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Why yet another “balance analysis”?

Growth Balance Analysis (GBA): simplified framework for nonlinear self-replicating
cell models at balanced growth1.

▶ Nonlinear: includes nonlinear kinetic rate laws.

▶ Self-replicating: metabolism + protein synthesis and dilution of all components.

▶ Balanced growth: constant (external and internal) concentrations in time.

A framework, not a model: find common properties to all possible models.

Mathematical simplification: allows analytical study to find fundamental principles.

1
Dourado & Lercher, An analytical theory of balanced cellular growth, Nature Communications 2020.
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Mathematical simplification: the least number of variables and equations

Not important for linear problems, but critical for nonlinear problems!

Example: Simple pendulum

Angle θ (“generalized coordinate”) completely
determines the system state, no need of x,y,z.

Why looking for simplest formulation?
▶ Easier numerical calculations.
▶ Independent variables are preferable for analytical methods.
▶ Deeper understanding of the problem.
▶ Most “elegant” solution.
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Balanced growth (or steady growth)

For a steady-state environment defined by “external” concentrations x:

▶ Steady-state growth rate µ (1/h), direct measure of fitness.

▶ Steady-state internal concentrations c (g/L) of reactants (substrates, products)

ci =
abundance of “i” (g/cell)

volume (L/cell)
= constant

Mass concentrations (not abundances) better describe cell states: i) constant,
ii) reaction kinetics depend on concentrations, iii) relate to cell density (g/L).

Matching units for fluxes v: mass per volume per time (g L−1 h−1).

Growth Balance Analysis 4/33



“Self-replicator” models: Molenaar et al. Mol Sys Biol 2009

“Self-replicating”: nonlinear kinetics for transport + metabolism + protein synthesis,
with dilution by growth of all components (no biomass input, now it is an output).

Optimal state: maximize µ limited by mass conservation, kinetics and total protein.

Self-replicating models must be nonlinear: saturation/dilution trade-off.
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Density constraint(s)
Linear models: fixed density of “biomass” (diffuse concept), total protein cp.

Self-replicator models [a.k.a. Molenaar models]: fixed total protein cp.

GBA: fixed cell density ρ (g/L) including all components (indicated by experiments2)

ρ = cp +
∑
m

cm

where m are all “non-protein” components, and assumed unique protein composition3.

GBA units: mass concentration (g/L) is the most convenient unit. To match units,
we normalize the stoichiometric matrix S with the molecular weights w (g/mol)

Stotal multiply−−−−−−−−→
columns byw

diag(w)Stotal normalize−−−−−→
columns

Mtotal exclude−−−−−−−→
external rows

M

2
Baldwin et al.Archives of Microbiology 1995, Kubitschek et al. Journal of bacteriology 1983, Cayley et al. Journal of Molecular Biology 1991

3
Dourado et al. PLOS Comp Bio 2023.
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The “mass fraction matrix” M

j = reactions (transport s, enzymatic e, ribosome r)

i = internal reactants (“metabolites” m, protein p)

(upper index = rows, internal reactants)

(lower index = columns, reactions)

“Mass accretion” vector a: the sum of each column

aj :=
∑
i

M i
j =


̸= 0 , j = s

= 0 , j = e

= 0 , j = r

⇔ w⊤Stotal = 0⊤
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Example of a GBA model: “model A”

Three Michaelis-Menten reactions in series
A) Model scheme

B) Model parameters

M =

1 2 3[ ]1 −1 0 1
0 1 −1 2
0 0 1 3

, K =

1 2 3


1 0 0 1
0 22 0 1
0 0 40 2
0 0 0 3

, kcat =
1 2 3
[ ]6 6 5 , ρ = 340 g/L
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Example of a GBA model: “model B”

Model with replication, transcription, Michaelis-Menten kinetics with activation

M =

s Met DNAp RNAp r



1 −1 0 0 0 C
0 0.2 0 0 −0.3 ATP
0 0.3 −1 −1 0 NT
0 0.5 0 0 −0.7 A
0 0 1 0 0 DNA
0 0 0 1 0 RNA
0 0 0 0 1 p

K =

s Met DNAp RNAp r


1 0 0 0 0 Cex
0 11 0 0 0 C
0 0 0 0 12 ATP
0 0 10 10 0 NT
0 0 0 0 25 A

A =

s Met DNAp RNAp r[ ]
0 0 3 3 0 DNA
0 0 0 0 5 RNA

kcat =

s Met DNAp RNAp r
[ ]13 24 7 17 4 , ρ = 340
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The general GBA problem

For some given model (M, τ , ρ) and environment x:

maximize
v∈Rr,c∈Rp

µ (Maximize growth rate)

subject to:

Mv = µ c (Flux balance)

cp = v⊤τ (c,x) (Reaction kinetics and protein sum)

ρ =
∑

c (Constant cell density)

v ⊙ τ (c,x) ≥ 0 (non-negative protein concentrations)

c ≥ 0 (non-negative reactant concentrations)

where ⊙ indicates the element-wise multiplication.
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Approximated problem: maximization of µ with global mass conservation

The net mass uptake: enforced by the sum all equations in Mv = µ c

vuptake = vin − vout =
∑
i,j

M i
j v

j = µ
∑
i

ci = µρ ,

thus,

µ(v, c) =

∑
i,j M

i
j v

j

ρ(c)
.

For any given v:

maximal µ(c) ⇔ minimal ρ(c) = cp +
∑

m cm

Accounting for kinetics and protein sum:

ρ(c) =
∑
j

vj τj(c) +
∑
m

cm
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Approximated problem: optimal density ρ

The optimal state must satisfy

∂ρ

∂cm
=
∑
j

vj
∂τj
∂cm

+ 1 = 0 ∀ m

Economics analogy: marginal cost from kinetic benefit and density cost

marginal cost = marginal kinetic benefit + marginal density cost (= 0 if optimal)

Note: the kinetic benefit is the protein saved due to increased saturation (< 0)∑
j

vj
∂τj
∂cm

=
∑
j

(
∂pj
∂cm

)
v=const.
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Optimal density: validation

Simplest case: Michaelis-Menten kinetics and a 1-to-1 reaction-substrate relationship

pj = cm

(
1 +

cm

Km
j

)
(1)

E. coli enzymes and substrates are close to this optimality4

4
Dourado et al. On the optimality of the enzyme–substrate relationship in bacteria, PLOS Biology 2021.
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The GBA problem with no alternative pathways: full column rank M
For some given model (M, τ , ρ) and environment x:

maximize
v∈Rr,c∈Rp

µ (Maximize growth rate)

subject to:

Mv = µ c (Flux balance)

cp = v⊤τ (c,x) (Reaction kinetics and protein sum)

ρ =
∑

c (Constant cell density)

v ⊙ τ (c,x) ≥ 0 (non-negative protein concentrations)

c ≥ 0 (non-negative reactant concentrations)

Simplest case: there is a inverse W = M−1, so:

v = µWc
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The GBA problem with no alternative pathways: formulation on c

For invertible M: formulation on c in few steps

Substituting v = µWc into cp = v⊤τ (c,x)

cp = µ (Wc)⊤ τ (c,x) .

Solving for µ: we get the objective function µ(c,x)

µ(c,x) =
cp

(Wc)⊤ τ (c,x)
.

The only constraint left:

ρ =
∑

c .

The problem is now completely reformulated on c as independent* variables
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The GBA problem with no alternative pathways: analytical “solution”

Reformulated problem: for some given model (M, τ , ρ) and environment x

maximize
c∈Rp

+

µ(c,x) =
cp

(Wc)⊤τ (c,x)

subject to: ∑
c = ρ .

Analytical conditions for optimal states: using Lagrange multipliers, we find

µ (Wc)⊤
∂τ

∂cm
+ µ τ⊤ (Wm −Wp) + 1 = 0 ∀ m (2)

With
∑

c = ρ : p− 1 algebraic equations on p− 1 variables (solvable).
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The GBA problem with no alternative pathways: economics

Substituting v = µWc into the solution (2)

cp
µ

∂µ

∂cm
= −

∑
j

vj
∂τ j

∂cm
+µ

∑
j

τj
(
W j

p −W j
m

)
− 1 = 0 ∀ m

Economics analogy: new “structural” marginal benefit, the proportional decrease in protein allocation

(marginal) value = kinetic benefit + protein allocation benefit + density cost (= 0 if optimal)

Because of v = µWc and cp = ρ−
∑

m cm: increasing cm also causes a protein allocation decrease

−
∑
j

(
∂pj

∂cm

)
τ , µ=const.

= −
∑
j

τj
∂vj

∂cm
= µ

∑
j

τj W
j
p︸ ︷︷ ︸

protein production

− µ
∑
j

τj W
j
m︸ ︷︷ ︸

metabolite production

This contribution is typically very lowa, around 0.03 (explains why predictions of eq.(1) are good).

a
Dourado, Quantitative principles of optimal cellular resource allocation, PhD Thesis 2020.
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Equations for balance growth states: model A
1) Original problem: Implicit constraints on µ, involving v1, v2, v3, c1, c2, c3, x1 (6 variables, 5 equations)

v1 − v2 = µ c1

v2 − v3 = µ c2 (mass conservation)

v3 = µ c3

v1

6

(
1 +

1

x1

)
+

v2

6

(
1 +

22

c1

)
+

v3

5

(
1 +

40

c2

)
= c3 (kinetics and protein sum)

c1 + c2 + c3 = 340 (constant cell density)

2) GBA: Explicit constraint on µ(c1, c2, x1) (using c3 = 340− c1 − c2)

µ(c1, c2, x1) =
340− c1 − c2

1

6

(
1 +

1

x1

)
+

340− c1

6 · 340

(
1 +

22

c1

)
+

340− c1 − c2

5 · 340

(
1 +

40

c2

) (constrained growth rate)

3) Analytical conditions for optimal balanced growth state (system of algebraic equations)

µ
22

6

(340− c1)

(c1)2
+µ

[
1

6

(
1 +

22

c1

)
+

1

5

(
1 +

40

c2

)]
− 1 = 0 (m = 1)

µ
40 (340− c1 − c2)

5 (c2)2
+ µ

[
1

5

(
1 +

40

c2

)]
− 1 = 0 (m = 2)
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Numerical solutions for different external concentrations x: model A

Growth Balance Analysis 19/33



Comparison to data: E. coli and yeast ribosomal protein ϕr vs. µ

in vivo data close to the predicted optimality5 (red lines, no fitting).

5
Dourado & Lercher, An analytical theory of balanced cellular growth, Nature Communications 2020.
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“Growth Control Analysis”: holistic view of the growing cell

Metabolic Control Analysis (MCA): perturbations on metabolism (open system).

Growth Control Analysis (GCA): perturbations self-replicating system (closed
system), all is connected ⇒ analytical expressions6.

▶ Growth Control Coefficients Γ: change in µ by perturbing one concentration ci.

▶ Growth Adaptation Coefficients A: change in optimal µ∗ by changing parameters.

E.g.: changing in the density ρ

Aρ =
ρ

µ∗
dµ∗

dρ
=

ρ

cp

1− µ
∑
j

τjW
j
p


Comparing to E. coli data7 →

6
Dourado & Lercher, Nature Communications 2020, 7 Cayley et. al, Biophys. J 2000
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The general GBA problem: formulation on f
For some given model (M, τ , ρ) and environment x:

maximize
v∈Rr,c∈Rp

µ (Maximize growth rate)

subject to:

Mv = µ c (Flux balance)

cp = v⊤τ (c,x) (Reaction kinetics and protein sum)

ρ =
∑

c (Constant cell density)

v ⊙ τ (c,x) ≥ 0 (non-negative protein concentrations)

c ≥ 0 (non-negative reactant concentrations)

Main trick for analytical “solution”: let’s define the “flux fractions”

f :=
v

µρ

(
=

v

vuptake
, kind of “mass yield” w.r.t. net mass uptake, adimensional

)
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The general GBA problem: formulation on f

General formulation on f in few steps

Substituting v = µρ f into Mv = µ c

ρMf = c (independent of µ).

Substituting c = ρMf into cp = v⊤τ (c,x)

Mp
r fr = µ f⊤τ (ρMf ,x)

Solving for µ:

µ(f ,x) =
Mp

r fr

f⊤τ (ρMf ,x)

The density constraint:

ρ =
∑

c ⇔ a⊤f = 1
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The general GBA problem: analytical “solution”

Reformulated problem: for some given model (M, τ , ρ) and environment x

maximize
f ∈Rr

µ(f ,x) =
Mp

r f r

f⊤τ (ρMf ,x)

subject to:

a⊤f = 1

f ⊙ τ (ρMf ,x) ≥ 0 .

Analytical conditions for optimal states: using KKT conditions, we find(
Mp

j − µ τj − µ f⊤
∂τ

∂f j
+ µ f⊤

∂τ

∂f
f aj

)
fj = 0 ∀ j (3)

Using a⊤f = 1: we have r− 1 algebraic equations on r− 1 variables (solvable).
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The general GBA problem: economics

Substituting v = µρ f and c = ρMf into the solution (3), we find7

Mp
j −µ τj −v⊤∂τ

∂c
Mj + aj v

⊤∂τ

∂c
c/ρ = 0 ∀ j

Economics analogy: the marginal value of each flux fraction fj
protein production benefit︸ ︷︷ ︸

(increased protein production)

+ protein cost︸ ︷︷ ︸
(protein in j)

+ kinetic benefit︸ ︷︷ ︸
(protein saved)

+ biomass production benefit︸ ︷︷ ︸
(increased biomass production)

(= 0 if opt.)

7
Dourado et al. Mathematical properties of optimal fluxes in cellular reaction networks at balanced growth, PLOS Comp Biol 2023.
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Grow Control Analysis: Grow Adaptation Coefficient for kcat

We can show from first principles (using the Envelope Theorem)8 that:

A
kjcat

=
kjcat
µ∗

dµ∗

dkjcat
= ϕj

Proportional change in µ∗ is exactly the same as proportion of protein allocated to j.

8
Dourado et al. Mathematical properties of optimal fluxes in cellular reaction networks at balanced growth, PLOS Comp Biol 2023.
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Summary

▶ GBA: self-replicating models on independent variables, easier to study.

▶ Analytical conditions for optimal balanced growth (fundamental principles).

▶ Experimental indications that cells do implement near optimal strategies.

▶ Proteins emerge as the “currency” in cell economics from first principles.

(soon chapter in the EPCB book)
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Constraints on GBA
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Michaelis-Menten kinetics with activation

Based on “Convenience kinetics”9, we define the Michaelis-Menten kinetics with
activation, corresponding “activation constants” A

τj =
1

kjcat

∏
m

(
1 +

Am
j

cm

)(
1 +

Km
j

cm

)∏
n

(
1 +

Kn
j

xn

)

9
Liebermeister & Klipp, Bringing metabolic networks to life: convenience rate law and thermodynamic constraints, 2006.
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Equations for balance growth states: model A
1) Original problem: Implicit constraints on µ, involving v1, v2, v3, c1, c2, c3, x1 (6 variables, 5 equations)

v1 − v2 = µ c1

v2 − v3 = µ c2 (mass conservation)

v3 = µ c3

v1

6

(
1 +

1

x1

)
+

v2

6

(
1 +

22

c1

)
+

v3

5

(
1 +

40

c2

)
= c3 (kinetics and protein sum)

c1 + c2 + c3 = 340 (constant cell density)

2) GBA: Explicit constraint on µ(f2, f3, x1) (from the density constraint f1 = 1)

µ(f2, f3, x1) =
f3

1

6

(
1 +

1

x1

)
+

f2

6

(
1 +

22

340(1− f2)

)
+

f3

5

(
1 +

40

340(f2 − f3)

) (constrained growth rate)

3) Analytical conditions for optimal balanced growth state (system of algebraic equations)

1

6

(
1 +

22

340(1− f2)

)
+

22f2

6 [340(1− f2)]
2

−
40f3

5 [340(f2 − f3)]
2
= 0 (j = 2)

1−µ
1

5

(
1 +

40

340(f2 − f3)

)
−µ

40f3

5 [340(f2 − f3)]
2
= 0 (j = 3)
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Optimal substrate mass concentration = free enzyme mass concentration

The optimal mass concentration balance for minimal ρ :

cm =
pj Kj

m

Kj
m + cm

.

But this corresponds exactly to the free enzyme mass concentration

pjfree := pj − pj
(

cm

cm +Kj
m

)
=

pj Kj
m

Kj
m + cm

.

Thus10,
cm = pjfree .

10
Dourado et al. On the optimality of the enzyme–substrate relationship in bacteria, PLOS Biology 2021

Growth Balance Analysis 31/33



Numerical solutions for different external concentrations x: model B
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The dynamic generalization: fitness optimization
For some given model (M, τ , ρ) and dynamic environment x(t):

maximize
v(t), c(t)

∫ T

0
µ dt (Maximize fitness)

subject to:

Mv = µ c+ ċ (Mass conservation)

cp = v⊤τ (c,x) (Reaction kinetics and protein sum)

ρ =
∑

c (Constant cell density)

Main trick for analytical “solution”: define the “generalized fluxes” q such that

ρMq = c ,

then reformulate the problem on q̇,q,x, and solve Euler-Lagrange equations.

Growth Balance Analysis 33/33


