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PART 1

INTRODUCTION & MOTIVATION
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Cracking metabolism

Complex,
dynamical system
~~____ presenting many
B e -~ open questions

How to predict
temporal dynamics?

Any underpinning
functional/structural
principles?
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Metabolism as ‘optimal biomass generator’
One view posits that
OO - metabolism is the process
<D through which cells acquire

energy to make biomass

¥

It follows that through evolution,
O \ l metabolism should (might??) have

Metabolism l

D —

been optimised for efficient (yield)
or fast (rate) biomass generation
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Diverse metabolic dynamics & behaviors

Carbon Carbon Carbon

AAs, vitamins,
, ) organic acids, ....

Biomass (AAs, DNA, Biomass (AAs, DNA,

‘Maintenance

enzymes,lipids, ...) enzymes,lipids, ...)
‘No growth’ ‘Normal’ (high yield?) ‘Overflow’ (fast?)
metabolism metabolism metabolism | o2 bewen . /. Gen. Mirobiol.

Warburg | Crabtree effect

Metabolic oscillations Metabolic heterogeneity (bistability?)

Murray, D., et al. PNAS, 104:7 (2007) Simsek E. & Kim M., ISME J. 12:5 (2018)

van Heerden J.D. et al., Science 343:6174 (2014)
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Metabolism as electron flows

Carbon ‘Energy’ ¢ )
(electrons) Food Glucose + 02

\ ﬁ' given: oxidation !

Electron flow!

\/v/’Y‘taken: reduction v

By-products Electron

v
acceptor ‘Waste’ COZ + HZO

“Life is an electron looking for a place to rest”
guote from c. 1960 by Albert Szent-Gybrgyi (1893-1986). Nobel laureate (1937)
and discoverer of Vitamin C. Studied TCA cycle.

Zerfass. C., Asally M., Soyer O.S. Curr Opin Syst Biol 13, 2019

Schoepp-Cothenet, B. et al. Biochim Biophys Acta 1827:2, 2013

Dynamics of Cell Metabolism — Orkun S Soyer, Slide 6 %8




SOME TAKE HOME MESSAGES BEFORE WE START

Cell metabolism & physiology presents many open questions

Models are ideas in need of experiments to revise them

Experiments report what is observed under a given condition

Genome Scale FBA = Metabolic modelling
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PART 2

FOUNDATIONS
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Metabolism is chemistry, is physics, is mathematics....

l

Biochemistry

STRUCTURI
AND
MECHANISM
IN PROTEIN
SCIENCE

Thermodynamics Calculus & Systems Dynamics

|

Calculus
H. C. Van Ness

NONLINEAR
UNDERSTANDING made easy DYNAMICS
THERMODYNAMICS gi!l\_’ﬁg;% e e CRAGS

Third Editica

STEVEN H. STROGATZ
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PART 2.1

DERIVATIVES (aka differential equations)
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Differential equations allow ’predicting’ the future

& b+
Derivative f(x) (differential equation)
gives the relation between small

changes in variables

Consider we had a derivative where
the independent variable is time and
the dependent variable was a physical

entity...
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Differential equations allow ’predicting’ the future

dx
— =x/(b+ x) _ o
dt Consider we had a derivative where

the independent variable is time and

Derivative f(x) (differential equation) the dependent variable was a physical

gives the relation between small

: i entity...
changes in variables Y
X By ‘tracing’ the c_lerivative, we could
— see how the variable changes over
time!
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My first (ordinary) differential equation model

ODE model of a mice population:

dN N r-N? e

—=1-N— S

dt K oY
=

If we know the population size at an initial time point t,, then we can
predict the population size at time f, + df using our ODE!

Notas = No + dN

r - N&
No+at :N0+<7"'N0_ K )'dt » Xntar = Xp + f'(xy) - dt
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Differential equations allow ’predicting’ the future

Xnyat = X+ f'(xy) - dt

ODE “simulation” (aka “numerical integration™)

Do try this on your computer

Keep iterating
—p ==l ==

K = 100; N, = 1;r = 0.25;
N = rep(0,100);

N[1] = Ny;

for (iin 2:length(N)) {

Nch = N[i—l]*(r*(l—
N[i] = N[i — 1] + Nch;

}
plot(N);

N[i—1]
K

)

ODE “simulation”

=

i o | Regardless of N,,

| o the mice population
No =40 0 will grow towards a

fixed value!

° m‘“ﬁ‘vf: 1
. . . . . .
0 20 40 60 80 100

Time
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Differential equations allow ’predicting’ the future

150

After a time, the population stabilised at a fixed value
~ and there seems to be no change in N with time!

So, we could have predicted perhaps what that
fixed value was going to be from the ODE:

100

< s dN _ o _ r-N?
a - K
J ro N N N =K
0 20 40 60 80 100 - 7" . —
Time K
Steady state
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Systems dynamics - toolset

System of interest : — integration | |
Interactions, processes... Modelling” gieihi=s ~ > Functional relation

dx]_ , . . .

—2 =] = f0, %, %) Numerical mtlegratlon Steady state dx _ i
: Xn+at = Xn + [ (xy) - dt | |analysis dt

dXz ,

% — _x.'z =f(x1,x2,...,xn) I 1

Parameter ‘sweeping’  Stability analysis
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Systems dynamics - toolset

System of interest : — integration | |
Interactions, processes el ODEs —— Functional relation

, L
WOODLAND ECOSYSTEM l \

Numerical integration _ |Steady state dx

- — v . — =0
= %4 (r«atHwnvd I‘" xn+dt — xn + f,(xn) ’ dt anaIVSIS dt
LB i \ Owl ;
/ Sparrow y Skunk I 1
@ @ ) Parameter ‘sweeping’  Stability analysis
rIle Mouse Rebbit e \

Blueberry
lBush
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Maths don’t care about “details’!

System of interest : — integration | |
Interactions, processes... Modelling ODTS \f’ Functional relation

Numerical integration |Steady state @ .
Xniar = Xn + f'(x,) - dt | |analysis dt

Parameter ‘sweeping’  Stability analysis
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PART 2.2

REACTIONS, LAW OF MASS ACTION &
THERMODYNAMICS
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Metabolic systems involve chemical reactions

A generic reversible chemical reaction....

VAA+vgB=v.C+vpD

‘products’ st

‘reactants’

A given reaction always reaches same equilibrium!

[Cles[Dlzh » : |
¢ — K, Empirically derived (aka law of Nature!)

G
Recommended reading: “Textbook errors: IX. More

about the laws of reaction rates and of equilibrium”,

Law of mass action .
Guggenheim, E.A., J Chem Educ 33:11 (1956)
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Thermodynamic explanation for Law of Mass Action

A generic reversible chemical reaction....

ViA+vgB=v.C+vpD

‘reactants’ ‘products’ e

..... under constant temperature and pressure:

AGC = AGO+R-T-1 <[C]VC [D]"D> Sometimes AG is given as A,.,,G.
o . - In

The subscript, e.g AG? , refers to
VA VB ’ )
[A] [B ] standard states (chemicals at 1M). To
refer to biochemical standard conditions,

AG® = AG°(C) + AG° (D) — (AG°(A) + AG°(B)) i.e. all at 1M, but pH=7, use; AG®'
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Thermodynamic explanation for Law of Mass Action
[ﬂZZ[D]ZZ)

AG=0=AG°+R-T-ln< g
AlealPleq -6 [C15ID1L%
e RT = VA VB = Keq
[ATa[B125

[C]Zi[D]ZS)

AG® = —R-T-ln(
[Al;4[B1,E

/ Law of mass action

-86° _ <[C]ZE, [D]ZZ)

R-T " \[Al;4[B];E

oy
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Thermodynamic explanation for Law of Mass Action

C Ve D VD
AG=0=AG"+R-T-In <[A]$Z[B]5Z>
berp o -ac? _ [CIGIDE
0 [Cleq[Dleq e RT =—< 35 = Kegq
AG® = —R-T-In ATAB]2 [Al o5 1Bleq

860 ([C]ZZ[D]ZS)
R-T [ATLA[B]YE

Law of mass action

forwards

AG <0 VAA+VBB\_—\VCc+VDD AG >0
Internal . 0§ /
energy —
= »$
Reaction proceeds Reaction at Reaction proceeds

steady state backwards
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Process (rate) based explanation for Law of Mass Action

AG <0 VAA+VBB\_—\V6C+VDD AG >0
Internal /
energy A6 = 0
- > S
Reaction proceeds Reaction at Reaction proceeds
forwards steady state backwards
Forward reaction rate: Backward reaction rate:
v v v v
k. [A]"4[B]"E k_[C]*¢|D]"P

The rate of a chemical reaction is proportional to the probability of collision
of the reactants, which is in turn proportional to the concentration of
reactants to the power of their stoichiometry.
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Process (rate) based explanation for Law of Mass Action

Mass action rate model

At equilibrium: k,[A]"A[B]'E = Law of mass action

Y, \Y A0
ky [C]ef,[D]eg _ _ TAG
= vavg — Keq = € RT
k- [Algq[Bleh

/’

(Al [B]VB>

Thermodynamic model

At equilibrium: AG — 0= AGO +R-T . m(
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Reversible mass action model of a (chemical) reaction

k+ o .
VA +vgB=2v:C + vpD ODEs for this ‘system’:
“ S8 = — k,[A]A[B]"B+ k_[C]"¢[D]*?

g

J =5 = k,[A]"4[B]"F — k_[C]*¢[D]"?

VCrp1VD ~AGY

— —ed-"eqd _
k- [Al 4Bl ¢4

Steady state:
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Reversible mass action model of a (chemical) reaction

k+ o .
VA +vgB=2v:C + vpD ODEs for this ‘system’:
“ S8 = — k,[A]A[B]"8+ k_[C]"¢[D]"?

J =% =k, [A]Va[B]vE — k_[C]Vc[D]*

Y, \Y 0
ky  [CloSID1D ~AG

— —ed-"eqd _
k- [Al 4Bl ¢4

I
®
&
Pﬂ

Steady state:

Remember that, according
to thermodynamics, k., and _ vAIRTVE — K+ [e1vern1vo
k_ are related. We cannot J = k.|A]"]B] [¢]*¢[D]
choose them freely!
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PART 2.3

ENZYMATIC RATE MODELS
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Biochemical reactions are enzymatic

\
AN "\
¢\ / N,
/
Internal / -
energy Reaction

» ¢ advancement

Accounting for enzyme activity (function) in reaction dynamics:

Enzyme-Ser Substrate Tetrahedral transition state Acyl-enzyme intermediate

RA
‘RA \RA peptide Rg
— A released
E-JGHIS0), + Ro-E E—CH,—O % E-SCHE0 RB—*@i

.,;4,-70//// el RB S Ooande: "
Base Balse Base
(His) (His) (His)
Substrate(s) and Substrate(s) ‘bound’ on enzyme Products(s) and
free’ enzyme free enzyme
E+S<=ES ES=E+P
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Enzymatic reaction dynamics — modelling strategy

1. Create c‘artoon r_nod,el %%1;‘ o
of enzyme ‘mechanism’:

2. Convert mechanism into elementary

(bio)chemical reactions: eg.  E+S<ES
3. Write ODEs for elementary reactions d[s]
by assuming law of mass action: eg. ——= = —ky[S|[E]+ k_[ES]

4. Make further assumptions to

create simplifications: €9 [E] + [ES] = const.
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Enzymatic reaction dynamics — example

. . AT . k k k
1. Enzyme with single binding sit ubstrat v 3 5
yme single binding site & substrate B G ESSEP  Epep . p
2. Elementary (bio)chemical reactions: e ey ke
3. Simplifying assumptions: ke = 0; k3, ky very large
ES = EP instantenous
4. New reaction scheme: fe Keat
E+ S=ES ES—E+P
k_
. . d[ES
5. Write ODEs b}_/ assuming [dt I _ k. [S1E] — k_[ES] — kogq[ES]
law of mass action: AP
‘e =~ KalS)E] + k_[ES] | == = Kear[ES]
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Enzymatic reaction dynamics — example

6. Make further assumptions: Ky ko > kg
[E]+ |ES] = const.= E|, ky Kear
Quasi steady d[ES] B S,? s ES—=E+F
Model state assumption: | gz -
reduction
dlES] - - - _ kyEo[S]
Z = 0 = KelS1CEo = (BSD) = K.[ES] ~ kearlES] ER) [BS] = oo

d[P] - Vinax [S] « d[P] _ kogi Eo[S] « d[p] _ k.. [ES]
dt [S]+ K, dt  [S]+ (k—+keae)/k+ dt

Irreversible Michaelis — Menten
model for the reaction flux of an
enzymatic reaction!
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A reversible enzymatic reaction model

1. Enzyme with single binding site & substrate ky ks ke
. . . E+ S=ES ES=EP =

2. Elementary (bio)chemical reactions: k, , EPk E+P
6

3. Simplifying assumptions:

4. New reaction scheme:
d[ES] d[EP]
dt  dt

5. Write ODEs by assuming
law of mass action:

Try this derivation!
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A reversible enzymatic reaction model

_ kg_at[S]/KS_kc_at[P]/Kp kl k3 k5
] = |Eo] B, P E+ S=ES ES=EP  EP=E+P
Kg Kp k, k, ke
k+ _ ksks ., — koky . __ kokgtkoks+kzks, __ kokstkyks+kzks
cat —

katkatks' €U T kotkatky 0 kq(kztkatks) P T ke(kptkstks)

Haldane relation

Steady [Eo] - kdas - [S]/ Ks [Eo] - kcae - [P]/ Kp

_ - kot Kp _ kiksks B ([P]) _ K
State: 1+ [S]/Ks T [P]/Kp 1+ [S]/Ks T [P]/Kp Keae * Ks  kokakg 5] eq -

As expected from principle of equilibrium: Lewis, G.N. PNAS 11:3, 1925
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A reversible model of enzymatic reaction dynamics

S - |P
kg_at[ ]/KS_kcat[ ]/Kp k1 k3 k5
J = Eo] RGN E+ S=ES  ES2EP EP=F+P
Ks Kp k, k., ke
C [S] [P]
J = [Eo] - kit Le (1 s T
1+[S]/KS+[P]/KP Keq > ]:vmax.K. (1_K_)
eq
AG
['= K,
Internal
energy
: > ¢ Noor et al. 2013
Reaction advancement (10.1016/j.febslet.2013.07.028)
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Enzymatic reaction models summary
Reversible enzymatic model

Irreversible enzymatic model
k+ k]_ k3 k5
k N N N
E+ S=ES sty o p E+ S2ES ES<EP EP=E+P
K k, ky ke
S
) = e () i ( Sl ) W
— Ymax ST+ K = Vmax * -
< - (a) ) Driving Force [kJ/mol]
10 V-Q—‘ 1.0
= v
(I) 2IO 4I0 6I0 8I0 1CI)0 | K I

[S1(umol)
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PART 3

MODELS, DATA & EXPERIMENTS
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Modelling metabolic systems

Central carbon metabolism

GLC oxt
Acc:

GAL ext

NADPH+CO, o MANZ _ piaNGP

MAN oxt
L0 Vay: 02 0t
ver] Pvr ATP § “ADP ver| PYR
= P s, A 2 08
o o o 5
ADP ¥ NAD +2 ATP
Qi2 + ADF

ATP
PP 664 ADP Q+ATP
s’ 663
TRAT F16P
ARA _ext 19 /\
5 ozus
Gose
[=raop A ADPMA 34— BDHAP AP =@ ADP + ATP_main
7P NAD 2
: NADH AMP+ ATP—@—-2 ADP
NAD + NADPH . |
0P
Lorsp  ERVaP s
€0m ATP
NADH + NADP ]
b KOPG TRAG
FOR
TRAT
co,
TRA3
NADH NAD N
™ " o
YR, #‘
l— cor @
r Fem Fems % .
F6P FOR==$CO,+H, | W02 >“
[ risose NADH<CO{ D acon Fous . C0,+ aH2
NAD
AKG 7 TRAY
80 oaA
80! ERV4P OMA Ao roms 1Ra2
CoasH JoAx AcP o
— casr 9 NADH
— CACO ADP ATP
o g ToAsr
PEP ‘}\&m
— =
PYR oASH cT
L ACoR CLYORY i
ACoA )
FUM »QH2 AL
NH3 10 NADPH4CO,
anz ANy 0 AKG NADH +Q
TRAS "7 " suce NAD+CoASH
SUCC_ext a Se oA "
Tc NADH+CO,

A6
ATP+CoASH ADP.

A

FOR_ext
co, ext

NH,_ext

LAC ext

ETOH_ext

ACE_ext

Partial, but detailed, models of pathways

Re-occurring motifs and their dynamics
Toy models mimicking aspects of metabolism

Large-scale models
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Modelling metabolic systems

Partial, but detailed, models of pathways

AAAAAA

Re-occurring motifs and their dynamics
Toy models mimicking aspects of metabolism

ccccc

EE e Large-scale models
810 : Z»:;p . TCAZ P Ag‘:gw 182 ACE_oxt
\i\ “All models are wrong, some are useful”
attributed to a 1976 paper by George Box (statistician)

A model is something no one believes except the creator of the
model, while an experiment is something everyone believes
except the experimenter quote attributed to A. Einstein
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Dynamical models and parameters

Fluxes: Enzyme levels: kear - [Eror][S] | Substrate levels:
10— 104 (mM + min)-’ 105-10"mM K, + [S] 103—10mM
E;
TN Enzyme kinetics:
a
— S P— k... 10" =107 (min)-! || Binding/unbinding
a 1010— 103 (MM * min)-
C(l\"/ T“ K. 103—-10mM 102— 10° (min)"

CAUTION: Mostly based on
in vitro enzymology!

Equilibrator: https:/equilibrator.weizmann.ac.il/
BIO-MODELS: https:/www.ebi.ac.uk/biomodels/

BRENDA: www.brenda-enzymes.orq
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https://equilibrator.weizmann.ac.il/
https://www.ebi.ac.uk/biomodels/
http://www.brenda-enzymes.org/

PART 3.1

METABOLIC OVERFLOW
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Metabolic flux shift under high glucose

Metabolic ‘overflow’: Shift between fermentation and respiro-fermentation

in yeast, bacteria, and mammalian cells.
Warburg effect— in cancer, Crabtree effect — in yeast

Substrate
\7: k Glucose = \d_> Pyruvate M Lact.
W Ferment. Glycolysis l Fermentation
a
: : TCA
O, —)Respiration Krebs) G
cycle
Amino acid
akg
. . . . + P
Respiration (high energy yield) ) /(;utamate recursor

vs. fermentation (low yield) " NH
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Metabolic flux shift under high glucose

Simple Hypothesis: Cells must ‘switch’ to fermentation because of
constraints on metabolic fluxes (of respiration)

Simple Constrained-Optimization View of
Acetate Overflow in E. coli

Substrate
\': K R )
Fe r m e nt . g.gp.ar“::'ll:l‘:t’s:; 2‘;‘7:":’1'0:’/' .Ezg;:‘r::.:ing, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213
a Accepted for publication September 1, 1989
O, D, Respiration Majewski, R. A. & Domach, M. M.
Biotech. & Bioeng. 35 (1990)
Yield: Y = a/f
At steady state: f= g4 k Ylgld S maxmseql by k =0, but if there are
Y = (f— K)/f limits (i.e. constraints) on a, then k needs to

be non-zero as fincreases
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What constraints metabolic fluxes?

Flux limit due to
total enzyme level

dP)_ | nec1S
dt -~ [S]+ K, =

Hypothesis: Constraints on metabolic fluxes A
are determined by enzyme levels, and therefore 0O 20 40 60 80 100

protein allocation to different pathways [S](umol)
Basan M. et al. Nature 5287580, 2015 Data/experiment support is limited*
Molenaar, D. Mol Syst Biol 5 (2009) ?fg’ffiz,[)z'g}g" PNAS g’!ggggﬂf oy el elife
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What constraints metabolic fluxes?

'ordinary’ Max flux is determined by
reactiony Substrate — Product Keat ™ [Eod
V=Keat ™ [Etoll ™ [S]/ (Kn +[S])
Ky
Co-substrate Aj fA, Max flux is determined by
reaction Substrate E Product kcat * [Etot] & kr and Atot

V=1 (Keat, [Etod, [Atods [KH)

Hypothesis: Constraints on metabolic fluxes are determined by co-substrate
pools and conversion dynamics, allowing an additional layer of regulation
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Co-substrate constraint on single flux

10"

A ActA=Ay| B
& Q
Eq M; (M)
K K My (M)
in out -8
—LLEO D
—2

1Og10M0 10

D

0

104 a kinKM,EO
mO ==
L (Vmax,EO - kin)(Vmax,Ea Atot - kin(KM,Ea + Atot))
] 110"
Ay
|
0 0 500 E 1008
Time (s) v
logy My Atot VmaX,E 4
(D k., <V .g and k, < .
Eo Kyp +A
Vma.x,EU 0 M,Ea tot
9
By Enzyme Co-substrate
) constraint constraint
-3
1 West, R., et al. eLife

19:1, 2023
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Constraint = potential for control

A Cou Flux
ratlo
& M, 2 and M M, M 1 and M,
ki Nenz” Aot A1 = A 2 ' ! o
- B,+ B, =B, build up build up build up

enz.
\

% Bo @
¢ > - : kOU
enz. —od

Increase A,; and decrease By
to take flux to upper branch,
and vice versa.

-2
10 1073 107! 10! 10°

Atot/ Btot

Dynamics of Cell Metabolism — Orkun S Soyer, Slide 47 666




Co-substrate reactions as regulatory points

The respiration-fermentation ‘switch’ relates to NADH dynamics
In E. coli and yeast cells:

Synthetically introducing NADH oxidising
Substrat NADH NAD* NOX gene in E. coli shifts overflow point!
ubstrate

\ V Fermentation: ‘

Acetate, ethanol,

lactate, ... 08 O 04
o P
NAD: | Respiration: CO, é 04 - :7\.\ /,7 i %
g 0.3 - —e : . //_"/0 - 0.2 2»
Vemuri, G. N., et al. Appl Environ %”‘ NOX" /o’/;ox* b i;
Microbiol 72:5, 2006 Fos ! J/
0.0 —e-0——oc-0—o—ei, i 0.0

0.3 0.6 0.9 1.2 1.5
ds (9/g DCW h)

o
)

Vemuri, G. N., et al. PNAS 104:7, 2007
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PART 3.2

BISTABILITY IN METABOLISM
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Bistability in metabolic systems

% 4t N 1 Steady state

—=71-N N=K

PFK

of Can metabolic reaction systems lead to ODEs
%~ with multiple steady states?

PK

PYR PEP Hervagault JF., Cimino A. J. Theor. Biol. 140 (1989)
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Bistability in metabolic systems

Intersections are the steady

F P E dp
6 1, f h m!
At steady state: states of the syste
PFK V1-[S] Vo-(C—[S]) / / I
g S2, —oy T a(So—I[SD %
ATP ADP Kq+[S]+ /K3 Kz+(C—[SD S

P production P consumption _ &7 o
— g ’ °°°% Consumption
z o _ %
A PEP é SV l Production

What are the possible/; —
0 20 40 60 80 100

biochemical basis of
this nonlinearity?




Bistability in multi-site enzymes

SE ‘.
—>S—> P—
a
~— | SE SES |
SES |
3 complexes
Assumptions
Ao,1 aq,[1,2]
E+SSESME+p ES+S S SESpsip
[Stor] = [S] + [ES] + [SE] + 2[SES] + [P] b b
0,1 1,[1,2]
[Etot] = [E] + [ES] + [SE] + [SES] o Qs (2]
) C ) ) C
E+SSSE-SE+P SE+S S SESUSE+p
bo 2 ba1,2]
Relaxing these does not alter the key
results that follows Hayes. C. et al. ACS Syn Bio (2021)
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Bistability in multi-site enzymes

P production flux (total)

P production flux (SE and ES)

P production flux (SES)

v[M/min]

Ssum[mM]

v[M/min]

P production flux

0 : : : : P consumption
0 2 4 6 8 flux

Nonlinear production flux arises from
dynamics of substrate-enzyme complexes
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Bistability! — from multi-site enzyme structure

P production flux (total)

E 1571
_ arh
£ - g — P @, 11
S a A

P production flux]

P production
flux (E12)

(E1 and E2)

Low E12 catalysis : High E12 catalysis:

E12 0.5+
. . J e
0 : : - : 0 : : : ===
0 2 4 6 8 0 20 40 60 80 100 120
Ssum[mM] Ssum[mM]

Bistable dynamics Monostable dynamics

Same conclusion as from ‘substrate inhibition’ model
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Experimental demonstration of bistability

Clear experimental evidence for bistability is currently lacking. Bistability is
observed, however, in enzymatic re-constitution experiments in vitro:

3

b

[ADP} mM

. [ATP]i;t = 3mM One
Steady State
o
ATP ADP

[ATP} mM

1 O 1
0 51 I 20
Time (hours)
= [ATP]. = 6mM Two | - de o .

KA | Steady States §3 23
Cimino A. & Hervagault J., FEBS l I

0 o+¥ - .3
Let tr . 263 (1 990) 0 3 Timg%hours) 1 20 0 > Timéo(hours) 13 =
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PART 3.3

OSCILLATIONS IN METABOLISM
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Oscillations: synchronised cells in a population

Yeast cells were grown on high glucose (20 gL'~ 100mM + 1 gL' yeast extract), in
a chemostat and the dilution rate was maintained at 0.087 h-'. The population is
seemingly synchronised under these conditions!

— Truncated list....oscillations observed for most metabolites!

L-Homoserine
Sedoheptulose 7- phosghale

D-Fructose 6-phosphate
Inositol- phosphale

Glucose
-g;toglu arate

Reductive phase

< N\
NAD(P)H NAD(P)*

A\ 4

Oxidative phase

[0,] kM ,
§
ii
- -

INAD(P)H] V

Murray, D., et al. S 2 B 8
PNAS, 104:7 (2007) v

Time (min)
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Oscillations: single cells breathing in and out!

Metabolic oscillations in single cells are separate
from, but coupled with, cell cycle oscillations.

Buddirng

Metabolic oscillations w/o budding

'vv

-
-

1
% vV vV \/.
\ A AC
.. \ ’. ® @ o o .. () "‘ O

o
©

Smoothed NAD(P)H (a.u.) |
¢ De-trended NAD(P)H (a.u.)
o
&
——6—o. |
g il
[ 4
el
°Goe

LX)

[ )

o

o

& G1 Phase

I
Cyt

) ¢

il

START
Nuc —
— Whi5-eGFP Local

[ ) I I
0 250 500

I
750

T
1000

I I I
1750 2000 2250

Time (min)

Papagiannakis, A., et al. Mol Cell, 65:2 (2017)

Yeast cells were grown on high glucose (10 gL' ~ 50mM). Single cell analysis in the

absence of synchronization.
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Oscillations: Many models can do it. Jury is out

Similar, cyclic motif as before, but with two allosteric regulation points:

v Ei

7
b —ISO (I) a-Ketoglutarate(aK) ———» 350
6L
—~ ISO —~ 300 _20' Y
= 5 A i A 2
3 i I i el Ly
= i i N T 250 F |y Y
2 R R S S A B s
E-I ,'I': P IDH § 200f ° ¢ 18
E 1 H . .E.;
a5 S 150 -
3 2] A
Z 41 o NG T 100 -
NADP*(S) —— ~—NADPH (P) 8
0 z 50-*
0 5 10 15 20 25 30 0
time (min) 0 50 100 150 200 250 300
DIA time (min)
High v gives rise to Low v gives rise to bistability

oscillations Guidi G.M., Goldbeter A.
Biophy. Chem. 72 (1998)
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PART 4

SUMMARY & OUTLOOK
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Metabolic systems are capable of rich dynamics, including bistability, oscillations,
and hetereogenity.

These dynamic features are ‘expressed’ under some conditions and can determine
cell physiology and higher level functions (e.g. dormancy).

ODE models and assumptions can give us insights independent of experimental
data or explain specific experimental dynamics.

Multiple models can result in same behaviors and is not always possible to
distinguish or disentangle these alternative explanations from each other.

The condition dependency of metabolic behaviors makes it important that each
experimental finding is considered in the context of the experimental setup used.
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SOME OPEN AREAS OF INVESTIGATION

Bistability | Oscillations

Temporal flux / metabolite measurements

Compartments — how to combine
metabolism, membrane potential, ionic
fluxes, pH

Metabolism — microenvironment
feedbacks
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SOME OPEN AREAS OF INVESTIGATION

S
NAD+ NADH Acetaldehyde Ethano
O O T A adhti |4

—> G3P —> = — PEP ——> Pyr .
/ — Nde1,2
Compartments — oo | LNdi
Pck1 | Pyc1,2 v Actald. Ethano

adh

Membrane potential \Mae,\ pyr 8 o o

pH ;

o acCo
A

Oxaloacetate\ Oxaloacetate
(o) o Oa
O>1 K(‘)/ Citrate

Malate Malate
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Thank you for listening

Looking for PhDs & Postdocs

Cell metabolism, spatial

0SS kAB

http://osslab.lifesci.warwick.ac.uk

O.Soyer@warwick.ac.uk

organization, microbial communities

Collaborators: Vlarco Polin, Sebastien

Mary Coates Robert West
Sarah Duxbury || Sonal
Kelsey Cremin

Ragidaeu, Chris Quince, Wenying Shou

GORDON AND BETTY

"W 25BBSRC MOORE

WARWICK bioscience for the future FOUNDATION
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PART 5

EXERCISES & EXTRAS
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Additional reading and resources

Core reading:

* Ch. 1in “Nonlinear Dynamics and Chaos with Applications to ...”, Strogatz, S. Perseus Books (1994)

* Ch. 1-3in “Calculus Made Easy”, Thompson, S. P. The Macmillan Company (1910)

+ Ch. 2 and 3 in “Mathematical Modelling in Systems Biology: An Introduction”, Ingalls, B. at:
https://www.math.uwaterloo.ca/~bingalls/MMSB/Notes.pdf

Recommended reading:
* Ch. 2 and 3 in “Principles and Problems in Physical Chemistry for Biochemists”, Price N. C., et. al. Oxford U. Press
« Ch. 3 and 4 in “Structure and mechanism in protein science” by Fersht, A. Freeman and Company

Optional, but fun reading:

+  “Textbook errors: IX. More about the laws of reaction rates and of equilibrium”, Guggenheim, E.A., J Chem Educ 33:11 (1956)
*  “A new principle of equilibrium”, Lewis G. N., PNAS 11:3 (1925).

*  “On the validity of the steady state assumption of enzyme kinetics”, Segel. L. A. Bull Math Bio 50: 6 (1988)

*  “A note on the kinetics of enzyme action”. Noor E. Flamholz, A., et al. FEBS Lett 587:17 (2013)

*  Further chapters in Thompson’s and Strogatz’s books.

*  “The growth of bacterial cultures” by Jacques Monod (Nobel laureate, 1965).

Optional resources:

Mathematical systems biology models: htip://www.ebi.ac.uk/biomodels-main/
BRENDA database: www.brenda-enzymes.org

Database for models and experimental data: https://datanator.info
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Questions & Exercises?

What is a function? Plot the following function and consider how y and x relate to each other:

Explain the meaning of the derivative and slope.

Develop an ODE model for the concentration of a protein, considering only its translation from mRNA and its
degradation by proteases

What is the formula for K,,? What does K., stand for, i.e what does it mean?

Can you state the ‘rate based’ formulation of the law of mass action? Can you explain what a ‘rate
coefficient’ is in the context of law of mass action?

Write the ODEs for the following reactions based on reversible (irreversible) mass action models:

Where does the following equation come from? A+B=D
(the question is not to answer, but to encourage you to read more 2A+B=0D
into thermodynamics — see 15t slide) [ C]"C[D]"D)

[A]Va[B]B

AG=AG0+R-T-ln(
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Questions & Exercises?

What is the formula for Haldane relation? What does it stand for, i.e what does it mean?

Can you explain the assumptions made for obtaining this rate equation?

Write the reversible rate equation the following enzymatic reaction. A+B=C

Work out a model for a single substrate reaction mediated by an enzyme with two binding sites.

What is the ‘principle of equilibrium’?

(don’t have to answer for this module, but you are encouraged to take a look at the highly recommended
Lewis paper!)

Can you develop a model to explain the observed oscillations in NAD(P)H?
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Additional slides
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Ordinary differential equations (ODEs)

System of interest n-dimensional system of ODEs
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Multi-site enzymes and co-substrate cycles

Speculative hypothesis: ’ o
Co-substrate cycles regulate —> 55— p%s

fluxes and allow for distinct “flux Q ) @

states’ via bi- / multi-stability

PK
PYR PEP
enzyme EC number enzyme oligomer structure substrate (showing substrate inhibition)”
malate dehydrogenase 1.1.1.37 tetramer oxaloacetate
lactate dehydrogenase 1.1.1.27 tetramer pyruvate
D-3-phosphoglycerate dehydrogenase 1.1.1.95 tetramer phosphohydroxypyruvate
isocitrate dehydrogenase 1.1.1.42 dimer NADH
phosphofructokinase 2.7.1.11 tetramer ATP

®o
>e
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Dynamical observations — flux changes

Substrate

Shift between fermentation and (sugars)

respiration and respiro-fermentation in
yeast, bacteria, and mammalian cells.

U=0Qr— 20, __ Fermentation
® " (internal NAD+/NADH “neutrality”)
All the tumours grafted o
intraperitoneally show a '\‘
carbohydrate metabolism Respiration ®
conforming to that found by (02)
Warburg. A positive U, or excess ‘ ,
fermentation, is a common contre-effect Pasteur
(“Crabtree effect”)
property.
Crabtree H. G. Biochem. J., 23 (1929) De Deken R. J. Gen. Microbiol., 44 (1966)
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Toy model of (upper) glycolysis

Glc
ATP
e Model without feedback with ‘Trehalose’ feedback
Tre 6-P ADP </ [Glc] [ATP] [Glc] [ATP]
‘ Umax,HK ° /KGZC /KATP v VmaxHK * /KGZC /KATP
-Tps1p HMP Uy = HK = 2
[GIc] . [ATP] ( [Glc] [HMP] / ) . [ATP]
(Y k) () LA ke ™ Kare) (1T /K yrp)
PFK E 300 4 E 12 - ~a
£ c HMP
ADP =t =
2 2 H
Fru 1,6-P, £ 200} % AT 53 %
4 ADP % 9:3 %
m ?;:‘ 100 - ?'3 g
4 ATP E E E
o & =
2 EtOH = . . . = . .
O0 5 10 15 20 00 &IS 10 15 2(?
Time (min) Time (min)
HMP and Fru accumulate without bound! All metabolites reach steady state

Teusink. B. et al. Trends Biochem Sci. 23:5, (1998)
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Metabolic motifs suggest constraints on metabolic fluxes

P ATP- A
T AT:’ ADP
Tpsip(— HMP k' t
ATP = = Mo M’ M1 ko—»
Different models, same insight: Avoiding metabolite
accumulation requires balance of fluxes (i.e. enzyme
capabilities)

The ability to provide a certain insight, does not necessarily require a complex
model. It is a useful exercise, to ‘strip’ a model of complexity to see what elements
of it lead to a specific phenomenon
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Co-substrate reactions and measured fluxes

flux [mmol / gCDW / s]

1071

1073

V=1 (Keat, [Etotl, [Atod, [KA)

oo B AMP + ADP + ATP
% B NAD + NADH
M NADP + NADPH
® Gerosa et al.
(@8 O Davidi et al
1 1 1
1078 107> 1072

Vimax = Eo * Kcat [mmol / gCDW / s]

MDH (r? = 0.76)

0.0030 A

0.0025 A

0.0020 A

0.0015 A

0.0010 A

flux [mmol / gCDW / s]

0.0005 ~

C

0.0000
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NAD + NADH pool size

[umol / gCDW]

This analysis ignores substrate and
thermodynamic effects, which could explain some

of the low flux values




Co-substrate based regulation?

The central metabolism dynamics relate to NADH dynamics
in mammalian cells:

Synthetically introducing NADH oxidising
NOX gene in cytosol or mitochondria
l alters gluconeogenesis rate

\ 4

- ns i
e Ad-GFP *
g 1204 Ad-LONOX 105 | #e+=  ng
- Ad-mitoLbNOX 108 L V_‘
o ns Il
a 80 ns ns
4 ‘ o7 60
P 44
Titov, D. V., et al. Science 352:6282, 2016 g 40 34 35
)
©
£
[ —

No substrate Pyruvate Lactate
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Co-substrate based regulation?

Control of lower glycolysis NAD?  NADH Pok pgm, eno, pyk o NAP' )
and resp/fermentation branch: G3P 1,3DPG — Pyr Lac
[[gapd| NAD* 2R .
| fermentation
NADH -
aCCO kOUt
l [\Vbz A TCA and
NAD* NADH respiration
Mo Vb1
\4 M NAD{\NAD+
~ Self-regulation in
) Mzu Ms .
2 \)\ metabolic
N y systems?
7 Ai ‘ “Energy metabolism of the cell: a theoretical treatise”
- \ by Reich J. G. and Sel’kov, E. E. Academic Press
1981
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Calculus and dynamical systems theory

“What one fool can do, another can.”
Ancient Simian(!) Proverb introduced by Silvanus Thompson

Function is a mathematical expression that states a relation between physical entities
that can change, e.g. length and height of a triangle, position of a car, weight of a
body. In other words, a function defines the relation between variables:

y=f(x)
yl\
a
X

y = x - tan(a)
/ Constant
Dependent Independent
variable .
variable
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Calculus and dynamical systems theory

The derivative of a function simply provides the relation between a small change in
one variable with regards to a small change in another. In other words, a derivative
defines the relation between changes in variables:

Function f(x) Derivative of f(x): f(x)

y=f(x)=x2 > f’(x)=%=2x

/ t The derivative is
dy = (x + dx)? — x? y also known as

) . Assume f(X) the slope of the
dy = x° + 2xdx + dx* — x 2x —dx =~ 2x line segment that

is tangent to f(x)

The derivative is always an J dy at point x.
dy = dx(2x — dx) approximation! The smaller the dx

step size, the more accurate

dy = 2xdx + dx?
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Derivative (i.e. differential equation) models

We can ‘construct’ differential equations, using time as
an independent variable, for a system of multiple
variables that all depend on time.

The ‘construction’ of derivatives should take into account
processes that affect the variables!

An example: & 4y ?? Can you guess how the
function tvs. x would look like ??

Change in A process that A process that
variable x with  increases x and decreases x and that
respect to time that has a has a value dependent
constant value on the value of x at a
with respect to x given time
and time
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A caution about the derivative
and the numerical integration

Function Derivative of f(x): f(x)
f(x
An example and a -(y—i FQ) = 2 £100) _dy_
visual help: \ dx
dy = dx(2x — dx) ﬁne
2x —dx =
60 Plot of Ny = Ny - e X

is assumption? It can,
and will always, cause inaccuracies
in numerical integration.

Numerical integration offl—lz =r-N.
Using Euler or method.

%
- ¥ 7
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Chemical reactions and thermodynamics

r f

Internal \/
energy
' Reaction

» ¢ advancement

VaqA+vgB=v.C+vpD

The position of the reaction along axis ¢ is usually denoted as
the mass action ratio I';

£

I'is a point in the [A]x[B]x[C]x[D] space
instead of a point on the ¢ line

[C]e[D]"?
[A]A[B]

AG = AGO +R-T- ln([C]VC[D]VD> l" —

[A4[B] B

AG =AG°+R-T-In(l)
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A note about assumptions

Assumptions are usually made to achieve simpler models that are easier
to understand.

Assumptions should rely on some actual physical or biochemical
conditions. Hence, they have a direct relation to reality!

ki ks
E+S<=ES<=E+P
k. k.,
[EY+ [ES] = Eo Reaction dynamics faster than gene expression dynamics
Irreversibility of step 1 or 2: k_1=0k_,=0
ok Keat Instantaneous equilibrium of step 1: ki, k_q > ks
diEs] _ Quasi Steady State of ES: [Eo] < [So] + K’

dt
Segel. L. A. 1988. 10.1016/S0092-8240(88)80057-0
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Reversible models and flux-force relation

k+ kl k3 k5
E+ S=ES ES=EP EP=E+ P
V4A +vgB=v-C+vpD ks ke ke
k_
[5]/
J = k. [A]YA[B]'B _E[C]"C[D]VD ] = Viax ( [5] KS[P] ) - (1 —_F)
Keq 1+ /KS + /KP eq

| |

AG AG
J =] =) =Jo(1 - em) J =] =) =Jo(1 - em)

[Eol - kae - S/

1+ [S]/Ks + [P]/Kp

J+ = k. [A]Y4[B]'B

J+ =

AG
- _ L _ &

J+  Keq

Flux-Force relation
D. A. Beard and H. Qian, PLoS One 2007 Vol. 2:1
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Paradox of Crabtree effect?

Crabtree positive yeast Crabtree negative
| yeast

; 200 ~ 1
3

-
w
o

100

8

w
o

Fermentation (u1. CO,/107 organisms)
wv
(=]

Fermentation (ul. CO,/107 organisms

1 ]
10 20 30 10 ‘ ' 20
Time (min.) Time (min.)

o

Adaptation to a fermentative metabolism needs to —
happen in Crabtree negative yeast, but not in | This is a paradox! Full

o | it is fullv enfor _ respiration of glucose can
Crabtree positive yeast (unless it is fully enforced) Gomerate about 20 ATP, while

fermentation can generate 4.
Why aren’t all yeast simply
Crabtree negative?

On the converse, crabtree positive yeast always
seems to use fermentative metabolism, even under
conditions where respiration should be perfectly fine.
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