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Organ morphogenesis
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Constraints

Organ development in pluricellulars is submitted to constraints:

Function Shape

g
o = W
= [y

Minimization of energy while satisfying the constraints
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Optimization

The perfect organ does not exist. But the optimal can be reached.

Mathematical framework

» Cost function £ dependent on one or several variables x € R™
» One or several equality constraints: ¢(z) = 0, where ¢ : R" — R™

» Find an optimal value z* that minimizes the function £(x) while ¢(z*) =0
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The example of the lung

Problematics
» Role: connects Oy and CO5 in atmosphere with
inner body
» Medium: gas transfer by diffusion through alveolar
membrane
» Major constraints:

» Diffusion: a surface process
» Limited thoracic volume

Optimize (maximize) the surface/volume ratio!




Lung morphometry

Characteristics necessary for a proper functioning of the lung

» Space-filling
» Self-avoiding

sl i o
H P

Cumulated cross-se

Distance from alveoli

Economy of organ form and function 7/30 a



Lung morphogenesis

Two types of approaches

» Programmed morphogenesis

> Self-organized morphogenesis

Orthogonal bifurcation
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Lung morphogenesis

Rendered image based on simulations from Clément et al., 2014
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The lung as a model organ for
optimization under constraints
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Lung morphology

Bronchial tree
» Cascade of bifurcating airways with cylindrical
shapes

» Around 17 generations

» Size of the airways decreases at each
bifurcation

» Exchange surface with blood (70 — 100 m? ) Figure: Cast of the human'’s lung
» Alveoli: bubble-like structure made by E.R. Weibel

» Around 6 generations




Modelling the human lung

» Symmetric dichotomic bifurcating tree.
» Branches are assumed to be cylindrical.

» Size of the bronchi of generation i:
liv1 =lih =1l = loh',
Ti+1 = T‘ih =T = Tohi,

» Homothetic ratio between generations.

1 in the acinus.

{2_1/3 in the bronchial tree,
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Figure: Illustration of the lung model



Diffusion process

> Passive process

> Balance the partial pressures between blood and the alveolar air

> Pathways from the ambient air to the respiratory zone are too long (L, ~ 30 cm)

» Characteristic time to travel by diffusion:

L
tp, = fp ~ 4500 s = 1 hour and 15 minutes !




Convection process

Ventilation

» Dynamic process
» Air of the lung renewed
» Performed thanks to a set of muscles (ex. diaphragm)

» Two phases: inspiration and expiration

Air moves in Air moves out

]

Diaphragm
relaxes upward

(a) Inhalation (b) Exhalation
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Modelling oxygen transport

Convection-diffusion-reaction equation in each airway
oP 0’P oP
ot~ Vg Ty =P Poea = F)

Link all generations by assuming:

» Continuity between generations

» Conservation of the quantity of oxygen
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Numerical simulations

» Tidal volume » (5 flow to blood
» Breathing frequency > CO; flow to blood

e
&

Vo, = 230 mL - min~!

Flow (L/min)
°

V002 =180 mL - min~!

°
&

16 18 20 22 24
Time (s)

Economy of organ form and function 16/30 a



Power spent during ventilation

Action of the muscles on the lung: st

Elastic power
Viscous power
Total power

» Deforms the tissues

» Displaces the air along the bronchial tree

Power (W)

Pm ~ Pe + Pa ol
~ —~— ~

muscle power elastic power  air viscous dissipation
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Frequency (1/min)
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Power spent during ventilation

Viscous dissipation of air

» Characterized by the lung hydrodynamic resistance
» Connects the airflow F to the air pressure p: p = FR

» Power dissipated
1
7: = R/.FQ = Z;Q,(Wfb [/T>2

Elastic power

» Characterized by the compliance of the lung

> Relates the force per unit of surface applied by the muscles to the volume change of
the lung

> Elastic power
_ VEfs
2C

Pe




Optimal ventilation for humans

min Pe(Vr, f5) + Pa(Vir, f5)  s.t. Vo, (Vir, fo) = VS
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Allometric scaling laws
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Concept of allometry

Raw ecological data Log-Log plot
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History of allometry

> 1897: Eugene Dubois described the relation between the brain's mass and the
body's mass in mammals
b=cm”

> 1907: Lapicque transformed Dubois’ relation in a log-log dependency

> 1917: D'Arcy Thompson adopted the thesis that the living systems are submitted
to the physical laws of nature

» 1936: Huxley and Tessier agreed for the terminology of allometry and the
associated law

a

y=bx
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Mechanistic approach

WBE — Hypotheses (1997)
1. Transport of nutrients i.e., oxygen in a fractal-like branching tree
2. Fluid carrier incompressible
3. Total volume of the fluid proportional to body size
4

. Size of the terminal units i.e., capillaries invariant or mass independent

Semi-fractal branching tree

7
0 Stereotyped terminal units
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Mechanistic approach

WBE — Model & Results

: 3 :
» General metabolic allometry follows a oc M4 relation

» Data-based allometric relations are retrieved from the model

Cardiovascular Respiratory
Variable Exponent Variable Exponent
Observed Predicted Observed Predicted
Aorta radius 0.36 3/8 = 0.375 Trachea radius 0.39 3/8 = 0.375
Blood volume 1.00 1.00 Lung volume 1.05 1.00
Circulation time 0.25 1/4 =0.25 Respiratory frequency -0.26 -1/4 =-0.25

Metabolic rate 0.75 3/4 =0.75  Air velocity in trachea 0.02 0




Allometric laws in the respiratory system
» Mammals share morphological and functional properties dependent on the mass of
the animal with allometric scaling laws
» Morphological differences amongst mammals affect the control of ventilation

VO2 max (mL/min)
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Adaptation of the oxygen transport model

Shared characteristics

» Tree-like structure with bifurcating branches

» Decomposition into two parts: bronchial tree and acini

Adaptation of morphological parameters

» Tracheal radius and length
> Radius and length of alveolar ducts

> Exchange surface

Oxygen transport

» Convection-diffusion-reaction equation

» Exchange [ coefficient dependent on the mass of the mammal



Optimal ventilation for mammals
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Allometric laws for ventilation

Allometric law:
Y = YoM*

fo (pred) fy (obs) Vi (pred) Vi (obs)

BMR -0.29 -0.26 1.05 1.04
FMR -0.32 N.D 0.98 N.D.
MMR -0.15 -0.14 1.04 N.D.

Table: Predicted and observed exponents « for the allometric scaling laws of breathing
frequency f; and tidal volume Vp at three different metabolic regimes.
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Conclusion
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Conclusion

» Principles of economy applied on larger living structures

> Constraints guide the development and the functioning of mammalian lung

> Allometric laws allow a deep understanding of the mechanisms of differential
growth
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