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 Metabolic Diversity

•Constraint-based models are mostly calibrated for population averages


• But cells within a population differ in both `observable' (e.g. growth rate) and `internal' 
properties (e.g. metabolic phenotype, like fermentative vs respiratory)


• In some cases, diversity is a plus (see e.g. bacterial persistence)


•Question: can we capture single-cell properties within the frame of CBMs?

• Feasible space (F): defined by mass balance 
conditions (Sv=0) and ranges of variability for 
each vi ; dim(F)=𝓞(102)


• Basic idea: empirical distributions represent 
marginals of an unknown high-dimensional 
distribution p(v) on F 

• Two ways to understand p(v):

-Dynamics:  p(v,t) → p(v)

-Statics (variational): “p(v) is optimal”

[Jun lab, UCSD]
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F

A minimal model of 
population dynamics in F

• Same feasible space F for all cells


• n(v,t) = nr of cells with flux vector v at time t


• Time evolution of n due to (i) replication (rate λ(v)), (ii) 
diffusion in F (small random changes in the flux vector), and 
(iii) advection (cells adjusting v to maximize λ(v))


‣ The dynamics is sensitive to the growth-rate landscape


• Finite carrying capacity


• Steady state: balance of diffusion and advection

1d case (simple) : Jdiff = − D
∂n
∂v

, Jadv = χn
∂λ
∂v

β = χ/D
Jdiff + Jadv = 0 →

∂n
∂v

= βn
∂λ
∂v

→ n(v) ∼ eβλ(v)
[De Martino et al 2016]
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‣ The dynamics is sensitive to the growth-rate landscape

environments (see below) however concentrate
around much faster rates. It is therefore tempting to
think that observations may be explained in terms of a
trade-off between dynamically favored, faster pheno-
types and entropically favored, slower ones.

3.Growth-entropy trade-off:MaxEnt
growth rate distributions

The simplest way to represent such a trade-off within a
probabilistic sampling scheme (i.e. without invoking a
‘microscopic’, regulatory or population mechanism
through which a growing bacterial colony may escape
the entropic trap) is via theMaxEnt framework[38]. In
brief, theMaxEnt distribution over a phenotypic space
( is the one causing the smallest reduction in entropy
of ( at fixedmean growth rate M� §and is, in this sense,
the ‘broadest’ and most unbiased distribution compa-
tible with the constraint. A standard maximization of
the entropy functional [ ] ( ) ( )¨� �S f f fv v vlog d
over distributions of flux vectors ( )f v subject to a

normalization constraint ( )( )¨ �f v vd 1 and at a

fixedmean growth rate ( ) ( )¨M M� § � fv v vd yields
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where C � 0 is the Lagrange multiplier that con-
strains M� §and

( ) ( )( )¨C � CMZ ve d . 4v

Correspondingly, the solution space entropy
( )CwS S is reduced by a factor I (measured in bits),

given by
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On the other handwe have

( ) ( )
C

C M� � §Z
d

d
log , 6

where M� § is a function ofβ via f. Therefore, finally,

( )¨C M M C� � § � � § a
C

I log 2 d . 7
0

The factor β here mimics a ‘selective pressure’ that
allows to interpolate between entropy-dominated
(low β) and growth-rate dominated (high β) popula-
tions, the limit C l 0 (respectively C l d) corresp-
onding to a uniform sampling of ( (respectively a
sampling concentrated on states with M M� max ).

In this way, to each M� § one can associate a mini-
mal entropy reduction I, such that in order to achieve a
mean growth rate M� §, the effective volume of the phe-
notypic space has to shrink at least by a factor of 2I .
Vice versa, to each I one can associate a maximum
achievable M� §, and achieving largermean growth rates
require larger values of I. This separates the ( )M� §I ,
plane in a ‘feasible’ and a ‘forbidden’ region (see [38]
for a related small-scale example). Results for a glu-
cose-limited medium are shown in figure 2 (a similar
scenario holds in different media). The mean growth
rate indeed increases with β (panel A), while growth-
rate distributions shift towards higher values as β

increases (panel B). The overall phase structure,
shown in panel C, quantifies the entropy reduction
factor required to achieve a given M� §, with larger M� §ʼs
requiring larger Iʼs. MaxEnt distributions lie on the
line separating the feasible from the forbidden region
in the ( )M� §I , plane, and can be fitted to empirical
data via the parameters Mmax and β (or CMmax ). We
have considered seven data sets from different experi-
ments [19, 20]. Figure 3 shows the quality of the
MaxEnt fits (dashed lines). Values of best fitting

Figure 1.Growth rate distributions for a uniform sampling ofE. coli’s genome-scalemetabolic networkmodel iJR904, in a glucose-
limitedminimalmedium as given in [33], withmaximumglucose uptake � �20 mmol g hDW

1 1 and unlimited oxygen, with (rich
medium, blackmarkers) andwithout (poormedium, redmarkers) extra uptakes of arginine, lysine and phenylalanine, eachwith
maximumuptake � �10 mmol g hDW

1 1. Dashed lines show the bestfit of the log of the curves. Inset: same on a log–log plot.
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q(λ) ∝ λb(λmax − λ)a , a ≫ b , a ≫ 1

‣ Small random changes to v are overwhelmingly more 
likely to reduce the growth rate than increase it

n(v) ∼ eβλ(v)

"FBA" (max λ)

Uniformly 
distrib. over F

χ ≫ D

D ≫ χ

β = χ /D
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Comparisons 

•Compare marginals of p(v) vs MS fluxes

-Assume p(v) with empirical β

-Sample p(v) (e.g. MC)

-Compute marginals

-Compare vs experiments

[De Martino et al 2018]

•Compare marginals of p(v) for the growth rate with data (fitting parameter: β)

parameters are summarized in table 1. Notice that the
same value of CMmax (corresponding to the same
‘degree’ of growth ratemaximization in theMaxEnt fra-
mework) provides the best fit across four different data
sets, while a 5th experiment (labeled CAAP5) appears to
be very close to it. The fact that one can fit multiple
experiments with the same values of CMmax but differ-
ent values of Mmax suggests that empirical distributions
scale to the same ratio of the average to the maximum.
Indeed, one has �M M� § 0.28max for each of these data
sets. The collapse thus obtained for the data from [19] is

shown in figure 3, left panel. Similar collapses have
been found in other experiments, including [20].
The remaining two experiments (labeled RDMP5 and
LBMRR) likewise appear to cluster at the same value
of CMmax , in full agreement with the findings of [20].
Interestingly, from a physiological viewpoint, assuming
empirical growth laws [10] can be extended to very
fast rates, the fact that M M� § max is the same for differ-
ent bacterial populations suggests that they allocate
to ribosomes a fixed share of the maximum
lambda-dependent ribosomal proteome fraction.

Figure 2.MaxEnt scenario forE. coli in a glucose-limitedmedium. (A)Mean growth rate (in units of Mmax ) versus CMmax . (B)MaxEnt
growth rate distributions corresponding to selected values of CMmax . (C)Mean growth rate (in units of Mmax ) versus the phenotypic
space entropy reduction I (measured in bits, so that I = x implies that the effective volume of the phenotypic space is reduced by a
factor 2x) in a glucose-limitedmedium.

Figure 3.Empirical growth rate distributions (markers) from [19] (left panel) and [20] (right panel), together with the bestfitting
MaxEnt distributions described in section 3 (dashed lines in both panels) and the distributions derived from the dynamicalmodel
described in section 4 (straight lines in both panels). Fitting parameters are summarized in table 1.
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(data: Kennard et al 2016)

4. Aminimal population-dynamicalmodel

The entropy-growth trade-off embedded in the Max-
Ent scenario can be captured by a minimal popula-
tion-dynamics model for the evolution of a (large)
group of non-interacting bacteria. Denoting by ( )MN
the number of bacteria growing at rate λ, we assume
that the population structure changes according to

˙ ( ) ( ) [ ( ) ( )

( ) ( )] ( )

�M M M M M M

M M M

� � a l a

� l a
Ma

N N W N

W N , 8

where ( )M Ml aW stands for the transition rate from
a phenotype with growth rate λ to one with growth
rate Ma. The first term on the right-hand side describes
population increases due to replication events. The
second term, instead, corresponds to (small) changes
in growth rates due to metabolic re-arrangements that
can be triggered e.g. by fluctuations in nutrient or
enzyme availability or by variability induced in mole-
cular levels at cell division. In terms of the population
fractions ( ) ( ) [ ( )]M M M� � aMap N N , the above pro-
cess takes the form

˙ ( ) ( ) ( ) [ ( ) ( )

( ) ( )]
( )

�M M M M M M M

M M M

� � � § � a l a

� l a
Ma

p p W p

W p ,
9

where ( )¨M M M M� § � p d . Phenotypic changes are
assumed to occur so that the space ( of viable
phenotypes is explored in an unbiased way according
to the detailed balance condition

( ) ( ) ( ) ( ) ( )M M M M M Ma l a � l aW q W q , 10

where q is the growth-rate distribution corresponding
to a flat sampling of ( , given by (2) in our case study.
We also assume the existence of a fixed time-scale τ,
such that

( ) ( )� M M
U

l a �
Ma

W
1

. 11

If only transitions of the kind M M El o with equal
probability and with sufficiently small δ are allowed
(implying that, generically, molecular fluctuations
have a small impact on the growth rate), this scenario
simply corresponds to a discrete random walk in the
phenotypic space, so that τ represents the duration of a
single time step and its inverse can be interpreted as
the rate at which phenotypic changes occur. Under
these conditions, the second term on the right-hand
side of (9) can be expanded in a power series of δ. In the
limit E U l, 0, one obtains the non-linear Fokker–
Planck equation

˙ ( ) ( ) ( )

( ) ( ( ))
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M M M M

M M
M

M
M

� � � §

�
s
s

�
s
s

s
s

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

p p

D
p

p qlog ,

12

2

2

where E U�D 2 represents the ‘diffusion constant’ of
the population in the phenotypic space. (Notice that it
is the term proportional to M� § that makes the above
equationnon-linear.Moreover, forq=p equation (12)
reduces to the replicator dynamics ˙ ( )M M� � � §p p.)
Once q is fixed by (2), with medium-independent
values for the constants �a 171 and �b 3.6, the
adjustable parameters left in the model are D and
Mmax . For simplicity, one can re-scale λ with Mmax ,
which amounts re-scaling time as Mlt t max . With
this choice, D also re-scales as M Tl wD D max

3 . In
this context, σ corresponds to an effective rate of
metabolic change.

Numerical solution of (12) leads to the scenario
described in figure 4. Panel A displays the time-evol-
ution of ( )Mp obtained for T � �10 6. One sees that a
stationary distribution is attained after roughly 103

time steps (in units of M�
max

1 ). The form of the sta-
tionary distribution on the other hand depends onσ as
shown in panel B. As expected, smaller σʼs (i.e. smaller
diffusion constants or smaller rates of phenotypic
change) allow the population to settle at higher growth
rates. Therefore, σ here plays a role analogous to C1
in the MaxEnt scenario. The mean growth rate M� §
indeed decreases as σ increases and its derivative
appears to change discontinuously at �T q �2 10 5

(panel C). This behaviour should be compared with
the MaxEnt scenario, shown in figures 2(B) and (C).
Stationary growth rate distributions obtained by this
model can be fitted against empirical ones, the fitting
parameters now being σ and Mmax . The quality of the
fits is shown in figure 3 (continuous lines), whereas the
values of best fitting parameters are summarized in
table 1. Again, �T �10 5 for five different data sets,
while �T q �5 10 6 for the remaining two, in full
agreement with the MaxEnt scenario and with pre-
vious analyses of the experimental data. Values of
Mmax instead appear to be systematically larger than
those obtained within the MaxEnt scenario, albeit
similar. These differences however can account, at

Table 1. Inferredmaximumgrowth rates, level of optimization and
rate ofmetabolic change for the experimental data [19, 20]fitted
with the stationary distributions retrieved by theMaxEnt frame-
work of section 3 and from the dynamicalmodel of section 4.
Growth rates aremeasured in h−1, whileσ and CMmax are
adimensional.

Data set
MaxEnt Dynamical

Mmax

(h−1)
CMmax

(adim.)
Mmax

(h−1) σ (adim.)

[19] rich
medium

5.9 220 7.2 10−5

[19] poor
medium

3.2 220 3.8 10−5

[20]GLCP5 3.5 220 4.3 10−5

[20]GLCMRR 7 220 8 10−5

[20]CAAP5 8.6 190 9 q �1.2 10 5

[20]RDMP5 5.5 300 6.4 q �5 10 6

[20] LBMRR 6.6 300 7.7 q �5 10 6
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p(v) =
eβλ(v)

Z(β )

[De Martino et al 2016]



 Metabolic Diversity

Variational route to n(v)~exp[βλ(v)]

•Mean growth rate <λ> ~ population fitness 


• An `energy-entropy’ tradeoff: distributions p(v) 
with large <λ> have small entropy and v.v. 

max
p(v)

H[p] s.t. ⟨λ⟩ → p(v) =
eβλ(v)

Z(β )

H[p] = − ∫F
p(v)ln p(v) dNv

Entropy of p :

‣ Lesson (2016): at the metabolic level (CBMs), cells within a population appear 
to have maximal growth-rate heterogeneity for the population's fitness (!) 

‣ To go more in depth: some more theory + inference...

H(0) − H(β ) ≡ I ln 2 = β⟨λ⟩ − ∫
β

0
⟨λ⟩ dβ′￼

•Relationship between <λ> and H

•Re-phrasing: what is the minimum number of bits 
(I) to be encoded in p(v) in order to achieve a given 
“fitness” (mean growth rate)?

parameters are summarized in table 1. Notice that the
same value of blmax (corresponding to the same
‘degree’ of growth ratemaximization in theMaxEnt fra-
mework) provides the best fit across four different data
sets, while a 5th experiment (labeled CAAP5) appears to
be very close to it. The fact that one can fit multiple
experiments with the same values of blmax but differ-
ent values of lmax suggests that empirical distributions
scale to the same ratio of the average to the maximum.
Indeed, one has �l lá ñ 0.28max for each of these data
sets. The collapse thus obtained for the data from [19] is

shown in figure 3, left panel. Similar collapses have
been found in other experiments, including [20].
The remaining two experiments (labeled RDMP5 and
LBMRR) likewise appear to cluster at the same value
of blmax , in full agreement with the findings of [20].
Interestingly, from a physiological viewpoint, assuming
empirical growth laws [10] can be extended to very
fast rates, the fact that l lá ñ max is the same for differ-
ent bacterial populations suggests that they allocate
to ribosomes a fixed share of the maximum
lambda-dependent ribosomal proteome fraction.

Figure 2.MaxEnt scenario forE. coli in a glucose-limitedmedium. (A)Mean growth rate (in units of lmax ) versus blmax . (B)MaxEnt
growth rate distributions corresponding to selected values of blmax . (C)Mean growth rate (in units of lmax ) versus the phenotypic
space entropy reduction I (measured in bits, so that I = x implies that the effective volume of the phenotypic space is reduced by a
factor 2x) in a glucose-limitedmedium.

Figure 3.Empirical growth rate distributions (markers) from [19] (left panel) and [20] (right panel), together with the bestfitting
MaxEnt distributions described in section 3 (dashed lines in both panels) and the distributions derived from the dynamicalmodel
described in section 4 (straight lines in both panels). Fitting parameters are summarized in table 1.
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[De Martino et al 2016]
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[Muntoni et al 2022]
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Best metabolic strategy 
in a fluctuating medium

[Muntoni et al 2023]

Heterogeneity as an optimal response

λ(x, s) =
ϕ

w + sq(x) + ϵ(x)

•What if s fluctuates?


• P(s) (distrib of stress levels)


• Fast fluctuations: maximize <λ> (avg over s) 


•Optimize over conditional response P(x|s) ...


• ... subject to mutual information of x and s


• Solution:

⟨λ⟩ = ∫ ds P(s)∫ d x P(x |s)λ(x, s)

I(x; s) = ∫ ds P(s)∫ d x P(x |s)log2
P(x |s)
P(x)

P(x |s) =
P(x)

Z(s, β)
eβλ(x,s)

Stress level s

metabolic strategy (q,ε)

q-ε trade-off

• q(x) = specific intake


• ε(x) = specific proteome cost
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E.g. exponential P(s)

P(s)
P(x) (distrib of metabolic 

strategies, diff. β)

F R

Distrib. of growth rates

(diff. β)
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E.g. bimodal P(s)

P(s)
P(x) (distrib of metabolic 

strategies, diff. β)

F R

Distrib. of growth rates

(diff. β)
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Summary

•Metabolic diversity from dynamics


• Beyond bulk properties: probability densities on the flux polytope (with some simplifying assumptions)


• Bacterial populations close to maximizing diversity at given fitness 

• Diversity as optimal response (e.g. in fluctuating media)


• This half: distributions that are "optimal" (in some sense) 

•Next half: learning distributions from data (and see how far they are from optima)
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