Economic Principles in Cell Biology

Paris, 8-11th July 2024

An inventory of cell components

Diana Széliová & Pranas Grigaitis

Cells as chemicals 99% of cell mass

1% of cell mass: Na, K, Fe, Mo, Cl, Ca...

Yeast: CH_{1.61}O_{0.56}N_{0.16}

Cells as bags of things

Prokaryotic

- bacteria, archaea
- do not have organelles

Eukaryotic

- yeasts, plant, animal cells
- have organelles

Cells as a collection of biological molecules

Biological molecules

NH₂

Small molecules

- < 1000 Da
- mono-/dimers
- metabolites, cofactors...
- various functions

Macromolecules

- polymers
- proteins, nucleic acids, polysaccharides, (lipids?)

Nucleic acids – polymers of nucleotides

Nucleic acids – functions

DNA

- stores genetic information
- all info to make a new cell

RNA

- transcribed from DNA (e.g. ATCG to UAGC)
- **rRNA** synthesizes proteins (ribosome)
- **mRNA** template for protein synthesis
- tRNA brings AAs to the synthesis site

Important nucleotide – ATP

- energy currency
 - powers processes in a cell NH_2 Ν HO ÓН ÓН OH high-energy bonds hydrolysis – releases energy OH OH

Proteins – polymers of amino acids

- 20 proteinogenic amino acids (AAs)
- 100 AA protein == 20¹⁰⁰ combinations
- 325 AAs on average in *E. coli*

AA chains form 3D structures

multimers & complexes with other macromolecules

David Goodsell, http://doi.org/10.2210/rcsb_pdb/mom_2000_10 licenced under CC-BY-4.0.

Protein functions

Structural proteins

Enzymes

Carbohydrates

Monomers/dimers (e.g. glucose)

• carbon & energy source

Oligomers

• sensing/reception

Polymers

- storage glycogen, starch
- structure mannan, part of cell wall

Lipids – diverse hydrophobic compounds

Membranes around cells organelles

Bilayer membranes

Golgi, ER – protein synthesis & processing

Biological machines – huge complexes of macromolecules

Ribosome

- complex of rRNA + proteins
- makes proteins

DNA, RNA polymerases

- protein complexes
- synthesis of DNA and RNA

Amounts of cell components

Dry mass composition – similar across cell types

70% water, 30% dry mass

Absolute vs. relative amounts

How many proteins are there in *E. coli* cell?

Raise your hand if you think > 10^6

- *E. coli*: $1 \ \mu m^3 \rightarrow 4 \times 10^6$
- S. cerevisiae: 60 μ m³ \rightarrow 2×10⁸
- Mammalian cell: 3000 μ m³ \rightarrow 1×10¹⁰

Milo, R., & Phillips, R. (2015). *Cell biology by the numbers*. Garland Science.

Biomass composition is variable

Nutrient growth law (Schaechter 1958)

- Cell size, absolute DNA, RNA, protein content increase with growth rate
- Bacterial/yeast/mammalian cells
- When growth rate changed by carbon source

Relative composition changes with increasing growth rate

RNA:protein ratio – measure of proteosynthetic capacity

Ribosome – $\frac{2}{3}$ rRNA, $\frac{1}{3}$ protein

Growth rate

Other factors that can change composition

- O_2 concentration
- Medium composition
- Mutations
- Temperature

no 'laws' for these factors

Composition is not uniform throughout a cell

same average concentration

different 'local' concentration

consequence – different enzyme rates, direction

Populations are not uniform

- processes in a cell stochastic
- important at low copy numbers

bet-hedging

Cell size and density

Cell size – huge variability

Cell size in multiple dimensions

Name	Unit	E. coli	S. cerevisiae
Cell size	μm	1-2	5
Cell surface area	μm^2	6	70
Cell volume	μm^3	1	60

Shape matters

(A) Hol	d volume cor	istant	
Aspect ratio	1:1	4:1	16:1
Volume	0.5 μm ³	0.5 μm ³	0.5 μm ³
SA / V	6.1 μm ⁻¹	7.8 μm ⁻¹	16.3 μm ⁻¹

Figure from "Harris, Leigh K., and Julie A. Theriot. "Surface area to volume ratio: a natural variable for bacterial morphogenesis." *Trends in microbiology* 26.10 (2018): 815-832.", licenced under CC BY 4.0

Exercise – buoyant density estimation

What is the buoyant density of a typical bacteria?

	density of component (g/mL)	mass fraction per cell	
water	1	0.7	
proteins	1.3	0.18	
nucleic acids	1.7	0.08	
lipids	1	0.03	
carbohydrates	1.5	0.01	

https://bionumbers.hms.harvard.edu/search.aspx

Buoyant cell density – rule of thumb

1.1 g/mL

Cell density – variable, but the range is small

- 1.05-1.15 g/mL
- some species variability with growth rate, cell cycle
- increases with osmolarity
- exceptions fat cells, gassy cells lower density

Is there an optimal density?

Physical ("hard") constraints – cannot be bypassed

Temperature, pH, osmolarity

Diffusion limit

- enzyme + substrate have to collide
- no known enzymes above the diffusion limit

Macromolecular crowding

- concentration of macromolecules
- limits cellular processes, e.g. translation

Is there an optimal density?

Macromolecule synthesis & resources needed

What does a cell need to grow?

Limited space

Precursor synthesis – **bow-tie structure** of metabolism

- Growth in various environments
- Many microbes grow on a minimal medium (single source of C, N, S, P)
- Synthesis of precursors competes for the same molecules

Metabolic enzymes – convert nutrients to precursors

main characteristics:

- k_{cat} turnover number
- K_{M} measure of affinity
- $k_{cat}^{\prime}/K_{M}^{\prime}$ kinetic efficiency

Values from BRENDA database

Different enzymes are needed in different environments

Pathway	Enzyme	Proteome mas Met dropout	ss fraction (%) Complete	Turnover value k_{cat} (s ⁻¹)
Glycolysis	Enolase (Eno)	0.53	0.53	192.95
Amino acid biosynthesis	Methionine synthase (MetE)	7.45	0.009	0.12

Enzymes in living cells

- k_{cat} highest possible efficacy when enzyme is **saturated**
- in cells we observe apparent turnover rate k_{app}

Macromolecule polymerisation

- catalyzed by DNA/RNA polymerases & ribosomes
- their synthesis significant cost (precursors & energy)
 - average protein in *E. coli* ~ 33 kDa
 - RNA polymerase ~ 400 kDa
 - ribosome ~ 2300 kDa

Processes have to be coordinated

Processes have to be coordinated

- synthesis of many subunits
- e.g. ribosome: 3-4 rRNA molecules and > 50 proteins
- ribosomal proteins short, similar length

Ribosomes are optimized for autocatalytic production

Shlomi Reuveni, Måns Ehrenberg & Johan Paulsson 🖂

Nature 547, 293–297 (2017) Cite this article

autocatalytic production optimized?

On the Origin of Compositional Features of Ribosomes 👌

Genome Biology and Evolution, Volume 10, Issue 8, August 2018, Pages 2010– 2016, https://doi.org/10.1093/gbe/evy169 Published: 30 July 2018 Article history ▼

cellular energy economics optimized?

Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources

Gene-Wei Li,^{1,2,3,*} David Burkhardt,^{2,4} Carol Gross,^{2,4,5} and Jonathan S. Weissman^{1,2,3,*}

Physical proteome space is limited

- cells have a finite volume
- most of dry mass protein (around 50%)
- optimal allocation is necessary to achieve high growth rate

Biomass composition in mathematical models

- models often focus on proteome
- different levels of detail

total protein \succ protein subgroups \succ individual proteins

• **fixed** vs. **variable** biomass composition

Acknowledgements

Elad Noor

Ohad Golan

Samira van den Bogaard

Wolfram Liebermeister

Milo, R., & Phillips, R. (2015). *Cell biology by the numbers*. Garland Science.

Credits for icons from bioicons.com

bacterium-interior icon by Servier is licensed under CC-BY 3.0 Unported golgi-3d-1 icon by Servier is licensed under CC-BY 3.0 Unported mitochondrium-3 icon by Servier is licensed under CC-BY 3.0 Unported endoplasmatic-reticulum-3d-medium icon by Servier is licensed under CC-BY 3.0 Unported endoplasmatic-reticulum-rough-3d-2 icon by Servier is licensed under CC-BY 3.0 Unported endoplasmatic-reticulum-rough-3d icon by Servier is licensed under CC-BY 3.0 Unported nucleus icon by Servier is licensed under CC-BY 3.0 Unported translation icon by <u>Servier</u> is licensed under <u>CC-BY 3.0 Unported</u> transkription icon by Servier is licensed under CC-BY 3.0 Unported dna-nucleotides icon by Servier is licensed under CC-BY 3.0 Unported rna icon by Servier is licensed under CC-BY 3.0 Unported gmp icon by Simon Dürr is licensed under CCO emptycell-membrane-halfcircle icon by Servier is licensed under CC-BY 3.0 Unported golgi-2d-1 icon by Servier is licensed under CC-BY 3.0 Unported protein-backbone-schematic by Simon Dürr is licensed under CCO sars-cov-2-spike-closed by Simon Dürr is licensed under CCO alpha-helix by DBCLS is licensed under CC-BY 4.0 Unported actine-filament by Servier is licensed under CC-BY 3.0 Unported ionchannel-membrane by Servier is licensed under CC-BY 3.0 Unported receptor-membrane-ligand by Servier is licensed under CC-BY 3.0 Unported

Thank you for your attention! :)

Please fill out the evaluation form

