network

12
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Experimental results
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Experimental results
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L. Calzadilla-Rosado, E. Hernandez, J. Dustet, J. Ferndndez-de-Cossio-Diaz, M. Pietzke, A. Vazquez, K. Ledn, R. M. and T. Boggiano, Multiple
steady states and metabolic switches in continuous cultures of HEK293: Experimental evidences and metabolomics analysis, Biochemical Engineering

Journal 198, 109010 (2023)
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Problem Two

Can we estimate the fluxes of the cultures in a chemostat?
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Standard approach

Given some constraints: SU =10

< Vj >eqp€ polytope

Find v such that some function f(v) is maximum
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Alternatively: Maximum Entropy

Given some constraints: Si7 = b and:
<V >exp= /yP(g)dv € polytope

argMaximizeS = — [ P(v) log P(v)dv
P(v)
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Toy model

dX
—=(u—D)X
g = m=D)
= p(u,r)
ds
%——UX-F(CR—S)
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Toy model

dX
W = X (p,ug, o) — D X (1, ug, up)
d
% - _/ug,X(lu,ug,uo)d'u,dquuo‘F(Cg_sg)D

|4
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Toy model

dX(PL; Ug, Uo)

dt = (1—6)MX(M,Ug,uO)—DX(/,L,UQ,UO)+
+ % / ' X (p' g, ug) dyd, dugdug,
v

dsy

dt = _/UQ,X(M,UQ,UO) d'u,dugduo—F(Cg_sg)D

\%4
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Toy model
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Inference in heterogeneous metabolism
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Results for the Genome chle Ecoli model
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Results for the Genome Scale Ecoli model
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J.A. Pereiro-Morejon, J. Ferndndez-de-Cossio Diaz and R.M, Inferring metabolic fluxes in nutrient-limited continuous cultures: A Maximum Entropy

Approach with minimum information, iScience 25, 105450 (2022)
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Results for the Genome Scale Ecoli model
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FIG. 2. Maximum entropy model FBA flux predictions in Escherichia coli during steady state

growth. (A, C) Comparison of measured fluxes (black, mean £ SD over biological replicates; normalized to glucose uptake)
with predictions of FBA (red stars) and of the maximum entropy model (pink, mean = SD from the predicted joint distribution
over fluxes). Data for (A) are a collection of 35 experiments from Ref [25]; data for (C) are three replicates from Ref [26] .
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D. De Martino et al, Statistical mechanics for metabolic networks during steady state growth, Nat. Comm. 9, 2988 (2018)




Conclusions

» Every direct problem can be studied in a probabilistic setting
» This probabilistic setting can be used to solve every inverse problem

P> There is a lack of experimental results
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