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Bacterial persistence: experiments
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Bacterial persistence: elementary model

No antibiotic Antibiotic No antibiotic + 2 states R: growing (R=1) / dormant (R=0)
* 2 environments E: antibiotics (E=+) / no antibiotics (E=-
OTOTXO == ==
O+ 30 - E=. | E=+
A — DD D+ )_EC:) « multiplication factor in
m__.(X) one generation f(R,E) R=0 1 1
COLleay .o )—E(:) - -
@ R=1 2

probability for antibiotics (E=+) : p
probability to be dormant (R=0): u

(drawn at each generation)

Question: given f(R,E) and p, optimal transition rate u ?

Meta question: optimal in what sense?
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Bacterial persistence: elementary model

Two limits: (1) Large population
(2) Long time

(1) Given Nt cells at generation t, fraction u of cells with R=0 (dormant), 1-u with R=1 (growing)

If no antibiotics (E=+): ~ Nit1 = A+ Ny Ay —ut20—w)=2—u
If antibiotics (E=-): Ny = A_N,

A_=u
(2) Over T generations, fraction p of generations with E=- (antibiotics), fraction 1-p with E=+ (no antibiotics)

Nr = (A-)PT (A1) 7PTN,

AT vo=
NT:€ No ]., if1/2<p <1

A=phA_+(1-p)lnAy o2, if0<p <1/2
=plnu+ (1 —p)In(2 — u)

Conclusion: optimal transition rate u adapted to the uncertainty p of the environment
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General model with sensing

n states R

M environments E, probability p(E)

multiplication factor f(R,E)

switching probability u(R|S) where S is a cue (previously just u(R), recovered if S is independent of E)

probability q(S|E) for S given E
Muliplicative factor given E,S: Nyt = A(E, S)N, A(E,S) = Z f(R, E)u(R|S)

R

Growth rate: A=Y q(S|E)p(E)In A(S, E)
S.E

Geometric mean A = (In A(S,E))s g not arithmetic mean A =In(A(S, E))s,e

o
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Arithmetic vs geometric means

“%3 ) o ( Cidw 375
SPECLMEN
Growth is not an additive but a multiplicative process! THEORIAFj NOVAE

Didactic example: NIENSVRA SORTIS.

AVCTORE

A=2 with p=1/2 or A=1/3 with p=1/2 Daniele Bernoulli.

D Bernoulli, Exposition of a new theory

arithmetic mean = (1/2)(2+1/3) > 1 _
on the measurement of risk (1738)

geometric mean = (2*1/3)(1/2) < 1
Back to the simple model of bacterial persistence:

optimal geometric mean: u =

optimal arithmetic mean: u = 0 — very risky strategy that leads to extinction if E=- even occur!

o
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Value and cost of information

A=) a(SIE)p(E)nA(S, E) A(E,S) =) f(R.E)u(R|S)
R

Without sensing and with f(R,E)=f(E)delta (R,E) (Kelly case, see 2nd part)
A=Y "p(E)In(f(E)u(E)) = p(E)In f(E) + Zp )Inp(E) =Y p(E) In(p(E)/u(E))
E E E

Value of sensing, again with f(R,E)=f(E)delta (R,E)
With no sensing, i.e. S independent of E, optimal growth rate
With sensing, i.e. given q(S|E), optimal growth rate
Value of sensing: - A*(q) — A*(0) = ) a(S|E)p(E) lnq(S|E)

S,E
Biologically, also a cost c(q) that increases with precision => a trade-off and optimal sensor

o
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Analogies with financial investment

Biology Finance
Individual Currency unit
Environment p(E) Market state
— Investor

Phenotype decisions u(R) | Investment strategy
Multiplicative rate f(R, E) | Immediate return
Environmental cue P(S|E) | Side information

Major difference: information is centralized in finance, distributed in biology

Implication: one sensor per cell, heterogeneity that is beneficial
A= a(SIE)p(E)InA(S, E) < A= p(E)InA(S, E)q(S|E)
S,E S,E

Warning: what is optimal for a population may not be evolutionary stable!

Conflict between levels of selection!

o
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Optimal strategies in correlated environments

Heredity: passing information between generations
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Summary and perspectives

Short/intermediate times and finite population: see David
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Outline of the talk

1. Tradeoff in optimal gambling strategies

with L. Dinis, Universitad Complutense, Madrid,

J. Unterberger, Université de Lorraine
2. Adaptive strategies in gambling

with A. Despons, Laboratoire Gulliver

L. Peliti, Université de Naples

3. Tradeoff for phenotypic switching of populations

in varying environments

with L. Dinis, Universitad Complutense, Madrid,

J. Unterberger, Université de Lorraine
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Kelly’s formula in popular culture

TIMES BESTSELLER

BEAT THE | Fortune’'s
DEALER ° Formula

THE UNTOLD STORY
oF THE SN TIFIC BT

NG SYSTEM THAT BEAT
THE CASINOS axy WALL STREET

William Poundstone

WIDESCREEN

From card counting method in blackjack. .. .. to investments on the stock market

A new interpretation of information rate, Kelly J. L. J. (1956)
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Kelly’s model as a resource allocation problem

Gambler Bookmaker
p(red) r p(green) !
Bets ,ar odds OddS
M 1 M
Constraints : Z by =1 and 7, := — with Z’Fx =1 for fair odds
0
=1 Z rx=1

Dynamics :  winning horse x is chosen with probability Pz

by
Then capital is updated : Ci11 = r—Ct

x
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Long term growth rate

b

Zr
rxT

)

by the law of large numbers : log-cap(?) > E |log b_x
t t—00 Iy

t
Log-Capital log-cap(t) = Z log (
=1

Optimization of the long term growth rate (Kelly’s optimal strategy)

x

7) = |log (22)] = Dics. vll) = Dice. (o)

This is maximum when b, = p, and at this point (W*) = Dk (p||lr) >0

winning probabilities than the bookie

The gambler makes money when he/she has better knowledge of the
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07 0
6 5'0 160 1_;>0 2(')0 0 1'0 2'0 ?0 4'0 50
Race number Race number

+ Kelly’s strategy dominates on long times all non-optimal strategies

* Ageneral trade-off between the maximization of the growth rate and the minimization of risky fluctuations ?

L. Dinis, J. Unterberger, D. L., Eur. Phys. Lett. (2020)
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How to define risk ?

By the central limit theorem :

1 Cy
—— (log — — t{W) | —— N(0,1) normal law
ow V' ( e < >) 0.0

t—o00

b
where o3, = Var llog <—)] is the volatility

Iy

The volatility is not the best measure of risk but it leads to tractable calculations

In practice, risk is relevant at intermediate time scales ¢ < (o /(W))?

Risk free strategy

Note that the strategy b, =7, has ow =0 and (W) =0
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Objective function :
J=aW)-(1-a)ow +A> b

* Interpolates between maximization of growth rate for a=1 and the
minimization of the fluctuations when a=0

+ The optimal solution is parametrized by «, which is a risk aversion parameter.

* Similarities with Markowitz portfolio theory

Return 2,00%
< 1,50% o LUV
= [
5 1.00% IBM
® 0,50% —o—ptf 1
0,00%
0 0,002 0,004 0,006 0,008 0,01
flsk Variance
Markowitz H. (1952) From Wharton school of finance
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Two horses solution

« If pis the probability that the first horse wins, o=1/r the odd then :

(W) =pIn(?) + (1 p) ()
9 5o b(l—r b(1—7r)\?
oy =p(l —p)ln é —b)7)“ = (aln (i — b)7)“> with o=+/p(1—p)

+ Risk free strategyis b =1r where (W) =0y =0

* Optimal strategy has two branches :

with 7= (1-a)/a
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The efficient border for two horses problem

W) .. < Kelly’s strategy ow

Trade-off branch —1+—>
Non trade-off branch

—
(W)
Null strategy > T ] TN\ oW For p<r:
. dO‘W g . e s s
Inthe (W) > ( region, = becomes infinite near Kelly’s strategy
~ d(W) p—>
but non-zero near the null strategy where :
dow 1 o d*ow  r(l—r)
— = and — >0
dW) v [p—r| dW)2 — 5243
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0.0+

Beyond 2 horses : numerical optimization

0051 152253

—3.5 —3.0 —=2.5 —2.0 —1.5 —1.0 —0.5 0.0
(W)

Modified utility functions :

+ Lower front, (W) >0 region, the front is convex

objective functionis J1 = (W) — (1 — a)ow

+ Lower front, (W) <0 region, the front is concave

objective functionis Jo = —((W) — Wy)? — kow

In practice, the numerical optimization of the objective function can be carried out

using algorithms based on simulated annealing or on Karush-Kuhn-Tlcker (KKT) conditions.
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Mean-variance trade-offs

» For fair odds, assuming (W> > 0 with q the pdf such that Qqz := Tx/pm

(W)

Oq

ow > L. Dinis et al., EPL (2020)

« For non-fair odds with  (q) = Z r, #1 and V = —log Z T
xr

X

V= W)

o (q)

ow >

General trade-off between growth rate and risk

Similar to a tradeoff between precision and dissipation ~ A. Barato et al., (2015)
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Numerical illustration

Fair odds

A70,4 -0.3 =02 -0.1 0.0 0.1 02 03 04

()
0.35
0.30 4 0.06
0.25 0.05 A
0.20 4 0.04
=
S0 0 0.03
0.10 0.021
00 0.01 1
0.00 4
0.00 A
0.1425 0.1'450 0.1:l75 0,1:’)00 0.1’525 0.1’550 0.1'575 0.1'600 0.1’625
(W)
Diagonal super-fair odds Non-diagonal super-fair odds
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Game theoretic formulation

» Worst possible case for the gambler corresponds to minimization of

U(p) = (W(p, b)) =AY ps

— * rm
pa: - p:z: - Zw rm
* The general growth rate is
(W(p,b)) = Dxr(p|lp*) — Drxr(p|lb) +V R. Pugatch et al., (2014)

DKL(P| |P*) pessimistic surprise : things are not as bad as one would think
—Dgr(pl|b) gambler’s regret : gambler plays sub-optimally

v value of the game : V<0 for unfair odds, V>0 for super-fair odds
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Non-diagonal odds

+ Now, the growth rate is : (W(p,b) me In (Z Ogyb )

*  When the odds matrix is invertible 1 — O_1 and simplex preserving (fully mixing game)

. % . rwy 10 |

Optimal bets : b, = g Quypy with gy = 06

Zl iy 08 1 05
04
. . * Zl Tig 06 %
Optimal environment : P, = < = 03 ¢
ny Y 041 02 3

021 01

* . TE . :
(b2, px) defines a Nash equilibrium 00
g _ -0.1
00 02 04 06 08 10
Po

S. Cavallero, (2023)
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2. Adaptive strategies in gambling
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+ So far, we assumed the gambler knows the probabilities of winning horses,
In practice the gambler does not know this, he/she must learn it
A natural idea is to use past race results

This idea is implemented in card games strategies and in finance

» Here, we use Laplace’s rule of succession

t
n. +1
t+1 _ x| E. T. Jaynes, 2003

* t+ M

for t uncorrelated races and M horses. This follows from Bayesian inference with uniform prior
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The learning time and the gambler’s regret

50 4
40

log-cap(t)

—10 4

30 1
20 1
10 A

A(t) A(t) = log-cap®°V (t) — log-cap(t)

A(t) = Z llogpxi — log by, (7’)]

=1

T
0

T T T T T
2000 4000 6000 8000 10000
t

M —1 t
Asymptotic regret :  (A) (t) = (A) (to) + 5 log ]
0
, M-1 1
Burn-in time (or learning time) : = > Drz (p|r)
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log-cap(t)

Modified Laplace’s rule

Non-uniform prior exploiting the
<« information contained in the
bookmaker’s odds distribution

Uniform prior

T T T T T
0 2000 4000 6000 8000 10000
t

Initial capital loss is reduced but the asymptotic regret and the learning time
are unchanged

Non-uniform prior only useful if the odds distribution is closer to the horse
distribution than the uniform distribution

A. Despons, L. Peliti, D. L., J. Stat. Mech., 093405 (2022)
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3. Trade-off for phenotypic switching of
populations in varying environments
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Trade-off in bet-hedging strategies of desert plants

Mean Germination Fraction

+| |
: _+_ | Venable (2007)
MA 6 8 10 14 18

Geometric SD of Reproductive Success

Eriophyllum lanosum, a species of Germination fraction vs. standard deviation
wildflower in the southwestern US in reproductive success
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Ecological evidences

ECOLOGY LETTERS

Ecology Letters, (2020) 23: 274-282 doi: 10.1111/ele.13430

LETTER Mean growth rate when rare is not a reliable metric for

persistence of species

Jayant Pande,' () Tak Fung,® (2
Ryan Chisholm® (%) and Nadav
M. Shnerb™* (%)

"Department of Physics, Bar-llan
University, Ramat Gan 52900, Israel
2Department of Biological Sciences
National University of Singapore,
Singapore 117543, Republic of Sin-
gapore

*Correspondence: Email:
nadav.shnerb@gmail.com

..The problem becomes particularly severe when an increase in the
amplitude of stochastic temporal variations leads to an increase in
E[r] since at the same time it enhances random abundance
fluctuations and the two effects are inherently intertwined...

Growth in uncertain environments




Gambling/finance Biology/ecology

Currency unit Individual

Race result/market state Environment
Bets/investment Phenotype switching
Races Environmental events
Odds Reproduction rate
Capital growth rate Population growth rate
Probability of bankruptcy Extinction probability
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d .
+ Sub-populations of two phenotypes growing in two environments EN(t) = Mg,N(t) for ie€{1,2}

_ (kar—m o (=71 + ka2 Up)
MSl_( m kp1 — m2 and Ms, = m kpa —m2)

« Gambling problem was scalar, this one is vectorial. Explicit results only in some limits

Ex: for the average growth rate in the adiabatic limit E. Kussel, S. Leibler (2005)

Optimal conditionis | 7T; = K4 the analog of Kelly’s strategy

» So far, we focused on long term growth rate (infinite horizon) but populations are finite and may go extinct in
a finite time (finite horizon)

d :
Instantaneous growth rate  ji(s) = d—(ln N(s)), finite time growth rate A, = % / p(s)ds
s 0

and Var(A) = tli)m tVar(As) is the equivalent of the volatility
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Pareto-optimal tradeoff

2.0T=
1.8+
1.6+
1.4+

= 1.2

=

Exact growth rate Instantaneous growth rate

+ Pareto diagram is controlled by two time scales
1 1
Teny = 5(1//-c1 +1/k2) and T = 5(1/7T1 +1/m3)
* There is a trade-off branch terminating at a point (similar to Kelly’s strategy)

with a vertical slope, both for exact and for approximate growth rates
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A link between fluctuations and population extinction

+ Comparison between 09 ol

- optimal trajectories at Kelly’s point (green)

" Prab. of ext.

=

Prob. of ext.

- suboptimal ones along the Pareto front

* If In(N)< E at some time in the trajectory, the 01 f

population is considered extinct

Extinction threshold

In the region of fast growth, it is advantageous for a population to trade
growth for less risky fluctuations

The probability of extinction along the Pareto front is non-monotonic

L. Dinis, J. Unterberger, D. L., J. Stat. Mech., 053503 (2022)
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Conclusion

» Kelly’s gambling model helps understanding adaptation strategies of biological systems

in a varying environment (bet-hedging)

» There is a general trade-off between growth rate and risk

* On going : extend the notion of risk beyond fluctuations to describe extinction

Search of experimental confirmation

Chapter ‘cells in the face of uncertainty’ with D. Tourigny and O. Rivoire
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