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PART 1 

INTRODUCTION & MOTIVATION
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Cracking metabolism

Any underpinning 
functional/structural 
principles?

How to predict 
temporal dynamics? 

Complex, 
dynamical system 
presenting many 
open questions 
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Metabolism as ‘optimal biomass generator’

One view posits that 
metabolism is the process 
through which cells acquire 
energy to make biomass

It follows that through evolution, 
metabolism should (might??) have 
been optimised for efficient (yield) 
or fast (rate) biomass generation 

Metabolism

…

…
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Diverse metabolic dynamics & behaviors

Carbon 

Biomass (AAs, DNA, 
enzymes,lipids, …)

‘Normal’ (high yield?) 
metabolism

Carbon 

Biomass (AAs, DNA, 
enzymes,lipids, …)

‘Overflow’ (fast?) 
metabolism 
Warburg | Crabtree effect

AAs, vitamins, 
organic acids, ….

Carbon 

‘Maintenance’

‘No growth’ 
metabolism

Metabolic oscillations Metabolic heterogeneity (bistability?)
Murray, D., et al. PNAS, 104:7 (2007) Simsek E. & Kim M., ISME J. 12:5 (2018)

van Heerden J.D. et al., Science 343:6174 (2014)

De Deken R. J. Gen. Microbiol., 
44 (1966)
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Metabolism as electron flows

Carbon ‘Energy’ 
(electrons) ‘Food’

e- given: oxidation

‘Waste’
By-products Electron 

acceptor

Electron flow!
e- taken: reduction }

“Life is an electron looking for a place to rest”
quote from c. 1960 by Albert Szent-Györgyi (1893-1986). Nobel laureate (1937) 
and discoverer of Vitamin C. Studied TCA cycle.

Glucose + O2

CO2 + H2O

{

Zerfass. C., Asally M., Soyer O.S. Curr Opin Syst Biol 13, 2019

Schoepp-Cothenet, B. et al. Biochim Biophys Acta 1827:2, 2013
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SOME TAKE HOME MESSAGES BEFORE WE START

Models are ideas in need of experiments to revise them

Cell metabolism & physiology presents many open questions 

Genome Scale FBA ≠ Metabolic modelling

Experiments report what is observed under a given condition
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PART 2 

FOUNDATIONS



Dynamics of Cell Metabolism – Orkun S Soyer, Slide 9

Metabolism is chemistry, is physics, is mathematics….

Biochemistry Thermodynamics Calculus & Systems Dynamics
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PART 2.1

DERIVATIVES (aka differential equations)
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Differential equations allow ’predicting’ the future

Consider we had a derivative where 
the independent variable is time and 
the dependent variable was a physical 
entity… 

𝑑𝑥
𝑑𝑡 = 𝑥/(𝑏 + 𝑥)

Derivative f’(x) (differential equation) 
gives the relation between small 
changes in variables
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Differential equations allow ’predicting’ the future

Consider we had a derivative where 
the independent variable is time and 
the dependent variable was a physical 
entity… 

By ‘tracing’ the derivative, we could 
see how the variable changes over 
time!

𝑑𝑥
𝑑𝑡 = 𝑥/(𝑏 + 𝑥)

Derivative f’(x) (differential equation) 
gives the relation between small 
changes in variables



ODE model of a mice population: 𝑑𝑁
𝑑𝑡

= 𝑟 & 𝑁 −
𝑟 & 𝑁!

𝐾

Orkun S Soyer - LF305 - Dynamics of 

If we know the population size at an initial time point t0, then we can 
predict the population size at time t0 + dt using our ODE!

𝑁!"#$ = 𝑁! + 𝑑𝑁

𝑁!"#$ = 𝑁! +
𝑑𝑁
𝑑𝑡 + 𝑑𝑡

𝑁!"#$ = 𝑁! + 𝑟 + 𝑁! −
𝑟 + 𝑁!%

𝐾 + 𝑑𝑡 𝑥&"#$ = 𝑥& + 𝑓'(𝑥&) + 𝑑𝑡
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My first (ordinary) differential equation model



0 20 40 60 80 100

0
50

10
0

15
0

Index

N

Orkun S Soyer - LF305 - Dynamics of 

𝐾 = 100; 𝑁! = 1; 𝑟 = 0.25;
𝑁 = 𝑟𝑒𝑝 0,100 ;
𝑁[1] = 𝑁!;
𝑓𝑜𝑟 (𝑖 𝑖𝑛 2: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁)) {

𝑁𝑐ℎ = 𝑁 𝑖 − 1 ∗ 𝑟 ∗ 1 − " #$%
&

𝑁 𝑖 = 𝑁 𝑖 − 1 + 𝑁𝑐ℎ;
}
𝑝𝑙𝑜𝑡(𝑁);

Regardless of N0, 
the mice population 
will grow towards a 
fixed value!

Differential equations allow ’predicting’ the future

𝑁! = 1

𝑁! = 135

𝑁! = 40

Keep iterating𝑥&"#$ = 𝑥& + 𝑓'(𝑥&) + 𝑑𝑡
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Time
N

ODE “simulation”

ODE “simulation” (aka “numerical integration”)
Do try this on your computer



Steady state

Orkun S Soyer - LF305 - Dynamics of 
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𝑁! = 1

𝑁! = 135 After a time, the population stabilised at a fixed value 
and there seems to be no change in N with time!

𝑑𝑁
𝑑𝑡 = 0 = 𝑟 + 𝑁 −

𝑟 + 𝑁%

𝐾

𝑁 = 𝐾

So, we could have predicted perhaps what that 
fixed value was going to be from the ODE:

𝑟 + 𝑁%

𝐾 = 𝑟 + 𝑁

Differential equations allow ’predicting’ the future
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Time

N

𝑁! = 40
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Systems dynamics - toolset

ODEs

Numerical integration Steady state 
analysis

Functional relation

𝑑𝑥
𝑑𝑡 = 0

integration

Stability analysisParameter ‘sweeping’

‘Insights’

𝑑𝑥(
𝑑𝑡 = 𝑥(' = 𝑓(𝑥(, 𝑥%, … , 𝑥&)
𝑑𝑥%
𝑑𝑡 = 𝑥%' = 𝑓(𝑥(, 𝑥%, … , 𝑥&)

𝑑𝑥&
𝑑𝑡 = 𝑥&' = 𝑓(𝑥(, 𝑥%, … , 𝑥&)

…

𝑥&"#$ = 𝑥& + 𝑓'(𝑥&) + 𝑑𝑡

’Modelling’
System of interest
Interactions, processes… 
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Systems dynamics - toolset

ODEs Functional relation’Modelling’

Stability analysisParameter ‘sweeping’

‘Insights’

System of interest
Interactions, processes… 

Numerical integration Steady state 
analysis

𝑑𝑥
𝑑𝑡 = 0𝑥&"#$ = 𝑥& + 𝑓'(𝑥&) + 𝑑𝑡

integration
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Maths don’t care about “details”!

ODEs Functional relation’Modelling’

Stability analysisParameter ‘sweeping’

‘Insights’

System of interest
Interactions, processes… 

Numerical integration Steady state 
analysis

𝑑𝑥
𝑑𝑡 = 0𝑥&"#$ = 𝑥& + 𝑓'(𝑥&) + 𝑑𝑡

integration
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PART 2.2 

REACTIONS, LAW OF MASS ACTION & 
THERMODYNAMICS
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Metabolic systems involve chemical reactions 

A generic reversible chemical reaction….

ν!A + ν"B ⇌ ν#C + ν$𝐷
‘products’‘reactants’

𝐶 )*
+' 𝐷 )*

+(

𝐴 )*
+) 𝐵 )*

+* = 𝐾)*

Law of mass action

Empirically derived (aka law of Nature!)

A given reaction always reaches same equilibrium!

Recommended reading:  “Textbook errors: IX. More 
about the laws of reaction rates and of equilibrium”, 
Guggenheim, E.A., J Chem Educ 33:11 (1956)
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Thermodynamic explanation for Law of Mass Action

Δ𝐺 = Δ𝐺! +𝑅 + 𝑇 + 𝑙𝑛
𝐶 +' 𝐷 +(

𝐴 +) 𝐵 +*

…. under constant temperature and pressure:

Δ𝐺! = Δ𝐺! 𝐶 + Δ𝐺! 𝐷 − (Δ𝐺! 𝐴 + Δ𝐺! 𝐵 )

Sometimes ∆𝐺 is given as ∆()*𝐺. 
The subscript, e.g ∆𝐺+ , refers to 
standard states (chemicals at 1M). To 
refer to biochemical standard conditions, 
i.e. all at 1M, but pH=7, use; ∆𝐺+!

A generic reversible chemical reaction….

ν!A + ν"B ⇌ ν#C + ν$𝐷
‘products’‘reactants’
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Δ𝐺 = 0 = Δ𝐺! + 𝑅 D 𝑇 D 𝑙𝑛
𝐶 +,

-! 𝐷 +,
-"

𝐴 +,
-# 𝐵 +,

-$

Δ𝐺! = −𝑅 D 𝑇 D 𝑙𝑛
𝐶 +,

-! 𝐷 +,
-"

𝐴 +,
-# 𝐵 +,

-$

−Δ𝐺!

𝑅 D 𝑇
= 𝑙𝑛

𝐶 +,
-! 𝐷 +,

-"

𝐴 +,
-# 𝐵 +,

-$

𝑒
,-..
/01 =

𝐶 )*
+' 𝐷 )*

+(

𝐴 )*
+) 𝐵 )*

+* = 𝐾)*

Law of mass action

Thermodynamic explanation for Law of Mass Action
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Δ𝐺 = 0 = Δ𝐺! + 𝑅 D 𝑇 D 𝑙𝑛
𝐶 +,

-! 𝐷 +,
-"

𝐴 +,
-# 𝐵 +,

-$

Δ𝐺! = −𝑅 D 𝑇 D 𝑙𝑛
𝐶 +,

-! 𝐷 +,
-"

𝐴 +,
-# 𝐵 +,

-$

−Δ𝐺!

𝑅 D 𝑇
= 𝑙𝑛

𝐶 +,
-! 𝐷 +,

-"

𝐴 +,
-# 𝐵 +,

-$

𝑒
,-..
/01 =

𝐶 )*
+' 𝐷 )*

+(

𝐴 )*
+) 𝐵 )*

+* = 𝐾)*

Law of mass action

Thermodynamic explanation for Law of Mass Action

𝜉

Internal 
energy

𝜉∗

Δ𝐺 < 0 Δ𝐺 > 0

Δ𝐺 = 0

ν-A + ν.B ⇌ ν/C + ν0𝐷

Reaction proceeds 
forwards

Reaction proceeds 
backwards

Reaction at 
steady state
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Process (rate) based explanation for Law of Mass Action

𝜉

Internal 
energy

𝜉∗

Δ𝐺 < 0 Δ𝐺 > 0

Δ𝐺 = 0

ν-A + ν.B ⇌ ν/C + ν0𝐷

Reaction proceeds 
forwards

Reaction proceeds 
backwards

Reaction at 
steady state

Forward reaction rate: Backward reaction rate:

𝒌" 𝑨 𝝂𝑨 𝑩 𝝂𝑩 𝒌$ 𝑪 𝝂𝑪 𝑫 𝝂𝑫

The rate of a chemical reaction is proportional to the probability of collision 
of the reactants, which is in turn proportional to the concentration of 
reactants to the power of their stoichiometry. 
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At equilibrium: 𝑘" 𝐴 +) 𝐵 +* = 𝑘, 𝐶 +' 𝐷 +(

2/
20
=

3 12
3' 4 12

3(

5 12
3) 6 12

3* = 𝐾)* = 𝑒
045.
678

Law of mass action

Mass action rate model

Process (rate) based explanation for Law of Mass Action

Δ𝐺 = 0 = Δ𝐺! + 𝑅 D 𝑇 D 𝑙𝑛
𝐶 +,

-! 𝐷 +,
-"

𝐴 +,
-# 𝐵 +,

-$
At equilibrium:

Thermodynamic model



Dynamics of Cell Metabolism – Orkun S Soyer, Slide 26

Reversible mass action model of a (chemical) reaction

9[;]
9=

= − 𝑘> 𝐴 -# 𝐵 -$+ 𝑘$ 𝐶 -! 𝐷 -"

ν%A + ν&B
𝑘"
⇌
𝑘$
ν'C + ν(𝐷

𝐽 = 9[?]
9=

= 𝑘> 𝐴 -# 𝐵 -$ − 𝑘$ 𝐶 -! 𝐷 -"

ODEs for this ‘system’:

2/
20
=

3 12
3' 4 12

3(

5 12
3) 6 12

3* = 𝐾)* = 𝑒
045.
678Steady state:
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Reversible mass action model of a (chemical) reaction

9[;]
9=

= − 𝑘> 𝐴 -# 𝐵 -$+ 𝑘$ 𝐶 -! 𝐷 -"

Remember that, according 
to thermodynamics, 𝒌" and 
𝒌, are related. We cannot 
choose them freely!

ν%A + ν&B
𝑘"
⇌
𝑘$
ν'C + ν(𝐷

𝐽 = 9[?]
9=

= 𝑘> 𝐴 -# 𝐵 -$ − 𝑘$ 𝐶 -! 𝐷 -"

𝑱 = 𝒌" 𝑨 𝝂𝑨 𝑩 𝝂𝑩 − 𝒌%
𝑲𝒆𝒒

𝑪 𝝂𝑪 𝑫 𝝂𝑫

ODEs for this ‘system’:

2/
20
=

3 12
3' 4 12

3(

5 12
3) 6 12

3* = 𝐾)* = 𝑒
045.
678Steady state:
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PART 2.3 

ENZYMATIC RATE MODELS
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Biochemical reactions are enzymatic

𝜉

Internal 
energy Reaction 

advancement

Accounting for enzyme activity (function) in reaction dynamics:

Substrate(s) and 
’free’ enzyme

Substrate(s) ‘bound’ on enzyme Products(s) and 
free enzyme

E + 𝑆 ⇌ 𝐸𝑆 𝐸𝑆 ⇌ 𝐸 + 𝑃
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Enzymatic reaction dynamics – modelling strategy

𝐸 + 𝑆 ⇌ 𝐸𝑆

1. Create ‘cartoon’ model 
of enzyme ‘mechanism’:

2. Convert mechanism into elementary
(bio)chemical reactions:

3. Write ODEs for elementary reactions 
by assuming law of mass action:

4. Make further assumptions to 
create simplifications:

+[-]
+/ = − 𝑘" 𝑆 [𝐸] + 𝑘$[𝐸𝑆]

e.g. [𝐸] + 𝐸𝑆 = 𝑐𝑜𝑛𝑠𝑡.

e.g.

e.g.
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Enzymatic reaction dynamics – example

1. Enzyme with single binding site & substrate

2. Elementary (bio)chemical reactions:

3. Simplifying assumptions:

4. New reaction scheme:

𝐸 + 𝑆
𝑘>
⇌
𝑘$
𝐸𝑆 𝐸𝑆

𝑘@
⇌
𝑘A
𝐸𝑃 𝐸𝑃

𝑘B
⇌
𝑘C
𝐸 + 𝑃

𝑘C = 0; 𝑘@, 𝑘A 𝑣𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒
𝐸𝑆 ⇌ 𝐸𝑃 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑒𝑛𝑜𝑢𝑠

𝐸 + 𝑆
𝑘>
⇌
𝑘$
𝐸𝑆 𝐸𝑆

D%&' 𝐸 + 𝑃

5. Write ODEs by assuming 
law of mass action:

9[E]
9=

= − 𝑘> 𝑆 [𝐸] + 𝑘$[𝐸𝑆]
𝑑[𝑃]
𝑑𝑡

= 𝑘FG=[𝐸𝑆]

𝑑[𝐸𝑆]
𝑑𝑡

= 𝑘> 𝑆 𝐸 − 𝑘$ 𝐸𝑆 − 𝑘FG=[𝐸𝑆]



Dynamics of Cell Metabolism – Orkun S Soyer, Slide 32

Enzymatic reaction dynamics – example

𝑑[𝑃]
𝑑𝑡

= 𝑘FG=[𝐸𝑆]

6. Make further assumptions:
[𝐸] + 𝐸𝑆 = 𝑐𝑜𝑛𝑠𝑡. = 𝐸!

𝑘>, 𝑘$ ≫ 𝑘FG=

𝑑[𝐸𝑆]
𝑑𝑡

≈ 0
Quasi steady 
state assumption:

𝑑[𝐸𝑆]
𝑑𝑡 = 0 = 𝑘1 𝑆 𝐸+ − [𝐸𝑆] − 𝑘2 𝐸𝑆 − 𝑘345[𝐸𝑆]

Model 
reduction

𝐸𝑆 =
𝑘1𝐸+[𝑆]

𝑘1[𝑆] + 𝑘2 + 𝑘345

𝑑[𝑃]
𝑑𝑡

=
𝑘FG=𝐸![𝑆]

[𝑆] + (𝑘$+𝑘FG=)/𝑘>

𝒅[𝑷]
𝒅𝒕

= 𝑱 =
𝒗𝒎𝒂𝒙 [𝑺]
[𝑺] + 𝑲𝒎

Irreversible Michaelis – Menten 
model for the reaction flux of an 
enzymatic reaction!

𝐸 + 𝑆
𝑘>
⇌
𝑘$
𝐸𝑆 𝐸𝑆

D%&' 𝐸 + 𝑃
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A reversible enzymatic reaction model

𝐸 + 𝑆
𝑘%
⇌
𝑘H
𝐸𝑆 𝐸𝑆

𝑘@
⇌
𝑘A
𝐸𝑃 𝐸𝑃

𝑘B
⇌
𝑘C
𝐸 + 𝑃

𝑑[𝐸𝑆]
𝑑𝑡

=
𝑑[𝐸𝑃]
𝑑𝑡

= 0
…

..

Try this derivation!

1. Enzyme with single binding site & substrate

2. Elementary (bio)chemical reactions:

3. Simplifying assumptions:

4. New reaction scheme:

5. Write ODEs by assuming 
law of mass action:
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A reversible enzymatic reaction model

𝐸 + 𝑆
𝑘%
⇌
𝑘H
𝐸𝑆 𝐸𝑆

𝑘@
⇌
𝑘A
𝐸𝑃 𝐸𝑃

𝑘B
⇌
𝑘C
𝐸 + 𝑃𝐽 = 𝐸3

4()*% 5+ ,+$4()*
- 5. ,.

6" 5+ ,+" 5. ,.

𝑘3451 = 6"6#
6"16$16#

; 𝑘3452 = 6%6$
6%16"16$

; 𝐾7 =
6%6$16%6#16"6#
6& 6"16$16#

; 𝐾8 =
6%6$16%6#16"6#
6' 6%16"16$

𝐸+ 9 𝑘3451 9 :𝑆 𝐾7
1 + :𝑆 𝐾7 + :𝑃 𝐾8

=
𝐸+ 9 𝑘3452 9 :𝑃 𝐾8

1 + :𝑆 𝐾7 + :𝑃 𝐾8

Steady 
State:

𝑘FG=> D 𝐾I
𝑘FG=$ D 𝐾E

=
𝑘%𝑘@𝑘B
𝑘H𝑘A𝑘C

=
[𝑃]
[𝑆] +,

= 𝐾+,

Haldane relation

As expected from principle of  equilibrium: Lewis, G.N. PNAS 11:3, 1925
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A reversible model of enzymatic reaction dynamics

Noor et al. 2013 
(10.1016/j.febslet.2013.07.028)

𝐽 = 𝐸+ 9 𝑘3451
:𝑆 𝐾7

1 + :𝑆 𝐾7 + :𝑃 𝐾8

1 −
>𝑃 [𝑆]
𝐾9: 𝐽 = 𝑣789 + 𝜅 + (1 −

Γ

𝐾9:
)

𝐽 = 𝑣789 + 𝜅 + 1 − 𝑒
;<
=>

𝜉

Internal 
energy

Γ < 𝐾9:

Reaction advancement

Γ = 𝐾9:
Γ > 𝐾9:

𝐸 + 𝑆
𝑘%
⇌
𝑘H
𝐸𝑆 𝐸𝑆

𝑘@
⇌
𝑘A
𝐸𝑃 𝐸𝑃

𝑘B
⇌
𝑘C
𝐸 + 𝑃𝐽 = 𝐸3

4()*% 5+ ,+$4()*
- 5. ,.

6" 5+ ,+" 5. ,.
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Enzymatic reaction models summary
Irreversible enzymatic model Reversible enzymatic model

𝐸 + 𝑆
𝑘>
⇌
𝑘$
𝐸𝑆 𝐸𝑆

D%&' 𝐸 + 𝑃 𝐸 + 𝑆
𝑘?
⇌
𝑘@
𝐸𝑆 𝐸𝑆

𝑘A
⇌
𝑘B
𝐸𝑃 𝐸𝑃

𝑘C
⇌
𝑘D
𝐸 + 𝑃

𝐽 = 𝑣789 +
:𝑆 𝐾7

1 + :𝑆 𝐾7 +
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The apparent enzymatic parameters, i.e. kcat
+ , kcat

! , Ks and Kp, are di-
rectly derived from the mass-action kinetic parameters by [7]:

Ks ¼
k2k4 þ k2k5 þ k3k5

k1ðk3 þ k4 þ k5Þ

Kp ¼
k2k4 þ k2k5 þ k3k5

k6ðk2 þ k3 þ k4Þ

kþcat ¼
k3k5

k3 þ k4 þ k5

k!cat ¼
k2k4

k2 þ k3 þ k4
: ð4Þ

The kcat values are the maximal forward and backward rates per
unit of enzyme (E), and Ks and Kp are the Michaelis constants, de-
noted more generally by KM.

In his original paper, Haldane noticed an inherent dependency be-
tween the kinetic parameters and reaction thermodynamics [7].
When assuming a reaction has reached equilibrium, and equating
Eq. (3) to zero, the ratio between enzyme efficiencies, i.e. kcat/KM, in
both directions equals K 0eq – a thermodynamic constant representing
the ratio between the concentrations of the product and the substrate
at equilibrium [8]. This was later denoted the Haldane relationship:

kþcat=Ks

k!cat=Kp
¼ K 0eq: ð5Þ

1.2. Rohwer–Hofmeyr decomposition

Rohwer and Hofmeyr [9,10] highlighted the fact that the revers-
ible Michaelis–Menten equation can be rewritten as

v ¼ E & kþcat

Ks
& 1
1þ s=Ks þ p=Kp

& s! p & k
!
cat=Kp

kþcat=Ks

 !
: ð6Þ

To simplify this equation, they defined the rate capacity V+/Ks

(where Vþ ' E & kþcat) and the binding term H ' 1/(1 + s/Ks + p/Kp).
Using the Haldane relationship, the last term was reduced to

s! p=K 0eq

! "
. Therefore, the reaction rate is:

v ¼ Vþ

Ks
&H & s! p

K 0eq

 !
: ð7Þ

The initial rate of reactions in the linear regime, i.e. when s( Ks

and p = 0, is approximated by v ) (V+/Ks) & s. Therefore, the rate
capacity can be directly measured as the slope of v as a function
of s in such conditions.

2. Decomposing the reversible Michaelis–Menten rate law

2.1. A separable rate law

We choose to rewrite the reversible rate law to reflect the
combined effect of the maximal rate, the enzyme saturation le-
vel and the thermodynamic driving-force. We recast Hofmeyr’s
Eq. (7) by moving Ks from the first term to the second term,
like in Refs. [11,12], and moving s from the third term to the
second:

v ¼ E kþcat &
s=Ks

1þ s=Ks þ p=Kp

# $
& 1! p=s

K 0eq

 !
ð8Þ
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Fig. 1. The capacity, saturation and thermodynamic terms in the separable rate law as a function of the concentration of S and the driving force (!DrG0). The yellow and red lines
show the value of the capacity term (V+) and the net rate (v) in units of lmol mg!1 min!1. The green and blue lines show the values of the saturation (j) and thermodynamic terms
(c) – which are without units. The parameters used for the plot are T = 300 K, V+ = 10 lmol mg!1 min!1, Ks = 3 lM, Kp = 100 lM, and DrG

0* = 0. The concentration of product (p) is
1 lM in (a), 0.1 lM in (b), and 10 lM in (c). The places on the x-axis where the reaction is at equilibrium are highlighted in blue, i.e. where the reaction driving force is 0. With the
DrG

0* chosen in this example, this occurs when the substrate and product concentrations are equal. Any point with a lower concentration of S will have a negative net rate (v < 0) –
not shown in this plot. These examples show that, depending on the concentration of the product, the response of the reaction net rate (v) to changes in the concentration of
substrate can be dominated by thermodynamics (c), saturation (b), or both (a). Similarly, the values of DrG

0*, Ks, and Kp have similar effects on the relationships between the curves.

E. Noor et al. / FEBS Letters 587 (2013) 2772–2777 2773
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PART 3 

MODELS, DATA & EXPERIMENTS
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Modelling metabolic systems

Toy models mimicking aspects of metabolism

Partial, but detailed, models of pathways

Re-occurring motifs and their dynamics

Large-scale models

Central carbon metabolism
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Modelling metabolic systems

“All models are wrong, some are useful”
attributed to a 1976 paper by George Box (statistician)

Central carbon metabolism

A model is something no one believes except the creator of the 
model, while an experiment is something everyone believes 
except the experimenter quote attributed to A. Einstein

Toy models mimicking aspects of metabolism

Partial, but detailed, models of pathways

Re-occurring motifs and their dynamics

Large-scale models



Dynamical models and parameters
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S P

E1

E2

𝛼
𝛼 𝛼

𝛼

Enzyme levels:Fluxes:

Enzyme kinetics:

𝑘:8$ + [𝐸$;$][𝑆]
𝐾7 + 𝑆

CAUTION: Mostly based on 
in vitro enzymology!

Substrate levels:
10-3 – 10 mM10-5 – 10-1 mM

Km: 10-3 – 10 mM

Binding/unbinding
1010 – 1013 (mM・min)-1

102 – 106 (min)-1

kcat: 101 – 107 (min)-1

10-1 – 104 (mM・min)-1

Equilibrator: https://equilibrator.weizmann.ac.il/
BIO-MODELS: https://www.ebi.ac.uk/biomodels/
BRENDA: www.brenda-enzymes.org

https://equilibrator.weizmann.ac.il/
https://www.ebi.ac.uk/biomodels/
http://www.brenda-enzymes.org/
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PART 3.1 

METABOLIC OVERFLOW
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Metabolic flux shift under high glucose

Respiration (high energy yield) 
vs. fermentation (low yield)

Metabolic ‘overflow’: Shift between fermentation and respiro-fermentation 
in yeast, bacteria, and mammalian cells. 
Warburg effect– in cancer, Crabtree effect – in yeast

Substrate

Respiration

f

a

k

O2
TCA 
(Krebs) 
cycle

Glucose
Glycolysis

Pyruvate…
Fermentation

NADH

NAD+
ETC 
(respiration)

H+ ATPase
H+ ADP

ATP

akg

NH4
Glutamate

Lact.

O2

H2O

Precursor

Amino acid

Ferment.
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Metabolic flux shift under high glucose

Simple Hypothesis: Cells must ‘switch’ to fermentation because of 
constraints on metabolic fluxes (of respiration)

Simple Constrained-Optimization View of 
Acetate Overflow in E. cob 

R. A. Majewski and M.  M. Domach” 
Department of Chemical Engineering, Carnegie Mellon University, 
Pittsburgh, Pennsylvania 152 13 

Accepted for publication September 1, 1989 

The production of acetate by aerobically growing E. coli 
is examined. The problem is formulated in terms of a 
flow network that has as  its objective maximal ATP syn- 
thesis. It is found that when loads are imposed and flux 
constraints exist either at the level of NADH turnover 
rate or the activity of a key Krebs cycle enzyme, switch- 
ing to acetate overflow is predicted. Moreover, the re- 
sult found for tbe latter constraint can be shown to be 
formally equivalent to a correlation experimentally de- 
termined for the specific rate of acetate production by 
E. coli K-12. 

INTRODUCTION 
The aerobic production of acetate by E. coli typically oc- 
curs at rapid growth rates and commences after a critical 
growth rate has been exceeded.’ Acetate production is im- 
portant to biochemical processing for several reasons. 
First, it is a symptom of a change in cellular physiological 
state. Acetate production is an overflow phenomena where 
acetylCoA is diverted from the Krebs cycle to first acetyl- 
phosphate, and then acetate which results in the production 
of one substrate-level ATP per mole of acetate. Secondly, 
acetate overflow in E. coli resembles aerobic ethanol pro- 
duction by yeast in that the overflow occurs at high growth 
rates when glucose is metabolized. Therefore, acetate and 
ethanol overflow may both arise due to similar regulatory 
policies and constraints. Finally, the accumulation of ace- 
tate in the growth medium has been suggested to have 
deleterious effects on the expression of products by recom- 
binant E. coli. Consequently, optimal feeding profiles for 
fed-batch reactor operation have been sought, as well as 
methods for analyzing reactor data so that control strate- 
gies can be im~lernented.~-~ 

In an attempt to progress towards developing a rationale 
for why acetate secretion occurs, we have examined over- 
flow metabolism from the capacitated flow network view- 
point. This viewpoint focuses on the routing of metabolic 
flows (“fluxes”) through a connected network where loads 
exist. Capacitation refers to the existence of constraints 
such as each network segment (i.e., reaction process) has a 
finite capacity or the total flow through the network has an 

* To whom all correspondence should be addressed. 

Biotechnology and Bioengineering, Vol. 35, Pp. 732-738 (1990) 
0 1990 John Wiley 81 Sons, Inc. 

upper limit. The term “load” means that some metabolites 
are drained from the cycle at a rate dependent on growth 
rate. For this problem, the use of this viewpoint is straight- 
forward and consists of hypothesizing that an objective ex- 
ists and then determining whether acetate overflow occurs 
and what the overflow pattern is when plausible constraints 
are imposed. 

The introduction of an objective and constraints into this 
analysis constitutes an application of the cybernetic per- 
spective which has been fruitfully applied to other regula- 
tion problems (e.g., refs. 6,7). In general, formulating a 
problem in terms of an objective and constraints provides a 
physiological rationale (network objective) and accounts 
for the phenomenological impact of the mechanistic details 
(network constraints). Thus, one can envision that network 
analysis could be a useful tool for screening hypotheses on 
network regulation and also serve as a first step in the for- 
mulation of a deterministic model. The following describes 
the objective chosen, the constraints examined, and the 
predicted ovefflow results. 

NETWORK STRUCTURE AND OBJECTIVE 

Network Structure 
The Krebs cycle reactions, “load” fluxes from the Krebs 
cycle, and acetate-producing and triose-processing reac- 
tions used by E. coli are shown in Figure 1. The network 
shown is similar to that used by Walsh and Koshland’ to 
represent important fluxes in order to derive the mass bal- 
ance equations required to analyze the data they obtained 
from experiments with radio-labelled substrates. In addi- 
tion to fluxes, sites of substrate-level phosphorylation and 
the production of reducing equivalents (NADH and FADH) 
are shown. 

Network Objective 
First, we formulate the objective. We assume that maxi- 
mizing ATP and GTP production is the global objective 
that must be realized by the network shown in Figure 1. 

CCC 0006-3592/90/070732-07$04.00 

Yield: Y = a/f
At steady state: f = a + k

Y = (f – k)/f
Yield is maximised by k = 0, but if there are 
limits (i.e. constraints) on a, then k needs to 
be non-zero as f increases

Majewski, R. A. & Domach, M. M.  
Biotech. & Bioeng. 35 (1990)
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Ferment.
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𝑑[𝑃]
𝑑𝑡 = 𝐽 =

𝒗𝒎𝒂𝒙 [𝑆]
[𝑆] + 𝐾7

Km~1, vmax =4.35

Km~10, vmax
=4.35

𝒗𝒎𝒂𝒙 = 𝒌𝒄𝒂𝒕 𝑬𝟎Flux limit due to 
total enzyme level

What constraints metabolic fluxes?
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Hypothesis: Constraints on metabolic fluxes
are determined by enzyme levels, and therefore
protein allocation to different pathways
Basan M. et al. Nature 528:7580, 2015

Molenaar, D. Mol Syst Biol 5 (2009) Davidi D. et al. PNAS 
113:12, 2016

Data/experiment support is limited*
Metzl-Raz E. et al. eLife
6:e28034, 2017
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What constraints metabolic fluxes?
Max flux is determined by 
kcat * [Etot]Substrate Product

E
v = kcat * [Etot] * [S] / (Km + [S])

Max flux is determined by 
kcat * [Etot] &  kr and AtotSubstrate Product

v = f (kcat, [Etot], [Atot], [kr])

A A’

kr

E

'ordinary’ 
reaction

Co-substrate 
reaction

Hypothesis: Constraints on metabolic fluxes are determined by co-substrate
pools and conversion dynamics, allowing an additional layer of regulation
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Co-substrate constraint on single flux

Figure 1. Motif, time-series and threshold in the simple pathway case. (A) Cartoon representation of a single
irreversible reaction with co-substrate cycling (see SI for other reaction schemes). The co-substrate is
considered to have two forms A

0
and A

1
. (B) Concentrations ofM

0
(red),M

1
(green) and A

0
_A

1
ratio (blue) as

a function of time. At t = 500, the parameters are switched from the white dot in panel (C) (where a steady
state exists) to the black dot (where we see continual build-up ofM

0
and decline of A

0
without steady state).

(C & D) Heatmap of the steady state concentration ofM
0
as a function of the total co-substrate pool size (A

tot
)

and in�ow �ux (k
in
). White area shows the region where there is no steady state. On both panels, the dashed

line indicates the limitation from the primary enzyme, k
in
< V

max,E0
, and the solid line indicates the limitation

from co-substrate cycling, k
in
< A

tot
V
max,Ea

_(KM ,Ea
+ A

tot
). In panel (C), there is a range of A

tot
values for which

the �rst limitation is more severe than the second. In contrast, in panel (D), the second limitation is always
more severe than the �rst. In (B & C) the parameters used for the primary enzyme (for the reaction
convertingM

0
intoM

1
) are picked from within a physiological range (see Supplementary File 1) and are set to:

E
tot

= 0.01mM, k
cat

= 100_s, KM ,E0
= KM ,Ea

= 50�M, while k
out

is set to 0.1_s. The E
tot
and k

cat
for the

co-substrate cycling enzyme are 1.2 times those for the primary enzyme. In panel (D) the parameters are the
same except for and E

tot
and k

cat
for the co-substrate cycling enzyme, which are set to 0.7 times those for the

primary enzyme.

the parameters KM ,E0
and KM ,Ea

are the individual or combined Michaelis-Menten coe�cients for129

these enzymes’ substrates (i.e. forA
0
andM

0
andA

1
, respectively). The term ↵ is (in this case where130

all reactions are irreversible) equal to V
max,Ea

*k
in
, and in general is a positive expression comprising131

k
in
, and the Michaelis-Menten coe�cients and the V

max
parameters of the background enzymes in132

the model (see Appendix 3, equations (7),(9) and (11)). The steady states for the model with all133

enzymatic conversions being reversible, and for a model with degradation and synthesis of A
0
and134

A
1
, are given in Appendix 3. The steady state solutions of these alternative models are structurally135

akin to (1), and do not alter the qualitative conclusions we make in what follows.136

A key property of (1) is that it contains terms in the denominator that involve a subtraction.137

The presence of these terms introduces a limit on the parameter values for the system to attain a138

positive steady state. Speci�cally, we obtain the following conditions for positive steady states to139

exist:140

k
in
< V

max,E0
and k

in
<

A
tot
V
max,Ea

KM ,Ea
+ A

tot

. (2)
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Enzyme 
constraint

Co-substrate 
constraint

Results92

Co-substrate cycling represents aubiquitousmotif inmetabolismwith co-substrate93

pools acting as ‘conserved moieties’94

Certain pairs of metabolites can be interconverted via di�erent reactions in the cell, thereby re-95

sulting in their ‘cycling’. This cycling creates interconnections within metabolism, spanning either96

multiple reactions in a single, linear pathway, or multiple pathways that are independent or are97

branching from common metabolites. For example, in glycolysis, ATP is consumed in reactions98

mediated by the enzymes glucose hexokinase and phosphofructokinase, and is produced by the99

downstream reactionsmediatedby phosphoglycerate andpyruvate kinase (Appendix 1 - Figure 1A).100

In the nitrogen assimilation pathway, the NAD+ / NADH pair is cycled by the enzymes glutamine ox-101

oglutarate aminotransferase and glutamate dehydrogenase (Appendix 1 - Figure 1B). Many other102

cycling motifs can be identi�ed, involving either metabolites from the central carbon metabolism103

ormetabolites that are usually referred to as co-substrates. Examples for the latter includeNADPH,104

FADH2, GTP, and Acetyl-CoA and their corresponding alternate forms, while examples for the for-105

mer include the tetrahydrofolate (THF) / 5,10-Methylene-THF and glutamate / ↵-ketoglutarate (akg)106

pairs involved in one-carbon transfer and in amino acid biosynthesis pathways, respectively (Ap-107

pendix 1 - Figure 1C & D). For some of these metabolites, their cycling can connect many reactions108

in the metabolic network. Taking ATP (NADH) as an example, there are 265 (118) and 833 (601) re-109

actions linked to the cycling of this metabolite in the genome-scalemetabolic models of Escherichia110

coli and human respectively (models iJO1366 (Orth et al., 2011) and Recon3d (Brunk et al., 2018)).111

We notice here that many of the co-substrate involving cycling reactions can be abstracted as112

a simpli�ed motif as shown in (Fig. 1A). This abstract representation highlights the fact that the113

total pool-size involving all the di�erent forms of a cycled metabolite can become a conserved114

quantity. This would be the case even when we consider biosynthesis or environmental uptake of115

co-substrates, as the total concentration of a cycled metabolite across its di�erent forms at steady116

state would then be given by a constant de�ned by the ratio of the in�ux and out�ux rates (see117

Appendices 2 and 3). In other words, the cycled metabolite would become a ‘conserved moiety’118

for the rest of the metabolic system and can have a constant ‘pool size’. Supporting this, temporal119

measurement of speci�c co-substrate pool sizes shows that ATP and GTP pools are constant under120

stablemetabolic conditions, but can rapidly change in response to external perturbations, possibly121

through inter-conversions among pools rather than through biosynthesis (Walther et al., 2010).122

Co-substrate cycling introduces a limitation on reaction �ux123

To explore the e�ect of co-substrate cycling on pathway �uxes, we �rst consider a didactic case of a
single reaction. This reaction converts an arbitrary metaboliteM

0
toM

1
and involves co-substrate

cycling (Fig. 1A). For co-substrate cycling, we consider additional ‘background’ enzymatic reactions
that are independent ofM

0
and can also convert the co-substrate (denoted Ea on Fig. 1A). We use

either irreversible or reversible enzyme dynamics to build an ordinary di�erential equation (ODE)
kinetic model for this reaction system and solve for its steady states analytically (see Methods and
Appendix 3). In the case of using irreversible enzyme kinetics, we obtain that the steady state
concentration of the two metabolites,M

0
andM

1
(denoted as m

0
and m

1
) are given by:

m
0
=

↵ k
in
KM ,E0

(V
max,E0

* k
in
)(V

max,Ea
A

tot
* k

in
(KM ,Ea

+ A
tot
))

m
1
=

k
in

k
out

(1)

where k
in
and k

out
denote the rate of in-�ux ofM

0
, and out-�ux ofM

1
, either in-and-out of the cell124

or from other pathways, and A
tot
denotes the total pool size of the cycled metabolite (with the125

di�erent forms of the cycled metabolite indicated as A
0
and A

1
in Fig. 1A). The parameters V

max,E0
126

and V
max,Ea

are themaximal rates (i.e. V
max

= k
cat
E

tot
) for the enzymes catalysing the conversion ofA

0
127

andM
0
into A

1
andM

1
(enzyme E

0
), and the turnover of A

1
into A

0
(enzyme Ea), respectively, while128

3 of 55
West, R., et al. eLife
19:1, 2023
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Constraint = potential for control

Increase Atot and decrease Btot
to take flux to upper branch, 
and vice versa.
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Co-substrate reactions as regulatory points

Substrate
Fermentation: 
Acetate, ethanol, 
lactate, …

Respiration: CO2

NADH

NAD+

NADH NAD+

Synthetically introducing NADH oxidising 
NOX gene in E. coli shifts overflow point!

rate at which the sole carbon source (glucose) is consumed,
with acetate formation occurring only after glucose consump-
tion surpasses some threshold rate. The presence of heterolo-
gous NADH oxidase had the effect of increasing the critical
glucose consumption rate (qS

crit) at which acetate first ap-
peared and thereby delaying the entry of E. coli into respi-
rofermentative overflow metabolism (Fig. 1). This transition
between respiratory and respirofermentative metabolism
occurred at a qS

crit of 0.8 g/g dry cell weight (DCW) h for
NOX! and 1.2 g/g DCW h for NOX". The expression of
NADH oxidase therefore increased by 50% the value of qS

crit.
During respirofermentative metabolism, NOX" exhibited a
lower effluent acetate concentration and a lower specific ace-
tate formation rate (qA) than NOX! at any given qS. Biomass
yield (YX/S) from glucose (g dry cell weight/g glucose con-
sumed) was 0.42 to 0.48 g/g for NOX! during respiratory
metabolism but decreased during respirofermentative metab-

olism, consistent with a portion of the glucose carbon being
diverted from biomass synthesis to acetate formation. For
NOX", YX/S remained 0.28 g/g at glucose consumption rates
above 0.5 g/g DCW h (Fig. 1).

The specific oxygen consumption rate (qO2) was twice as
great for NOX" as for NOX! at any given value of qS (Fig. 2),
consistent with additional oxygen being required for increased
oxidation of NADH to NAD. NOX" also yielded a specific
CO2 evolution rate (qCO2) that was about 50% greater than
that of NOX! for any qS (Fig. 2), suggesting greater flux
through CO2-forming pathways (e.g., the TCA cycle) for
NOX". The results show that in the presence of NADH oxi-
dase, cells diverted less carbon to biomass and acetate and
more carbon to CO2 at any given rate of glucose consumption.
A carbon balance for NOX! was within #8% under all con-
ditions, while for NOX" the carbon balance was within #15%
(data not shown), assuming identical biomass composition
(and thus identical expression of biosynthetic genes). The re-
dox balance closed for NOX! within #9%, while for NOX"

this balance was only within #30% (data not shown).
Intracellular response due to NADH oxidase overexpres-

sion. Since the expression of heterologous NADH oxidase in
E. coli would be expected to influence the steady-state intra-
cellular NADH and NAD concentrations, the concentrations
of each cofactor were determined at each steady state for both
strains. For both NOX! and NOX", the intracellular concen-
tration of NAD changed less than 30%, while the NADH
concentration changed more than 10-fold between the lowest
and highest glucose consumption rates. Moreover, the NADH
concentration increased more quickly for NOX! at lower val-
ues of qS than for NOX". For example, at a qS of about 0.10 g/g
DCW h, the NADH concentration was 0.03 $mol/g DCW for
both strains, while at a qS of about 1.0 g/g DCW h, the NADH
concentration was 0.53 $mol/g DCW for NOX! but only 0.11
$mol/g DCW for NOX". These changes are reflected in the
NADH/NAD ratios (redox ratios) (Fig. 3). At any given value
of qS, the redox ratio was always greater for NOX! than for
NOX". The redox ratio remained at 0.01 to 0.02 for both
strains during respiratory metabolism but increased just prior

FIG. 2. Steady-state respiration for NOX! (open symbols and
dashed lines) and NOX" (solid symbols and lines). The steady-state
qO2 (‚,Œ) and qCO2 (ƒ,!) values are shown as functions of qS.

FIG. 1. Steady-state physiological profiles of E. coli in the presence
of heterologous NADH oxidase. YX/S (!, }) and qA (E, F) values are
compared for NOX! (open symbols and dashed lines) and NOX"

(solid symbols and lines) as functions of the specific glucose consump-
tion rate. The highest dilution rate studied was about 80% of $max for
both strains. The arrows indicate for each strain the critical specific
glucose consumption rates at which acetate formation commenced.

FIG. 3. In vivo molar concentration ratio of NADH/NAD for
NOX! (!) and NOX" (■) as functions of qS. The critical value of the
NADH/NAD ratio at which acetate formation commences is about
0.06 for both NOX! and NOX" (indicated by vertical lines). qA values
are also shown for NOX! (E) and NOX" (F) as functions of qS.
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BISTABILITY IN METABOLISM
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Bistability in metabolic systems

Hervagault JF., Cimino A. J. Theor. Biol. 140 (1989)

Can metabolic reaction systems lead to ODEs 
with multiple steady states?

Volume 263, number 2 FEBS LETTERS April 1990 

to this aspect basically deal with theoretical approaches 
or predictions. Studying analytically a Monod-Jacob 
model for induction and repression, Babloyantz and 
Nicolis [24] have shown that, if due to temporary 
metabolic advantages, a pathway is in a situation where 
it has a head start, all the other pathways will be in- 
hibited permanently. Hahn et al. [25], when consider- 
ing the dynamic behavior of a simple compartmental- 
ized michaelian enzyme in which the product of the 
reaction alters the supply of substrate, mention some 
conditions under which irreversible transitions may oc- 
cur. Later on, the same authors again take up this con- 
cept in order to attempt a plausible interpretation for 
the growth of crown gall tumors (personal communi- 
cation). 

Our aim in the present work is to show experimental- 
ly that in a simple model substrate cycle such irreversi- 
ble transitions can be observed in the absence of any 
drastic constraints imposed on the enzyme kinetic pro- 
perties and/or the parameter values. 

1.2. Model vs experimental 
Our goal is to illustrate experimentally certain par- 

ticular dynamics behaviors of a previously described 
model cycle; we will first recall briefly its main features 
and conditions of validity. Two metabolites, S1 and SZ, 
bounded by moiety-conservation (Sr + Sz = ST) are 
converted in a cyclic manner by two enzymes, El and 
E2. Enzyme El is inhibited by an excess of its substrate 
Sl. Because both enzymes require different 
cosubstrates, A and C, the two pathways are ther- 
modynamically favorable at the same time. The enzyme 
kinetics are supposed to be zero-order with respect to 
their cosubstrates. In that cycle, the two control 
parameters are (1) the moiety total concentration, ST, 
and (2) the ratio, V, of the interconverting enzymes’ 
maximal activities. Monostability and reversible 
bistability (hysteresis) can be observed when either Sr 
or V are varied. Irreversible transitions occur when and 
only when Sr is taken as the control parameter. The on- 
ly kinetic requirement is that the maximal activity of 

Fig. 1. The model minimal cycle and the experimental system under 
investigation. 

the non-inhibited enzyme (E2) is lower than the optimal 
activity of the inhibited one (Ei). 

The model experimental system we have chosen is the 
interconversion of the moiety ATP/ADP (Sr/S2) by en- 
zymes phosphofructokinase (PFK = Ei) and pyruvate 
kinase (PK = E2). Enzyme PFK exhibits an important 
inhibition by excess of its substrate, ATP. The standard 
Gibbs free energies (AC”‘) of the reactions catalyzed 
by PFK (ATP + F-6-P --t ADP + F- 1,6-dip) and PK 
(ADP + PEP - ATP + Pyr) are -3.4 and 
-7.5 kcal. mol-‘, respectively. In order to ensure that 
cosubstrates, F6P (A) and PEP (C) are present at a con- 
stant level during the time course of the reactions prior 
to reach the steady-states, their initial concentrations 
are large with respect to their K,,,s. The minimum model 
cycle and the experimental system are depicted in 
Fig. 1. 

2. MATERIALS AND METHODS 

2.1. Individual enzyme activity measurements 
All the kinetic studies to he presented were carried out in a freshly 

prepared sodium phosphate buffer, 0.1 mM, pH 6.8 (working buf- 
fer), at 20°C. Enzymes and chemicals (analytical grades) were pur- 
chased from Sigma Co. 

The initial activity dependence of pyruvate kinase (PK; EC 
2.7.1.40, from rabbit muscle) as a function of ADP was studied by 
using the pyruvate coupled assay. Measurements were performed in 
the presence of 5 mM phosphoenol pyruvate (PEP), 1 mM MgC12 
and 0.3 mM NADH. The reaction was initiated by introduction of 
1.5 and 3 IU .ml-’ PK and lactic dehydrogenase (LDH; EC 
1.1-l .28), respectively. 

For phosphofructokinase (PFK; EC 2.7.1.1, from rabbit muscle), 
the kinetic measurements were made by using the aldolase (ALD; EC 
4.1.2.13)/triosephosphate isomerase (TPI; EC 5.3.1.l)/glycerol-3- 
phosphate dehydrogenase (NAD+) (G-3-PdH; EC 1.1.1.8) coupled 
assay, in the presence of 1 mM MgC12, 1.1 mM F-6-P and 0.3 mM 
NAD+. The amounts of the three coupling enzymes were lo-50-fold 
the maximal PFK activity, i.e. 0.07, 0.7, 3 and 3 IU.ml-’ for PFK, 
ALD, TPI and G-3-PdH, respectively. The increase in the NAD+ 
concentration is followed at 340 nm. 

The concentrations of F-6-P (PFK) and PEP (PK) were chosen 
such that the enzymes operate under zero-order conditions with 
respect to these substrates ([F-6-P] = 16 K,,, and [PEP] = 45 K,). 

2.2. Operation of the complete cycle 
The kinetic studies dealing with the complete bienzyme cycle, in- 

cluding PFK and PK, were carried out in a thermostated closed reac- 
tor (12 ml) containing F-6-P 1.1 mM, PEP 5 mM, and MgCla 1 mM. 
Samples (0.5 ml) are taken at regular intervals, then diluted in a solu- 
tion of acetonitrile/working buffer (1: 2 v/v) up to a final volume of 
2 ml, in order to stop the reactions. The samples can thus be stored 
congealed at -20°C. The steady-states are supposed to be attained 
when the difference in the ATP (ADP) concentrations between two 
consecutive samples is less than 5%. 

2.3. HPLC nucleosides determination 
The samples were centrifuged for 5 min at 2000 x g, and the super- 

natant was then filtered on a Millex filter (0.4 pm). A 100 pl aliquot 
of the filtrate was injected through an automatic sampler (WISP, 
Waters) into a SAXrBondapak Waters column, using a radical com- 
pressor module (8 x 10 Waters) under isocratic conditions. The elu- 
tion solution is made of KH2P04 0.25 M and KC1 0.5 M at pH 4.0. 
Nucleoside mono-, di- and triphosphates were detected spec- 
trophotometrically at 260 nm (LS Waters detector). Total elution was 
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Bistability in metabolic systems
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to this aspect basically deal with theoretical approaches 
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model for induction and repression, Babloyantz and 
Nicolis [24] have shown that, if due to temporary 
metabolic advantages, a pathway is in a situation where 
it has a head start, all the other pathways will be in- 
hibited permanently. Hahn et al. [25], when consider- 
ing the dynamic behavior of a simple compartmental- 
ized michaelian enzyme in which the product of the 
reaction alters the supply of substrate, mention some 
conditions under which irreversible transitions may oc- 
cur. Later on, the same authors again take up this con- 
cept in order to attempt a plausible interpretation for 
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Our aim in the present work is to show experimental- 
ly that in a simple model substrate cycle such irreversi- 
ble transitions can be observed in the absence of any 
drastic constraints imposed on the enzyme kinetic pro- 
perties and/or the parameter values. 

1.2. Model vs experimental 
Our goal is to illustrate experimentally certain par- 

ticular dynamics behaviors of a previously described 
model cycle; we will first recall briefly its main features 
and conditions of validity. Two metabolites, S1 and SZ, 
bounded by moiety-conservation (Sr + Sz = ST) are 
converted in a cyclic manner by two enzymes, El and 
E2. Enzyme El is inhibited by an excess of its substrate 
Sl. Because both enzymes require different 
cosubstrates, A and C, the two pathways are ther- 
modynamically favorable at the same time. The enzyme 
kinetics are supposed to be zero-order with respect to 
their cosubstrates. In that cycle, the two control 
parameters are (1) the moiety total concentration, ST, 
and (2) the ratio, V, of the interconverting enzymes’ 
maximal activities. Monostability and reversible 
bistability (hysteresis) can be observed when either Sr 
or V are varied. Irreversible transitions occur when and 
only when Sr is taken as the control parameter. The on- 
ly kinetic requirement is that the maximal activity of 

Fig. 1. The model minimal cycle and the experimental system under 
investigation. 

the non-inhibited enzyme (E2) is lower than the optimal 
activity of the inhibited one (Ei). 

The model experimental system we have chosen is the 
interconversion of the moiety ATP/ADP (Sr/S2) by en- 
zymes phosphofructokinase (PFK = Ei) and pyruvate 
kinase (PK = E2). Enzyme PFK exhibits an important 
inhibition by excess of its substrate, ATP. The standard 
Gibbs free energies (AC”‘) of the reactions catalyzed 
by PFK (ATP + F-6-P --t ADP + F- 1,6-dip) and PK 
(ADP + PEP - ATP + Pyr) are -3.4 and 
-7.5 kcal. mol-‘, respectively. In order to ensure that 
cosubstrates, F6P (A) and PEP (C) are present at a con- 
stant level during the time course of the reactions prior 
to reach the steady-states, their initial concentrations 
are large with respect to their K,,,s. The minimum model 
cycle and the experimental system are depicted in 
Fig. 1. 

2. MATERIALS AND METHODS 

2.1. Individual enzyme activity measurements 
All the kinetic studies to he presented were carried out in a freshly 

prepared sodium phosphate buffer, 0.1 mM, pH 6.8 (working buf- 
fer), at 20°C. Enzymes and chemicals (analytical grades) were pur- 
chased from Sigma Co. 

The initial activity dependence of pyruvate kinase (PK; EC 
2.7.1.40, from rabbit muscle) as a function of ADP was studied by 
using the pyruvate coupled assay. Measurements were performed in 
the presence of 5 mM phosphoenol pyruvate (PEP), 1 mM MgC12 
and 0.3 mM NADH. The reaction was initiated by introduction of 
1.5 and 3 IU .ml-’ PK and lactic dehydrogenase (LDH; EC 
1.1-l .28), respectively. 

For phosphofructokinase (PFK; EC 2.7.1.1, from rabbit muscle), 
the kinetic measurements were made by using the aldolase (ALD; EC 
4.1.2.13)/triosephosphate isomerase (TPI; EC 5.3.1.l)/glycerol-3- 
phosphate dehydrogenase (NAD+) (G-3-PdH; EC 1.1.1.8) coupled 
assay, in the presence of 1 mM MgC12, 1.1 mM F-6-P and 0.3 mM 
NAD+. The amounts of the three coupling enzymes were lo-50-fold 
the maximal PFK activity, i.e. 0.07, 0.7, 3 and 3 IU.ml-’ for PFK, 
ALD, TPI and G-3-PdH, respectively. The increase in the NAD+ 
concentration is followed at 340 nm. 

The concentrations of F-6-P (PFK) and PEP (PK) were chosen 
such that the enzymes operate under zero-order conditions with 
respect to these substrates ([F-6-P] = 16 K,,, and [PEP] = 45 K,). 

2.2. Operation of the complete cycle 
The kinetic studies dealing with the complete bienzyme cycle, in- 

cluding PFK and PK, were carried out in a thermostated closed reac- 
tor (12 ml) containing F-6-P 1.1 mM, PEP 5 mM, and MgCla 1 mM. 
Samples (0.5 ml) are taken at regular intervals, then diluted in a solu- 
tion of acetonitrile/working buffer (1: 2 v/v) up to a final volume of 
2 ml, in order to stop the reactions. The samples can thus be stored 
congealed at -20°C. The steady-states are supposed to be attained 
when the difference in the ATP (ADP) concentrations between two 
consecutive samples is less than 5%. 

2.3. HPLC nucleosides determination 
The samples were centrifuged for 5 min at 2000 x g, and the super- 

natant was then filtered on a Millex filter (0.4 pm). A 100 pl aliquot 
of the filtrate was injected through an automatic sampler (WISP, 
Waters) into a SAXrBondapak Waters column, using a radical com- 
pressor module (8 x 10 Waters) under isocratic conditions. The elu- 
tion solution is made of KH2P04 0.25 M and KC1 0.5 M at pH 4.0. 
Nucleoside mono-, di- and triphosphates were detected spec- 
trophotometrically at 260 nm (LS Waters detector). Total elution was 
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Bistability in multi-site enzymes
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Figure 1. A. Cartoon representation of a generic n-site model, where n-E indicates an enzyme with n 512 
substrate binding sites. The substrate binding sites are numbered in a consecutive fashion and substrate-513 
bound sites are shown in blue. Note that there are 2n – 1 possible substrate-enzyme complexes. B. 514 
Cartoon representation of a 2-site enzyme model. The substrate (S) and product (P) are shown in blue 515 
and red respectively. Substrate binding is allowed in any order on each site, and both sites are assumed 516 
to have catalytic activity. The 3 possible substrate-enzyme complexes are shown on the right. See 517 
Methods for reactions and differential equations for this 2-site enzyme model. C. The steady state 518 
concentration of each of the substrate-enzyme complexes with increasing concentration of substrate. 519 
The parameters, as listed in Eq. 4, are set to the following values for these simulations; k1 = k4 = k6 = 520 
k10 = 108 M-1min-1, k2 = k5 = k7 = k11 = 104 min-1, k3 = 105 , k12 = 1.5 ⋅105 min-1, k8 = k13 = 103 min-1, Stot 521 
= 2.31 ⋅10-3 M, Etot = 4.15 ⋅	10-5 M. Panels from left to right show the steady state concentrations of the 522 
two single-substrate complexes, and the fully-bound complex. A simplified version of Eq. 2, describing 523 
the steady state concentration of the complexes is shown on each panel, highlighting the degree of the 524 
polynomials. On the right-most panel, the dashed line indicates total enzyme concentration. 525 
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concentration, that is free substrate, substrate bound to enzyme, and the product, are conserved. 379 
We relaxed the latter assumption in subsequent models that were built from this core model. 380 
For the core model, the resulting binding and catalytic reactions for an enzyme with n–binding 381 
sites is given in Eq. 1. Additional reactions in the subsequent models and involving the product, 382 
and sometimes the substrate, are considered, either as occurring with a constant rate or 383 
mediated by an additional enzyme. Our mathematical analyses consisted of writing ordinary 384 
differential equations (ODEs) for such reaction systems using mass action kinetics. The ODEs 385 
for the core, general model shown in Fig. 1, as well as the alternative models shown in Fig. 3, 386 
are provided in full in the SI along with the detailed derivations leading to Eq. 2, Eq. 3 and Eq. 387 
4. As an illustration, we provide here the reaction system for the core model, for n = 2, i.e. a 388 
two-binding-site enzyme:  389 
 390 

# + !
E;
⇆
E@
#! A&→ # + * 391 

 392 

# + !
EB
⇆
EC
!# A'(() # + * 393 

 394 

#! + !
E;!
⇆
E;;

!#! A'&() #! + * 395 

 396 

!# + !
ED
⇆
EE
#! A)→ !# + *													(#7. 5)  397 

 398 
where the single- and double-bound enzyme complexes are denoted as ES, SE, and SES 399 
respectively. The corresponding set of ODEs resulting from this reaction system can be written 400 
using mass action kinetics for each of the reactions shown in Eq. 4, as we have done in the 401 
provided MATLAB code (see SI file1). The conservation relations for this system are: 402 
 403 

[Stot]	=	[S]	+	[ES]	+	[SE]	+	2[SES]	+	[P]	404 
	405 

[Etot]	=	[E]	+	[ES]	+	[SE]	+	[SES]	 	 (Eq.	6)	406 
  407 
Symbolic and numerical computations. For all symbolic computations, utilised in finding 408 
steady state solutions and deriving mathematical conditions on rate parameters, we used the 409 
software Maple 2020. For simulations, run to numerically analyse select systems, we again 410 
used Maple, or the MATLAB package, with the standard solver functions. 411 
 412 
Bifurcation analysis and physiologically realistic kinetic parameters and Stot and Etot 413 
ranges. To analyse if multiple steady states would be realised in physiologically realistic 414 
parameter regimes, we used a cyclic reaction system with a two-binding site enzyme (Fig. 4A). 415 
For such an enzyme, we have used kinetic parameter values in physiologically feasible ranges 416 
as found in the literature and listed below (16,20,21). We then used our mathematical condition 417 
shown in Eq. 4, and bifurcation analyses to derive the Stot and Etot ranges that guarantee multiple 418 

Assumptions

Hayes. C. et al. ACS Syn Bio (2021)
Relaxing these does not alter the key 
results that follows

SESSEES
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Bistability in multi-site enzymes

P production flux

P consumption 
flux

Nonlinear production flux arises from 
dynamics of substrate-enzyme complexes

P production flux (total)

P production flux (SE and ES)

P production flux (SES)

S P

ES

SES

𝛼
𝛼SE



Bistability! – from multi-site enzyme structure
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Bistable dynamics
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Experimental demonstration of  bistability

Clear experimental evidence for bistability is currently lacking. Bistability is 
observed, however, in enzymatic re-constitution experiments in vitro:

Cimino A. & Hervagault J., FEBS 
Lettr. 263 (1990)

Volume 263. number 2 FEBS LETTERS April 1990 

whose analytical expressions are straightforward. From 
this figure, the ability of a unique and irreversible tran- 
sition appears clearly. 

A way to confirm experimentally this behavior con- 
sists of determining the ATP (ADP) steady-state con- 
centrations for various [AXP]r. In order to check (and 
determine) the existence of one or two stable states at 
a given [AXP]r, each evolution has to be made with 
two different initial conditions, that is, e.g. [ATP]i,it = 
0 (the whole pool of adenosine phosphates is in the 
form of ADP), and [ATP]i,it = [AXPIT. Fig. 5a-f 
shows the evolution of the ATP and ADP concentra- 
tions for [AXPJr equal to 3, 6 and 12.6 mM. In these 
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experiments, the PFK and PK maximal activities equal 
78 PM. min-’ (voptpFK = 53 FM. min-‘) and 
32 FM. min-’ (< voptprx), respectively. For [AXP]r 
equal to 3 mM, the same ATP (ADP) steady-state con- 
centration is reached (60 PM (2.94 mM)), regardless of 
the initial conditions ([ATP]init = 0 or [ADP]init = 0). 
For [AXPIT equal to 6 and 12.6 mM, the steady-state 
concentrations depend upon the initial ATP (ADP) 
conditions. Fig. 5c (see also Fig. 5d, for ADP) shows 
the ATP concentration evolution for [AXP]r = 6 mM 
when starting with either [ATP]i,it = [AXP]r (empty 
symbols) or [ATP]i,i, = 0 ([ADP]init = [AXP]r, full 
symbols). In the first case the steady-state concentra- 
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Fig. 5. Evolution of the ATP (a, c, e) and ADP (b, d, f) concentrations for the PFK/PK cycle. The nucleoside concentrations are determined 
by HPLC measurements. in each figure open and full symbols represent the evolution of concentrations for [ATP]z”ir = [AXP]r (absence of initial 
ADP) and [ADP]init = [AXPIT (absence of initial ATP), respectively. (a) and (b) [AXPIT = 3 mM. One single steady-state is observed, regardless 
of the initial conditions. (c) and (d) [AXPIT = 6 mM. (e) and (f) [AXPIT = 12.6 mM. Depending upon the initial nucleoside composition, two 

different stable steady-states can be reached. In any case, V mpK and V,,,pFK equal 32 and 78 gM.min-‘, respectively. 
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or V are varied. Irreversible transitions occur when and 
only when Sr is taken as the control parameter. The on- 
ly kinetic requirement is that the maximal activity of 

Fig. 1. The model minimal cycle and the experimental system under 
investigation. 

the non-inhibited enzyme (E2) is lower than the optimal 
activity of the inhibited one (Ei). 

The model experimental system we have chosen is the 
interconversion of the moiety ATP/ADP (Sr/S2) by en- 
zymes phosphofructokinase (PFK = Ei) and pyruvate 
kinase (PK = E2). Enzyme PFK exhibits an important 
inhibition by excess of its substrate, ATP. The standard 
Gibbs free energies (AC”‘) of the reactions catalyzed 
by PFK (ATP + F-6-P --t ADP + F- 1,6-dip) and PK 
(ADP + PEP - ATP + Pyr) are -3.4 and 
-7.5 kcal. mol-‘, respectively. In order to ensure that 
cosubstrates, F6P (A) and PEP (C) are present at a con- 
stant level during the time course of the reactions prior 
to reach the steady-states, their initial concentrations 
are large with respect to their K,,,s. The minimum model 
cycle and the experimental system are depicted in 
Fig. 1. 

2. MATERIALS AND METHODS 

2.1. Individual enzyme activity measurements 
All the kinetic studies to he presented were carried out in a freshly 

prepared sodium phosphate buffer, 0.1 mM, pH 6.8 (working buf- 
fer), at 20°C. Enzymes and chemicals (analytical grades) were pur- 
chased from Sigma Co. 

The initial activity dependence of pyruvate kinase (PK; EC 
2.7.1.40, from rabbit muscle) as a function of ADP was studied by 
using the pyruvate coupled assay. Measurements were performed in 
the presence of 5 mM phosphoenol pyruvate (PEP), 1 mM MgC12 
and 0.3 mM NADH. The reaction was initiated by introduction of 
1.5 and 3 IU .ml-’ PK and lactic dehydrogenase (LDH; EC 
1.1-l .28), respectively. 

For phosphofructokinase (PFK; EC 2.7.1.1, from rabbit muscle), 
the kinetic measurements were made by using the aldolase (ALD; EC 
4.1.2.13)/triosephosphate isomerase (TPI; EC 5.3.1.l)/glycerol-3- 
phosphate dehydrogenase (NAD+) (G-3-PdH; EC 1.1.1.8) coupled 
assay, in the presence of 1 mM MgC12, 1.1 mM F-6-P and 0.3 mM 
NAD+. The amounts of the three coupling enzymes were lo-50-fold 
the maximal PFK activity, i.e. 0.07, 0.7, 3 and 3 IU.ml-’ for PFK, 
ALD, TPI and G-3-PdH, respectively. The increase in the NAD+ 
concentration is followed at 340 nm. 

The concentrations of F-6-P (PFK) and PEP (PK) were chosen 
such that the enzymes operate under zero-order conditions with 
respect to these substrates ([F-6-P] = 16 K,,, and [PEP] = 45 K,). 

2.2. Operation of the complete cycle 
The kinetic studies dealing with the complete bienzyme cycle, in- 

cluding PFK and PK, were carried out in a thermostated closed reac- 
tor (12 ml) containing F-6-P 1.1 mM, PEP 5 mM, and MgCla 1 mM. 
Samples (0.5 ml) are taken at regular intervals, then diluted in a solu- 
tion of acetonitrile/working buffer (1: 2 v/v) up to a final volume of 
2 ml, in order to stop the reactions. The samples can thus be stored 
congealed at -20°C. The steady-states are supposed to be attained 
when the difference in the ATP (ADP) concentrations between two 
consecutive samples is less than 5%. 

2.3. HPLC nucleosides determination 
The samples were centrifuged for 5 min at 2000 x g, and the super- 

natant was then filtered on a Millex filter (0.4 pm). A 100 pl aliquot 
of the filtrate was injected through an automatic sampler (WISP, 
Waters) into a SAXrBondapak Waters column, using a radical com- 
pressor module (8 x 10 Waters) under isocratic conditions. The elu- 
tion solution is made of KH2P04 0.25 M and KC1 0.5 M at pH 4.0. 
Nucleoside mono-, di- and triphosphates were detected spec- 
trophotometrically at 260 nm (LS Waters detector). Total elution was 

200 

[ATP]tot = 3mM One 
Steady State

[ATP]tot = 6mM Two 
Steady States
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PART 3.3 

OSCILLATIONS IN METABOLISM



Orkun S Soyer, LF305 - Dynamics of 

Yeast cells were grown on high glucose (20 gL-1 ~ 100mM + 1 gL-1 yeast extract), in 
a chemostat and the dilution rate was maintained at 0.087 h-1. The population is 
seemingly synchronised under these conditions!

NAD(P)H NAD(P)+

Reductive phase

Oxidative phase

Truncated list….oscillations observed for most metabolites!

Oscillations: synchronised cells in a population

Murray, D., et al. 
PNAS, 104:7 (2007)
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Oscillations: single cells breathing in and out!
Metabolic oscillations in single cells are separate 
from, but coupled with, cell cycle oscillations.

Papagiannakis, A., et al. Mol Cell, 65:2 (2017)

in our single-cell data for metabolic oscillations that were unac-
companied by cell-cycle progression. Such events occurred
for all growth conditions (Figures 2A, S3A, and S3B), with
an approximate incidence of 1/50 metabolic oscillations on
10 gL!1 glucose. On 0.01 gL!1 glucose, we also found many
cells with consecutive metabolic oscillations without cell-cycle
progression (Figures 2A, S3C, and S3D).
To determine the cell-cycle status of the non-dividing cells, we

used a strain with fluorescently tagged Whi5, a transcriptional
repressor of early cyclins and target of CDK phosphorylation.
Whi5 sequesters into the nucleus at late mitosis (hereafter de-
noted as ‘‘M exit’’) and exits upon phosphorylation at late G1 (de-
noted as ‘‘START’’), reporting an active CDK (Bloom and Cross,
2007; Costanzo et al., 2004; Ferrezuelo et al., 2012) (Figures
S4A–S4C). Using this reporter, we found that cells with meta-
bolic oscillations but without an accompanying cell cycle were
either arrested at G1 (i.e., Whi5 in the nucleus; Figure 2B; Movie
S2) or occasionally after budding in a non-G1 phase (i.e., Whi5 in
the cytoplasm; Movie S3).
To substantiate the finding that metabolic oscillations are not

the consequence of the cell-cycle operation, we added the mat-
ing pheromone (alpha factor), which inducesG1 arrest (Bardwell,

2004), to cells growing in the microfluidic device. Also after the
pheromone-induced cell-cycle arrest, the NAD(P)H levels
continued to oscillate (Figures 2C and S5). Together, these find-
ings demonstrate that the metabolic oscillations are not the
result of cell-cycle operation and CDK activity but constitute an
autonomous behavior of metabolism, occurring across growth
conditions. The autonomy of the metabolic oscillator, and its fre-
quency synchrony with the cell cycle (Figure 1C) in normally
dividing cells, suggest metabolism as a separate component in
the cell-cycle control engine.

The Metabolic Oscillator and the Cell Cycle Form a
System of Coupled Oscillators
We conjectured that the metabolic oscillator and the cell-cycle
oscillator form a system of coupled oscillators, similar to other in-
stances of synchrony in biology, including the rhythmic flashes of
fireflies or the synchronized discharge of cardiac pacemaker
cells (Strogatz, 2001). Analogously to the fact that an effective
contraction of the heart muscle requires a strict synchrony be-
tween cells in the sinoatrial node, cell-cycle control could
emerge from the coupling and mutual entrainment between the
metabolic oscillator and the cell-cycle oscillator.

Figure 2. Metabolic Oscillations Are Independent of the Cell Cycle
(A) Metabolic oscillations without cell-cycle initiation occur spontaneously under all growth conditions (see also Figures S3A and S3B). Each line corresponds to a

single cell. Diagonal trajectories indicate metabolic cycles (MC) in synchrony with budding and the cell cycle (CC); horizontal trajectories show ‘‘uncoupled’’ MCs

without budding.

(B) After two coupled MC/CC events, spontaneous G1 arrest occurred at 245 min in a single cell (grown on 10 gL!1 glucose), and the metabolic oscillations

continued (see alsoMovie S2). Arrest persisted for 765min, before resumption ofMC/CC synchrony. NAD(P)H oscillations are indicated by gray lines,Whi5-eGFP

localization by black lines (see also Figures S4A and S4C) and the budding events by orange lines (see also Figure S4B). Red triangles indicate peaks of metabolic

oscillations without budding.

(C) Mating pheromone alpha factor (added at 240 min) caused cell-cycle arrest in G1 and the metabolic oscillations continued (data for a single cell grown on

10 gL!1 glucose) (see also Figure S5).

Molecular Cell 65, 285–295, January 19, 2017 287

Yeast cells were grown on high glucose (10 gL-1 ~ 50mM). Single cell analysis in the 
absence of synchronization.
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High v gives rise to 
oscillations

Similar, cyclic motif as before, but with two allosteric regulation points:

Guidi G.M., Goldbeter A. 
Biophy. Chem. 72 (1998)

The system of Eq. (7) admits a single steady state,
because of the assumption of a constant input of sub-
strate I. Nevertheless, we shall see that the occurrence
of oscillations in system (7) can be related to the
occurrence of bistability in system (5) that pertains
to conditions in which the concentration of isocitrate
is kept constant.
Linear stability analysis of Eq. (7) yields the

conditions in which sustained oscillations of the
limit cycle type occur around an unstable steady
state. Two examples of sustained oscillations gener-
ated by the model are shown in Fig. 10 (upper and
middle panels, referring to situations denoted a and
b, respectively). The thick gray curve in the lower
panel yields the steady-state value of NADPH (P0)
as a function of the quantity h (which, as shown by
Eq. (9), reduces to EI when I is in excess) in the
absence of influx of isocitrate, as determined in Sec-
tion 3.

Fig. 8. Bistability with or without hysteresis can occur sequentially as a function of a control parameter. The steady state concentration of the
product, NADPH (P0), is plotted as a function of the logarithm of the total amount of substrate, Z, for different values of the ratio (EI/EII) of
IDH versus DIA concentrations. Bistability with hysteresis is observed for (EI/EII) = 0.43 (top left panel). For (EI/EII) = 0.38 (top right panel),
the phenomenon is followed by the occurrence of bistability without hysteresis. As (EI/EII) further decreases, the limit points LP2 and LP3
progressively come closer to each other until they merge when (EI/EII) = 0.3652 (lower left panel). At lower values, e.g. (EI/EII) = 0.33, only
bistability without hysteresis subsists (lower right panel).

Fig. 9. Bienzymatic system considered for sustained oscillations.
The model, involving isocitrate dehydrogenase and diaphorase, is
similar to that considered for bistability in Fig. 1, but the second
substrate, isocitrate, is injected at a constant rate, while the product
a-ketoglutarate is removed in an auxiliary reaction catalyzed by
some enzyme EIII.

207G.M. Guidi, A. Goldbeter / Biophysical Chemistry 72 (1998) 201–210

h =
EII

KIII
m + I

(9)

The solid or dashed black lines in this lower panel
indicate the trajectory followed by the system in Fig.

10a,b, when h varies as a result of the periodic
change in I. In the latter conditions, the trajectory
follows more or less closely the two stable branches
of the steady state curve and repetitively performs a
hysteresis loop that translates into limit cycle beha-
vior.
The parameter which triggers this repetitive move-

ment is the isocitrate influx, v. On the lower branch of
the steady state curve, I (and, hence, h) increases as a
result of v which exceeds the rate of isocitrate con-
sumption in the IDH reaction. When the limit point is
reached, the concentration of NADPH abruptly in-
creases as a result of the activation of IDH. The rate
of this enzyme now exceeds the influx v, so that the
level of isocitrate begins to decrease and the system
follows the upper branch of the steady state curve
towards the left, until the other limit point is reached.
The system now returns to the lower branch of the S-
shaped curve, and the increase of isocitrate resumes as
the rate of IDH again becomes lower than the sub-
strate input v.
The difference between Fig. 10a,b lies in the

amount of IDH. Whereas the amount of DIA is
equal to 0.1 mM in both cases, IDH = 0.1 mM in
Fig. 10a and 0.5 mM in Fig. 10b. Because NADP+
and isocitrate are consumed by IDH at a higher rate
in Fig. 10b, the increase in NADPH and the concomi-
tant decrease in h are more rapid, so that the jump to
the upper branch of the S-shaped steady-state curve is
no longer vertical as it is in Fig. 10a. Another conse-
quence of the difference in IDH level is that the period
of the oscillations is shorter in Fig. 10b: the phase in
which NADPH decreases is indeed brief, in contrast to
Fig. 10a in which a long plateau in NADPH is ob-
served.

Fig. 10. Sustained oscillations in the IDH–DIA bienzymatic sys-
tem. The curves are obtained by numerical integration of Eq. (7)
for two values of the amount of IDH, EI = 0.1 mM (a) and 0.5 mM
(b), at a fixed value of EII = 0.1 mM. Shown is the time evolution of
the concentrations of isocitrate (ISO) and NADPH as a function of
time (top and middle panels), as well as the corresponding evolu-
tion in the NADPH versus h plane (bottom panel). As indicated by
Eq. (9), h is related to the variable amount of isocitrate and to the
fixed concentration of IDH, EI. The thick gray curve in the bottom
panel yields the steady-state concentration of the product, NADPH
(P0), obtained from Eq. (6), as a function of h (which, as shown by
Eq. (9), reduces to EI when I is in excess) in the system without
isocitrate influx (see Sections 2 and 3). Parameter values are:
Z = 10 mM, v = 72 nM/s.

208 G.M. Guidi, A. Goldbeter / Biophysical Chemistry 72 (1998) 201–210
the course of time, with a sigmoidal time evolution
which reflects the activation of the enzyme by its
product NADPH. If the second enzyme, diaphorase,
is added at different times during this IDH-catalyzed
accumulation of NADPH, the outcome can be either a
decrease of NADPH down to a low level – this occurs
when DIA is added early on (see first two arrows in
Fig. 2) – or an increase up to a high level of NADPH
– the latter evolution is observed when the same
amount of DIA is added at a later stage (see last two
arrows in Fig. 2). When the addition of DIA is made at
a critical time value t* [11], the current NADPH level
is maintained constant over a long period of time (see
large arrow in Fig. 2).
The analysis of the model for the IDH–DIA reac-

tion system indicates that the behavior observed in the
experiments schematized in Fig. 2 can be interpreted
in terms of bistability [11]. The model indeed shows
that for appropriate parameter values (see below), the
bienzymatic system can evolve to either one of two
stable steady states, separated by an unstable one. The
theoretical results of Fig. 3 reproduce the effect of
adding diaphorase at different times in a reaction
medium containing only IDH initially. The inset in
Fig. 3 shows that early addition of DIA leads to a
low steady-state level of NADPH, while the addition
after the critical time leads to the higher steady-state

level of NADPH, as shown in the main part of Fig. 3.
When DIA is added at the critical time t* which sepa-
rates the two types of evolution described above, an
intermediate level of NADPH, corresponding to the
unstable steady state, is maintained for some time, but
eventually the system switches either to the lower
stable state or to the upper stable state, as in the
case illustrated in Fig. 3.
Because it is impossible to add DIA precisely at the

critical time t*, the initial NADPH concentration, at
the time of addition of DIA, will be at a certain dis-
tance from the unstable state. The time spent by the
system in the immediate vicinity of this state after the
addition of DIA will depend both on this distance and
on the occurrence of fluctuations. Experimental obser-
vations indicate, however, that this time may be rela-
tively long as the system may remain for more than 10
min in the vicinity of the unstable state [11]. This
result is recovered in the numerical simulations (see
the inset to Fig. 3).
The model allows for a detailed analysis of the

conditions in which bistability occurs in the IDH–
DIA reaction system. Thus, the phenomenon of bist-
ability is illustrated in Fig. 4 where the steady state

Fig. 3. Numerical simulations of the model reproducing the experi-
mental observations on bistability shown schematically in Fig. 2.
The inset represents an enlargement of the boxed domain, clarify-
ing the system’s behavior at early times. The results are obtained
by numerical integration of (Eq. (3)) for the following parameter
values: Z = 220 mM, EI = 4 nM, EII = 0.031 mM.

Fig. 4. Bistability in the IDH–DIA reaction system. The steady-
state concentration of the product, NADPH (P0), is plotted as a
function of the logarithm of the ratio (EI/EII) of IDH versus DIA
concentrations. The different curves are obtained for various values
of the total amount of substrate, Z = NADP+ + NADPH, as indi-
cated on each curve. Bistability here is always accompanied by
hysteresis. Parameter values are listed in Table 1. The results are
obtained in this and similar subsequent figures by numerically sol-
ving the third-degree polynomial equation yielding the value of P0
[11].

204 G.M. Guidi, A. Goldbeter / Biophysical Chemistry 72 (1998) 201–210

Low v gives rise to bistability
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SUMMARY & OUTLOOK
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Summary
Metabolic systems are capable of rich dynamics, including bistability, oscillations, 
and hetereogenity.

These dynamic features are ‘expressed’ under some conditions and can determine 
cell physiology and higher level functions (e.g. dormancy).

ODE models and assumptions can give us insights independent of experimental 
data or explain specific experimental dynamics.

Multiple models can result in same behaviors and is not always possible to 
distinguish or disentangle these alternative explanations from each other.

The condition dependency of metabolic behaviors makes it important that each 
experimental finding is considered in the context of the experimental setup used.
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SOME OPEN AREAS OF INVESTIGATION

Bistability | Oscillations

Temporal flux / metabolite measurements

Compartments – how to combine 
metabolism, membrane potential, ionic 
fluxes, pH

Metabolism – microenvironment 
feedbacks Oxygen

pH
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SOME OPEN AREAS OF INVESTIGATION
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Thank you for listening

14

aquatic closed ecosystems, which will be reviewed in some detail below. His 

collaboration with Dr. J. Hanson of NASA’s Jet Propulsion Laboratory resulted in the 

commercialization of marine closed ecosystems as EcoSpheres® (Figure 2.1).

How to construct a closed ecosystem?

It is far from clear which ecosystems can persist under closure. For example, what are the 

constraints on the initial set of species? What interaction patterns are stable? What, if any, 

is the minimal metabolic diversity required? In general, closed ecosystems can be 

constructed in two basic ways: in top-down construction, a sample from a natural system 

is allowed to “self-select” after closure until a remaining set of species persists; in 

bottom-up construction individual species from stock cultures are combined in a suitable 

medium.

Figure 2.1: These one liter marine 
ecosystems were developed by Joe Hanson 
at JPL/NASA and Clair Folsome, of the 
University of Hawaii. In 1983, NASA 
licensed the idea to Engineering & 
Research Associates Inc., Tucson, AZ . 
The ecosystems are now produced from 
“semi-sterile” stock cultures and filtered 
seawater, with added gravel and Gorgonia
coral, stated to be non-living, for 
decoration [6, 7]. According to the 
EcoSphere website (http://www.eco-
sphere.com/care_manual.html), shrimp 
have survived in such closed ecosystems 
for up to eight years. Gracing many homes, 
this may well be the most replicated 
experiment in ecology.

Cell metabolism, spatial organization, microbial communities

Looking for PhDs & Postdocs

http://osslab.lifesci.warwick.ac.uk

O.Soyer@warwick.ac.uk

Mary Coates
Sarah Duxbury
Kelsey Cremin

Robert West
Sonal

Collaborators: Marco Polin, Sebastien 
Ragidaeu, Chris Quince, Wenying Shou
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Additional reading and resources
Core reading:
• Ch. 1 in “Nonlinear Dynamics and Chaos with Applications to …”, Strogatz, S. Perseus Books (1994)
• Ch. 1-3 in “Calculus Made Easy”, Thompson, S. P. The Macmillan Company (1910)
• Ch. 2 and 3 in “Mathematical Modelling in Systems Biology: An Introduction”, Ingalls, B. at: 

https://www.math.uwaterloo.ca/~bingalls/MMSB/Notes.pdf

Recommended reading:
• Ch. 2 and 3 in “Principles and Problems in Physical Chemistry for Biochemists”, Price N. C., et. al. Oxford U. Press
• Ch. 3 and 4 in “Structure and mechanism in protein science” by Fersht, A. Freeman and Company

Optional, but fun reading: 
• “Textbook errors: IX. More about the laws of reaction rates and of equilibrium”, Guggenheim, E.A., J Chem Educ 33:11 (1956)
• “A new principle of equilibrium”, Lewis G. N., PNAS 11:3 (1925).
• “On the validity of the steady state assumption of enzyme kinetics”, Segel. L. A. Bull Math Bio 50: 6 (1988)
• “A note on the kinetics of enzyme action”. Noor E. Flamholz, A., et al. FEBS Lett 587:17 (2013) 
• Further chapters in Thompson’s and Strogatz’s books.
• “The growth of bacterial cultures” by Jacques Monod (Nobel laureate, 1965).

Optional resources:
Mathematical systems biology models: http://www.ebi.ac.uk/biomodels-main/
BRENDA database: www.brenda-enzymes.org
Database for models and experimental data: https://datanator.info

https://www.math.uwaterloo.ca/~bingalls/MMSB/Notes.pdf
http://www.ebi.ac.uk/biomodels-main/
http://www.brenda-enzymes.org/
https://datanator.info/


Questions & Exercises?
What is a function? Plot the following function and consider how y and x relate to each other:

Develop an ODE model for the concentration of a protein, considering only its translation from mRNA and its 
degradation by proteases

Explain the meaning of the derivative and slope.

What is the formula for 𝐾9:?What does 𝐾9: stand for, i.e what does it mean? 

Where does the following equation come from? 
(the question is not to answer, but to encourage you to read more 
into thermodynamics – see 1st slide)

Δ𝐺 = Δ𝐺+ + 𝑅 9 𝑇 9 𝑙𝑛
𝐶 F( 𝐷 F)

𝐴 F* 𝐵 F+

Can you state the ‘rate based’ formulation of the law of mass action? Can you explain what a ‘rate 
coefficient’ is in the context of law of mass action?
Write the ODEs for the following reactions based on reversible (irreversible) mass action models:

A + B ⇌ 𝐷
2A + B ⇌ 𝐷
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Dynamics of Cell Metabolism – Orkun S Soyer, Slide 68

What is the ‘principle of equilibrium’?
(don’t have to answer for this module, but you are encouraged to take a look at the highly recommended 
Lewis paper!)

Can you explain the assumptions made for obtaining this rate equation?

Write the reversible rate equation the following enzymatic reaction. A + B ⇌ 𝐶

What is the formula for Haldane relation?What does it stand for, i.e what does it mean? 

Work out a model for a single substrate reaction mediated by an enzyme with two binding sites. 

Can you develop a model to explain the observed oscillations in NAD(P)H?
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Additional slides
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Ordinary differential equations (ODEs)

System of interest 

𝑥? 𝑥@

𝑥* Interactions, 
processes, …

n-dimensional system of ODEs

𝑑𝑥(
𝑑𝑡 = 𝑥(' = 𝑓(𝑥(, 𝑥%, … , 𝑥&)
𝑑𝑥%
𝑑𝑡 = 𝑥%' = 𝑓(𝑥(, 𝑥%, … , 𝑥&)

𝑑𝑥&
𝑑𝑡 = 𝑥&' = 𝑓(𝑥(, 𝑥%, … , 𝑥&)

…
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Multi-site enzymes and co-substrate cycles

S P
𝛼

𝛼

7 and related equations in the SI) mathematical criteria for a
multisite enzyme to display multiple steady states when
complemented by appropriate choices of total enzyme and
substrate concentrations. One of the key findings from these
analyses is that having a lower catalytic rate from the fully
bound enzyme complex (the term c[n]\ {i},[n]) in eqs 3 and 4,
compared to that of nonfully bound complexes, favors
bistability. Since substrate inhibition could be seen as a
manifestation of the fully bound enzyme complex displaying
lower catalytic activity, enzymes displaying substrate inhibition
could present possible candidates for testing the presented
theory. In Table 1, we list a set of multisite enzymes that are
shown to display substrate inhibition and note that these
enzymes might already be satisfying the conditions presented
in eqs 3 and 4. Indeed, for two of the listed enzymes, namely,
phosphofructokinase and lactate dehydrogenase, in vitro
reconstitution experiments implementing cyclic reaction
systems and using experimental conditions of substrate-
saturated enzymes have directly demonstrated the existence
of bistability.21,22 As utilized in those studies, experimental in
vitro studies can directly look for bistability in all of the listed,
and similar, multisite enzymes.
Systems not displaying bistability can be further manipulated

toward changing the K and c terms as presented in eqs 3 and 4
(or eqs 7 and 8) to fulfill the mathematical criteria given in
these equations. To this end, mutations altering either the
Michaelis−Menten or catalytic constants (i.e., the K and c
terms in eqs 3 and 4 or eqs 7 and 8) have been described
previously for several multisite enzymes.18,23 As an alternative
to mutations, one could also use inhibitory compounds to
specifically affect the catalytic rate of the fully bound enzyme
complex (term c[n]\ {i},[n] in eqs 3 and 4). In this context,
inhibitors have been identified that specifically alter catalytic
activity, rather than the Michaelis−Menten constant, for some
multisite enzymes such as 3-phosphoglycerate dehydrogen-
ase.18 In that case, the inhibition mechanism is related to the
slowing (or complete stopping) of the movement of substrate
binding protein domains required for catalysis,18 but it remains
to be tested if such an inhibition mechanism can be made to
specifically alter the catalytic rate of the fully bound enzyme
complex. As a third possible route for engineering, domain-
based protein engineering (e.g., as in ref 24) could potentially
be used to add further substrate binding sites without catalytic
activity on a single-substrate binding enzyme.
Another experimental direction for engineering bistability

would be to focus on altering enzyme and substrate
concentrations for a given system featuring a multisite enzyme
that is already shown to display low activity at high substrate
binding, i.e., substrate inhibition25 (see also Table 1). As we
show in Figure 3, even for enzymes satisfying conditions given
in eq 4, their bistability will be manifest only for certain ratios
of substrate-to-enzyme concentration and particularly when
Stot > n · Etot is satisfied, as discussed above. Thus,

experimentally manipulating Stot and Etot might provide
means to implement bistability in an in vivo or constituted
enzymatic system. To this end, the use of quantitative control
of gene expression levels based on CRISPR26 can be explored
to control enzyme levels directly.
A multisite enzyme with bistable dynamics will display

bimodal enzymatic fluxes, which can be seen through the
measurement of substrate and product levels under different
starting conditions (as shown in Figure 2). This approach is
used to demonstrate bistability in lactate dehydrogenase and
phosphofructokinase enzymes, which are reconstituted in vitro
and their cosubstrate, substrate, and product levels are
monitored spectroscopically or chemically.21,22 We propose
combining such an in vitro assay with the engineering strategies
described above to specifically engineer bistability in a multisite
enzyme. An ideal case study for such engineering could be the
isocitrate dehydrogenase, which is already identified with
potential for bistability according to the presented theory due
to its observed substrate inhibition and multisite nature (see
Table 1) and is postulated to form a bistable reaction system.15

This enzyme (and similar enzymes as listed in Table 1) can be
incorporated into a reconstituted reaction system in vitro, and
the impact of different mutations (generated through random
or targeted mutagenesis), inhibitory compounds, and enzyme
concentration on their bistability can be directly evaluated by
monitoring enzymatic fluxes under different initial conditions.
This approach should allow the identification of bistability and
bistability-causing mutations. The linkage to the presented
theory can be further made by measuring kinetic parameters of
mutant and wild-type enzymes resulting from such studies. Any
such engineered bistable enzymes, or naturally existing ones,
can be utilized to study the effect of bistability on cell
physiology and for implementing dynamical control of pathway
fluxes. The latter route is important for addressing the
identified key challenge of dynamic control of metabolically
engineered pathways,27,28 as well as recent aims of decoupling
cellular production and growth stages through bistable
systems.29 In the case of isocitrate dehydrogenase, which is
shown to be involved in the metabolic engineering of citrate
overproduction,30 the engineering of bistability can allow cells
to switch between a low- and high-flux regime for isocitrate
dehydrogenase flux depending on growth conditions (e.g.,
glucose levels), thereby providing the possible control of
downstream citrate production. More broadly, natural or
mutant enzymes with demonstrated bistability can be utilized
to study physiological consequences of bistability such as the
generation of metabolically distinct subpopulations.31

■ METHODS
Core Biochemical Model. We considered first a core

model involving an enzyme with multiple substrate binding
sites, each able to convert the substrate into a product, as
shown in Figure 1. For this model, we assumed that the total

Table 1. Selected Multisite Enzymes That Are Experimentally Shown to Exhibit Substrate Inhibitiona

enzyme EC number enzyme oligomer structure substrate (showing substrate inhibition)a references

malate dehydrogenase 1.1.1.37 tetramer oxaloacetate 42
lactate dehydrogenase 1.1.1.27 tetramer pyruvate 21, 43
D-3-phosphoglycerate dehydrogenase 1.1.1.95 tetramer phosphohydroxypyruvate 44
isocitrate dehydrogenase 1.1.1.42 dimer NADH 15, 45
phosphofructokinase 2.7.1.11 tetramer ATP 22, 35, 46

aOnly substrates displaying substrate inhibition are listed.
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to this aspect basically deal with theoretical approaches 
or predictions. Studying analytically a Monod-Jacob 
model for induction and repression, Babloyantz and 
Nicolis [24] have shown that, if due to temporary 
metabolic advantages, a pathway is in a situation where 
it has a head start, all the other pathways will be in- 
hibited permanently. Hahn et al. [25], when consider- 
ing the dynamic behavior of a simple compartmental- 
ized michaelian enzyme in which the product of the 
reaction alters the supply of substrate, mention some 
conditions under which irreversible transitions may oc- 
cur. Later on, the same authors again take up this con- 
cept in order to attempt a plausible interpretation for 
the growth of crown gall tumors (personal communi- 
cation). 

Our aim in the present work is to show experimental- 
ly that in a simple model substrate cycle such irreversi- 
ble transitions can be observed in the absence of any 
drastic constraints imposed on the enzyme kinetic pro- 
perties and/or the parameter values. 

1.2. Model vs experimental 
Our goal is to illustrate experimentally certain par- 

ticular dynamics behaviors of a previously described 
model cycle; we will first recall briefly its main features 
and conditions of validity. Two metabolites, S1 and SZ, 
bounded by moiety-conservation (Sr + Sz = ST) are 
converted in a cyclic manner by two enzymes, El and 
E2. Enzyme El is inhibited by an excess of its substrate 
Sl. Because both enzymes require different 
cosubstrates, A and C, the two pathways are ther- 
modynamically favorable at the same time. The enzyme 
kinetics are supposed to be zero-order with respect to 
their cosubstrates. In that cycle, the two control 
parameters are (1) the moiety total concentration, ST, 
and (2) the ratio, V, of the interconverting enzymes’ 
maximal activities. Monostability and reversible 
bistability (hysteresis) can be observed when either Sr 
or V are varied. Irreversible transitions occur when and 
only when Sr is taken as the control parameter. The on- 
ly kinetic requirement is that the maximal activity of 

Fig. 1. The model minimal cycle and the experimental system under 
investigation. 

the non-inhibited enzyme (E2) is lower than the optimal 
activity of the inhibited one (Ei). 

The model experimental system we have chosen is the 
interconversion of the moiety ATP/ADP (Sr/S2) by en- 
zymes phosphofructokinase (PFK = Ei) and pyruvate 
kinase (PK = E2). Enzyme PFK exhibits an important 
inhibition by excess of its substrate, ATP. The standard 
Gibbs free energies (AC”‘) of the reactions catalyzed 
by PFK (ATP + F-6-P --t ADP + F- 1,6-dip) and PK 
(ADP + PEP - ATP + Pyr) are -3.4 and 
-7.5 kcal. mol-‘, respectively. In order to ensure that 
cosubstrates, F6P (A) and PEP (C) are present at a con- 
stant level during the time course of the reactions prior 
to reach the steady-states, their initial concentrations 
are large with respect to their K,,,s. The minimum model 
cycle and the experimental system are depicted in 
Fig. 1. 

2. MATERIALS AND METHODS 

2.1. Individual enzyme activity measurements 
All the kinetic studies to he presented were carried out in a freshly 

prepared sodium phosphate buffer, 0.1 mM, pH 6.8 (working buf- 
fer), at 20°C. Enzymes and chemicals (analytical grades) were pur- 
chased from Sigma Co. 

The initial activity dependence of pyruvate kinase (PK; EC 
2.7.1.40, from rabbit muscle) as a function of ADP was studied by 
using the pyruvate coupled assay. Measurements were performed in 
the presence of 5 mM phosphoenol pyruvate (PEP), 1 mM MgC12 
and 0.3 mM NADH. The reaction was initiated by introduction of 
1.5 and 3 IU .ml-’ PK and lactic dehydrogenase (LDH; EC 
1.1-l .28), respectively. 

For phosphofructokinase (PFK; EC 2.7.1.1, from rabbit muscle), 
the kinetic measurements were made by using the aldolase (ALD; EC 
4.1.2.13)/triosephosphate isomerase (TPI; EC 5.3.1.l)/glycerol-3- 
phosphate dehydrogenase (NAD+) (G-3-PdH; EC 1.1.1.8) coupled 
assay, in the presence of 1 mM MgC12, 1.1 mM F-6-P and 0.3 mM 
NAD+. The amounts of the three coupling enzymes were lo-50-fold 
the maximal PFK activity, i.e. 0.07, 0.7, 3 and 3 IU.ml-’ for PFK, 
ALD, TPI and G-3-PdH, respectively. The increase in the NAD+ 
concentration is followed at 340 nm. 

The concentrations of F-6-P (PFK) and PEP (PK) were chosen 
such that the enzymes operate under zero-order conditions with 
respect to these substrates ([F-6-P] = 16 K,,, and [PEP] = 45 K,). 

2.2. Operation of the complete cycle 
The kinetic studies dealing with the complete bienzyme cycle, in- 

cluding PFK and PK, were carried out in a thermostated closed reac- 
tor (12 ml) containing F-6-P 1.1 mM, PEP 5 mM, and MgCla 1 mM. 
Samples (0.5 ml) are taken at regular intervals, then diluted in a solu- 
tion of acetonitrile/working buffer (1: 2 v/v) up to a final volume of 
2 ml, in order to stop the reactions. The samples can thus be stored 
congealed at -20°C. The steady-states are supposed to be attained 
when the difference in the ATP (ADP) concentrations between two 
consecutive samples is less than 5%. 

2.3. HPLC nucleosides determination 
The samples were centrifuged for 5 min at 2000 x g, and the super- 

natant was then filtered on a Millex filter (0.4 pm). A 100 pl aliquot 
of the filtrate was injected through an automatic sampler (WISP, 
Waters) into a SAXrBondapak Waters column, using a radical com- 
pressor module (8 x 10 Waters) under isocratic conditions. The elu- 
tion solution is made of KH2P04 0.25 M and KC1 0.5 M at pH 4.0. 
Nucleoside mono-, di- and triphosphates were detected spec- 
trophotometrically at 260 nm (LS Waters detector). Total elution was 

200 

Speculative hypothesis:
Co-substrate cycles regulate 
fluxes and allow for distinct ‘flux 
states’ via bi- / multi-stability
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De Deken R. J. Gen. Microbiol., 44 (1966)

𝑈 = 𝑄G − 2𝑄(

All the tumours grafted 
intraperitoneally show a 
carbohydrate metabolism 
conforming to that found by 
Warburg. A positive U, or excess 
fermentation, is a common 
property.
Crabtree H. G. Biochem. J., 23 (1929)

Shift between fermentation and 
respiration and respiro-fermentation in 
yeast, bacteria, and mammalian cells.
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glucose-accelerated death in yeast.
Using a mathematical model of yeast
glycolysis, we present an explanation
for the phenotype of these particular 
S. cerevisiae mutants. Unexpectedly, the
turbo design of yeast glycolysis appears
to be central to the metabolic problems
experienced by these mutants. Our analy-
sis shows that metabolic pathways with
turbo design require special types of
regulation in environments that have
rapidly changing substrate availability.

The phenotype of the tps1-! mutant
The fdp1, cif1 and byp1 mutants are

unable to grow on glucose. It was sur-
prising to find that the mutations are al-
lelic12 and that the primary lesion is in
the TPS1 gene, which encodes trehalose
6-phosphate (Tre 6-P ) synthase13–15. Up
until then, trehalose synthesis was con-
sidered to be a branch of glycolysis with
no function other than in the formation
of storage carbohydrates and the acqui-
sition of stress tolerance16. Very little
trehalose is made during exponential
growth on glucose17; consequently, it
seems puzzling that trehalose metab-
olism is needed for growth on glucose.

A TPS1 disruptant accumulates hexose
phosphates, but consumes ATP and in-
organic phosphate rapidly8,9,12,18–20. No
steady state is attained and the accumu-
lation of hexose phosphates continues
until all phosphate has been incorpo-
rated into sugar phosphates. The first
steps of glycolysis appear to be too fast
for the rest of the yeast’s metabolism to
cope with13.

It is now clear that a metabolic func-
tion of Tps1p is to inhibit (one of) the
first steps of glycolysis and thereby re-
strict the flux of glucose into glycoly-
sis13. In tps1-! mutants, growth on glucose
can be restored by reducing HK19 or glu-
cose transporter activity21. The finding
that Tre 6-P, the metabolic product of
Tps1p, inhibits HK in vitro, suggests a 
direct mechanism for HK inhibition in
wild-type cells22; however, the possibility
that Tps1p interacts directly with a glu-
cose transporter and HK cannot be ex-
cluded13,20,23. In this paper, we shall not
discuss the exact molecular mechanism
of inhibition, but rather address the
question of why and when such a ‘guard
at the gate of glycolysis’ is required13.

Simulation of glycolysis without feedback
inhibition of hexokinase (HK)

We have examined the behaviour of 
a core model of yeast glycolysis that
lacks any special regulation of the first
ATP-consuming step. Focusing on the

essentials, this model con-
sists of only four steps: the HK
reaction, the PFK reaction, the
‘lower part’ of glycolysis, and
a general ATPase to remove
the excess ATP produced by
glycolysis (see Fig. 2, and
Box 1 for details of stoichio-
metry and enzyme kinetics).
Figure 3a,b shows a time
course for this model at high
glucose concentrations (i.e.
high relative to the affinity of
the HK block for glucose).
Without feedback inhibition of
HK, hexose monophosphate
and fructose 1,6-bisphosphate
(Fru 1,6-P2) accumulated, and
the ATP concentration barely
recovered from an initial
drop to below 0.3 mM (Fig.
3a). Although hexose phos-
phate levels did not reach a
steady state, the rates of the
reactions became constant
(Fig. 3b), as did the ATP level.

The concentration of ATP
remains constant whenever
the rate of ATP consumption
("consumption) is equal to the
rate of ATP production ("production). In the
model, the following relationship should
then hold:

The data in Fig. 3a confirm that this is
the case for our core model: after about
ten minutes, the rates of the reactions
fulfilled the above relationship and, there-
fore, the level of ATP became constant.

The system will only reach a true
steady state when two criteria are satis-
fied: (1) the rates of the HK reaction, the
PFK reaction and the lower part of gly-
colysis are equal; (2) the rate of the
ATPase reaction is twice that of the other
steps. In the steady state, the following
relationship will therefore apply:

This second steady-state condition was
not met in the simulation of unguarded
glycolysis (i.e. the rate of the lower part
of glycolysis did not become equal to
those of the HK and PFK modules).
Rather, the kinase fluxes greatly ex-
ceeded the flux through lower glycolysis
("HK # "PFK # "lower; see Fig. 3b), caus-
ing the accumulation of both hexose
monophosphate (because "HK # "PFK)
and Fru 1,6-P2 (because "PFK # "lower; see

(2)"HK $ "PFK $ "lower $ 2"ATPase

(1)"consumption ($ "HK % "PFK % "ATPase ) 

$ "production ($ 4"lower )
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Figure 1
Comparison of an activated catabolic pathway with a
turbo engine. (a) General scheme for a catabolic path-
way in which the first step involves coupling of ATP hy-
drolysis to activation of a substrate (S). Downstream,
the conversion of an intermediate (I) to a product (P)
generates a surplus of ATP. (b) Schematic represen-
tation of a turbo engine, in which exhaust gases are
used to increase the influx of fuel.
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-

Figure 2 
Schematic representation of the core
model of glycolysis. See Box 1 for kinetic
details of each step. In this model the
lower part (downstream reactions) of gly-
colysis is represented by a single step.
Glc, glucose; HMP, hexose monophos-
phate; Fru 1,6-P2, fructose 1,6-bisphos-
phate; Tre 6-P, trehalose 6-phosphate;
EtOH, ethanol; HK, hexokinase; PFK,
phosphofructokinase; Tps1p, Tre 6-P syn-
thase; lower, lower part of glycolysis. 
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If, however, direct feedback inhibition
by hexose monophosphate was used,
rather than inhibition through Tre 6-P (in
such a way that the same steady state
would have been reached at the high 

extracellular glucose concentration), the
model performed much worse than the
Tre 6-P inhibition model: the ATP level
and the flux through glycolysis were now
less than a tenth of those of the TPS1

deletant (Table I). This is explained as
follows: in order to achieve the same in-
hibition by Tre 6-P or hexose monophos-
phate at high glucose concentrations, the
inhibitory constant of hexose monophos-
phate needed to be much smaller than
that of Tre 6-P (see legend to Table I);
this stronger inhibition would then be a
liability at the low glucose concentration.

Inhibition through an external effector
introduces an extra layer of regulation
[i.e. regulation of the regulator (Tre 6-P)
by the hexose monophosphate concen-
tration and possibly other factors],
thereby increasing the dynamic range 
of the inhibition under highly variable 
environmental conditions. As a conse-
quence, a regulatory mechanism is ob-
tained that limits the turbo effect at high,
but not at low, glucose concentrations.
This could be the reason why indirect
feedback through Tps1p is preferred –
as opposed to feedback through direct
product inhibition. It should be noted
that expression of the TPS1 gene is glu-
cose repressed17,24 and the activity of
the Tps1p protein is controlled by post-
translational modification25. The dynamic
range of inhibition by Tps1p is therefore
not only enlarged by the specific kinetics
of the enzyme, but also by controls at
the levels of gene expression and pro-
tein specific activity.

It is interesting to note that the con-
ditions under which trehalose metab-
olism is active coincide with the condi-
tions under which the danger of the
turbo design of glycolysis is potent: that
is, in glucose-derepressed cells where the
lower part of glycolysis is not induced. It
appears that Tps1p has evolved to play
a dual role: trehalose formation under
glucose limitation; and feedback regu-
lation on subsequent sudden exposure
to glucose excess.

The danger of pathways with turbo design
It is important to note that the prob-

lems that we have analysed in this paper
are quite specific to pathways that have
what we term a ‘turbo design’. If, in tran-
sitions where substrate becomes sud-
denly available in excess, there are bot-
tlenecks further down in the pathway,
then ‘turbo pathways’ are especially vul-
nerable. As its coupling to ATP hydroly-
sis renders the activating step thermo-
dynamically irreversible, regulation of the
rate of that step cannot occur at the level
of mass action26. Regulation is therefore
needed at the level of enzyme activity.
Whereas adaptation to a new environ-
ment through regulation of gene expres-
sion and protein turnover takes place on
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Figure 3
Simulations of time courses for the core model of glycolysis (Fig. 2) in three different
cases. (a,b) Unguarded glycolysis. (c,d) Glycolysis with product inhibition of hexokinase
(HK). (e,f) Unguarded glycolysis with reduced HK activity. In all cases, the initial concen-
trations of hexose monophosphate (HMP), fructose 1,6-bisphosphate (Fru 1,6-P2) and ATP
were 0.1 mM, 1 mM and 4.0 mM, respectively. !HK, rate of the hexokinase reaction; !PFK, rate
of the phosphofructokinase reaction; !lower, rate of the lower part of glycolysis; !ATPase, rate
of the ATPase reaction.
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If, however, direct feedback inhibition
by hexose monophosphate was used,
rather than inhibition through Tre 6-P (in
such a way that the same steady state
would have been reached at the high 

extracellular glucose concentration), the
model performed much worse than the
Tre 6-P inhibition model: the ATP level
and the flux through glycolysis were now
less than a tenth of those of the TPS1

deletant (Table I). This is explained as
follows: in order to achieve the same in-
hibition by Tre 6-P or hexose monophos-
phate at high glucose concentrations, the
inhibitory constant of hexose monophos-
phate needed to be much smaller than
that of Tre 6-P (see legend to Table I);
this stronger inhibition would then be a
liability at the low glucose concentration.

Inhibition through an external effector
introduces an extra layer of regulation
[i.e. regulation of the regulator (Tre 6-P)
by the hexose monophosphate concen-
tration and possibly other factors],
thereby increasing the dynamic range 
of the inhibition under highly variable 
environmental conditions. As a conse-
quence, a regulatory mechanism is ob-
tained that limits the turbo effect at high,
but not at low, glucose concentrations.
This could be the reason why indirect
feedback through Tps1p is preferred –
as opposed to feedback through direct
product inhibition. It should be noted
that expression of the TPS1 gene is glu-
cose repressed17,24 and the activity of
the Tps1p protein is controlled by post-
translational modification25. The dynamic
range of inhibition by Tps1p is therefore
not only enlarged by the specific kinetics
of the enzyme, but also by controls at
the levels of gene expression and pro-
tein specific activity.

It is interesting to note that the con-
ditions under which trehalose metab-
olism is active coincide with the condi-
tions under which the danger of the
turbo design of glycolysis is potent: that
is, in glucose-derepressed cells where the
lower part of glycolysis is not induced. It
appears that Tps1p has evolved to play
a dual role: trehalose formation under
glucose limitation; and feedback regu-
lation on subsequent sudden exposure
to glucose excess.

The danger of pathways with turbo design
It is important to note that the prob-

lems that we have analysed in this paper
are quite specific to pathways that have
what we term a ‘turbo design’. If, in tran-
sitions where substrate becomes sud-
denly available in excess, there are bot-
tlenecks further down in the pathway,
then ‘turbo pathways’ are especially vul-
nerable. As its coupling to ATP hydroly-
sis renders the activating step thermo-
dynamically irreversible, regulation of the
rate of that step cannot occur at the level
of mass action26. Regulation is therefore
needed at the level of enzyme activity.
Whereas adaptation to a new environ-
ment through regulation of gene expres-
sion and protein turnover takes place on
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Figure 3
Simulations of time courses for the core model of glycolysis (Fig. 2) in three different
cases. (a,b) Unguarded glycolysis. (c,d) Glycolysis with product inhibition of hexokinase
(HK). (e,f) Unguarded glycolysis with reduced HK activity. In all cases, the initial concen-
trations of hexose monophosphate (HMP), fructose 1,6-bisphosphate (Fru 1,6-P2) and ATP
were 0.1 mM, 1 mM and 4.0 mM, respectively. !HK, rate of the hexokinase reaction; !PFK, rate
of the phosphofructokinase reaction; !lower, rate of the lower part of glycolysis; !ATPase, rate
of the ATPase reaction.

Teusink. B. et al. Trends Biochem Sci. 23:5, (1998)

HMP and Fru accumulate without bound! All metabolites reach steady state
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glucose-accelerated death in yeast.
Using a mathematical model of yeast
glycolysis, we present an explanation
for the phenotype of these particular 
S. cerevisiae mutants. Unexpectedly, the
turbo design of yeast glycolysis appears
to be central to the metabolic problems
experienced by these mutants. Our analy-
sis shows that metabolic pathways with
turbo design require special types of
regulation in environments that have
rapidly changing substrate availability.

The phenotype of the tps1-! mutant
The fdp1, cif1 and byp1 mutants are

unable to grow on glucose. It was sur-
prising to find that the mutations are al-
lelic12 and that the primary lesion is in
the TPS1 gene, which encodes trehalose
6-phosphate (Tre 6-P ) synthase13–15. Up
until then, trehalose synthesis was con-
sidered to be a branch of glycolysis with
no function other than in the formation
of storage carbohydrates and the acqui-
sition of stress tolerance16. Very little
trehalose is made during exponential
growth on glucose17; consequently, it
seems puzzling that trehalose metab-
olism is needed for growth on glucose.

A TPS1 disruptant accumulates hexose
phosphates, but consumes ATP and in-
organic phosphate rapidly8,9,12,18–20. No
steady state is attained and the accumu-
lation of hexose phosphates continues
until all phosphate has been incorpo-
rated into sugar phosphates. The first
steps of glycolysis appear to be too fast
for the rest of the yeast’s metabolism to
cope with13.

It is now clear that a metabolic func-
tion of Tps1p is to inhibit (one of) the
first steps of glycolysis and thereby re-
strict the flux of glucose into glycoly-
sis13. In tps1-! mutants, growth on glucose
can be restored by reducing HK19 or glu-
cose transporter activity21. The finding
that Tre 6-P, the metabolic product of
Tps1p, inhibits HK in vitro, suggests a 
direct mechanism for HK inhibition in
wild-type cells22; however, the possibility
that Tps1p interacts directly with a glu-
cose transporter and HK cannot be ex-
cluded13,20,23. In this paper, we shall not
discuss the exact molecular mechanism
of inhibition, but rather address the
question of why and when such a ‘guard
at the gate of glycolysis’ is required13.

Simulation of glycolysis without feedback
inhibition of hexokinase (HK)

We have examined the behaviour of 
a core model of yeast glycolysis that
lacks any special regulation of the first
ATP-consuming step. Focusing on the

essentials, this model con-
sists of only four steps: the HK
reaction, the PFK reaction, the
‘lower part’ of glycolysis, and
a general ATPase to remove
the excess ATP produced by
glycolysis (see Fig. 2, and
Box 1 for details of stoichio-
metry and enzyme kinetics).
Figure 3a,b shows a time
course for this model at high
glucose concentrations (i.e.
high relative to the affinity of
the HK block for glucose).
Without feedback inhibition of
HK, hexose monophosphate
and fructose 1,6-bisphosphate
(Fru 1,6-P2) accumulated, and
the ATP concentration barely
recovered from an initial
drop to below 0.3 mM (Fig.
3a). Although hexose phos-
phate levels did not reach a
steady state, the rates of the
reactions became constant
(Fig. 3b), as did the ATP level.

The concentration of ATP
remains constant whenever
the rate of ATP consumption
("consumption) is equal to the
rate of ATP production ("production). In the
model, the following relationship should
then hold:

The data in Fig. 3a confirm that this is
the case for our core model: after about
ten minutes, the rates of the reactions
fulfilled the above relationship and, there-
fore, the level of ATP became constant.

The system will only reach a true
steady state when two criteria are satis-
fied: (1) the rates of the HK reaction, the
PFK reaction and the lower part of gly-
colysis are equal; (2) the rate of the
ATPase reaction is twice that of the other
steps. In the steady state, the following
relationship will therefore apply:

This second steady-state condition was
not met in the simulation of unguarded
glycolysis (i.e. the rate of the lower part
of glycolysis did not become equal to
those of the HK and PFK modules).
Rather, the kinase fluxes greatly ex-
ceeded the flux through lower glycolysis
("HK # "PFK # "lower; see Fig. 3b), caus-
ing the accumulation of both hexose
monophosphate (because "HK # "PFK)
and Fru 1,6-P2 (because "PFK # "lower; see

(2)"HK $ "PFK $ "lower $ 2"ATPase

(1)"consumption ($ "HK % "PFK % "ATPase ) 

$ "production ($ 4"lower )
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Figure 1
Comparison of an activated catabolic pathway with a
turbo engine. (a) General scheme for a catabolic path-
way in which the first step involves coupling of ATP hy-
drolysis to activation of a substrate (S). Downstream,
the conversion of an intermediate (I) to a product (P)
generates a surplus of ATP. (b) Schematic represen-
tation of a turbo engine, in which exhaust gases are
used to increase the influx of fuel.
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Figure 2 
Schematic representation of the core
model of glycolysis. See Box 1 for kinetic
details of each step. In this model the
lower part (downstream reactions) of gly-
colysis is represented by a single step.
Glc, glucose; HMP, hexose monophos-
phate; Fru 1,6-P2, fructose 1,6-bisphos-
phate; Tre 6-P, trehalose 6-phosphate;
EtOH, ethanol; HK, hexokinase; PFK,
phosphofructokinase; Tps1p, Tre 6-P syn-
thase; lower, lower part of glycolysis. 

Different models, same insight: Avoiding metabolite 
accumulation requires balance of fluxes (i.e. enzyme 
capabilities)

The ability to provide a certain insight, does not necessarily require a complex 
model. It is a useful exercise, to ‘strip’ a model of complexity to see what elements 
of it lead to a specific phenomenon
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Co-substrate reactions and measured fluxes

This analysis ignores substrate and 
thermodynamic effects, which could explain some 
of the low flux values

Figure 3. (A) Measured and FBA-predicted �ux values (from Davidi et al. (2016); Gerosa et al. (2015)) plotted
against the calculated primary enzyme kinetic threshold (�rst part of (1)). Notice that there are 7 points for
each reaction, corresponding to the di�erent experimental conditions under which measurements or FBA
modelling was done (see Supplementary File S1 for data, along with reaction names and metabolites
involved). (B-D) Measured �ux values under di�erent experimental conditions (from Gerosa et al. (2015)) for
select reactions plotted against the corresponding co-substrate pool size. Panels B to D show reactions for
phosphoglycerate kinase (PGK), malate dehydrogenase (MDH), and glucose-6-phosphate dehydrogenase
(G6PDH). Each point on these panels is a separate �ux measurement under a di�erent environmental
condition, where the co-substrate pool size is also measured. Point colors represent co-substrate type and
are as shown in the legend to panel A. Lines show the best linear �t with the corresponding normalised RMSE
shown in the panel title.
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Co-substrate based regulation?
The central metabolism dynamics relate to NADH dynamics 
in mammalian cells:

Synthetically introducing NADH oxidising 
NOX gene in cytosol or mitochondria 
alters gluconeogenesis rate

Titov, D. V., et al. Science 352:6282, 2016

Figure 3. Effect of LbNOX and mitoLbNOX on NAD+/NADH ratios, metabolic fluxes, PDH 
phosphorylation and gluconeogenesis
(A–C) Effect of LbNOX and mitoLbNOX expression in HeLa cells on (A) cytoplasmic 
NADH concentrations determined with fluorescence microscopy using SoNar expressing 
cells (n=7), (B) intracellular and secreted lactate/pyruvate ratio determined by LC-MS (n=4), 
and (C) intracellular NAD+/NADH ratios determined by HPLC (n=4). Student’s t-test. ns P 
> 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. Mean ± S.E. (D) Effect of LbNOX and 
mitoLbNOX expression in HeLa cells on release rate of pyruvate, aspartate and succinate, 
determined by comparing concentrations in spent versus fresh media. Student’s t-test. ns P > 
0.05, ** P < 0.01, *** P < 0.001. Mean ± S.E., n=3 replicates from one experiment. (E) 
Effect of LbNOX and mitoLbNOX expression in HeLa cells on PDH phosphorylation. 
Representative gel from one of three independent experiments. (F) Effect of adenoviral 
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Co-substrate based regulation?
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Self-regulation in 
metabolic 
systems?
“Energy metabolism of the cell: a theoretical treatise” 
by Reich J. G. and Sel’kov, E. E. Academic Press 
1981 
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Calculus and dynamical systems theory
“What one fool can do, another can.”
Ancient Simian(!) Proverb introduced by Silvanus Thompson

y = 𝑓 𝑥

Function is a mathematical expression that states a relation between physical entities 
that can change, e.g. length and height of a triangle, position of a car, weight of a 
body. In other words, a function defines the relation between variables:

y = 𝑥 9 tan(𝛼)

a

y = 𝑎@ − 𝑥@𝛼
𝑥

𝑦

Dependent 
variable Independent 

variable

Constant

x
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Calculus and dynamical systems theory
The derivative of a function simply provides the relation between a small change in 
one variable with regards to a small change in another. In other words, a derivative 
defines the relation between changes in variables:

y = 𝑓 𝑥 = 𝑥@ 𝑓H 𝑥 =
𝑑𝑦
𝑑𝑥

= 2𝑥

Function f(x) Derivative of f(x): f’(x)

𝑑y = 𝑥 + 𝑑𝑥 @ − 𝑥@

𝑑y = 𝑥@ + 2𝑥𝑑𝑥 + 𝑑𝑥@ − 𝑥@

𝑑y = 2𝑥𝑑𝑥 + 𝑑𝑥@

𝑑y = 𝑑𝑥 2𝑥 − 𝑑𝑥

Assume 
2𝑥 − 𝑑𝑥 ≈ 2𝑥

𝑦

𝑑𝑥
𝑑𝑦

The derivative is 
also known as 
the slope of the 
line segment that 
is tangent to f(x) 
at point x.

f(x)

The derivative is always an 
approximation! The smaller the 
step size, the more accurate



Derivative (i.e. differential equation) models

Orkun S Soyer - LF305 - Dynamics of 

We can ‘construct’ differential equations, using time as 
an independent variable, for a system of multiple 
variables that all depend on time.

The ‘construction’ of derivatives should take into account 
processes that affect the variables!

𝑑𝑥
𝑑𝑡

= 𝑘 − 𝑎 O 𝑥An example:

Change in 
variable x with 
respect to time

A process that 
increases x and 
that has a 
constant value 
with respect to x 
and time

A process that 
decreases x and that 
has a value dependent 
on the value of x at a 
given time

?? Can you guess how the 
function t vs. x would look like ??
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A caution about the derivative 
and the numerical integration

Orkun S Soyer - LF305 - Dynamics of 

An example and a 
visual help:

y = 𝑓 𝑥 = 𝑥" 𝑓# 𝑥 =
𝑑𝑦
𝑑𝑥 = 2𝑥

Function 
f(x)

Derivative of f(x): f’(x)

𝑑y = 𝑑𝑥 2𝑥 − 𝑑𝑥
Assume 
2𝑥 − 𝑑𝑥 ≈
2𝑥Remember this assumption? It can, 
and will always, cause inaccuracies 
in numerical integration.

Numerical integration of $%
$&
= 𝑟 O 𝑁. 

Using Euler or Midpoint method.

Plot of 𝑁& = 𝑁! O 𝑒'(&
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Chemical reactions and thermodynamics 

ν-A + ν.B ⇌ ν/C + ν0𝐷

The position of the reaction along axis 𝜉 is usually denoted as 
the mass action ratio Γ;

Γ =
𝐶 F( 𝐷 F)

𝐴 F* 𝐵 F+

𝜉

Internal 
energy

𝜉∗
Γ

Γ is a point in the 𝐴 × 𝐵 × 𝐶 × 𝐷 space 
instead of a point on the 𝜉 line

Γ

𝜉

Reaction 
advancement

Δ𝐺 = Δ𝐺! + 𝑅 O 𝑇 O 𝑙𝑛 Γ

Δ𝐺 = Δ𝐺! + 𝑅 O 𝑇 O 𝑙𝑛
𝐶 *! 𝐷 *"

𝐴 *# 𝐵 *$

Orkun S Soyer - LF305 - Dynamics of 
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A note about assumptions
Assumptions are usually made to achieve simpler models that are easier 
to understand.

Assumptions should rely on some actual physical or biochemical 
conditions. Hence, they have a direct relation to reality!

E + 𝑆
𝑘(
⇌
𝑘,(

𝐸𝑆
𝑘%
⇌
𝑘,%

𝐸 + 𝑃

Reaction dynamics faster than gene expression dynamics
Irreversibility of step 1 or 2: 𝑘2? = 0, 𝑘2@ = 0
Instantaneous equilibrium of step 1: 𝑘?, 𝑘2? ≫ 𝑘@
Quasi Steady State of 𝐸𝑆: 𝐸+ ≪ 𝑆+ + 𝐾e1

Segel. L. A. 1988. 10.1016/S0092-8240(88)80057-0

Orkun S Soyer, LF305 - Dynamics of 

𝑑[𝐸𝑆]
𝑑𝑡

= 0

𝑘+, 𝑘, ≫ 𝑘-.&

[𝐸] + 𝐸𝑆 = 𝐸!
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Reversible models and flux-force relation

𝐽 = 𝑣,-. 0
l𝑆 𝐾/

1 + l𝑆 𝐾/ +
l𝑃 𝐾0

0 (1 −
Γ

𝐾12
)

𝐸 + 𝑆
𝑘3
⇌
𝑘"
𝐸𝑆 𝐸𝑆

𝑘4
⇌
𝑘5
𝐸𝑃 𝐸𝑃

𝑘6
⇌
𝑘7
𝐸 + 𝑃ν5A + ν6B

𝑘"
⇌
𝑘,
ν3C + ν4𝐷

𝐽 = 𝑘+ 𝐴 *# 𝐵 *$ − 8%
9&'

𝐶 *! 𝐷 *"

𝐽 = 𝐽+(1 −
:
9&'
) = 𝐽+(1 − 𝑒

()
*+) 𝐽 = 𝐽+(1 −

:
9&'
) = 𝐽+(1 − 𝑒

()
*+)

𝐽+ = 𝑘+ 𝐴 *# 𝐵 *$
𝐽/ =

𝐸0 0 𝑘1-2/ 0 A𝑆 𝐾3
1 + A𝑆 𝐾3 + A𝑃 𝐾4;,

;%
= :

9&'
= 𝑒

()
*+

Flux-Force relation
D. A. Beard and H. Qian, PLoS One 2007 Vol. 2:1
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This is a paradox! Full
respiration of glucose can
generate about 20 ATP, while
fermentation can generate 4.
Why aren’t all yeast simply
Crabtree negative?

Adaptation to a fermentative metabolism needs to
happen in Crabtree negative yeast, but not in
Crabtree positive yeast (unless it is fully enforced).

On the converse, Crabtree positive yeast always
seems to use fermentative metabolism, even under
conditions where respiration should be perfectly fine.

Paradox of Crabtree effect?
Crabtree positive yeast Crabtree negative 

yeast
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