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Metabolic diversity
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* Part 1: (Optimal) Probability densities on the flux polytope
* Part 2: Inference of single-cell quantities
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e Constraint-based models are mostly calibrated for population averages

* But cells within a population differ in both ‘observable' (e.g. growth rate) and ‘internal’
properties (e.g. metabolic phenotype, like fermentative vs respiratory)

* In some cases, diversity is a plus (see e.g. bacterial persistence)
* Question: can we capture single-cell properties within the frame of CBMs?

For instance

— TSB
— syntethicrich ¢ Feasible space (F): defined by mass balance

glucose + 12 a.a.

— Shiind S, conditions (Sv=0) and ranges of variability for
~ Ghicose each v; ; dim(F)=0(102)
— sorbitol
F b e » Basic idea: empirical distributions represent
‘. ) marginals of an unknown high-dimensional
, X distribution p(v) on F
sorbitol - -
_ Generation time (minutes) * Two ways to understand p(v):
i [Jun lab, UCSD] - Dynamics: p(v,t) — p(v)

- Statics (variational): “p(v) is optimal”
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A minimal model of  Same feasible space F for all cells
population dynamics in F

* n(v,f) = nr of cells with flux vector v at time t

* Time evolution of n due to (i) replication (rate A(v)), (ii)
diffusion in F (small random changes in the flux vector), and
(iii) advection (cells adjusting v to maximize A(v))

» The dynamics is sensitive to the growth-rate landscape
» Finite carrying capacity

e Steady state: balance of diffusion and advection

on o
1d case (simple) : Jupg=—D— , Jy4 = yn—
ov av
a aﬁ [De Martino et al 2016]
n
Jdiff + Jadv =0 -» —= ﬁl’l— — ny) ~ eﬂﬂ(")
ov ov

p=y/D

Metabolic Diversity ;




» The dynamics is sensitive to the growth-rate landscape "FBA" (max A)

B—— T —— T —— T A
- x +  Uniform sampling, rich medium 8
S T x>D
B I U 1.
; ’ n(v) ~ e
p=y/D
D>y
qA) x 22Q =D, a>b , a>1 \/
Uniformly

» Small random changes to v are overwhelmingly more
likely to reduce the growth rate than increase it

distrib. over F
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Comparisons

e Compare marginals of p(v) for the growth rate with data (fitting parameter: g)

25
225
2

‘Table 1. Inferred maximum growth rates, level of optimization and
rate of metabolic change for the experimental data [19, 20] fitted
with the stationary distributions retrieved by the MaxEnt frame-
work of section 3 and from the dynamical model of section 4.

Growth rates are measured in h ', while -and B\ nqx are

adimensional.
L75 MaxEnt Dynamical eﬂ j’ (V)
15 Data set )\ P /\ (V) _
= O dm) 0D oGdim p -
2 Z(p)
[19] rich 59 220 72 10°°
1 medium
075 [121:;:;“ 32 220 38 10°°
05 [20] GLCPS 35 220 43 107
; [20] GLCMRR 7 220 8 10°° .
025 [20] CAAP5 8.6 190 9 12 x 107 (data' Kennard et al 201 6)
- [20] RDMP5 5.5 300 6.4 5x10°¢
0 [20] LBMRR 6.6 300 7.7 5% 10°°
[De Martino et al 2016] Fig.2 [De Martino et al 2018]

e Compare marginals of p(v) vs MS fluxes

- ASSU me p(v) W|th em p | r| Cal ﬁ a Comparison of measured fluxes (black, mean, error bars defined as SD over 12 experiments,
technical replicates; normalized to glucose uptake) with predictions of FBA (red stars) and of the
- Sam pI e p (V) (e . g - M C) maximum entropy model (pink, error bars defined as SD with simulation sample size 10°). Also

- Com p ute marg | n al S shown are mean fluxes predicted by uniform sampling, i.e., using =0 in Eq. (7) (gray stars; mean,
Com pare VS eXperi mentS for clarity, large SDs are not displayed). Data for a are a collection of 12 experiments at average

growthrate 4 = 0.2 hl Wild-type £. coli was grown in glucose-limited medium in aerobic
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Variational route to n(v)~exp[BA(v)]

* Mean growth rate <A> ~ population fitness Entropy of p :
 An ‘energy-entropy’ tradeoff: distributions p(v) —_ N
with large <A> have small entropy and v.v. Hipl = F p(WMin p(v)d™y
ePAv)
max H[p] s.t. (1) - pv)=
p(¥) Z(p)

> Lesson (2016): at the metabolic level (CBMs), cells within a population appear
to have maximal growth-rate heterogeneity for the population's fitness (!)

> To go more in depth: some more theory + inference...

¢ Relationship between <A> and H o [De Martino et al 2016]
P 03 " Forbidden_
oroiaden
HO) —H(B) =11n2 = (1) — J (Aydp  .os . ]
<5 T Feasible
0 z 04 -
¢ Re-phrasing: what is the minimum number of bits Y o2+ -
(/) to be encoded in p(v) in order to achieve a given 0(; S I
“fitness” (mean growth rate)? I (bits)
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Heterogeneity as an optimal response

Best metabolic strategy
in a fluctuating medium e What if s fluctuates?

[Muntoni et al 2023] * P(s) (distrib of stress levels)

e Fast fluctuations: maximize <A> (avg over s)
Stress level s

(1) = st P(s) de P(x|s)A(x, s)

* Optimize over conditional response P(x|s) ...

metabolic strategy (qg,¢) e ... subject to mutual information of x and s
g-¢ trade-off P(x|s
I(x;s) = |ds P(s) | dx P(x]|s)log, (x])
(b) 1 o P(x)
v =2.00 * g(x) = specific intake
=05 \ ' * £(X) = specific proteome cost * Solution:
i P(x
% 5 10 & P(x|s) = Z(L;) ePHEs)
S,
_q(l‘);—— A’(x’ S) =
0 05 1 w + sq(x) + e(x)
xr
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lOglo (3) 0 043 39 3511 316.23

E.g. exponential P(s)
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E.g. bimodal P(s)
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Summary

e Metabolic diversity from dynamics

* Beyond bulk properties: probability densities on the flux polytope (with some simplifying assumptions)
¢ Bacterial populations close to maximizing diversity at given fitness

e Diversity as optimal response (e.g. in fluctuating media)

e This half: distributions that are "optimal" (in some sense)

¢ Next half: learning distributions from data (and see how far they are from optima)
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Synopsis
1)Introduction
Bayes Theorem with example

2) Inferring single cell fluxes
» Growth rates from imaging
» Uptakes/turnover from nano-sims

3)Perspectives: inverse modeling
* Intercellular exchange from Nanofibers sensing



The Monty Hall problem

1) There are three closed doors and only one hides a prize

2) You can choose one (that will not be opened yet)

3) The game-show host (that knows where the prize is)

opens one of the other two in such a way as not to reveal the prize and

offers you to swap your door for the remaining closed door

Is it convenient to swap?

Eg you choose door 1, the host opens 3
showing it is empty, will you swap to 27

ov)




Bayes Theorem

P(A|B)P(B) = P(B|A)P(A)

P(ANB
p(ajp) = 220 5)
P(B)
Demonstration: symmetry of conditional . Likelihood Prior
probability by definition Posterior { O3
U P(B|A) * P(A)
P(A|B) =

P(B)
ity

Evidence



Solution

Solution to exercise 3.8 (p.57). Let H; denote the hypothesis that the prize is
behind door i. We make the following assumptions: the three hypotheses H;,
‘Ho and Hs are equiprobable a priori, i.e.,

P(H) = P(Hy) = P(H) = 5. (3.36)
The datum we receive, after choosing door 1, is one of D=3 and D =2 (mean-
ing door 3 or 2 is opened, respectively). We assume that these two possible
outcomes have the following probabilities. If the prize is behind door 1 then
the host has a free choice; in this case we assume that the host selects at
random between D=2 and D =3. Otherwise the choice of the host is forced
and the probabilities are 0 and 1.

P(D=2|H.) =1
P(D=3|My)="Y2

PlD=2M:)=0 | P(D=2|H3)=1 (3.37)
PiD=3|Hy) =1 | P(D=3|H;)}=0 '
Now, using Bayes’ theorem, we evaluate the posterior probabilities of the
hypotheses:

P(D=3|H;)P(H:)

P(H;|D=3) = P(D=3)

(3.38)

—3)= 1/20/3) _ ) — (A/3) —3)— (01/3)

| —P(Hl |D—3)— P(D=3) | P(H2|D—3)— P(D=3) ‘ P(H3|D—3)— P(D=3)
(3.39)
The denominator P(D =3) is (1/2) because it is the normalizing constant for

this posterior distribution. So

| B(H: | D=8) = Y3 |P(Mz|D=8) = 23|P(H;|D=3) = 0.|
(3.40)
So the contestant should switch to door 2 in order to have the biggest chance
of getting the prize.

MacKay, D. J. (2003). Information theory, inference and learning algorithms.



Inferring single cell growth rates

cell length (micro

| | | |
0 100 200 300 400 500

Mother machine movie Time traces length vs time

Data from:
Tanouchi, Y., Pal, A., Park, H., Huang, S., Buchler, N. E., & You, L. (2017).
Long-term growth data of Escherichia coli at a single-cell level. Scientific data, 4(1), 1-5.



The Linear fit, revisited (1)

Z (t) — ZO e/\t Hypothesis 1: exponential growth!

Let us linearize taking the log!

log l(tz)/ZO — )\tz -+ IlOiSe(t?;) i runs over data points

Hyopthesis 2: noise terms are Gaussian random variables
independent and identically distributed with stdv sigma

p(datal\)p(\) = p(A|data)p(data) p(A) ~ const.

Bayes theorem Hypothesis 3: approx. uniform prior

p(data) = /p(data|/\)p()\)d)\

The “evidence” is just a constant



Linear fit revisited (I1)

~ (logl(t;)/lg—At;)?

P(\|data) < P(data|\) H e 207

We have the full posterior!

1

L= =oca (logl(t;)/lo — Mt;)* — N log V2no?
o :
Log-likelihood oL

5—0

Vo > i tillog I(t:)/lo)
> i 7

Max likelihood sol.
coincides with
Chi*2 min..



Constant rate or constant speed?

Z(t) — ZO Ut Alternative model: constant elongation speed!

l(tz) = l() + vt; + IlOiSG(t?;) p(U) ~ const.

C(Uty) —lg—vt)?

P(v|data) < P(data|v) o H e 202

L=——" () = lo— vt;)? — Nlog V2ro? ov

202 &
1




Let us test them!

Exponential growth

6 T T T T %

.é
g

time (min) g

.E
log-likelihood(exp)/log-likelihood(lin)>20 0. .
. . 320 325 330 335 340 345 350 355
Single cell exponential growth! e (min)

I e - _
(this is non-trivial no?) Linear growth



Inferring single cells
uptakes/turnover/growth from nanosims data

Mass spectrometry + isotope labeling is the most widespread technique for flux
analysis — extension to single cells?

“Nanoscale secondary ion mass spectrometry”
+ stable isotope labeling

19 20 1l 22{=Het.B) 13 B MN
: APE APE

03 03

02 pas

https://en.wikipedia.org/

Radu et al. "Carbon and nitrogen fixation and metabolite exchange
in and between individual cells of Anabaena oscillarioides." The ISME journal 1.4 (2007): 354-360.


https://en.wikipedia.org/

From ratios to rates

C(t) = Cy + (Ol — 00)(1 _ 6—?“75) Main hypothesis:

linear kinetics for concentrations

H
o= 20 CH  CH 4 (CH - Cl(1— e
Cy ff(t):—l,: L L _ L ot
C Cy + (Cr — Cy)(1 —e™)
H
525'1_0—1 OH CL_CH CL
CL o tCog =01 +04

B 35'1(35'0 -1 1) + (CC() — ZE1)€_M

— i T: incubation time
1 _I_ L0 + (xl o IO)e d x:observed ratio
Xx_1: ratio, labeled

1 _ + 1 x_0: ratio, natural
r = — — log ((561 SU) (SUO “ )) I rate
I (z1 — xo)(z + 1)

But what is really r?



A simple model for the linear kinetics:
a growing rod fed by diffusion

N — (Y (Ce — C) S Simple diffusion through surface S

~ NV -VN v
¢ = 73 A=V /V S|V =40
Derivative of a ratio

c=u—(v7+ A)c

Linear kinetics!

Growth rate Rod hypothesis

u = abc,

A = il

7" — r‘)/ _|_ A Incorporation rate = growth rate+turnover

ris an upper bound for the growth rate!



More In general: Inverse modeling

The forward problem

- Mathematical
estimated  f—3»| model / Physical Prediction of data
pa theory
The inverse problem
_— Mathematical
F"'*""—'ni‘::r‘;f < model / Physical Measured data
para theory

Neuroscience: Inferring neural interactions from spike data
Schneidman et al (2006), Nguyen, Zecchina & Berg (2017)

SRRERBEEEZEEZ
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e.g. geophysics
Inverting wave equations
to reconstruct earth density profiles




Flux inference & gradient
_reconstruction

Inverse modeling
of the Laplace
equation

Vie(r) = 0

Given (noisy)
measurements of C
find the (complex)
Boundary conditions




A single cell picture of
tumor acidification (Warburg)

Non-trivial segmentation and tracking problem

1.0 =¥
= ‘\‘ i Average[H*]  [0.0125 < 501
§ 081 -=~ Inferred bulk flux | 45100 € 3,
+ g 40
L. 06 =
S £ 30 - :{
S 0.4 - 8 I
e 5
c 0.2 Q I
(w] —
18]
O g 10
0.0 T T T -
0 100 200 300 0

Time (mins) 0 1 2 3 4 5 6
Time (hours)

Onesto et al. "Probing Single-Cell Fermentation Fluxes and Exchange Networks
via pH-Sensing Hybrid Nanofibers." ACS nano (2022).



Some equations..

N
u’ﬂi dc‘?
clr) = E + U Multipol -
( ) p D|I' . I'?;| /B D‘I‘ . I‘(,S)| UtIpO ar expansion

truncated to the first term

2 (1) = Z (cu = 22 Auiwi)® U’; — Z(Bij)_lbi

XL 2¢ o i
1 P
Find parameters from maximum likelihood b —
+ sampling the full posterior ¢ C 0-2
(to estimate the errors!) L K™
B.. — AuiAﬂj
M tions: v 242
any assumptions: C% 0

stationarity, spherical cows, etc L JV v



pH

3.152

3.136

3.120

3.104

We do not obtain this!

FBA Simulations of cells maximizing growth/ATP

Lactate Flux (mmol/gh)



We obtain this!
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Tumor acidification as a spillover from an unbalanced exchange network
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Summary & references

you can’t do inference — or data compression — without making
assumptions.

MacKay, D. J. (2003). Information theory, inference and learning algorithms.

Tanouchi, Y., Pai, A., Park, H., Huang, S., Buchler, N. E., & You, L. (2017).
Long-term growth data of Escherichia coli at a single-cell level. Scientific
data, 4(1), 1-5.

Radu et al. "Carbon and nitrogen fixation and metabolite exchange
in and between individual cells of Anabaena oscillarioides." The ISME
journal 1.4 (2007): 354-360

Onesto et al. "Probing Single-Cell Fermentation Fluxes and Exchange
Networks via pH-Sensing Hybrid Nanofibers." ACS nano (2022).



