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Main topics to be covered

 Survival strategies of microorganisms
= [nnovation in metabolism
= Building partnerships

* Return-on-investment (ROI) in metabolism

« Cybernetic modeling

= Basic concept
= How does the cybernetic approach incorporate ROI into modeling?

* Modeling examples
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Main topics to be covered (cont’'d)

« Modeling of microbial interactions
= Major issues

* How does the cybernetic modeling enable predicting microorganisms’ social behaviors from
individualistic perspectives?
= Modeling examples

e Concluding remarks
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Competition drives microorganisms to evolve towards
Increasing their survival chance

« Microorganisms in natural 200 200
environments face a constant

battle for resources ] m_/ EE

« Competitive exclusion principle:

Population size (mL)

a cornerstone of community 0 > © o N 20
ecology \ — ' '

« Microorganisms have evolved to
develop survival strategies into ool

multiple directions
= |nnovation in metabolism L " .

= Building partnerships Days
Gause experiment (1934)

P. caudatum

(Images taken from Mittelbach and McGill, Community Ecology, 2" Ed., 2019)
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Innovation in metabolism: optimal growth

Evolution of E. coli towards optimal growth predicted by flux balance analysis

A. Wild-Type E. cofi Strain before Evolution B. Day 40 (700 Generations Later)
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Ibarra et al. (Nature, 2002)
https://www.nsf.gov/od/Ipa/news/02/pr0292.htm
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Innovation in metabolism: optimal metabolic switching

Growth of E. coli on different carbohydrate pairs

(Monod’s experiments in 1940s)
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http://science.sciencemag.org/content/154/3748/475

Diauxic growth of K. oxytoca on glucose and xylose

predicted by cybernetic modeling
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Return-on-investment (ROI) I1s an important concept to
understand optimal microbial growth

Investment Capital Internal Bacterial
(cost) grochh resources grochh
Goods (profit) (cost) Enzymes (profit)

ROI — Net Profit —— Net Growth
Cos of Investment "~ Cost for Enzyme Production
ROI — Gain from Investment — Cost mROI = AGrowth — Cost
— Cost Cost

(mROI = Metabolic ROI)
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Return-on-investment (ROI) can also explain optimal

metabolic switching

GH,OH Enzymes for

o =)  metabolizing
@” glucose S
Enzymes for

O ~OH
HOW ‘ metabolizing
HO  ©OH

xylose
« Cannot simultaneously process both rice « Cannot synthesize enzymes to consume
and grapes for production of Soju and both glucose and xylose due to limited
wine due to limited budget/facilities internal resources
« The raw material that leads to higher ROI » The substrate that leads to higher growth
may be preferred (ROI) may be preferred
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‘Return’ and ‘cost of investment’ in metabolism

Gain from Investment — Cost

Ribosomes, RNA mRO] =
polymerases, ATP, etc. Cost
Internal
Fgon <) Tesources \’ * Net profit or return
e M . = Cellular growth rate (commonly used)
e 1 T,’a" ',"’"°" = Maintenance (ATP production)
contrel T,an o = Substrate uptake rate
L Protelnﬂ“‘ By product -‘ u OtherS
Substrate ..‘0 Oe o’ ‘ K $f't§$2$e « Cost of investment or resources
oo = Material and bioenergetic costs
Frayme { ¥ o.' '. py required for producing the defined net
control pI’OfIt
Inhibitor ain produc .
Y Giomaes = Internal resources: ribosomes, RNA

polymerases, ATP, etc.
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Regulation of metabolism through optimal allocation of
resources Is key for maximizing ROI

Ribosomes, RNA Gene regulatory circuit: control tower
polymerases, ATP, etc.

DNA DDA / \/ DT TA Gene
- regulatory
Enzyme Transcription network
synthesis — gy WA WM

" @

- ~ B.y prod PY .~

[ Alternati s
Substrate ..“~ ‘ ¢ ‘ ‘e ‘sut?srtr;:tgle
zyme @ Metabolic
. o oo network
[
activity ' o .
control
Inhibitor Main product
(Biomass )

ROI in Metabolism and Interactions



Accounting for ROl and optimal resource allocation In
cybernetic modeling

Internal
resources
Ribosomes,RNA |
polymerases, ATP, etc. Regulation of Loy, u, : Vatehing L
| enzyme synthesis | i i : <::| atching Law
Interna | :

-/ resources s

- ri
n M N u u; =
DNA DPTOHDA \ DOTVDDDA ! 2 D it
Enzyme Tlaription C Enzyme 2 (82)
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Mechanistic details of regulation are replaced with the direct
description on enzyme synthesis and activity control
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The cybernetic approach views microbes as Al systems that
optimally regulate metabolic actions towards maximizing ROI

|
« “Cybernetics” comes from a Greek word ‘ L
meaning “the art of steering” J [)
» Cybernetics sets a goal and takes action to |
achieve that goal
 The cybernetic model solves an optimal N >~
control problem to simulate cellular behavior ~ 7
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The cybernetic approach views microbes as Al systems that
optimally regulate metabolic actions towards maximizing ROI

Reinforcement learning Cybernetic modeling

Agent

Agent

Learning S—
Algorithm
I Policy
Observation Action Observation Action
Reward or
penalty Environment

Environment

« Both cybernetic modeling and reinforcement learning implement intelligence through dynamic

feedback loops
Reinforcement learning evaluates the outcomes of taken actions as rewards or penalties to update

the policy to get the most reward over time
» Cybernetic modeling performs optimal control based on the already optimized policy
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In cybernetic modeling, resources are optimally
allocated such that metabolic ROI Is maximized

Derivation of cybernetic control laws by solving a linear quadratic regulator problem

T _g t+At
max J (_q Ay (t + At) ; jt

uTudrj

= AGrowth = Cost for enzyme production

q Ay(7+ Ar)— %LHN u'udr
= = mROI

The total amount of resources
(100%) to be allocated

E

Generalized form of cybernetic
control laws

U(t) leTeATAtq
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Simulation of microbial growth on alternative carbon
sources and electron acceptors
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Simulation of dynamic metabolic switching In
Shewanella oneidensis MR-1
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Economics In microbial interactions

* [nnovation in metabolism: maximization of direct ROI
 Building partnerships: maximization of indirect ROI

Economic Markets Biological Markets
Country 1 Country 2 Cell1 @ o 94 cCell2

4 o / H A v 2N
e ll ‘ | "a a4 Uf
' ‘ consumption == - r
io® io® Aavag 4 4/\ /\> m g Eg
* i ' * - import A B Ay
trade I‘ A -
consumer consumer ‘ exchange

Tasoff et al. (PLOS ONE, 2015)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132907
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Two major issues in modeling interspecies interactions
IN microbial communities

Issue #1: What would be a relevant choice of metabolic objective to maximize?
Individual vs. community growth

« Maximization of the growth of individual Maximization of individual growth
species fails to predict interspecies
social behaviors of microorganisms x
such as division of labor or cross-
feeding.
* The use of maximization of the total (or Maximization of community growth

community) growth is criticized by

ecologists favoring individualistic Cross_feedi'ng
perspectives of microbial communities —
— it is difficult to justify cell’s altruism. WHY?
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Two major issues in modeling interspecies interactions
in microbial communities (cont’d)

Issue #2:. How to predict context dependency We have no lasting friends, no

IN microbial interactions? lasting enemies, only lasting
iInterests.

« Context dependency: the strength and/or the
sign of the interaction changes as biotic and
abiotic contexts change (Chamberlain et al.,
2014)

« Microbial interactions are a function of
multiple factors, including:
= Community membership
= Environment
= Host
= History
» Life stage
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Cybernetic modeling resolves these issues by using
generalized cybernetic control laws

» Choice of metabolic Maximizing Individual The resulting community
objective to maximize E—O'_ over afinite time model enables predicting:
orizon _ _
 Social behaviors of
» Context dependency in 1 MICroorganisms such as
microbial interactions u(t) =— B division of labor and
o cross-feeding

« Context-dependent
changes in interactions

1
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Complex
Interactions In
biopolymer
degradation
networks
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Network
Decomposition
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Understanding complex microbial

interactions through extracellular

enzyme syntheses and metabolite
cross-feeding

S, S,

What interaction strategies
will be chosen when multiple
options are available?

Integrative Analysis
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Microbial interactions in the division-of-labor (DoL)
subnetwork
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Microbial interactions in the Dol subnetwork
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Microbial interactions in the Dol subnetwork
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Microbial interactions in the cross-feeding (CF)
subnetwork
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Microbial interactions in the CF subnetwork
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Microbial interactions in the CF subnetwork
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Microbial interactions in the CF subnetwork
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Microbial interactions in the CF subnetwork
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Microbial interactions in the combined network
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Concluding remarks

 Survival strategies of microorganisms

* Innovation in metabolism
» Optimal growth
» Optimal switching

= Building partnerships

 All survival strategies addressed above are well explained by economic
behaviors of microorganisms maximizing return-on-investment (ROI)

« Cybernetic modeling uniguely accounts for metabolic ROl and optimal resource
allocation to predict complex microbial dynamics
» Prokaryotic cells
= Eukaryotic cells

» Cybernetic modeling enables predicting microorganisms’ social behaviors such
as division of labor or cross-feeding from individualistic perspectives
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