

Paris, July 8-11, 2024

Optimality in Biology

Wolfram Liebermeister & Markus Köbis

... what is this talk about?

from the previous talk(?) Is there an optimal density? Too few molecules Too many molecules Collisions rare Crowding – slow diffusion trade-off? (Growth) rate Concentration What makes up a cell

Proclaimer

Economic Principles in Cell Physiology

Goals of this talk

- Motivate (a bit more) what is about to follow, i.e. the economy-of-the-cell analogy
- Establish 'our' view on 'economic principles', and 'our' subset of 'cell physiology'
- Set the "mathematical background" (mostly: optimization) and cell modeling via the constraint-based framework, some intro to algorithms

Outline

Book chapter "OPT"

- 1. Optimality principles in biology
- 2. History of mathematical optimality problems and their applications
- 3. Mathematical optimality problems
- 4. Multi-objective problems
- 5. Examples of optimality problems in cells
- Constraints and trade-offs in models: relation to empirical knowledge, mechanisms, and optimality
- 7. Discussion: beyond optimality thinking

Outline of this lecture

- 1. Primer on Optimization
- 2. Connection to 'Economy' and 'Evolution'
- 3. 'Chapter 1': Primer on metabolic networks
- 4. Examples
- 5. Some historical notes (if

time permits)

6. Discussion

A Primer on Optimization

Optimization Problems (I)

Optimization problems (f. ex. 1-D)

Choose x such that some value f(x) becomes maximal/minimal.

- 'Choose 'the best' out of possible decisions.'
- 'Find 'the best' possible configuration.'
- 'Pick 'the best', according to your preferences and/or quantifiable criteria.'

 $\min_{x\in S} f(x) \text{ or } \max_{x\in S} f(x)$

Optimization Problems (II)

Optimization problems (f. ex. 2-D)

Choose \boldsymbol{x} such that some value $f(\boldsymbol{x})$ becomes maximal/minimal.

- 'Choose 'the best' out of possible decisions.'
- 'Find 'the best' possible configuration.'
- 'Pick 'the best', according to your preferences and/or quantifiable criteria.'

 $\min_{\boldsymbol{x} \in S} f(\boldsymbol{x}) \text{ or } \max_{\boldsymbol{x} \in S} f(\boldsymbol{x})$

Optimization Problems (III)

Optimization Problems (IV)

$$egin{aligned} \min \limits {oldsymbol{x}} f(oldsymbol{x}) \ {oldsymbol{x}} \in S \ {oldsymbol{x}} \in S \ \end{array} \ egin{aligned} \min \limits {oldsymbol{x}} f(oldsymbol{x}) \ {oldsymbol{x}} \in S \ \end{array} \ egin{aligned} \min \limits {oldsymbol{x}} f(oldsymbol{x}) \ {oldsymbol{x}} \in S \ \end{array} \ egin{aligned} \min \limits {oldsymbol{x}} f(oldsymbol{x}) \ {oldsymbol{x}} \in S \ \end{array} \ egin{aligned} \min \limits {oldsymbol{x}} f(oldsymbol{x}) \ {oldsymbol{x}} \in S \ \end{array} \ egin{aligned} \min \limits {oldsymbol{x}} f(oldsymbol{x}) \ {oldsymbol{x}} \in S \ \end{array} \ egin{aligned} \min \limits {oldsymbol{x}} f(oldsymbol{x}) \ {oldsymbol{x}} \in S \ \end{array} \ egin{aligned} \min \limits {oldsymbol{x}} f(oldsymbol{x}) \ {oldsymbol{x}} \ \end{array} \ egin{aligned} \min \limits {oldsymbol{x}} f(oldsymbol{x}) \ \end{array} \ egin{aligned} \min \ {oldsymbol{x}} f(oldsymbol{x}) \ \end{array} \ \begin{aligned} \min \ ella f(oldsymbol{x}) \ \end{array} \ egin{aligned} \min \ {oldsymbol{x}} f(oldsymbol{x}) \ \end{array} \ \ \begin{aligned} \min \ ella f(oldsymbol{x}) \ \end{array} \ \begin{aligned} \min \ ella f(ella$$

Constraining the Feasible Points

Constraint by means of

- (non-) linear inequalities $x_1 \ge 0$
- (non-) linear equalities $x_1 + x_2 = 0$
- set inclusions $x_2 \in \mathbb{Z}$

Optimization Algorithms: Some theory

Simplest Case: Gradient Descent for $\min_{\boldsymbol{x}} f(\boldsymbol{x})$

Iteration:

$$\pmb{x}^{n+1} := \pmb{x}^n - \nabla_{\pmb{x}} f(\pmb{x}^n)$$

Optimization Algorithms: Some theory (cont.)

Armijo condition

Sufficient descent (with $c_1 \in (0,1)$)

$$\underbrace{\underbrace{f(\boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{p}^{(k)})}_{\Phi_k(\alpha_k)}}_{\leq \underbrace{f(\boldsymbol{x}^{(k)}) + c_1 \cdot \alpha_k \cdot \nabla f(\boldsymbol{x}^{(k)})^\top \cdot \boldsymbol{p}^{(k)}}_{\Phi_k(0) + \alpha_k \cdot c_1 \cdot \Phi_k'(0) =: l(\alpha_k)}$$

Wolfe condition(s)

Avoid too small steps (with $c_2 \in (c_1,1) \textbf{)}$

$$\underbrace{\frac{\nabla f(\boldsymbol{x}^{(k)} + \boldsymbol{\alpha}_{k} \cdot \boldsymbol{p}^{(k)})^{\top} \cdot \boldsymbol{p}^{(k)}}{\Phi'_{k}(\boldsymbol{\alpha}_{k})}}_{\geq \underbrace{c_{2} \cdot \nabla f(\boldsymbol{x}^{(k)})^{\top} \cdot \boldsymbol{p}^{(k)}}_{c_{2} \cdot \Phi'_{k}(0)}}$$

Optimization Algorithms: Some theory (cont.)

 $\min_{\pmb{x} \in S} f(\pmb{x}) \text{ or } \max_{\pmb{x} \in S} f(\pmb{x})$

So-called 'genetic' (global optimization) algorithms

- 0. Pick a sample of initial guesses $m{x}^{0,0}$, $m{x}^{0,1}$, ...
- 1. Calculate function values
- 2. Sort out the worst cases, adapt/mix the best performers, goto 1.

Optimization Algorithms: 'Practice'

fminsearch.m linprog.m fmincon.m scipy.optimize cvxopt.py APMonitor CPLEX GUROBI IPOPT NLopt

So what is a "good algorithm"?

Properties of 'good' algorithms (Why isn't there a best one?)

- Accuracy
- Efficiency (also: Scalability)
 - Speed
 - Total execution time (avoid NP if possible, parallel vs. sequential)
 - Number of computer operations
 - \bullet Core function/ Linear algebra/GPU-routine-calls
 - \bullet Floating point operations (plus, times, roots, exp./trig, ...), bit operations
 - Number of $f/\nabla f/\nabla^2 f$ calls
 - Memory
- Robustness
 - Reliably find all solutions for a variety of problems
 - Feedback if algorithm unsuccessful, reproducibility
- User-friendliness, ability to include expert knowledge, interactivity
- Easily extendable and maintainable
- Cheap, trusted, supported, …

Connection to 'Economy' and 'Evolution'

Our understanding of 'economy'

Our understanding of 'economy'

Evolution

Quintessentially

Even if "Cells don't optimize", they have been optimized by evolution.

"Optimization is the last religion in science."

Primer on Metabolic Network Modeling

(Hopefully) no spoilers for the next talk :-)

Metabolic Network Models

Input-Output

B 1 out
2 out
2 in
3 in

$$\begin{pmatrix} -1\\ -2\\ 2\\ 3\\ \end{pmatrix} = \mathbf{S}$$

(Time-) Dynamical System

Description as an ODE/IVP

$$\dot{oldsymbol{y}} = \mathbf{S} \cdot oldsymbol{v}$$

 $oldsymbol{y}(0) = oldsymbol{y}_0$

plus rate laws, enzymes, genes, regulation, etc.

Metabolic Network Models

The "well-stirred" metabolism

Simple rate laws

- Mass action: $f_i(t) \propto y_A^3(t) \cdot y_B(t) \xrightarrow{3 \text{ A}}_{\text{B}} c$
- \blacktriangleright Michaelis-Menten: $f_i(t) \propto \frac{y_A(t)}{y_A(t) + K_M}$ a \blacktriangleright
- $\blacktriangleright \text{ Hill-function (act.): } f_i = \tilde{f}_i \cdot \frac{y^\alpha_E}{K^\alpha + y^\alpha_E} \stackrel{\mathrm{E}}{\dashrightarrow} \underbrace{\xrightarrow{}} \bullet \underbrace{\xrightarrow{}} \bullet$

► Hill-function (inh.):
$$f_i = \tilde{f}_i \cdot \frac{K^{\alpha}}{K^{\alpha} + y_E^{\alpha}} \stackrel{\text{E}}{\longrightarrow}$$

(Quasi) Steady State Approximation

- Some reactions orders of magnitude faster than others
- Model assumption: Always at equilibrium.

Constraint-based Modeling

Examples

Later today: Flux Balance Analysis

Flux Balance Analysis

- Collect what you know (stoichiometrics, QSSA, plus lower/upper flux bounds) ~-> constraint-based modeling
- Find flux distribution from *linear optimization*

$$\begin{split} \max_{\boldsymbol{v}} f(\boldsymbol{v}) &= \boldsymbol{b}^\top \cdot \boldsymbol{v} \\ \text{s.t. } 0 &= \mathbf{S} \cdot \boldsymbol{v} \\ \boldsymbol{l} \boldsymbol{b} &\leq \boldsymbol{v} \leq \boldsymbol{u} \boldsymbol{b} \end{split}$$

"E" maximization

Optimal enzyme levels

A linear reaction chain

$$\underbrace{N}_{v_1} \underbrace{E_1, k_1}_{v_1} \underbrace{S_1}_{v_2} \underbrace{E_2, k_2}_{v_2} \underbrace{S_2}_{v_3} \underbrace{E_3, k_3}_{W_3} \underbrace{Bio}_{Klipp \ et \ al. \ 2002}$$

Network's constraints: $\mathbf{S} \cdot \boldsymbol{v} = 0$, $0 \leq \boldsymbol{v}$

$$\boldsymbol{v} \leq \operatorname{diag}(k_1, k_2, k_3) \cdot \begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix}$$

• Goal: Maximize growth reaction
$$v_3$$

• 'Costs': Enzyme activation $E_1^2 + E_2^2 + E_3^2$

Optimal enzyme levels

Optimal enzyme levels

Potential Objective Functions

Given: stoichiometrics, flux bounds, some "dynamic data", ...

Biologically inspired optimization principles

1. Cell efficiency: "Minimize fluxes" ("Tikhonov regularization")

 $J := \int \| \boldsymbol{v}(\cdot) \|_*^2 \mathrm{d}t$ plus minimum growth conditions

 $\mbox{2. Growth (a): Maximize biomass/macro molecule production of the cells } \label{eq:growth}$

 $J := - \int \| \boldsymbol{w}_{\text{obj}}(t)^\top \cdot \boldsymbol{y}(t) \|_*^2 \mathrm{d}t$

3. Growth (b): Maximize flux through biomass reaction(s)

$$J := - \int \lVert \boldsymbol{V_{y_{\text{growth}}}}(t) \rVert_*^2 \mathrm{d} t$$

4. Robustness (a, b): Maximize survival time, minimize response times

 $J = -t_{end} = -\int 1 dt$ and cell survival

5. Robustness (c): Maximize nutrient uptake

$$J = -\int \|\boldsymbol{w}_{\rm obj}(t)^\top \cdot \boldsymbol{v}(t)\|_*^2 \mathrm{d}t$$

Historical Notes

Historical Notes (I)

Optimization Methods in the Natural Sciences

Historical Notes (II)

Optimization Methods in Economy

- > 1881: Edgeworth, Mathematical Psychics
- > 1939: Production Planning using linear optimization (Kantorovich)
- 1939–1945: World War II (Operations Planning)
- > 1944: von Neumann, Morgenstern, *Theory of games and economic behavior*
- 1947: Simplex Algorithm (Dantzig)
- 1954: Markowitz (quadratic programming, portfolio analysis, later: risk measures)
- ▶ 1973: Maynard, Price *The logic of animal conflict*

CC Wikipedia

Historical Notes (III)

Optimization Methods in (Systems) Biology

(Modern) systems biology fully established: 2000-2010

Concluding Remarks/Discussion

Where do we go from here?

Not covered in this talk

- parameter fitting
- artificial intelligence
- touched upon: multi-objective optimization, optimal control
- ▶ handling of uncertainty, robustness (~→ talk tomorrow), regularization
- (mixed-) integer optimization problems (e.g. optimal network design)
- stochastic optimization
- game theory, inverse optimality
- FBA \rightsquigarrow RBA \rightsquigarrow ...
- algorithms, their "optimization"
- mathematics: Duality, optimality conditions, cones, constraint qualification, ...

Conclusion (I)

Central issue: Lack of first principles in (systems) biology

Optimization in Constraint-based Modeling

- Optimization itself not necessarily driving force but often as a proxy based on
 - the viewpoint of cells as 'economic actors'
 - "cells do not optimize", BUT "cells have been optimized by evolution"
- Sometimes, things *look* optimal." (The end justifies the means.)

Conclusion (II)

'Essentially, all models are wrong, but some are useful.' George Box, Norman Draper, Empirical Model-Building and Response Surfaces (1987) CC Wikipedia

Thank You!

Image sources

Screenshot "Is there an optimal density?": Talk about Cell components from 2023 summer school (Pranas & Diana) matlah logo. https://se.mathworks.com/content/mathworks/se/en/company/newsletters/articles/the-mathworks-logo-is-an-eigenfunction-of-the-waveequation / icr content/mainParsys/image 2.adapt.full.medium.gif/1469941373397.gif Fortran logo: https://github.com/fortran-lang/fortran-lang.org/blob/master/assets/img/fortran-logo.svg tanker: https://openclipart.org/detail/318334/tanker-silhouette offshore rig: https://openclipart.org/detail/323036/an-offshore-oil-rig oil pump: https://openclipart.org/detail/310626/simple-oil-pump oil refinery: https://openclipart.org/detail/279473/oil-refinery-silhouette rape flower: https://openclipart.org/detail/238177/rapeseed-low-resolution lipstick: https://openclipart.org/detail/311193/full-lipstick money: https://openclipart.org/detail/222589/money truck: https://openclipart.org/detail/182107/oil-and-gas-tanker-truck Coffee machine: https://openclipart.org/detail/17995/coffee-machine Oil barrel: https://openclipart.org/detail/18090/oil-barrel-baril-de-petrole Screws: https://openclipart.org/detail/4816/screw Screw driver: https://openclipart.org/detail/6166/screwdriver Protein structure: https://commons.wikimedia.org/wiki/File:Spombe Pop2p protein structure rainbow.png Giraffe: https://openclipart.org/detail/6958/giraffe Beer glass: https://openclipart.org/detail/17276/fatty-matty-brewing-beer-mug-icon Oxygen tank: https://openclipart.org/detail/188627/oxygen-tank Fire-extinguisher: https://openclipart.org/detail/281430/fire-extinguisher-carbon-dioxide Water bottle: https://openclipart.org/detail/181115/water-bottle Mixer: https://findicons.com/icon/568663/mixer Edgeworth: https://en.wikipedia.org/wiki/Francis Ysidro Edgeworth#/media/File:Edgeworth.ipeg Kantorovich: https://en.wikipedia.org/wiki/Leonid Kantorovich#/media/File:Leonid Kantorovich 1975.jpg von Neumann: https://en.wikipedia.org/wiki/John_von_Neumann#/media/File:JohnvonNeumann-LosAlamos.gif Dantzig: https://en.wikipedia.org/wiki/George Dantzig#/media/File:George B. Dantzig at National Medal of Science Awards Ceremony, 1976.jpg Maynard Smith: https://en.wikipedia.org/wiki/John Maynard Smith#/media/File: John Maynard Smith.ipg George Box: https://en.wikipedia.org/wiki/George E. P. Box#/media/File:GeorgeEPBox.jpg