Economic Principles in Cell Biology

Paris, July 8-11, 2024

Cells in the face of uncertainty

Olivier Rivoire (Part 1)

David Lacoste (Part 2)

David Tourigny

Origin of persisters? - mutations


```
Origin of persisters? - mutations - sensing
```


Origin of persisters? - mutations - sensing - phenotypic switching

Phenotypic switching:

- 2 states: growing/sensitive versus dormant/resistant
- same genotype
- both states are present in any environment
- stochastic switches between states

Origin of persisters? - mutations - sensing - phenotypic switching

Phenotypic switching:

- 2 states: growing/sensitive versus dormant/resistant
- same genotype
- both states are present in any environment
- stochastic switches between states

Financial analogy: bet-hedging / portfolio diversification

Origin of persisters? - mutations - sensing - phenotypic switching

Phenotypic switching:

- 2 states: growing/sensitive versus dormant/resistant
- same genotype
- both states are present in any environment
- stochastic switches between states

Financial analogy: bet-hedging / portfolio diversification

Question: optimal "strategy"?

Origin of persisters?

- mutations
- sensing
- phenotypic switching

Phenotypic switching:

- 2 states: growing/sensitive versus dormant/resistant
- same genotype
- both states are present in any environment
- stochastic switches between states

Financial analogy: bet-hedging / portfolio diversification

Question: optimal "strategy"?

Key points: - optimality in stochastic environments

- individual versus population-level adaptation
- analogies with finance and their limitations

Model assumptions:

- 2 states R: growing (R=1) / dormant (R=0)
- 2 environments E: antibiotic (E=+) / no antibiotic (E=-)
- survival/reproduction per generation f(R,E)

	E = +	E = -
R = 0	1	1
R = 1	0	2

- probability for antibiotic (E=+): p
- probability to be dormant (R=0): u

(per generation)

Question: optimal u given p?

Model assumptions:

- 2 states R: growing (R=1) / dormant (R=0)
- 2 environments E: antibiotic (E=+) / no antibiotic (E=-)
- survival/reproduction per generation f(R,E)

	E = +	E = -
R = 0	1	1
R = 1	0	2

- probability for antibiotic (E=+): p
- probability to be dormant (R=0): *u*

(per generation)

Question: optimal u given p?

Model assumptions:

- 2 states R: growing (R=1) / dormant (R=0)
- 2 environments E: antibiotic (E=+) / no antibiotic (E=-)
- survival/reproduction per generation f(R,E)

	E = +	E = -
R = 0	1	1
R = 1	0	2

- probability for antibiotic (E=+) : p
- probability to be dormant (R=0): u

(per generation)

Meta question: optimal in what sense?

Two convenient limits: (1) Large population

(2) Long time

	E = +	E = - 1- p
R = 0 <i>u</i>	1	1
R = 1 1-u	0	2

Two convenient limits: (1) Large population

(2) Long time

In one generation, given N_t cells at generation t, a fraction u is dormant (R=0) and 1-u is growing (R=1):

if antibiotic (E=+): $N_{t+1} = A_+ N_t$ $A_+ = u$

if no antibiotic (E=-): $N_{t+1}=A_-N_t$ $A_-=u+2(1-u)=2-u$

	E = +	E = - 1- p
R = 0 <i>u</i>	1	1
R = 1 1-u	0	2

Two convenient limits: (1) Large population

(2) Long time

In one generation, given N_t cells at generation t, a fraction u is dormant (R=0) and 1-u is growing (R=1):

if antibiotic (E=+):
$$N_{t+1} = A_+ N_t$$
 $A_+ = u$

if no antibiotic (E=-):
$$N_{t+1}=A_-N_t$$
 $A_-=u+2(1-u)=2-u$

Over T **generations**, a fraction p of generations with antibiotics (E=+) and 1-p without (E=-):

$$N_T = (A_+)^{pT} (A_-)^{(1-p)T} N_0 = e^{\Lambda T} N_0$$

$$\Lambda = p \ln A_+ + (1-p) \ln A_- = p \ln u + (1-p) \ln(2-u)$$

Two convenient limits: (1) Large population

(2) Long time

In one generation, given N_t cells at generation t, a fraction u is dormant (R=0) and 1-u is growing (R=1):

if antibiotic (E=+):
$$N_{t+1}=A_+N_t$$
 $A_+=u$

if no antibiotic (E=-): $N_{t+1}=A_-N_t$ $A_-=u+2(1-u)=2-u$

	E = + p	E = - 1- p
R = 0 <i>u</i>	1	1
R = 1 1-u	0	2

Over T **generations,** a fraction p of generations with antibiotics (E=+) and 1-p without (E=-):

$$N_T = (A_+)^{pT} (A_-)^{(1-p)T} N_0 = e^{\Lambda T} N_0$$

$$\Lambda = p \ln A_+ + (1-p) \ln A_- = p \ln u + (1-p) \ln(2-u)$$

Optimal u ($\max \Lambda$):

$$u = \begin{cases} 2p , & \text{if } 0$$

Two convenient limits: (1) Large population

(2) Long time

In one generation, given N_t cells at generation t, a fraction u is dormant (R=0) and 1-u is growing (R=1):

if antibiotic (E=+):
$$N_{t+1}=A_+N_t$$
 $A_+=u$

if no antibiotic (E=-):
$$N_{t+1}=A_-N_t$$
 $A_-=u+2(1-u)=2-u$

Over T **generations,** a fraction p of generations with antibiotics (E=+) and 1-p without (E=-):

$$N_T = (A_+)^{pT} (A_-)^{(1-p)T} N_0 = e^{\Lambda T} N_0$$

$$\Lambda = p \ln A_+ + (1-p) \ln A_- = p \ln u + (1-p) \ln(2-u)$$

Optimal u ($\max \Lambda$):

$$u = \begin{cases} 2p , & \text{if } 0$$

Conclusion: The optimal fraction of persisters *u* depends on the environmental uncertainty *p*

Phenotypic switching: random transitions between phenotypes independent of the environment

Sensing: switch to a new phenotype R depending on a cue S correlated to the environment E

Phenotypic switching: random transitions between phenotypes independent of the environment **Sensing:** switch to a new phenotype R depending on a cue S correlated to the environment E

Model assumptions:

- n states R
- M environmental states E, probability p(E)
- multiplication factor f(R,E)
- switching probability u(R|S) where S is a cue
- probability q(S|E) for S given E

Phenotypic switching: random transitions between phenotypes independent of the environment **Sensing:** switch to a new phenotype R depending on a cue S correlated to the environment E

Model assumptions:

- n states R
- M environmental states E, probability p(E)
- multiplication factor f(R,E)
- switching probability u(R|S) where S is a cue
- probability q(S|E) for S given E

Dynamics:

• 1 generation: $N_{t+1} = A(E, S)N_t$

$$A(E,S) = \sum_{R} f(R,E)u(R|S)$$

• T generations: $N_T = e^{\Lambda T} N_0$

$$\Lambda = \sum_{S,E} q(S|E)p(E) \ln A(E,S)$$

Phenotypic switching: random transitions between phenotypes independent of the environment **Sensing:** switch to a new phenotype R depending on a cue S correlated to the environment E

Model assumptions:

- n states R
- M environmental states E, probability p(E)
- multiplication factor f(R,E)
- switching probability u(R|S) where S is a cue
- probability q(S|E) for S given E

Dynamics:

• 1 generation: $N_{t+1} = A(E,S)N_t$

$$A(E,S) = \sum_{R} f(R,E)u(R|S)$$

• T generations: $N_T = e^{\Lambda T} N_0$

$$\Lambda = \sum_{S,E} q(S|E)p(E) \ln A(E,S) = \langle \ln A(E,S) \rangle_{E,S}$$

$$= \langle f(R, E) \rangle_R$$
$$\sum_R u(R|S) = 1$$

$$= \langle \ln A(E, S) \rangle_{E,S}$$
$$\sum_{S,E} q(S|E)p(E) = 1$$

"Fitness" = long-term growth rate
$$\Lambda = \langle \ln (\langle f(R, E) \rangle_R) \rangle_{E,S}$$

average over phenotypes within a generation arithmetic mean

average over environments across generations geometric mean

Growth is a multiplicative process

Back to the simple model of bacterial persistence:

	Е = + р	E = - 1- p	Growth per generation:
R = 0 <i>u</i>	1	1	A(E = +) = u
R = 1 1-u	0	2	A(E = -) = u + 2(1 - u)

Growth is a multiplicative process Didactic example: A=2 with p=1/2 or A=1/3 with p=1/2arithmetic mean = (2+1/3)/2>1geometric mean = $2^{1/2}(1/3)^{1/2}<1$

D Bernoulli, Exposition of a new theory on the measurement of risk (1738)

Back to the simple model of bacterial persistence:

	E = + p	E = - 1- p
R = 0 <i>u</i>	1	1
R = 1 1-u	0	2

Growth per generation:

$$A(E = +) = u$$

 $A(E = -) = u + 2(1 - u)$

Optimal arithmetic mean:

$$\max \langle A(E) \rangle_E \qquad \qquad u = \begin{cases} 0, & \text{if } 0$$

u=0 is very risky: extinction when E=+ occurs

Growth is a multiplicative process Didactic example: A=2 with p=1/2 or A=1/3 with p=1/2arithmetic mean = (2+1/3)/2>1geometric mean = $2^{1/2}(1/3)^{1/2}<1$

D Bernoulli, Exposition of a new theory on the measurement of risk (1738)

Back to the simple model of bacterial persistence:

	E = + p	E = - 1- p
R = 0 <i>u</i>	1	1
R = 1 1-u	0	2

Growth per generation:

$$A(E = +) = u$$
$$A(E = -) = u + 2(1 - u)$$

Optimal arithmetic mean:
$$\max \langle A(E) \rangle_E \qquad \qquad u = \begin{cases} 0, & \text{if } 0$$

u=0 is very risky: extinction when E=+ occurs

Optimal geometric mean:

$$\max \langle \ln A(E) \rangle_E \qquad u = \begin{cases} 2p, & \text{if } 0$$

$$\textbf{Long-term growth rate:} \quad \Lambda = \langle \ln A(S,E) \rangle_{S,E} = \sum_{S,E} q(S|E)p(E) \ln A(S,E) \qquad A(S,E) = \langle f(R,E) \rangle_{R} = \sum_{R} f(R,E)u(R|S) = \langle f(R,E) \rangle_{R} = \langle f(R,E) \rangle_{R}$$

$$\textbf{Long-term growth rate:} \quad \Lambda = \langle \ln A(S,E) \rangle_{S,E} = \sum_{S,E} q(S|E)p(E) \ln A(S,E) \qquad A(S,E) = \langle f(R,E) \rangle_{R} = \sum_{R} f(R,E)u(R|S) = \langle f(R,E) \rangle_{R} = \langle f(R,E) \rangle_{R}$$

Simplifying assumption: only one phenotype R(E) can survive for each environmental state E (Kelly model)

$$f(R,E) = f(E)$$
 if $R = R(E)$ and 0 otherwise $\implies A(E,S) = f(E)u(E|S)$

$$\textbf{Long-term growth rate:} \quad \Lambda = \langle \ln A(S,E) \rangle_{S,E} = \sum_{S,E} q(S|E)p(E) \ln A(S,E) \qquad A(S,E) = \langle f(R,E) \rangle_{R} = \sum_{R} f(R,E)u(R|S) = \langle f(R,E) \rangle_{R} = \langle f(R,E) \rangle_{R}$$

Simplifying assumption: only one phenotype R(E) can survive for each environmental state E (Kelly model)

$$f(R,E) = f(E)$$
 if $R = R(E)$ and 0 otherwise $\implies A(E,S) = f(E)u(E|S)$

Optimum without sensing:

$$\Lambda_0^* = \sum_E p(E) \ln f(E) - H(p)$$
 $H(p) = -\sum_E p(E) \ln p(E)$

growth limited by the entropy of the environment

$$\textbf{Long-term growth rate:} \quad \Lambda = \langle \ln A(S,E) \rangle_{S,E} = \sum_{S,E} q(S|E)p(E) \ln A(S,E) \qquad A(S,E) = \langle f(R,E) \rangle_{R} = \sum_{R} f(R,E)u(R|S) = \langle f(R,E) \rangle_{R} = \langle f(R,E) \rangle_{R}$$

Simplifying assumption: only one phenotype R(E) can survive for each environmental state E (Kelly model)

$$f(R,E) = f(E)$$
 if $R = R(E)$ and 0 otherwise $\implies A(E,S) = f(E)u(E|S)$

Optimum without sensing:

$$\Lambda_0^* = \sum_E p(E) \ln f(E) - H(p)$$
 $H(p) = -\sum_E p(E) \ln p(E)$

growth limited by the entropy of the environment

Optimum with sensing, i.e. given q(S|E)

$$\Lambda_q^* - \Lambda_0^* = \sum_{S,E} q(S|E)p(E) \ln q(S|E) = I(S,E)$$

growth increase given by the mutual information between the signal and the environment

$$\textbf{Long-term growth rate:} \quad \Lambda = \langle \ln A(S,E) \rangle_{S,E} = \sum_{S,E} q(S|E)p(E) \ln A(S,E) \qquad A(S,E) = \langle f(R,E) \rangle_{R} = \sum_{R} f(R,E)u(R|S) = \langle f(R,E) \rangle_{R} = \langle f(R,E) \rangle_{R}$$

Simplifying assumption: only one phenotype R(E) can survive for each environmental state E (Kelly model)

$$f(R,E) = f(E)$$
 if $R = R(E)$ and 0 otherwise $\implies A(E,S) = f(E)u(E|S)$

Optimum without sensing:

$$\Lambda_0^* = \sum_E p(E) \ln f(E) - H(p) \qquad H(p) = -\sum_E p(E) \ln p(E)$$

growth limited by the entropy of the environment

Optimum with sensing, i.e. given q(S|E)

$$\Lambda_q^* - \Lambda_0^* = \sum_{S,E} q(S|E)p(E) \ln q(S|E) = I(S,E)$$

growth increase given by the mutual information between the signal and the environment

Trade-off between value of information I(S,E) and cost c of the sensor: may be optimal to have no sensor

$$\textbf{Long-term growth rate:} \quad \Lambda = \langle \ln A(S,E) \rangle_{S,E} = \sum_{S,E} q(S|E)p(E) \ln A(S,E) \qquad A(S,E) = \langle f(R,E) \rangle_{R} = \sum_{R} f(R,E)u(R|S) = \langle f(R,E) \rangle_{R} = \langle f(R,E) \rangle_{R}$$

Simplifying assumption: only one phenotype R(E) can survive for each environmental state E (Kelly model)

$$f(R,E) = f(E)$$
 if $R = R(E)$ and 0 otherwise $\implies A(E,S) = f(E)u(E|S)$

Optimum without sensing:

$$\Lambda_0^* = \sum_E p(E) \ln f(E) - H(p)$$
 $H(p) = -\sum_E p(E) \ln p(E)$

growth limited by the entropy of the environment

Optimum with sensing, i.e. given q(S|E)

$$\Lambda_q^* - \Lambda_0^* = \sum_{S,E} q(S|E)p(E) \ln q(S|E) = I(S,E)$$

growth increase given by the mutual information between the signal and the environment

Trade-off between value of information I(S,E) and cost c of the sensor: may be optimal to have no sensor

Generalization & links with information theory: Covers & Thomas, Information Theory

Biology (population)	Finance (capital)
Individual	Currency unit
Environment $p(E)$	Market state
_	Investor
Phenotype decisions $u(R)$	Investment strategy
Multiplicative rate $f(R, E)$	Immediate return
Environmental cue $P(S E)$	Side information

Biology (population)	Finance (capital)
Individual	Currency unit
Environment $p(E)$	Market state
_	Investor
Phenotype decisions $u(R)$	Investment strategy
Multiplicative rate $f(R, E)$	Immediate return
Environmental cue $P(S E)$	Side information

Major difference

Biology: each cell processes information

Finance: one investor centralizes information

${\bf Biology}({\bf population})$	$\mathbf{Finance}\left(\mathbf{capital}\right)$
Individual	Currency unit
Environment $p(E)$	Market state
_	Investor
Phenotype decisions $u(R)$	Investment strategy
Multiplicative rate $f(R, E)$	Immediate return
Environmental cue $P(S E)$	Side information
` ' '	

Major difference

Biology: each cell processes information

Finance: one investor centralizes information

Implication 1: if one sensor per cell, cell-to-cell heterogeneity in perceived signals

Different averages:
$$\Lambda = \langle \ln \langle f(E,R) \rangle_R \rangle_{S,E} < \Lambda = \langle \ln \langle f(E,R) \rangle_{R,S} \rangle_E$$

if S is centralized if S is distributed

Biology (population)	Finance (capital)
Individual	Currency unit
Environment $p(E)$	Market state
_	Investor
Phenotype decisions $u(R)$	Investment strategy
Multiplicative rate $f(R, E)$	Immediate return
Environmental cue $P(S E)$	Side information

Major difference

Biology: each cell processes information

Finance: one investor centralizes information

Implication 1: if one sensor per cell, cell-to-cell heterogeneity in perceived signals

Different averages:
$$\Lambda = \langle \ln \langle f(E,R) \rangle_{\underline{R} \rangle_{S,\underline{E}}} < \Lambda = \langle \ln \langle f(E,R) \rangle_{\underline{R},S} \rangle_{\underline{E}}$$

if S is centralized if S is distributed

Implication 2: what is optimal for a population may not be evolutionary stable

Possible conflict between levels of selection (tragedy of the commons)

No conflict in the models presented here but, more generally, optimal \neq evolvable

'Standard model' of biological information processing

- survival/ reproduction (ξ) depends on the phenotype R_t
- the phenotype R_t depends on an inherited genotype γ_t
- the inherited genotype γ_t determines the transmitted genotype γ_{t+1}

'Standard model' of biological information processing

- survival/ reproduction (ξ) depends on the phenotype R_t
- the phenotype R_t depends on an inherited genotype γ_t
- the inherited genotype γ_t determines the transmitted genotype γ_{t+1}

Two sources of stochasticity

- development $u(R_t|\gamma_t)$ (generalizing phenotypic switching)
- mutations $h(\gamma_{t+1}|\gamma_t)$

'Standard model' of biological information processing

- survival/ reproduction (ξ) depends on the phenotype R_t
- the phenotype R_t depends on an inherited genotype γ_t
- the inherited genotype γ_t determines the transmitted genotype γ_{t+1}

Two sources of stochasticity

- development $u(R_t|\gamma_t)$ (generalizing phenotypic switching)
- mutations $h(\gamma_{t+1}|\gamma_t)$

Nature of optimal stochasticity in uncertain environments?

Depends on: - the variance of environmental fluctuations

- the correlation between successive environments

'Standard model' of biological information processing

- survival/ reproduction (ξ) depends on the phenotype R_t
- the phenotype R_t depends on an inherited genotype γ_t
- the inherited genotype γ_t determines the transmitted genotype γ_{t+1}

Two sources of stochasticity

- development $u(R_t|\gamma_t)$ (generalizing phenotypic switching)
- mutations $h(\gamma_{t+1}|\gamma_t)$

Nature of optimal stochasticity in uncertain environments?

Depends on: - the variance of environmental fluctuations

- the correlation between successive environments

Extension: other mechanisms to generate and transmit variations

Example: Bacterial persistence

Adaptation to uncertain environments

- Long-term population-level adaptation
- Phenotypic switching versus sensing
- Phenotypic switching versus mutations

Example: Bacterial persistence

Adaptation to uncertain environments

- Long-term population-level adaptation
- Phenotypic switching versus sensing
- Phenotypic switching versus mutations

Analogy with games and finance

- Bet-hedging / portfolio diversification
- Key difference: level of information processing

Example: Bacterial persistence

Adaptation to uncertain environments

- Long-term population-level adaptation
- Phenotypic switching versus sensing
- Phenotypic switching versus mutations

Analogy with games and finance

- Bet-hedging / portfolio diversification
- Key difference: level of information processing

Mathematical formalism

- Geometric versus arithmetic means
- Quantifying information with entropies

Example: Bacterial persistence

Adaptation to uncertain environments

- Long-term population-level adaptation
- Phenotypic switching versus sensing
- Phenotypic switching versus mutations

Analogy with games and finance

- Bet-hedging / portfolio diversification
- Key difference: level of information processing

Mathematical formalism

- Geometric versus arithmetic means
- Quantifying information with entropies

Model based on several assumptions:

- Long-term growth rate (many generations)
- Large population (no extinction)
- Environment independent of population dynamics

Economic Principles in Cell Biology

Paris, July 8-11, 2024

Cells in the face of uncertainty part II

D. Lacoste

Outline of the talk

1. Tradeoff in optimal gambling strategies

3. Tradeoff for phenotypic switching of populations in varying environments

Kelly's formula in popular culture

From card counting method in blackjack. to investments on the stock market

A new interpretation of information rate, Kelly J. L. J. (1956)

Kelly's model as a resource allocation problem

Gambler Bookmaker

Constraints:
$$\sum_{x=1}^M b_x = 1$$
 and $r_x := rac{1}{o_x}$ with $\sum_{x=1}^M r_x = 1$ for fair odds

Dynamics: winning horse x is chosen with probability P_x

Then capital is updated : $C_{t+1} = \frac{\mathbf{b}_x}{\mathbf{r}_x} C_t$

Long term growth rate

Log-Capital
$$\log\text{-}\mathrm{cap}(t) = \sum_{\tau=1}^t \log\left(\frac{\mathrm{b}_{x_\tau}}{\mathrm{r}_{x_\tau}}\right)$$

by the law of large numbers : $\frac{\log - \exp(t)}{t} \xrightarrow[t \to \infty]{} \mathbb{E}\left[\log\left(\frac{\mathbf{b}_x}{\mathbf{r}_x}\right)\right]$

Optimization of the long term growth rate (Kelly's optimal strategy)

$$\langle W \rangle = \mathbb{E}\left[\log\left(\frac{\mathbf{b}_x}{\mathbf{r}_x}\right)\right] = D_{KL}\left(\mathbf{p}||\mathbf{r}\right) - D_{KL}\left(\mathbf{p}||\mathbf{b}\right)$$

This is maximum when $b_x = p_x$ and at this point $\langle W^* \rangle = D_{KL} \left(\mathbf{p} || \mathbf{r} \right) \geq 0$

The gambler makes money when he/she has better knowledge of the winning probabilities than the bookie

Evolution of the capital of the gambler

- Kelly's strategy dominates on long times all non-optimal strategies
- A general trade-off between the maximization of the growth rate and the minimization of risky fluctuations?

L. Dinis, J. Unterberger, D. L., Eur. Phys. Lett. (2020)

How to define risk?

By the central limit theorem:

$$\frac{1}{\sigma_W \sqrt{t}} \left(\log \frac{C_t}{C_0} - t \langle W \rangle \right) \xrightarrow[t \to \infty]{} \mathcal{N}(0,1) \text{ normal law}$$
 where
$$\sigma_W^2 = \operatorname{Var} \left[\log \left(\frac{\mathbf{b}_x}{\mathbf{r}_x} \right) \right] \text{ is the volatility}$$

The volatility is not the best measure of risk but it leads to tractable calculations

In practice, risk is relevant at intermediate time scales $t \ll (\sigma_W/\langle W \rangle)^2$

Risk free strategy

Note that the strategy $\;b_x=r_x\;\;$ has $\;\;\sigma_W=0\;\;$ and $\;\;\langle W \rangle=0\;\;$

Objective function:

$$J = \alpha \langle W \rangle - (1 - \alpha)\sigma_W + \lambda \sum_x b_x$$

- Interpolates between maximization of growth rate for α=1 and the minimization of the fluctuations when α=0
- The optimal solution is parametrized by α , which is a risk aversion parameter.
- Similarities with Markowitz portfolio theory

Markowitz H. (1952)

Data from Wharton School of Finance

The efficient border for two horses problem

For p<r:

In the
$$\ \langle W \rangle \geq 0 \ \ {
m region}, \qquad \frac{d\sigma_W}{d\langle W \rangle} = \frac{\sigma}{p-b}$$

becomes infinite near Kelly's strategy

but non-zero near the null strategy where:

$$\frac{d\sigma_W}{d\langle W\rangle} = \frac{1}{\gamma_c} = \frac{\sigma}{|p-r|} \quad \text{ and } \quad \frac{d^2\sigma_W}{d\langle W\rangle^2} = \frac{r(1-r)}{\sigma^2\gamma_c^3} > 0$$

Beyond 2 horses: numerical optimization

In practice, the numerical optimization of the objective function relies on simulated annealing or Karush-Kuhn-Tücker (KKT) algorithms.

Game theoretic formulation

· Worst possible case for the gambler corresponds to minimization of

$$\Psi(\mathbf{p}) = \langle W(\mathbf{p}, \mathbf{b}^{\text{KELLY}}) \rangle - \lambda \sum_{x} p_{x}$$
$$p_{x} = p_{x}^{*} = \frac{r_{x}}{\sum_{x} r_{x}}$$

The general growth rate is

$$\langle W(\mathbf{p}, \mathbf{b}) \rangle = D_{KL}(\mathbf{p}||\mathbf{p}^*) - D_{KL}(\mathbf{p}||\mathbf{b}) + V$$

R. Pugatch et al., (2014)

 $D_{KL}(\mathbf{p}||\mathbf{p}^*)$ pessimistic surprise : things are not as bad as one would think

 $-D_{KL}(\mathbf{p}||\mathbf{b})$ gambler's regret: gambler plays sub-optimally

V value of the game : V<0 for unfair odds, V>0 for super-fair odds

Non-diagonal odds

• Now, the growth rate is:

$$\langle W(\mathbf{p}, \mathbf{b}) \rangle = \sum_{x} p_{x} \ln \left(\sum_{y} o_{xy} b_{y} \right)$$

• When the odds matrix is invertible $m r = o^{-1}$ and simplex preserving (fully mixing game)

Optimal bets:
$$\mathbf{b}_x^* = \sum_y \Omega_{xy} \mathbf{p}_y$$
 with $\Omega_{xy} = \frac{\mathbf{r}_{xy}}{\sum_l \mathbf{r}_{ly}}$

Optimal environment : $\mathbf{p}_{x}^{*} = \frac{\sum_{l} \mathbf{r}_{lx}}{\sum_{xy} \mathbf{r}_{xy}}$

 $(\mathbf{b}_x^*, \mathbf{p}_x^*)$

defines a Nash equilibrium

S. Cavallero, (2023)

Mean-variance trade-offs

• For fair odds, assuming $\langle W \rangle \geq 0$ with q the pdf such that $q_x := r_x/p_x$

$$\sigma_W \geq rac{\langle W
angle}{\sigma_q}$$
 L. Dinis et al., EPL (2020)

• For non-fair odds with $\langle q \rangle = \sum_{r} r_x \neq 1$ and $V = -\log \sum_{x} r_x$

$$\sigma_W \ge \frac{|V - \langle W \rangle|}{\sigma_q} \langle q \rangle$$

General trade-off between growth rate and risk

Similar tradeoff in the thermodynamics of non-equilibrium systems A. Barato et al., (2015)

Numerical illustration

Non-diagonal fair odds

Non-diagonal super-fair odds

2. Adaptive strategies in gambling

• So far, we assumed the gambler knows the probabilities of winning horses,

In practice the gambler does not know this, he/she must learn it!

• This learning can be modeled using *Laplace's rule of succession* (equivalent to Bayesian inference)

$$b_x^{t+1} = rac{n_x^t + 1}{t + M}$$
 E. T. Jaynes, 2003

for t uncorrelated races and M horses

• Gambler's regret : the difference between the actual growth rate and the one of the optimal strategy :

$$\Delta(t) = \log\text{-cap}^{\text{Kelly}}(t) - \log\text{-cap}(t)$$

The learning time and the gambler's regret

A. Despons et al. (2022)

Asymptotic regret :
$$\left\langle \Delta \right\rangle (t) = \left\langle \Delta \right\rangle (t_0) + \frac{M-1}{2}\log \frac{t}{t_0+1}$$

Learning time :
$$t^{\star} = \frac{M-1}{2} \frac{1}{D_{KL}\left(\mathbf{p} \| \mathbf{r}\right)}$$

represents a limit on the characteristic time of variation of the environment

3. Trade-off for phenotypic switching of populations in varying environments

Bet-hedging and dormancy

Eriophyllum lanosum, plant from western USA desert

Fraction of seeds which germinated vs. standard deviation of reproductive success

Diversification (bet-hedging) is a universal adaptation strategy to an uncertain environnement

Seed bank: some seeds stay dormant to protect from harsch environments

J. Lennon (2011)

Ecology

Biodiversity as insurance: from concept to measurement and application

```
Michel Loreau<sup>1*</sup> , Matthieu Barbier<sup>1</sup> , Elise Filotas<sup>2</sup>, Dominique Gravel<sup>3</sup> , Forest Isbell<sup>4</sup> , Steve J. Miller<sup>5</sup>, Jose M. Montoya<sup>1</sup> , Shaopeng Wang<sup>6</sup>, Raphaël Aussenac<sup>7</sup> , Rachel Germain<sup>8</sup>, Patrick L. Thompson<sup>8</sup> , Andrew Gonzalez<sup>9</sup> and Laura E. Dee<sup>10</sup>
```

Microbial seed banks: the ecological and evolutionary implications of dormancy

Gambling/finance

Biology/ecology

Currency unit

Race result/market state

Bets/investment

Phenotype switching

Races

Environmental events

Odds

Reproduction rate

Capital growth rate

Probability of bankruptcy

Extinction probability

$$\frac{d}{dt}\mathbf{N}(t) = \mathbf{fold}_{S_i}\mathbf{N}(t) \qquad i \in \{1, 2\}$$

$$M_{S_1} = \begin{pmatrix} k_{A1} - \pi_1 & \pi_2 \\ \pi_1 & k_{B1} - \pi_2 \end{pmatrix}$$
 and $M_{S_2} = \begin{pmatrix} -\pi_1 + k_{A2} & \pi_2 \\ \pi_1 & k_{B2} - \pi_2 \end{pmatrix}$.

• Gambling problem was scalar, this one is vectorial. Explicit results only in some limits

Optimal condition is

authe antalog of Kelly's strategy

• So far, we focused on long term growth rate (infinite horizon) but populations are finite and

may go extinct in a finite time (finite horizon)

$$Var(\Lambda) = \lim_{t \to \infty} t Var(\Lambda_t)$$
 is the equivalent of the volatility

Trade-off between growth and extinction probability

In the region of fast growth, it is advantageous for a population to trade growth for less risky fluctuations

Risk may be measured by growth rate fluctuations or extinction probability

Growth inhibition by antibiotics

- Most antibiotics do not kill cells directly but rather inhibit molecules involved in key cellular processes
- Risk may be measured by the fraction of inhibited molecules
- Risk correlates with pre-exposure growth rate and increases with the exposure to the drug

Economic principles of cell biology

i. When facing uncertainty, bet-hedging is a generic adaptation strategy for cells

Simplest form of this strategy is Kelly's gambling

ii. There is a general trade-off between growth rate and risk exposure

September 16th-18th **2024**

École polytechnique Palaiseau, France

Sadi Carnot's Legacy

Celebrating the 200th anniversary of the 2nd law of thermodynamics

« Sur la puissance motrice du feu et sur les machines propres à développer cette puissance » (1824)

Acknowledgements

L. Dinis, Universitad Complutense Madrid

J. Unterberger, Université de Lorraine

L. Peliti Université de Naples

