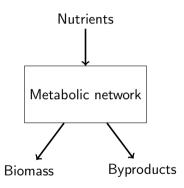
Economic Principles in Cell Physiology

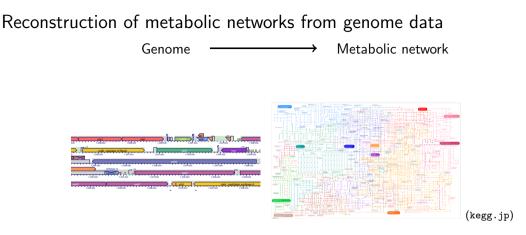
Paris, July 8-11, 2024


Optimization of metabolic fluxes

Steffen Waldherr

A whole-cell perspective on metabolism

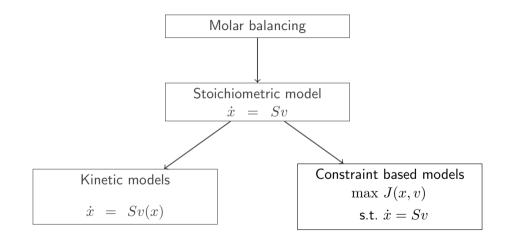
Properties that a model can try to describe


- Exchange fluxes / biomass production under given environmental conditions
- What is the internal network state to achieve certain exchange fluxes?
- How do the exchange fluxes / the internal network state react to external / internal perturbations?

Dimensions of metabolism

General overview

- ▶ 19090 known biochemical compounds (KEGG COMPOUND database)
- ▶ 11911 known biochemical reactions (KEGG REACTION database)
- **8 423** known enzymes (BRENDA database)


Organism specific view (biocyc.org)				
Organism	# of reactions	# of metabolites		
Escherichia coli	2 201	2967		
Saccharomyces cerevisiae	1 650	1 160		
Homo sapiens	2 900	2 1 2 1		
Arabidopsis thaliana	3 193	2777		

- 1. Identify genes with enzymatic function (annotation / sequence homology)
- 2. Find matching reactions in reaction database
- 3. Add a biomass reaction (metabolic building blocks + energy (ATP) turnover)

Genome-scale metabolic network model

From metabolic networks to models

Flux balance analysis

Constraints applied to the network

- Intermediate / intracellular metabolites are assumed to be in a quasi-steady state: flux of producing reactions = flux of consuming reactions
- "Irreversible" reactions can only have flux in one direction
- Maintenance / housekeeping reactions can be constrained to have a minimum flux value (empirical)
- Nutrient uptake (exchange) reactions are constrained according to availability of nutrients in the considered environment

Optimization principle

- Hypothesis: Cells regulate fluxes within constraints to achieve an "optimal" configuration from an evolutionary perspective.
- In many applications, network solutions that maximize flux through the biomass reaction are taken

Constraints on fluxes

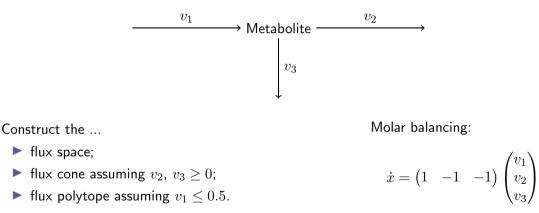
1. Steady state constraint

$$Sv = 0$$

- Fluxes constrained to subspace
- 2. Irreversibility constraints on some fluxes (from thermodynamics/heuristics/empirical evidence)

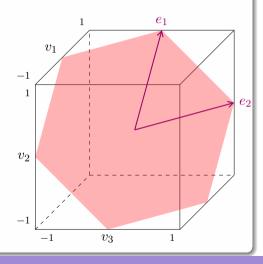

 $v_i \ge 0, \qquad i \text{ irreversible}$

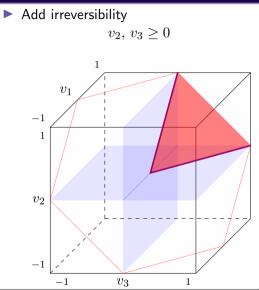
- Fluxes constraint to flux cone
- 3. Flux bounds from capacity constraints, maintenance, ...


$$v_{i,min} \leq v \leq v_{i,max}$$

Fluxes constraint to convex polytope

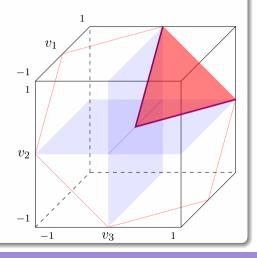
Geometric illustration

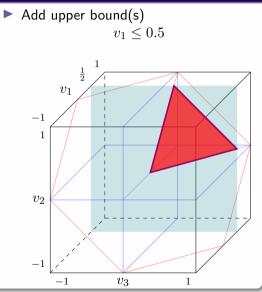

Flux space \rightarrow cone \rightarrow polytope example


Flux space from Sv = 0

Plane defined by

$$v_1 - v_2 - v_3 = 0$$


Flux cone


Flux cone

Add irreversibility

Flux polytope

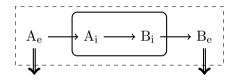
Setting up the constraint based model (CBM)

Constraint based model useful if non-trivial steady state fluxes exist

The steady state equation

$$Sv = 0$$

should have a non-zero solution $v \Rightarrow$ non-trivial steady state flux space


• We need $\operatorname{rank} S < m$; most models have more reactions than metabolites anyway.

Metabolite / flux units

- In CBMs, metabolites are usually considered in molar amounts per dry biomass: mmol/g
- ► Fluxes are then in mmol/(gh)

Exchange reactions

- Exchange reactions are added for all metabolites that are either consumed or produced in a metabolic steady state.
- They normally involve only extracellular metabolites.
- By convention, the reaction direction is towards the outside of the system


```
\rightarrow exchange reaction
```

Positive vs. negative flux on exchange reaction

- Negative flux = actually goes into the system = supply (consumption) of a metabolite
- Positive flux = goes outside of system = removal (production) of a metabolite

Biomass composition

E. coli biomass composition

Compound	Proportion [% g/g DW]		
Protein	72		
DNA	4		
RNA	10		
Lipids	9		
Polysaccharides	2.5		
Mureine	2.5		

Chassagnole *et al.* 2002, via bionumbers.hms.harvard.edu, ID 108705 Varies depending on environmental conditions (nutrients, aerobic/anaerobic, growth rate, ...)

Break down to metabolites

- 20 proteinogenic amino acids
- 8 D/R nucleotides
- phospholipids
- cofactors / vitamins
- ATP hydrolysis required for biomass assembly ("growth associated maintenance" GAM)

Biomass reaction formalizes consumption of metabolites to generate biomass

$$v_{bio}: \qquad \sum_{i=1}^n c_i X_i o 1 \,\, {
m g} \,\, {
m dry} \,\, {
m biomass}$$

Based on pre-determined constant biomass composition

- Coefficients c_i commonly in mmol / g dry biomass
- ▶ Unit of v_{bio} becomes 1/h: interpretable as dry biomass growth rate μ !

Maintenance

"Non-growth associated maintenance" (NGAM):

- membrane voltage gradients and osmolarity (ion pumps)
- movement (flagella)
- macromolecule (RNA/protein/carbohydrates) turnover

Energy demand is commonly represented by a single ATP hydrolysis reaction

 v_{maint} : ATP + H₂O \rightarrow ADP + Pi + H⁺

- Put as constraint into constraint based model
 - $v_{maint} \ge \alpha \text{ [mmol / (h \cdot g biomass)]}$
 - ▶ NGAM rate estimates: E. coli 8.4 mmol/g/h; S. cerevisiae 1.0 mmol/g/h

Optimization principle

Constraint based model

Sv = 0

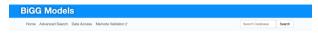
$$v_{i,min} \le v_i \le v_{i,max}$$

Underdetermined system of equalities / inequalities: flux polytope

How do we determine fluxes v that we expect to occur in nature?

Add an optimization objective

Hypothesis: Cells regulate fluxes within constraints to achieve an "optimal" configuration from an evolutionary perspective.


 $\max J(v)$ s.t. Sv = 0 $v_{i,min} < v_i < v_{i,max}$

Useful objective functions

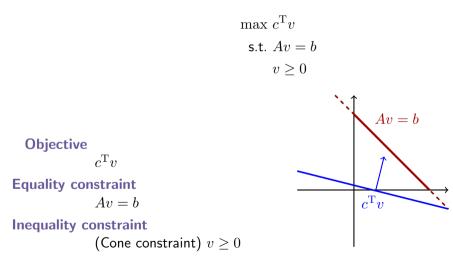
Туре	Objective $J(v)$	Principle	
Biomass yield	$\boxed{\max v_{bio}}$	Biomass flux at fixed max. substrate up- take	
ATP yield	$\max v_{ATP}$	ATP flux at fixed max. substrate up- take	
Minimal flux	$\min \ v\ ^2$	$\begin{array}{ c c }\hline {\sf Minimization} & {\sf of} \\ {\sf overall} & {\sf flux} & (\sim \\ {\sf enzyme} \ {\sf usage}) \end{array}$	
Biomass flux yield	$\boxed{\max v_{bio}/\ v\ ^2}$	Biomass yield per overall flux unit	

Empirical evaluation of objective functions: Schuetz, R., Kuepfer, L., & Sauer, U. (2007). Systematic evaluation of objective functions for predicting intracellular fluxes in *Escherichia coli*. Molecular Systems Biology, 3, 119.

Collections of constraint based models

Search Results

Exclude multistrain models from search

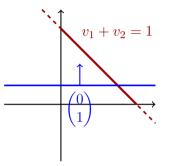

Models

0 0 1 to 198 (196) 0 0							
BIGG ID	0 Organism	0 Metabolites	e Reactions	e Genes e			
e_col_core	Escherichia coli str. K-12 substr. MG1655	72	95	137			
IAB_RBC_283	Homo sapiens	342	460	345			
WF1260	Escherichia coli str. K-12 substr. MG1655	1968	2362	1261			
WF12606	Escherichia coli str. K-12 substr. MG1655	1968	2360	1261			
AF692	Methanosarcina barkeri str. Fusaro	628	690	692			
AF987	Geobacter metallireducens GS-15	1109	1265	987			
IAM_P5448	Plasmodium berghel	903	1067	448			
AM_P0455	Plasmodium cynomolgi strain B	907	1074	455			
IAM_P9480	Plasmodium falciparum 307	900	1063	490			
IAM_P%459	Plasmodium knowlesi strain H	900	1079	459			
AM_P481	Plasmodium vivax Sal-1	909	1078	401			
iAPECO1_1312	Escherichia coli APEC O1	1942	2735	1313			
WT_PLT_636	Homo sapions	738	1008	635			
821_1397	Escharichia coli BL21(DE3)	1943	2741	1337			
RM1 1329	Eschasichia roli RW2852	194.9	2741	1329			

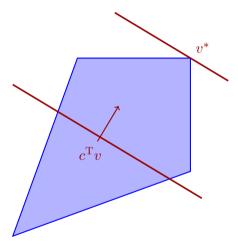
- BiGG models database: http://bigg.ucsd.edu/models
- ModelSEED (plant models): https://modelseed.org/genomes/
- BioModels database: https://biomodels.net (filter for "constraint-based model")

Linear programs

A linear program in standard form:

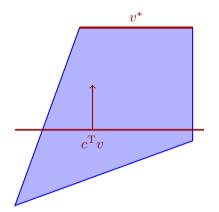


Example

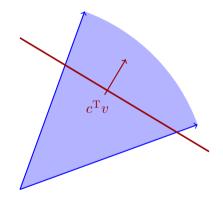

$$\max_{v_1, v_2} v_2$$

s.t. $v_1 + v_2 = 1$
 $v \ge 0$

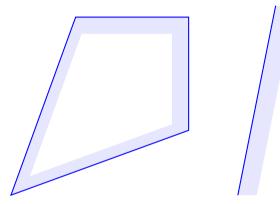
Thus:


$$c^{\mathrm{T}} = \begin{pmatrix} 0 & 1 \end{pmatrix}$$
$$A = \begin{pmatrix} 1 & 1 \end{pmatrix}$$
$$b = 1$$

Generalized geometrical interpretation



Non-uniqueness of optimal solutions


Set of optimal solutions is a face of the polytope

Unboundedness

Unboundedness: $\max c^{\mathrm{T}}v = \infty$

Infeasibility: Constraint set is empty

Example

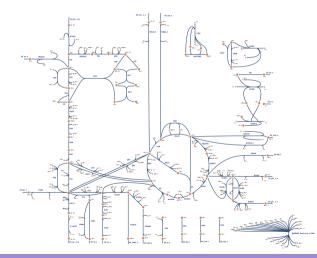
$$v_1 + v_2 \le -1$$
$$v_1, v_2 \ge 0$$

Flux balance analysis (FBA)

FBA to maximize biomass yield as LP

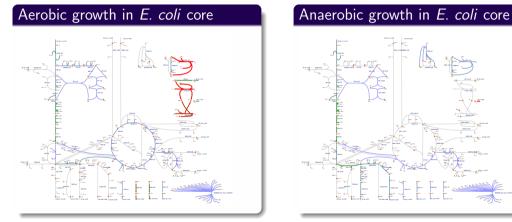
$$J^* = \max v_{bio}$$

s.t. $Sv = 0$
 $v_{i,min} \le v_i \le v_{i,max}$


▶ Typical relevant constraint is glucose / oxygen uptake rate

$$-v_{e,gluc,max} \le v_{e,gluc} \le 0$$

For practical reasons v_{i,max} = M (10⁶ mole/h/g) even if no capacity constraint
 Typically no unique optimal flux distribution v*


FBA example: E. coli core

- ► Core carbon network from BiGG database: 72 metabolites, 95 reactions
- Network visualization from https://escher.github.io/

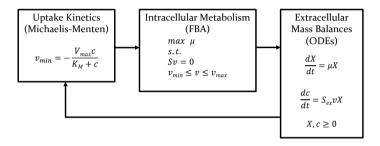
FBA results: comparing intracellular flux states

With a graphical layout of the metabolic network is available: graphical illustration of intracellular metabolic state

 ${\sf Made with \ escher.github.io}$

Dynamic FBA: general idea

- Put FBA models in a dynamic context (biomass growth, nutrient consumption)
- Starting from a mass balancing model like the Monod model:


$$\frac{dX}{dt} = \mu(c)X$$
$$\frac{dc}{dt} = -\frac{\mu(c)}{Y_{X/c}}X$$

- \blacktriangleright replace the growth rate $\mu(c)$ by an "optimal" growth rate from FBA model
- replace the substrate / product rates by exchange fluxes from FBA model

Key steps / questions

- How do we set the reaction constraints (mostly transport capacity) based on the changing nutrient availability?
- Connect the FBA-based part (optimization problem) to the dynamic part (differential equation model)

Integrating the DFBA model parts

EPCB book, chapter "Optimal cell behavior in time"

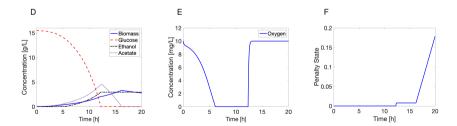
Enzyme kinetics for bounds v_{i,min}(c), v_{i,max}(c): usually only a couple of (uptake) reactions

 Optimal growth rate & exchange fluxes from FBA model are used in dynamic equations

DFBA: Example with *E. coli* core model

Oxygen cos

Acetate ca


A Glucose c_G

Ethanol ce

B Exchange constraints $-10.5 \frac{\text{mmol}}{\text{gDW h}} \frac{c_{\text{G}}}{2.7 \frac{\text{mg}}{\text{L}} + c_{\text{G}}} \le v_{\text{G}} \le 0$ $-30 \frac{\text{mmol}}{\text{gDW h}} \frac{c_{\text{O}_2}}{20 \frac{\text{mg}}{\text{L}} + c_{\text{O}_2}} \le v_{\text{O}_2} \le 0$ $0 \le v_E$ $-30 \frac{\text{mmol}}{\text{gDW h}} \frac{c_{\text{A}}}{100 \frac{\text{mg}}{\text{H}} + c_{\text{A}}} \le v_{\text{A}}$

C Dynamic equations

$$\begin{split} \dot{X} &= \mu X \\ \dot{c}_{02} &= v_{02} m_{02} X + k_L a (10 \ \frac{\text{mg}}{\text{L}} - c_{02}) \\ \dot{c}_{\text{G}} &= v_{\text{G}} m_{\text{G}} X \\ \dot{c}_{\text{E}} &= v_{\text{E}} m_{\text{E}} X \\ \dot{c}_{\text{A}} &= v_{\text{A}} m_{\text{A}} X \end{split}$$

EPCB book, chapter "Optimal cell behavior in time"

Outlook: further extensions of FBA

- Thermodynamic FBA
- Resource allocation models:
 - ME models
 - Resource balance analysis
 - Dynamic enzyme-cost FBA

Exercise on https://principlescellphysiology.org/ book-economic-principles/index.html

Run FBA on the carbon core model (Jupyter notebook \rightarrow Google Colaboratory)