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Introduction: bacterial persistence

Viable bacteria after an antibiotic treatment: Phenotypic switching:
- 2 states: growing/sensitive versus dormant/resistant

-g - same genotype
T | sensitive cells - both states are present in any environment
W

ﬁ - stochastic switches between states

!

.©

>

* Financial analogy: bet-hedging / portfolio diversification

8
time Question: optimal "strategy"?

Origin of persisters? - mutations Key points: - optimality in stochastic environments

- sensing - individual versus population-level adaptation
- phenotypic switching - analogies with finance and their limitations
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Bacterial persistence: elementary model

E=- E=+
No antibiotic Antibiotic No antibiotic Model assumptions:
R=D (D_»(X) - 2 states R: growing (R=1) / dormant (R=0)
X0
R — ()= ()L )_EC) » 2 environments E: antibiotic (E=+) / no antibiotic (E=-)
B=0) _ (D)
( )_"(X) D) « survival/reproduction E=+ | E=-
OLo-—-Oo—-oo1 i
per generation f(R,E) _
C R=0 | 1 1
O+ O~
-3 R=1| 0 2

* probability for antibiotic (E=+) : p

er generation
. probabilty to be dormant (R=0): P 9 )
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No antibiotic Antibiotic No antibiotic Model assumptions:
—[:(D_»(X) « 2 states R: growing (R=1) / dormant (R=0)
) — ()~ (X) . )_EC) » 2 environments E: antibiotic (E=+) / no antibiotic (E=-)
&0 _ -
_E( )_"(X) D) « survival/reproduction E=+ | E=-
- S\Nb—"—QOM™r=C" - per generation f(R,E) _
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* probability for antibiotic (E=+) : p e
Question: optimal v given p? * probability to be dormant (R=0): u ber9

o

Cells in the face of uncertainty




Bacterial persistence: elementary model

E=- E=+
No antibiotic Antibiotic No antibiotic Model assumptions:
R=1 —[:(D_» (X):: - 2 states R: growing (R=1) / dormant (R=0)
7 D » 2 environments E: antibiotic (E=+) / no antibiotic (E=-
@)_'( Vg2 \ )—( )_EC) ( ) ( )
( )_"® D) « survival/reproduction E=+ | E=-
OLo-—-Oo—-oo1 i
per generation f(R,E) _
C R=0 | 1 1
O+ O+
( )__.CX) R=1 0 2
* probability for antibiotic (E=+) :
> . v ( )ip (per generation)
Question: optimal v given p? * probability to be dormant (R=0): u

Meta question: optimal in what sense?

o
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Bacterial persistence: elementary model

Two convenient limits: (1) Large population
(2) Long time
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1
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Bacterial persistence: elementary model

Two convenient limits: (1) Large population

(2) Long time E=+ ] E=-
p 1-p
In one generation, given /V; cells at generation ¢, a fraction u is dormant (R=0) R=0
and 7-u is growing (R=1): u 1 1
if antibiotic ~ (E=+):  N;,1 = ALV AL =u R=1
1-u 0 2

if no antibiotic (E=-): N, ; = A_N, A_=u+2(1—-u)=2—-u
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Bacterial persistence: elementary model

Two convenient limits: (1) Large population
(2) Long time E=+ ] E=-
p 1-p
In one generation, given /V; cells at generation ¢, a fraction u is dormant (R=0) R=0
and 7-u is growing (R=1): u 1 1
R=1

if antibiotic ~ (E=+): N, ; = A, N, Ar=u 0 5
. D 1-u
if no antibiotic (E=-): Nii1=A_N; A_=u+ 2(1 — u) =92 _u

Over T generations, a fraction p of generations with antibiotics (E=+)

and 7-p without (E=-):
Np = (AL)PT(AL)-PT Ny = AT N,
A=plmA, +(1—-p)lnA_=phhu+ (1—p)ln(2 —u)
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Bacterial persistence: elementary model

Two convenient limits: (1) Large population
(2) Long time E=+ E=-
p 1-p
In one generation, given /V; cells at generation ¢, a fraction u is dormant (R=0) R=0
1 1
u

and 7-u is growing (R=1):
if antibiotic ~ (E=+): N, ; = A, N, Ar=u 0 5
. D 1-u
if no antibiotic (E=-): Nii1=A_N; A_=u+ 2(1 — u) =92 _u

Optimal u (max A):

Over T generations, a fraction p of generations with antibiotics (E=+)
and 7-p without (E=-):
2p, if0O<p <1/2

Np = (AL)PT(A)=PT Ny = AT N 5 —
A=plmA, +(1—-p)lnA_=phhu+ (1—p)ln(2 —u)

1, ifl/2<p <1,
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Bacterial persistence: elementary model

Two convenient limits: (1) Large population

(2) Long time E=+ ] E=-
p 1-p
In one generation, given /V; cells at generation ¢, a fraction u is dormant (R=0) R=0
and 7-u is growing (R=1): u 1 1
if antibiotic ~ (E=+):  N;,1 = ALV AL =u R=1 0 )
1-u
if no antibiotic (E=-): N, ; = A_N, A_=u+2(1—-u)=2—-u
Over T generations, a fraction p of generations with antibiotics (E=+) Optimal u (max A):
and 7-p without (E=-):
. < |
Nr = (AL)PT(A_)-PIT N, = AT N, u - 2p, if0O<p <1/2
A=plmA, +(1—-p)lnA_=phhu+ (1—p)ln(2 —u) 1, ifl/2<p <1

Conclusion: The optimal fraction of persisters u depends on the environmental uncertainty p
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Generalization, including sensing

Phenotypic switching: random transitions between phenotypes independent of the environment
Sensing: switch to a new phenotype R depending on a cue S correlated to the environment E
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Generalization, including sensing

Phenotypic switching: random transitions between phenotypes independent of the environment
Sensing: switch to a new phenotype R depending on a cue S correlated to the environment E

Model assumptions:

* n states R
* M environmental states E, probability p(E)
» multiplication factor f(R,E)

+ switching probability u(R|S) where S is a cue

probability q(S|E) for S given E
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Generalization, including sensing

Phenotypic switching: random transitions between phenotypes independent of the environment
Sensing: switch to a new phenotype R depending on a cue S correlated to the environment E

Model assumptions: Dynamics:

e « 1 generation: Niy1 = A(E,S)N;

* M environmental states E, probability p(E) A(E,S) = Zf(R, E)u(R|S)

» multiplication factor f(R,E) n

« switching probability u(R|S) where S is a cue - T generations:  Nr ="' N,

* probability q(S|E) for S given E A= Z q(S|E)p(E)In A(E, S)
S.E
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Generalization, including sensing

Phenotypic switching: random transitions between phenotypes independent of the environment
Sensing: switch to a new phenotype R depending on a cue S correlated to the environment E

Model assumptions: Dynamics:

. n states R » 1 generation: Ny = A(E,S)N;

« M environmental states E, probability p(E) A(E,S) = Zf(R, E)u(R|S) = (f(R,E))r

- multiplication factor f(R,E) R > u(His) =1

« switching probability u(R|S) where S is a cue » T generations: Ny = " Ng

+ probability q(S|E) for S given E A— Zq(SIE)p(E) mA(E,S) = (nA(E,S))e.s
S.E

> a(SIEp(E) =1

S,E

"Fitness" = long-term growthrate A = (In ((f(R, E))r))E.s

average over phenotypes within a generation — ™~ average over environments across generations
arithmetic mean geometric mean

o5
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Geometric vs arithmetic means

w2 ) o (S 75

SPECIMEN
Growth is a multiplicative process THEORIAE NOVAE

MENSVRA SORTIS.

AVCTORE
Daniele Beinoulli.

D Bernoulli, Exposition of a new theory
on the measurement of risk (1738)
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Geometric vs arithmetic means

w83 ) o ( Cde 373

SPECIMEN
Growth is a multiplicative process 1072 11_0[ y THEORIAE NOVAE
t -
t=1

Didactic example: o MENSVRA SORTIS

10744 AVCTORE
| ! Daniele Beinoulli.

A=2 with p=1/2 or A=1/3 with p=1/2

arithmeticmean= (2+1/3)/2 > 1 _ »
D Bernoulli, Exposition of a new theory
geometric mean = 2Y/2(1/3)}/2 <1 1 on the measurement of risk (1738)

0 ? 2000 4000
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Geometric vs arithmetic means

«%3 ) o ( CRe 275

SPECIMEN
Growth is a multiplicative process 1072 11_0[ y THEORIAE NOVAE
t -
t=1

MENSVRA SORTIS.

20743 AVCTORE
| L Daniele Beinoulli.

1073
Didactic example:

A=2 with p=1/2 or A=1/3 with p=1/2

arithmeticmean= (2+1/3)/2 > 1 _ »
D Bernoulli, Exposition of a new theory
geometric mean = 2Y/2(1/3)}/2 <1 1 on the measurement of risk (1738)

0 ? 2000 4000

Back to the simple model of bacterial persistence:

E=+ E=-
p 1-p Growth per generation:
R=0 1 1 AE=4)=u
u
R =1 AE=-)=u+2(1—-u)
1-u 0 2
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Geometric vs arithmetic means

«%3 ) o ( CRe 13

SPECIMEN
Growth is a multiplicative process 107 11_0[ y THEORIAE NOVAE
t ~
t=1

MENSVRA SORTIS.

10744 AVCTORE
| 1 Daniele Beinoulli.

Didactic example:
A=2 with p=1/2 or A=1/3 with p=1/2
(2+1/3)/2>1

0 ? 2000 4000

arithmetic mean

_ s s T D Bernoulli, Exposition of a new theory
geometric mean = 2'/2(1/3)!/2 < 1 on the measurement of risk (1738)
Back to the simple model of bacterial persistence: Optimal arithmetic mean: _
max(A(E)) Lo 10, if0<p<1)2
E=+ | E=- | g 1, if1/2<p<i1
p 1-p Growth per generation:
u=0 is very risky: extinction when E=+ occurs
" 1 1
R =1 AE=-)=u+2(1—-u)
1-u 0 2
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Geometric vs arithmetic means

«g3 ) o ( & 73
; SPECIMEN
Growth is a multiplicative process 107 11_0[ y THEORIAE NOVAE
t DE
107* t=1
Didactic example: MENSVRA SORTIS.
10-2 1 AVCTORE
A=2 with p=1/2 or A=1/3 with p=1/2 | . . Danicle Bernoulli.
. . 0? 2000 4000
arithmeticmean= (2+1/3)/2>1 _ -
D Bernoulli, Exposition of a new theory
geometric mean = 2Y/2(1/3)}/2 <1 4

on the measurement of risk (1738)

Back to the simple model of bacterial persistence: Optimal arithmetic mean:

0, if0<p<1/2
A(E =
E=+ | E=- max(A(E)) s “ {1, if1/2<p<1
p 1-p Growth per generation:
u=0 is very risky: extinction when E=+ occurs
R=0 1 1 AE=4)=u
u Optimal geometric mean:

S AE=-)=u+2(1—n) 10 A(E)) _Jop, to<p<i)2
1-u 0 2 e g YT if12<p<t
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Value and cost of sensing information

Long-term growth rate: A = (InA(S,E))s. g = Zq(S|E)p(E) InA(S,E) A(S,E) = (f(R,E))r = 2 f(R, E)u(R|S)
S,E R
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Value and cost of sensing information

Long-term growth rate: A = (In A(S, E))s.e = > q(S|E)p(E)In A(S,E)  A(S,E) = (f(R,E))r = Y_ f(R, E)u(R|S)
S.E R

Simplifying assumption: only one phenotype R(E) can survive for each environmental state £ (Kelly model)
f(R,E)=f(E) if R= R(E) and 0 otherwise = A(E,S) = f(E)u(E|S)
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Value and cost of sensing information

Long-term growth rate: A = (In A(S, E))s.e = > q(S|E)p(E)In A(S,E)  A(S,E) = (f(R,E))r = Y_ f(R, E)u(R|S)
S,E R

Simplifying assumption: only one phenotype R(E) can survive for each environmental state £ (Kelly model)
f(R,E)=f(E) if R= R(E) and 0 otherwise = A(E,S) = f(E)u(E|S)

Optimum without sensing'

growth limited by the
Z p(E)In f(E) — H(p) Z p(E)Inp(E entropy of the environment
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Value and cost of sensing information

Long-term growth rate: A = (InA(S,E))s. g = Zq(S|E)p(E) InA(S,E)  A(S,E)=(f(R,E))r = Z f(R, B)u(R|S)
S,E R

Simplifying assumption: only one phenotype R(E) can survive for each environmental state £ (Kelly model)

f(R,E)=f(E) if R= R(E) and 0 otherwise = A(E,S) = f(E)u(E|S)

Optimum without sensing'

Zp )In f(E) — H(p)

growth limited by the
Z p(E) Inp(E entropy of the environment

Optimum with sensing, i.e. given q(S|E)

AF — AF = EVo(E) 1 E)=I(S. E growth increase given by the mutual information
q 0 ;q(ﬂ (i) m( )15} (5, E) between the signal and the environment
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Value and cost of sensing information

Long-term growth rate: A = (In A(S, E))s.e = > q(S|E)p(E)In A(S,E)  A(S,E) = (f(R,E))r = Y_ f(R, E)u(R|S)
S,E R

Simplifying assumption: only one phenotype R(E) can survive for each environmental state £ (Kelly model)
f(R,E)=f(E) if R= R(E) and 0 otherwise = A(E,S) = f(E)u(E|S)

Optimum without sensing'

Zp )In f(E) — H(p)

growth limited by the
Z p(E)Inp(E entropy of the environment

Optimum with sensing, i.e. given q(S|E)

AF — AF = EVo(E) 1 E)=I(S. E growth increase given by the mutual information
q 0 SZEq(S| (i) m( )15} (5, E) between the signal and the environment

Trade-off between value of information /(S,E) and cost ¢ of the sensor: may be optimal to have no sensor
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Value and cost of sensing information

Long-term growth rate: A = (In A(S, E))s.e = > q(S|E)p(E)In A(S,E)  A(S,E) = (f(R,E))r = Y_ f(R, E)u(R|S)
S,E R

Simplifying assumption: only one phenotype R(E) can survive for each environmental state £ (Kelly model)

f(R,E) = f(E) if R= R(E) and 0 otherwise —> A(E,S) = f(E)u(E|S)

Optimum without sensing'

Zp )In f(E) — H(p)

growth limited by the
Z p(E)Inp(E entropy of the environment

Optimum with sensing, i.e. given q(S|E)

AF — AF = EVo(E) 1 E)=I(S. E growth increase given by the mutual information
q 0 SZEq(S| (i) m( )15} (5, E) between the signal and the environment

Trade-off between value of information /(S,E) and cost ¢ of the sensor: may be optimal to have no sensor

Generalization & links with information theory: Covers & Thomas, Information Theory

o
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Analogies with finance & beyond

Biology (population)

Finance (capital)

Individual
Environment p(E)

Phenotype decisions u(R)
Multiplicative rate f(R, E)
Environmental cue P(S|E)

Currency unit
Market state
Investor

Investment strategy
Immediate return
Side information
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Analogies with finance & beyond

Biology (population) Finance (capital)

Individual Currency unit

Environment p(E) Market state

— Investor —» Major difference

Phenotype decisions u(R) | Investment strategy
Multiplicative rate f(R, E) | Immediate return
Environmental cue P(S|E) | Side information

Biology: each cell processes information
Finance: one investor centralizes information
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Analogies with finance & beyond

Biology (population) Finance (capital)

Individual Currency unit

Environment p(E) Market state

— Investor —» Major difference

Phenotype decisions u(R) | Investment strategy
Multiplicative rate f(R, E) | Immediate return
Environmental cue P(S|E) | Side information

Biology: each cell processes information
Finance: one investor centralizes information

Implication 1: if one sensor per cell, cell-to-cell heterogeneity in perceived signals
Different averages: A = (In(f(E,R))r)s,e < A= (In{f(E,R))r.s)E

if S is centralized if S is distributed
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Analogies with finance & beyond

Biology (population) Finance (capital)

Individual Currency unit

Environment p(E) Market state

— Investor —» Major difference

Phenotype decisions u(R) | Investment strategy
Multiplicative rate f(R, E) | Immediate return
Environmental cue P(S|E) | Side information

Biology: each cell processes information
Finance: one investor centralizes information

Implication 1: if one sensor per cell, cell-to-cell heterogeneity in perceived signals
Different averages: A = (In(f(E,R))r)s,e < A= (In{f(E,R))r.s)E

if S is centralized if S is distributed

Implication 2: what is optimal for a population may not be evolutionary stable
Possible conflict between levels of selection (tragedy of the commons)
No conflict in the models presented here but, more generally, optimal # evolvable

o
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Phenotypic vs genotypic information

'Standard model' of biological information processing

- survival/ reproduction (¢£) depends on the phenotype R
- the phenotype R: depends on an inherited genotype ~;
- the inherited genotype 7, determines the transmitted genotype ;41

Tt

='|h(%+1|’7t) ',
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Phenotypic vs genotypic information

'Standard model' of biological information processing
- survival/ reproduction (¢£) depends on the phenotype R

- the phenotype R: depends on an inherited genotype ~;
- the inherited genotype 7, determines the transmitted genotype ;41

Two sources of stochasticity
- development u(R¢|y:) (generalizing phenotypic switching)
- mutations A(vy1|vt)

Tt

(h(ver1lre) }

>

-
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Phenotypic vs genotypic information

'Standard model' of biological information processing

- survival/ reproduction (¢£) depends on the phenotype R Y
- the phenotype R: depends on an inherited genotype ~; —

(n(~, )|

- the inherited genotype 7, determines the transmitted genotype ;41

>| t+1|7t )
Two sources of stochasticity 25; A
- development u(R;|y:) (generalizing phenotypic switching) | ge §
. T >=
- mutations h(v;.1|y¢) aR 55
© 1.5¢ EE
§ ' G INHERITED
Nature of optimal stochasticity in uncertain environments? E VARIATIONS
. q . <
Depends on: - the variance of environmental fluctuations >
. . . 05t
- the correlation between successive environments NO VARIATION

OC)

o2 04 06 08 1

correlation time Tg

o
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Phenotypic vs genotypic information

'Standard model' of biological information processing

- survival/ reproduction (¢£) depends on the phenotype R Y
- the phenotype R: depends on an inherited genotype ~; —
- the inherited genotype 7, determines the transmitted genotype ;41

(n(~, )|

>| t+1|7t )
Two sources of stochasticity 25;
[m]
- development u(R;|y:) (generalizing phenotypic switching) | ge 9§<J
L b
. >=
- mutations h(v;.1|y¢) aR 55
© 1.5¢ 5%
§ ' G INHERITED
Nature of optimal stochasticity in uncertain environments? E VARIATIONS
. q . <
Depends on: - the variance of environmental fluctuations >
. . . 05t
- the correlation between successive environments NO VARIATION

DC)

o2 04 06 08 1

Extension: other mechanisms to generate and transmit variations correlation time Tg

o
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Summary and perspectives

No antibiotic Antibiotic No antibiotic
OTEOTXO
-0 -

CD— D+ +( )—EC)

COLa-a—c )—E%

Example: Bacterial persistence

Adaptation to uncertain environments

- Long-term population-level adaptation
- Phenotypic switching versus sensing
- Phenotypic switching versus mutations
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Summary and perspectives

No antibiotic Antibiotic No antibiotic
OTEOTXO
& -
CO—CO—+-C—+C )—EC)
T OTX -
CILay--C ) +C L=
OTO—-F
O

Example: Bacterial persistence

Adaptation to uncertain environments

- Long-term population-level adaptation
- Phenotypic switching versus sensing
- Phenotypic switching versus mutations

Analogy with games and finance
- Bet-hedging / portfolio diversification
- Key difference: level of information processing

o5
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Summary and perspectives

No antibiotic Antibiotic No antibiotic
D_EC)__.@D Analogy with games and finance
— - - Bet-hedging / portfolio diversification
CO—CO+CO—~C O O - Key difference: level of information processing

Sl a1« )—EC):
Mathematical formalism

(—)_"(X) - Geometric versus arithmetic means
- Quantifying information with entropies

Example: Bacterial persistence

Adaptation to uncertain environments

- Long-term population-level adaptation
- Phenotypic switching versus sensing
- Phenotypic switching versus mutations

o5

Cells in the face of uncertainty




Summary and perspectives

No antibiotic Antibiotic No antibiotic

@_E(:)—"CX)

T -

AD— O+ D—+( ){D

T OT3O -

CILay--C ) +C L=
OTO-X
O30

Example: Bacterial persistence

Adaptation to uncertain environments

- Long-term population-level adaptation
- Phenotypic switching versus sensing
- Phenotypic switching versus mutations

Analogy with games and finance
- Bet-hedging / portfolio diversification
- Key difference: level of information processing

Mathematical formalism
- Geometric versus arithmetic means
- Quantifying information with entropies

Model based on several assumptions:

- Long-term growth rate (many generations)
- Large population (no extinction)
- Environment independent of population dynamics

Cells in the face of uncertainty
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Outline of the talk

1. Tradeoff in optimal gambling strategies

2. Adaptive strategies in gambling

3. Tradeoff for phenotypic switching of populations in varying environments

Growth in uncertain environments
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Kelly’s formula in popular culture

TSELLER

BEAT 11,13 =|Fortune’s
DEALER * Formula

THE UNTOLD STORY
OF THE SCIENTITIC BEXTING SYSTEM THAT REAT
THE CASINOS avo WALL STREET

WIDESCREEN

From card counting method in blackjack. .. .. to investments on the stock market

A new interpretation of information rate, Kelly J. L. J. (1956)

Growth in uncertain environments
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Kelly’s model as a resource allocation problem

Gambler Bookmaker
p(red) r p(green) r
Bets & Odds
® —
M 1 M
Constraints : Z b =1 and r, := — with Zm =1 for fair odds

0

r=1 z r=1

Dynamics:  winning horse x is chosen with probability Pz

b,
Then capital is updated : Ciy1 = r—Ct

€T

>
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Long term growth rate

t
by
Log-Capital log-cap(t) = E log( T)
T=1

Iy

T

by the law of large numbers : log-cap(t) s E |log bs
t t—o0 Iy

Optimization of the long term growth rate (Kelly’s optimal strategy)

x

7) = 10g (22 )] = Dict. vll) = Dice. (o)

This is maximum when b, = p, and at this point (W*) = Dg, (p||r) > 0

The gambler makes money when he/she has better knowledge of the
winning probabilities than the bookie

>
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80 1

(=)}
o

iy
o

Evolution of the capital of the gambler

Log-capital

N
o
!

6 5'0 160 1.">0
Race number

Kelly’s strategy dominates on long times all non-optimal strategies

200

1000

800 -

0

1'0 2'0 3'0 4'0 50
Race number

A general trade-off between the maximization of the growth rate and the minimization of risky fluctuations ?

L. Dinis, J. Unterberger, D. L., Eur. Phys. Lett. (2020)

Growth in uncertain environments
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How to define risk ?

By the central limit theorem :

1 Cy
—— (log = — t(W) ) —— N(0,1) normal law
owVt ( & Co < >> t—00 (0,1)
2 bac . -
where oy = Var |log T )|s the volatility

The volatility is not the best measure of risk but it leads to tractable calculations

In practice, risk is relevant at intermediate time scales ¢ < (ow /(W))?

Risk free strategy

Note that the strategy b, =7, has ow =0 and (W) =0

Growth in uncertain environments
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Objective function :

J=a(W)-(1-—a)ow +A) by

Interpolates between maximization of growth rate for a=1 and the
minimization of the fluctuations when o=0

* The optimal solution is parametrized by a, which is a risk aversion parameter.

+ Similarities with Markowitz portfolio theory

Return 200%

c 1.50% o LUV

= 0,

g 1.00% IBM
0.50% —o—ptf 1
0.00%

0 0.002 0.004 0.006 0.008 0.01
sk Variance

© X X2

Markowitz H. (1952) Data from Wharton School of Finance
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The efficient border for two horses problem

W) o < Kelly’s strategy ow

Trade-off branch —1+—>
Non trade-off branch

0.44

—
Null strat — e
ull strategy ! i z AN oW For p<r:
. dO‘W g P ,
Inthe (W) > ( region, = becomes infinite near Kelly’s strategy
- dWy) p-—2>
but non-zero near the null strategy where :
dow 1 o d*ow  r(l—r)
= — = and = >0
dW) v [p—r] d(W)?2 o2qy3
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Beyond 2 horses : numerical optimization

5
% o5 1 15 2z 25 2 J
1

3.5 —3.0 =25 —2.0 —1.5 =10 —0.5 0.0
(W3

In practice, the numerical optimization of the objective function
relies on simulated annealing or Karush-Kuhn-Tucker (KKT) algorithms.
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Game theoretic formulation

* Worst possible case for the gambler corresponds to minimization of
U(p) = (W(p, b)) =AY p,
X

* Iy

Iy

x

* The general growth rate is

(W(p,b)) = Drr(p||P*) — Drr(p|/b) +V R. Pugatch et al., (2014)

Drr(pllp") pessimistic surprise : things are not as bad as one would think
—Dk1.(p||b) gambler’s regret : gambler plays sub-optimally

\% value of the game : V<0 for unfair odds, V>0 for super-fair odds

>
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Non-diagonal odds

* Now, the growth rate is : W(p,b)) prln (Zoxy )

*  When the odds matrix is invertible I =— O_1 and simplex preserving (fully mixing game)

) ] I';L-y 10

Optimal bets : b, = Z Quypy with zy = 06

y Zl iy 08 1 05
04
. ) * Zl Tig 06 g
Optimal environment : P, = Z— a o =
xyr Y 0% 02 §

02 ot

>k >k :
(b:m Pw) defines a Nash equilibrium 09
001 —01

S. Cavallero, (2023)

>
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Mean-variance trade-offs

- For fair odds, assuming (W) >0 with q the pdf such that Gz := T2 /Px

w
ow > u L. Dinis et al., EPL (2020)
Jq

« For non-fair odds with ~ (q) = er #1 and V =-— logz T
X

x

V= W)

- (@)

ow >

General trade-off between growth rate and risk

Similar tradeoff in the thermodynamics of non-equilibrium systems A. Barato et al., (2015)

>
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Numerical illustration

) ()
0124
0.10 0104
0.08
0.0
= 006
= 0.06
0.04
0.01
0.02
0.02
000
Y Y 0005 0010 0015 0.00
0.115 0.150 0.155 0.160 0.165 0.170

Non-diagonal fair odds Non-diagonal super-fair odds
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2. Adaptive strategies in gambling
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« So far, we assumed the gambler knows the probabilities of winning horses,

In practice the gambler does not know this, he/she must learn it !

« This learning can be modeled using Laplace’s rule of succession (equivalent to Bayesian inference)

t
1 Mp +1 E. T. Jaynes, 2003
v t+M

for t uncorrelated races and M horses

« Gambler’s regret : the difference between the actual growth rate and the one of the optimal strategy :

A(t) = log-cap®°V (t) — log-cap(t)

>
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The learning time and the gambler’s regret

50 1
40

30 A A(t)

20 1

log-cap(t)

A. Despons et al. (2022)
10 A

—10 4

T T T T T T
0 2000 4000 6000 8000 10000
t

M—1 t
Asymptotic regret :  (A) (t) = (A) (to) + log
2 to+1
Learning time :  ¢* = M-1 L
' 2 Dkr (pllr)

represents a limit on the characteristic time of variation of the environment
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3. Trade-off for phenotypic switching of
populations in varying environments
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Bet-hedging and dormancy

s
|
_+_—_% D. Venable (2007)

|

B 6 & 1o 12 18

Mean Germination Fraction

Geometric SD of Reproductive Success

Eriophyllum lanosum, plant Fraction of seeds which germinated vs. standard
from western USA desert deviation of reproductive success

Diversification (bet-hedging) is a universal adaptation strategy to an uncertain environnement

Reproduction
Resuscitation
Seed bank: some seeds stay dormant to protect nctivecollll < BBormant cdl
from harsch environments Initiation
Mortality Mortality

J. Lennon (2011)



Ecology

Biodiversity as insurance: from concept to
measurement and application

Michel Loreau'* ®, Matthieu Barbier ©, Elise Filotas®, Dominique Gravel3 ®,
Foreg 1hell* ©, Steve J. MillerS, Jose M. Montoya! @, Shaopeng Wang®,
Raphaél Aussenac’ @, Rachel Germaing, Patrick L. Thompson® ©, Andrew Gonzalez®

and Laura E. Dee!®

Microbial seed banks: the ecological
and evolutionary implications of
dormancy

Jay T. Lennon* ¥ and Stuart E. Jones* §



Gambling/finance

Currency unit

Race result/market state
Bets/investment

Races

Odds

Capital growth rate

Probability of bankruptcy

Biology/ecology

Individual
Environment
Phenotype switching
Environmental events
Reproduction rate
Population growth rate

Extinction probability
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* Sub-populations of two phenotypes growing in two environments %N(t) =fdv[s, N(t) ie{l,2}

(ka1 —m 4o [ —m + ka2 Uo)
MS1_< m kp1 — 2 and Ms, = m kpe —m2 )"

* Gambling problem was scalar, this one is vectorial. Explicit results only in some limits

Ex: adiabatic limit E. Kussel, S. Leibler (2005)

Optimal condition is Tthe—anéleg of Kelly’s strategy

+ So far, we focused on long term growth rate (infinite horizon) but populations are finite and
may go extinct in a finite time (finite horizon)

Var(A) = tli}m tVar(Ay) is the equivalent of the volatility
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Trade-off between growth and extinction probability

207z

14

Fluctuations of Em

growth rate 2 L. Dinis et al. (2022)

3
= 10
0.8

0.6

0.4

0.2 ™ - - r -
0.00 0.05 0.10 0.15 0.20 0.25
A

average growth rate

In the region of fast growth, it is advantageous for a population to trade growth
for less risky fluctuations

Risk may be measured by growth rate fluctuations or extinction probability




Growth inhibition by antibiotics

Kanamycin,m=0

1.2F 940
+ Most antibiotics do not kill cells directly but rather inhibit ~Z Rk (expariment 1 5 Eroerimentd |
molecules involved in key cellular processes Lo W X a2 n Tedimant

* Risk may be measured by the fraction of inhibited molecules

* Risk correlates with pre-exposure growth rate and increases
with the exposure to the drug

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Bex(ug/mt)
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Economic principles of cell biology

i.  When facing uncertainty, bet-hedging is a generic adaptation strategy for cells

Simplest form of this strategy is Kelly’'s gambling

ii. Thereis a general trade-off between growth rate and risk exposure

>
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| e Sadi Carnot’s

2024 Legacy

REcolo polytechnique Celebrating the 200" anniversary
" Palaiseau, France of the 2" law of thermodynamics

« Sur la puissance motrice du feu et sur les machines propres a développer cette
puissance » (1824)
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