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Organ morphogenesis

Economy of organ shapes and function 3/32



Constraints

Organ development in pluricellulars is submitted to constraints:

Function Energy and nutrients Shape

Connection of constraints:

function ↔ minimization of the cost in energy ↔ appropriate organ structure
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Adequate organ?

The perfect organ does not exist. But the optimal can be reached.

Mathematical framework
▶ Cost function E dependent on one or several variables x ∈ Rn

▶ One or several equality constraints: c(x) = 0, where c : Rn → Rm

▶ Find an optimal value x∗ that minimizes the function E(x) while c(x∗) = 0
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The example of the lung

Problematics
▶ Role: connects O2 and CO2 in atmosphere with inner body → metabolism

▶ Medium: gas transfer by diffusion through alveolar membrane

▶ Major constraints:
▶ Diffusion: a surface process
▶ Limited thoracic volume

Solution

Optimize (maximize) the surface/volume ratio!
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Lung morphometry – Increased surface/volume ratio
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Lung morphometry – A fractal space-filling structure
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Lung morphogenesis – Approaches

Programmed Self-organized
Planar bifurcation

Orthogonal bifurcation

Bifurcator Rotator

Inspired by Metzger et al., 2008
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Lung morphogenesis – Self-organized budding

Rendered image based on simulations from Clément et al., 2014
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The lung as a model organ for
optimization under constraints
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Lung morphology

Bronchial tree
▶ Cascade of bifurcating airways with cylindrical

shapes

▶ Around 17 generations

▶ Size of the airways decreases at each
bifurcation

Acini

▶ Exchange surface with blood (70− 100m2 )

▶ Alveoli: bubble-like structure

▶ Aroud 6 generations

Figure: Cast of the human’s lung
made by E.R. Weibel
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Modelling the human lung

Assumptions

▶ Symmetric dichotomic bifurcating tree.

▶ Branches are assumed to be cylindrical.

▶ Size of the bronchi of generation i:

li+1 = lih ⇒ li = l0h
i,

ri+1 = rih ⇒ ri = r0h
i,

▶ Homothetic ratio between generations.

h =

{
2−1/3 in the bronchial tree,

1 in the acinus.

Figure: Illustration of the lung model
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Diffusion process

Diffusion
▶ Passive process

▶ Balance the partial pressures between blood ans the alveolar air

Limitations
▶ Pathways from the ambient air to the respiratory zone are too long (Lp ≈ 30 cm)

▶ Characteristic time to travel by diffusion:

tp =
Lp

D
≈ 4500 s = 1 hour and 15 minutes !
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Convection process

Ventilation
▶ Dynamic process

▶ Air of the lung renewed

▶ Performed thanks to a set of muscles (ex. diaphragm)

▶ Two phases: inspiration and expiration
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Modelling oxygen transport

Convection-diffusion-reaction equation in each airway

∂P

∂t
−D

∂2P

∂x2
+ u(t)

∂P

∂x
= β (Pblood − P )

Link all generations by assuming:

▶ Continuity between generations

▶ Conservation of the quantity of oxygen
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Numerical simulations

Inputs

▶ Tidal volume

▶ Breathing frequency

Outputs

▶ O2 flow to blood

▶ CO2 flow to blood

V̇O2 = 230 mL

V̇CO2 = 180 mL
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Power spent during ventilation

Action of the muscles on the lung:

▶ Deforms the tissues

▶ Displaces the air along the bronchial tree

Pm︸︷︷︸
muscle power

≃ Pe︸︷︷︸
elastic power

+ Pa︸︷︷︸
air viscous dissipation
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Power spent during ventilation

Viscous dissipation of air

▶ Characterized by the lung hydrodynamic resistance
▶ Connects the airflow F to the air pressure p: p = FR

▶ Power dissipated

Pa = RF2 =
1

4
R(πfbVT )

2

Elastic power

▶ Characterized by the compliance of the lung
▶ Relates the force per unit of surface applied by the muscles to the volume change of

the lung

▶ Elastic power

Pe =
V 2
T fb
2C
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Optimal ventilation for humans

min
VT ,fb

Pe(VT , fb) + Pa(VT , fb) s.t. V̇O2(VT , fb) = V̇ obs
O2
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Allometric scaling laws
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Concept of allometry

Raw ecological data

Distribution of total sleep duration (h) in mammals, based on data from Savage & West, 2007.

The data are best fitted by the curve indicated in light gray.
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Concept of allometry

Raw ecological data Log-Log plot

Y=Y0 Mα
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History of allometry
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Mechanistic approach – WBE hypotheses

1. Transport of nutrients i.e., oxygen in a fractal-like branching tree

2. Metabolic rate ∝ flow of nutrient-carrier i.e., blood; independent of body size

3. Fluid carrier incompressible

4. Total volume of the fluid proportional to body size

5. Size of the terminal units i.e., capillaries invariant or mass independent

Semi-fractal branching tree

Stereotyped terminal units
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Mechanistic approach – WBE results

WBE – Model & Results

▶ General metabolic allometry follows a ∝ M
3
4 relation

▶ Data-based allometric relations are retrieved from the model

Cardiovascular Respiratory
Variable Exponent Variable Exponent

Observed Predicted Observed Predicted
Aorta radius 0.36 3/8 = 0.375 Trachea radius 0.39 3/8 = 0.375
Blood volume 1.00 1.00 Lung volume 1.05 1.00
Circulation time 0.25 1/4 = 0.25 Respiratory frequency -0.26 -1/4 = -0.25
Metabolic rate 0.75 3/4 = 0.75 Air velocity in trachea 0.02 0
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Allometric laws in the respiratory system
▶ Mammals share morphological and functional properties dependent on the mass of

the animal with allometric scaling laws

▶ Morphological differences amongst mammals affect the control of ventilation
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Adaptation of the oxygen transport model

Shared characteristics
▶ Tree-like structure with bifurcating branches

▶ Decomposition into two parts: bronchial tree and acini

Adaptation of morphological parameters

▶ Tracheal radius and length

▶ Radius and length of alveolar ducts

▶ Exchange surface

Oxygen transport

▶ Convection-diffusion-reaction equation

▶ Exchange β coefficient dependent on the mass of the mammal
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Optimal ventilation for mammals

min
VT ,fb

Pe(VT , fb) + Pa(VT , fb) s.t. V̇O2(VT , fb) = V̇ obs
O2

(a) Frequency (b) Tidal Volume
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Allometric laws for ventilation

Allometric law:
Y = Y0M

α

fb (pred) fb (obs) VT (pred) VT (obs)

BMR -0.29 -0.26 1.05 1.04
FMR -0.32 N.D 0.98 N.D.
MMR -0.15 -0.14 1.04 N.D.

Table: Predicted and observed exponents α for the allometric scaling laws of breathing
frequency fb and tidal volume VT at three different metabolic regimes.
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Conclusion
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Conclusion

▶ Principles of economy applied on larger living structures

▶ Constraints guide the development and the functionning of mammalian lung

▶ Allometric laws allow a deep understanding of the mechanisms of differential
growth
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