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Why yet another “balance analysis”?

Growth Balance Analysis (GBA): simplified framework for nonlinear self-replicating
cell models at balanced growth?.

» Nonlinear: includes nonlinear kinetic rate laws.
> Self-replicating: metabolism + protein synthesis and dilution of all components.

» Balanced growth: constant (external and internal) concentrations in time.

A framework, not a model: find common properties to all possible models.

Mathematical simplification: allows analytical study to find fundamental principles.

1Dourado & Lercher, An analytical theory of balanced cellular growth, Nature Communications 2020.
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Mathematical simplification: the least number of variables and equations

Not important for linear problems, but critical for nonlinear problems!

Example: Simple pendulum

Angle 0 (“generalized coordinate”) completely
determines the system state, no need of x,y,z.

Why looking for simplest formulation?
» Easier numerical calculations.
» Independent variables are preferable for analytical methods.
» Deeper understanding of the problem.
> Most “elegant” solution.
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Balanced growth (or steady growth)

For a steady-state environment defined by “external” concentrations x:

> Steady-state growth rate p (1/h), direct measure of fitness.

> Steady-state internal concentrations ¢ (g/L) of reactants (substrates, products)

_abundance of “i" (g/cell)

C; =

= constant
volume (L/cell)

Mass concentrations (not abundances) better describe cell states: i) constant,
ii) reaction kinetics depend on concentrations, iii) relate to cell density (g/L).

Matching units for fluxes v: mass per volume per time (g L=! h™!).
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“Self-replicator” models: Molenaar et al. Mol Sys Biol 2009

“Self-replicating”: nonlinear kinetics for transport + metabolism + protein synthesis,
with dilution by growth of all components (no biomass input, now it is an output).

Cell surface
%Mibmsm Protein synthesis

Ve

Kinetics: v =p-k(c,x) or p=v-7(c,x)

Keag ff=mmmm oo

ey

Turnover rate k
Turnover time 7

Dilution by growth

-~

0 K, 10K,
Substrate concentration ¢,

Optimal state: maximize y limited by mass conservation, kinetics and total protein.

Self-replicating models must be nonlinear: saturation/dilution trade-off.
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Density constraint(s)
Linear models: fixed density of “biomass” (diffuse concept), total protein cp.

Self-replicator models [a.k.a. Molenaar models]: fixed total protein c;,.

GBA: fixed cell density p (g/L) including all components (indicated by experiments?)
p=cp+ Z Cm

where m are all “non-protein” components, and assumed unique protein composition3.

GBA units: mass concentration (g/L) is the most convenient unit. To match units,
we normalize the stoichiometric matrix S with the molecular weights w (g/mol)

Stota] multiply diag(w) Stotal normalize Mtotal exclude M
columns by w columns external rows

2Baldwin et al.Archives of Microbiology 1995, Kubitschek et al. Journal of bacteriology 1983, Cayley et al. Journal of Molecular Biology 1991
3Dourado et al. PLOS Comp Bio 2023.

Growth Balance Analysis 6/33 :.



The “mass fraction matrix’ M

s e r
e, e,
- T X | T
: ! J = reactions (transport s, enzymatic e, ribosome r)
moo moo m " . . u . ”
M ! M; ! M 1t j = internal reactants ( “metabolites” 1, )
M — 7 3 : :
77777777 T upper index = rows, internal reactants
[ 0o 1 0 | Mp (upper | )
L : : J (lower index = columns, reactions)
J
“Mass accretion” vector a: the sum of each column
7é 0 aj =S
a; ::ZM; ={=0 ,j=e &  wisttl—gf
z =0 j=r
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Example of a GBA model: “model A”

Three Michaelis-Menten reactions in series
A) Model scheme
Cell surface
%{abolism :Protemsynthesis

v, . A

vy

B) Model parameters

I L o o1
1 -1 071 o 22 ol 1 1 2 3
M=|0 1 -1] 2 ,K-= ,Keat=[6 6 5] , p=340g/L
o1 A
0 0 0
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Example of a GBA model: “model B”

Model with replication, transcription, Michaelis-Menten kinetics with activation

s Met DN Ap RNAp T
1 -1 0 0 0 C
0 0.2 0 0 —0.3 ATP
0 0.3 -1 -1 0 NT
M= | O 0.5 0 0 —0.7 A
0 0 1 0 0 DNA
0 0 0 1 0 RNA
0 0 0 0 1 P
s Met DN Ap RN Ap r
1 0 0 0 0 Cex
0 11 0 0 0 C
K — 0 0 0 0 12 ATP
0 0 10 10 0 NT
0 0 0 0 25 A
s Met DN Ap RN Ap r
0 0 3 3 0 DNA
A= 0 0 0 0 5 RNA
s Met DN Ap RN Ap T
Koy — 113 24 7 17 41 =340
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The general GBA problem

For some given model (M, 7, p) and environment x:

VE%I,Té%p w (Maximize growth rate)

subject to:
Mv =ypuc (Flux balance)
cp = v 7(c,x) (Reaction kinetics and protein sum)
p= Z c (Constant cell density)
voT(c,x) >0 (non-negative protein concentrations)
c>0 (non-negative reactant concentrations)

where ® indicates the element-wise multiplication.
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Approximated problem: maximization of u with global mass conservation
The net mass uptake: enforced by the sum all equations in Mv = uc
Vuptake = Vin — Vout = 3 Miv) =p e;=pp
9,7 %
thus,

XMy

Vo) =0

For any given v:
maximal (c) < minimal p(c) =c, + >, cm

Accounting for kinetics and protein sum:

ple) =D vjmile) + ) e
7 m



Approximated problem: optimal density p

The optimal state must satisfy

acm Z v 5 aT] +1=0 ¥ m

Economics analogy: marginal cost from kinetic benefit and density cost

marginal cost = marginal kinetic benefit + marginal density cost (= 0 if optimal)

Note: the kinetic benefit is the protein saved due to increased saturation (< 0)

o) I,
Z J 867;31 - ; (acpyi>vconst.
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Optimal density: validation

Simplest case: Michaelis-Menten kinetics and a 1-to-1 reaction-substrate relationship

cm

pj=c" |1+ 4 (1)
J

E. coli enzymes and substrates are close to this optimality*
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4Dourado et al. On the optimality of the enzyme—substrate relationship in bacteria, PLOS Biology 2021.
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The GBA problem with no alternative pathways: full column rank M

For some given model (M, 7, p) and environment x:

maximize Maximize growth rate
vERr,ceRP a ( & )
subject to:
Mv=ypuc (Flux balance)
cp =V 7(c, %) (Reaction kinetics and protein sum)
p= Zc (Constant cell density)
c>0 (non-negative reactant concentrations)

Simplest case: there is a inverse W = M1, so:
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The GBA problem with no alternative pathways: formulation on ¢

For invertible M: formulation on c in few steps

Substituting v=puWc into ¢, =v' 7(c,x)

¢ = (We) 7(c,x)

Solving for : we get the objective function p(c, x)

Cp

HeX) = Wo rion)

The only constraint left:

p=> c

The problem is now completely reformulated on c as independent* variables




The GBA problem with no alternative pathways: analytical “solution”

Reformulated problem: for some given model (M, 7, p) and environment x

maximize  p(c,x) = p
X)) = T AT o
CGRE_ (W C) T(C,X)

subject to:

> c=r

Analytical conditions for optimal states: using Lagrange multipliers, we find

)
#(WC)T%%—MTT(Wm—WP)—l—l:O Vm 2)
m

With ) ¢ =p: p— 1 algebraic equations on p — 1 variables (solvable).
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The GBA problem with no alternative pathways: economics
Substituting v = ' W c into the solution (2)

cp Ol j
LBem =T Z% +,,ZTJ (W =Wi)—1=0 ¥m

Economics analogy: new “structural” marginal benefit, the proportional decrease in protein allocation

(marginal) value = kinetic benefit + protein allocation benefit + density cost (= 0 if optimal)

Because of v =puWeand ¢, =p— ) c™: increasing ¢™ also causes a protein allocation decrease

ol
— = — Ti— =
Z m Z J H-m
<aC > T, p=const. j dc

This contribution is typically very low?,

,uZTjW
J

—_——

protein production

a o L . . .
Dourado, Quantitative principles of optimal cellular resource allocation, PhD Thesis 2020.

around 0.03 (explains why predictions of eq.(1) are good).

2 Z Tj W7]n

J
—_——

metabolite production
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Equations for balance growth states: model A

1) Original problem: Implicit constraints on p, involving v1,v2,v3, c1, c2, c3,z1 (6 variables, 5 equations)

V] — V2 = pcr

vy — V3 = Qe (mass conservation)
v3 =pcs
1 22 40
2 <1 + 7) +2 (1 + 7) +2 (1 + 7) =c3 (kinetics and protein sum)
6 x1 6 c1 5 c2
c1+c2+c3 =340 (constant cell density)

2) GBA: Explicit constraint on pu(c1,c2, 1) (using c3 = 340 — c1 — c2)

340 — c1 —
pler,c2,21) = 1 il 390—c ;; e EYT pp—— 0 (constrained growth rate)
bl S I R e (DSl IR i Sl Rt
6( +z1)+ 6 - 340 (+01)+ 5. 340 ( 62)

3) Analytical conditions for optimal balanced growth state (system of algebraic equations)

B[ 2) o3 (1 2)] 1me e

6 c1 o Cc2
40 (340 — ¢1 — ¢2) {1 ( 40)}
14+ = —1=0 =2
" 5(02)2 T 5 + Cco (m )
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Numerical solutions for different external concentrations x: model A
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Comparison to data: E. coli and yeast ribosomal protein ¢, vs.

in vivo data close to the predicted optimality® (red lines, no fitting).

0 o
o N I ™ -
5 E. coli s S.cerevisiae
= o ° =1
— o -
o o Q
£ w £ g
8 57 8
[ e
o o [=9%
e s E ¢
§ © o Schmidtetal 2015 § e
= (=R ® Forchhammer & Lindahl 1972 =
c © Scoftetal. 2010 °
g © Bremer & Dennis 1996 g
5 g ® Daietal 2016 o ]
< g T T T = T | T | \
0.0 0.5 1.0 15 20 0.0 0.1 0.2 0.3 04 0.5
Growth rate u (h™") Growth rate u (h™")

5Dourado & Lercher, An analytical theory of balanced cellular growth, Nature Communications 2020.
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“Growth Control Analysis”: holistic view of the growing cell

Metabolic Control Analysis (MCA): perturbations on metabolism (open system).

Growth Control Analysis (GCA): perturbations self-replicating system (closed

system), all is connected = analytical expressions®.

» Growth Control Coefficients I': change in u by perturbing one concentration ¢;.
» Growth Adaptation Coefficients A: change in optimal ©* by changing parameters.

E.g.: changing in the density p s

0.0

In(w)

-03 -02 -0.1

pdu* p ;
Ay=——=—|1-p>y ;W)
P u* dp p ; 77 p

Comparing to E. coli data” —
-1.00 -0.90 -0.80 -0.70
In(p)

6Dourado & Lercher, Nature Communications 2020, 7 Cayley et. al, Biophys. J 2000
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The general GBA problem: formulation on f
For some given model (M, 7, p) and environment x:

vrg%lyrcngl{ep w (Maximize growth rate)
subject to:
Mv =ypuc (Flux balance)
cp = v 7(c,x) (Reaction kinetics and protein sum)
p= Z c (Constant cell density)
voT(c,x) >0 (non-negative protein concentrations)

Main trick for analytical “solution”: let's define the “flux fractions”

v v . " I : :
f.=— (: ,kind of “mass yield” w.r.t. net mass uptake, adlmen5|onal)
wp Vuptake
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The general GBA problem: formulation on f

General formulation on f in few steps

Substituting v = ppf into Mv =puc
pMf =c (independent of pu).
Substituting c = pMf into ¢, =v'7(c,x)
MPf, = € T (pME,x)

Solving for yu:

MY fr

fx)= ————
ulh,x) fTr(pMf,x)

The density constraint:

p:Zc & |a'f=1




The general GBA problem: analytical “solution”

Reformulated problem: for some given model (M, 7, p) and environment x

maximize  u(f,x) = %
feRr fTr(pMf,x)
subject to:
alf=1

for(pMf,x)>0

Analytical conditions for optimal states: using KKT conditions, we find

or or .
(MP fTafJ-i- pfl — o aj)szo VY j (3)

Using a'f = 1: we have r — 1 algebraic equations on r — 1 variables (solvable).
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The general GBA problem: economics

Substituting v = ppf and ¢ = p M f into the solution (3), we find’

Ps

or .
50 ¢/P=0 Y3

or
M} —pj— VT%M]‘ +a;v'

Economics analogy: the marginal value of each flux fraction f;

protein production benefit + protein cost + kinetic benefit + biomass production benefit (= 0 if opt.)
———

(increased protein production) (protein in j) (protein saved) (increased biomass production)

7Dourado et al. Mathematical properties of optimal fluxes in cellular reaction networks at balanced growth, PLOS Comp Biol 2023.
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Grow Control Analysis: Grow Adaptation Coefficient for ke,

We can show from first principles (using the Envelope Theorem)? that:

Ko du*
A = cat g ¢
Rew — pt akd,

cat

Proportional change in p* is exactly the same as proportion of protein allocated to j.

8Dourado et al. Mathematical properties of optimal fluxes in cellular reaction networks at balanced growth, PLOS Comp Biol 2023.
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Summary

> GBA: self-replicating models on independent variables, easier to study.
> Analytical conditions for optimal balanced growth (fundamental principles).
> Experimental indications that cells do implement near optimal strategies.

> Proteins emerge as the “currency” in cell economics from first principles.

(soon chapter in the EPCB book)
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Constraints on GBA

A) Flux balance for each reactant “i" B) Mass balance within each reaction “;”

~0.50"
& T

<0.30°

i

e

I
/,

C) Kinetics: v =p-k(c,x) or p=v-7(c,x)

D) Density constraints

Fege == owm e
V@l -~ i
e =
(5] (]
] E
=~ =]
£ 2 < i) el 2+ e R =P
= =1
= =

0 Ky 10K,
Substrate concentration ¢,,
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Michaelis-Menten kinetics with activation

Based on “Convenience kinetics”?, we define the Michaelis-Menten kinetics with
activation, corresponding “activation constants” A

Am K K"
szji. (1+—7§1)(1+—7§1)H(1+—,{>
kcat m ¢ ¢ n z

Liebermeister & Klipp, Bringing metabolic networks to life: convenience rate law and thermodynamic constraints, 2006.
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Equations for balance growth states: model A

1) Original problem: Implicit constraints on p, involving v1,v2,v3, c1, c2, c3,z1 (6 variables, 5 equations)

V] — V2 = pcr

vy — V3 = Qe (mass conservation)
v3 =pcs
1 22 40
2 <1 + 7) +2 (1 + 7) +2 (1 + 7) =c3 (kinetics and protein sum)
6 x1 6 c1 5 c2
c1+c2+c3 =340 (constant cell density)

2) GBA: Explicit constraint on u(f2, f3,z1) (from the density constraint f1 = 1)

f3
() ) £ O i)

3) Analytical conditions for optimal balanced growth state (system of algebraic equations)

w(f2, f3,21) =

(constrained growth rate)

! 22 22/2 _ 40f3 _ -

6 ( a1 - f2)) 6[340(1 — f2)]°  5[340(f2 — f3)]? 0 U=y
! 40 40f3 ,

Ly (1 T 31005 - f3)> B0 - )P 0 (=3
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Optimal substrate mass concentration = free enzyme mass concentration

The optimal mass concentration balance for minimal p :

P K,

Cm

But this corresponds exactly to the free enzyme mass concentration

D . Cm B » K,
p%ree'_pj p](cm-l-K‘,jn)_Kgn'FCm

Thus!®, _
Cm = p%ree

10Dourado et al. On the optimality of the enzyme—substrate relationship in bacteria, PLOS Biology 2021
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Numerical solutions for different external concentrations x: model B
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The dynamic generalization: fitness optimization
For some given model (M, 7, p) and dynamic environment x(¢):

maximize /T pdt (Maximize fitness)

v(t),c(t) 0

subject to:
Mv=pc+c (Mass conservation)
cp =V 7(c,x) (Reaction kinetics and protein sum)
p= Z c (Constant cell density)

Main trick for analytical “solution”: define the “generalized fluxes” q such that
pMag=c |,

then reformulate the problem on q, q, x, and solve Euler-Lagrange equations.
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