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Organ morphogenesis
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Constraints

Organ development in pluricellulars is submitted to constraints:

Function Shape

Minimization of energy while satisfying the constraints
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Optimization

The perfect organ does not exist. But the optimal can be reached.

Mathematical framework
▶ Cost function E dependent on one or several variables x ∈ Rn

▶ One or several equality constraints: c(x) = 0, where c : Rn → Rm

▶ Find an optimal value x∗ that minimizes the function E(x) while c(x∗) = 0
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The example of the lung

Problematics
▶ Role: connects O2 and CO2 in atmosphere with

inner body

▶ Medium: gas transfer by diffusion through alveolar
membrane

▶ Major constraints:
▶ Diffusion: a surface process
▶ Limited thoracic volume

Solution

Optimize (maximize) the surface/volume ratio!
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Lung morphometry

Characteristics necessary for a proper functioning of the lung

▶ Space-filling

▶ Self-avoiding
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Lung morphogenesis

Two types of approaches

▶ Programmed morphogenesis

▶ Self-organized morphogenesis

Planar bifurcation

Orthogonal bifurcation

Bifurcator Rotator

Inspired by Metzger et al., 2008
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Lung morphogenesis

Rendered image based on simulations from Clément et al., 2014
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The lung as a model organ for
optimization under constraints

Economy of organ form and function 10/30



Lung morphology

Bronchial tree
▶ Cascade of bifurcating airways with cylindrical

shapes

▶ Around 17 generations

▶ Size of the airways decreases at each
bifurcation

Acini

▶ Exchange surface with blood (70− 100m2 )

▶ Alveoli: bubble-like structure

▶ Around 6 generations

Figure: Cast of the human’s lung
made by E.R. Weibel

Economy of organ form and function 11/30



Modelling the human lung

Assumptions

▶ Symmetric dichotomic bifurcating tree.

▶ Branches are assumed to be cylindrical.

▶ Size of the bronchi of generation i:

li+1 = lih ⇒ li = l0h
i,

ri+1 = rih ⇒ ri = r0h
i,

▶ Homothetic ratio between generations.

h =

{
2−1/3 in the bronchial tree,

1 in the acinus.

Figure: Illustration of the lung model

Economy of organ form and function 12/30



Diffusion process

Diffusion
▶ Passive process

▶ Balance the partial pressures between blood and the alveolar air

Limitations
▶ Pathways from the ambient air to the respiratory zone are too long (Lp ≈ 30 cm)

▶ Characteristic time to travel by diffusion:

tp =
Lp

D
≈ 4500 s = 1 hour and 15 minutes !
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Convection process

Ventilation
▶ Dynamic process

▶ Air of the lung renewed

▶ Performed thanks to a set of muscles (ex. diaphragm)

▶ Two phases: inspiration and expiration
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Modelling oxygen transport

Convection-diffusion-reaction equation in each airway

∂P

∂t
−D

∂2P

∂x2
+ u(t)

∂P

∂x
= β (Pblood − P )

Link all generations by assuming:

▶ Continuity between generations

▶ Conservation of the quantity of oxygen
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Numerical simulations

Inputs

▶ Tidal volume

▶ Breathing frequency

Outputs

▶ O2 flow to blood

▶ CO2 flow to blood

V̇O2 = 230 mL ·min−1

V̇CO2 = 180 mL ·min−1

Economy of organ form and function 16/30



Power spent during ventilation

Action of the muscles on the lung:

▶ Deforms the tissues

▶ Displaces the air along the bronchial tree

Pm︸︷︷︸
muscle power

≃ Pe︸︷︷︸
elastic power

+ Pa︸︷︷︸
air viscous dissipation
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Power spent during ventilation

Viscous dissipation of air

▶ Characterized by the lung hydrodynamic resistance
▶ Connects the airflow F to the air pressure p: p = FR

▶ Power dissipated

Pa = RF2 =
1

4
R(πfbVT )

2

Elastic power

▶ Characterized by the compliance of the lung
▶ Relates the force per unit of surface applied by the muscles to the volume change of

the lung

▶ Elastic power

Pe =
V 2
T fb
2C
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Optimal ventilation for humans

min
VT ,fb

Pe(VT , fb) + Pa(VT , fb) s.t. V̇O2(VT , fb) = V̇ obs
O2
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Allometric scaling laws

Economy of organ form and function 20/30



Concept of allometry

Raw ecological data Log-Log plot

ts = 10.1M−0.103

Economy of organ form and function 21/30



History of allometry

▶ 1897: Eugène Dubois described the relation between the brain’s mass and the
body’s mass in mammals

b = cmr

▶ 1907: Lapicque transformed Dubois’ relation in a log-log dependency

▶ 1917: D’Arcy Thompson adopted the thesis that the living systems are submitted
to the physical laws of nature

▶ 1936: Huxley and Tessier agreed for the terminology of allometry and the
associated law

y = bxα
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Mechanistic approach

WBE – Hypotheses (1997)

1. Transport of nutrients i.e., oxygen in a fractal-like branching tree

2. Fluid carrier incompressible

3. Total volume of the fluid proportional to body size

4. Size of the terminal units i.e., capillaries invariant or mass independent

Semi-fractal branching tree

Stereotyped terminal units
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Mechanistic approach

WBE – Model & Results

▶ General metabolic allometry follows a ∝ M
3
4 relation

▶ Data-based allometric relations are retrieved from the model

Cardiovascular Respiratory
Variable Exponent Variable Exponent

Observed Predicted Observed Predicted
Aorta radius 0.36 3/8 = 0.375 Trachea radius 0.39 3/8 = 0.375
Blood volume 1.00 1.00 Lung volume 1.05 1.00
Circulation time 0.25 1/4 = 0.25 Respiratory frequency -0.26 -1/4 = -0.25
Metabolic rate 0.75 3/4 = 0.75 Air velocity in trachea 0.02 0
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Allometric laws in the respiratory system
▶ Mammals share morphological and functional properties dependent on the mass of

the animal with allometric scaling laws

▶ Morphological differences amongst mammals affect the control of ventilation
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Adaptation of the oxygen transport model

Shared characteristics
▶ Tree-like structure with bifurcating branches

▶ Decomposition into two parts: bronchial tree and acini

Adaptation of morphological parameters

▶ Tracheal radius and length

▶ Radius and length of alveolar ducts

▶ Exchange surface

Oxygen transport

▶ Convection-diffusion-reaction equation

▶ Exchange β coefficient dependent on the mass of the mammal
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Optimal ventilation for mammals

min
VT ,fb

Pe(VT , fb) + Pa(VT , fb) s.t. V̇O2(VT , fb) = V̇ obs
O2

(a) Frequency (b) Tidal Volume
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Allometric laws for ventilation

Allometric law:
Y = Y0M

α

fb (pred) fb (obs) VT (pred) VT (obs)

BMR -0.29 -0.26 1.05 1.04
FMR -0.32 N.D 0.98 N.D.
MMR -0.15 -0.14 1.04 N.D.

Table: Predicted and observed exponents α for the allometric scaling laws of breathing
frequency fb and tidal volume VT at three different metabolic regimes.
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Conclusion
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Conclusion

▶ Principles of economy applied on larger living structures

▶ Constraints guide the development and the functioning of mammalian lung

▶ Allometric laws allow a deep understanding of the mechanisms of differential
growth
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