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Take Home Message

Cell as an ecology of self-replicating molecular machines with the von
Neuman’s architecture. Universal constructor = transcription translation
machinery.

* Any essential element has two associated growth laws

* Going beyond the ribocentric view, we derive new growth laws
e.g. RNA-Polymerase growth law

* Growth laws are a manifestation of the conservation of
matter, i.e., somewhat uninteresting. The challenge -
understand the controls and processing of information from
external cues!



Nontrivial self-replication

John von Neumann un]_versal Constructor

Universal constructor — the machine that makes machines



Schematic diagram of a bacterial autocatalytic network, showcasing different autocatalytic cycles coarsely grained.
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RNA-polymerases ribosomes

The bacterial cell as an ecology of
self-replicating molecular machines
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The transcription—translation autocatalytic network.
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Our contribution

Using autocatalytic network with a specific structure that is
common to all bacteria and using Leontif production function we
derive

* Known growth laws
* New growth laws (in particular RNA-polymerase growth law)

* Employ RNAP growth law to explain reduction in growth
rate at constant RNA /protein ratio as rifampicin
concentration increases.



Autocatalysis 101 + a grapical language to code
quantitiave models

* Simple reactions consume substrates S,,...,S,, with a catalyst C and
produce a product P

substrates reaction node de-novo synthesized
product

Wassily Leontief

catalyst



Autocatalysis 101 cont.

* Simple autocatalysis consume substrates S.,...,S_, employ a catalyst C
and the product is more catalysts C. The newly created catalysts joins
the existing ones and catalyze more copies. This can go on until one of
the substrates is depleted.
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Autocatalytic networks

* networks which consume substrates and jointly autocatalyze all the
catalysts in them. A famous (non biological) example is the
Hinshelwood cycle (here of degree n=4):
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The graphical depiction of autocatalytic network
codes a quantitative model

RNA-polymerases ribosomes
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Going beyond the ribo-centric view

* In an autocatalytic network, any element can be viewd as
the center around which autocatalysis revolves  this leads
to two growth laws per cycle.

NOTE: cycle need not be limiting.

(i) a growth law involving all the time scales in the cycle
(+allocation parameters).

(ii) a growth law involving relative abundance of a
given catalyst, its synthesis rate and its allocation
parameter (famous example: ribosome growth law).



The RNA polymerase growth law
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yet growth rate goes
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Bacterial growth laws

RNA-polymerases ribosomes
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Growth rate dependence on temperature
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Two-step model buildup.

A dU amin(U,F) U

dt Furaa 1

dP _ (1 —a)min(U, )

dt praﬂ
di _min(P,f) min(U,F)
dt T Ton
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Two-step model buildup.

A dU _ amin(U,F) U
dt  FuTay T

dP _ (1 — a)min(U, F)

dr min(P,f) min(U,F)
dt T Son

A
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Two-step model buildup.

A dU amin(U,F) U
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What's next?

* Design rules for streamlining ribosome assembly
* Control in general and metabolic switchings
* Classification and analysis of all cost-benefit scenarios

“All model are wrong,

some are useful.”
G. Box




John von Neumann

The Non-trivial Self-replicating Factory
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constructor in the cell?

Who's the universal

MRNA

RNA polymerase

Ribosome

key players :
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New ribosome joining the Rest-Work cycle
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Effect of two antibacterial agents—lamotrigine and triclosan—on E. coli
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Q: What about noise?

A: Surprisingly unimportant



Approximate growth law:
Little’s law for self-replicating factories

H= c2 -
Tsa—5— LF

/

2" order (cv = coefficient of variation)

1t order (n,,, =relative work in process — percentage)
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Parallel assembly with competing pathways (PACA)
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Inspecting engine blueprints will not reveal the cause

Coolant Leakage due to a hole in the radiator unless malfunction is due to an inherent design flaw




The genetic code

NH,

L

Leucine

CTG



“Laplace transform of assembly time evaluated at s =
growth rate = 1/(1+relative WIP)”
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