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An economist’s perspective

▶ What are the costs associated with keeping an enzyme at a certain level E?

▶ What are the benefits associated with keeping an enzyme at a certain level E?

▶ What are the costs associated with keeping a set of pathway enzymes at a certain
level Etot?

▶ What are the benefits associated with keeping a set of pathway enzymes at a
certain level Etot?
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Cells adapt their macro-composition based on the growth conditions
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Figure: The concentration of protein (P ) as a function of the concentration of ribosomes (R)
in E. coli, which follows the line P = 3.0 · 106 − 1.6 · 104R [1].
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The R and C sections of the proteome

Figure: Schematic illustration of the growth model. Figure from [2].
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Resource balance analysis*

▶ Start with a genome-scale stoichiometric
model of a metabolic network

▶ Add reactions that describe tRNA,
transcription, translation

▶ Obtain apparent kinetic constants for all
reactions (ratio between flux and enzyme
cost)

▶ Maximize growth rate (by non-linear
optimization)

* More on this tomorrow at Anne Goelzer’s
talk on “Resource allocation models”.

Different approach

▶ Quantify only the metabolic protein
fraction cost

▶ Focus on a single pathway or flux mode
(not the entire network)

▶ Try to use all available data about every
enzyme

▶ Ask general questions about optimality
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Maximizing flux through an unbranched pathway

Consider the following linear pathway [3]:

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

where S0 and Sn are the (pre-defined) concentrations of the first substrate and last
product, Si is the (variable) concentrations of intermediate i, and Ei is the (variable)
concentration of the enzyme catalyzing reaction i.
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v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

where S0 and Sn are the (pre-defined) concentrations of the first substrate and last
product, Si is the (variable) concentrations of intermediate i, and Ei is the (variable)
concentration of the enzyme catalyzing reaction i.
We assume that each reaction follows the rate law vi = Ei · (kiSi−1 − k−iSi)

Si−1
Ei ki Si−1−−−−−−⇀↽−−−−−−
Ei k−i Si

Si (1)

* This rate law corresponds to unsaturated Michaelis-Menten kinetics, where ki = kcat/KM
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Maximizing flux through an unbranched pathway

Consider the following linear pathway [3]:
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v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

where S0 and Sn are the (pre-defined) concentrations of the first substrate and last
product, Si is the (variable) concentrations of intermediate i, and Ei is the (variable)
concentration of the enzyme catalyzing reaction i.
We assume that each reaction follows the rate law vi = Ei · (kiSi−1 − k−iSi)

Si−1
Ei ki Si−1−−−−−−⇀↽−−−−−−
Ei k−i Si

Si (1)

Finally, assume we have a fixed amount of total enzyme concentration (Etot).∑
i

Ei ≤ Etot
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▶ Constants: S0, Sn, ki, k−i, Etot

▶ Variables: vi, Ei, Si

▶ Constraints: vi = Ei · (kiSi−1 − k−iSi)
∑

iEi ≤ Etot vi = J

Blackboard
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Maximizing flux through an unbranched pathway

At steady-state, all rates must be equal to the pathway flux (J):

J = vi = Ei · (kiSi−1 − k−iSi)

Ei =
J

kiSi−1 − k−iSi
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Maximizing flux through an unbranched pathway

At steady-state, all rates must be equal to the pathway flux (J):

J = vi = Ei · (kiSi−1 − k−iSi)

Ei =
J

kiSi−1 − k−iSi

Conjecture 1:
to achieve the highest pathway flux J , the optimal enzyme allocation [4][5] is:

Optimal allocation

Êi = Etot ·
A

−1/2
i∑

iA
−1/2
i

Ai ≡ k1
k−1

· k2
k−2

· · ·
k(i−1)

k−(i−1)
· ki
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Blackboard
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Maximizing flux through an unbranched pathway

First, we solve a simplified version of the conjecture, where all ki = k−i = 1.

Conjecture 1.1: Given a pathway in steady-state with n reactions described by:

J = vi = Ei · (Si−1 − Si)∑
i

Ei ≤ Etot

flux is maximized when the enzymes are distributed uniformly along the pathway:

Êi = Etot/n
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Maximizing flux through an unbranched pathway

Proof of Conjecture 1.1:
First, we note that the constraint on Etot must be realized, otherwise we can increase
all enzyme amounts proportionally (until reaching the maximum) and thus increase J
by the same factor.
Then, we note that there is a simple relationship between two consecutive metabolites:

J = Ei · (Si−1 − Si)

Si = Si−1 − J/Ei .

Starting with Sn and iteratively substituting Si using this formula until reaching S0:

Sn = S0 − J
∑
i

E−1
i

J =
S0 − Sn∑

iE
−1
i

.
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Maximizing flux through an unbranched pathway

Proof of Conjecture 1.1:
So, we find that J is proportional to the harmonic mean of Ei:

J = (S0 − Sn) ·

(∑
i

E−1
i

)−1

(2)

and together with the fact that
∑

iEi = Etot, we can see1 that the maximum is
reached at Ei = Etot/n.
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1Exercise: prove that the harmonic mean is maximized by a uniform distribution.
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Maximizing flux through an unbranched pathway

Obviously, the assumption that ki = k−i = 1 is very oversimplified. Imagine what
would happen if:

▶ one of the enzymes was much slower (i.e. low values of ki and ki−1)?

▶ one of the reactions was thermodynamically unfavorable (k−i ≫ ki)?
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Maximizing flux through an unbranched pathway

Obviously, the assumption that ki = k−i = 1 is very oversimplified. Imagine what
would happen if:
▶ one of the enzymes was much slower (i.e. low values of ki and ki−1)?
▶ one of the reactions was thermodynamically unfavorable (k−i ≫ ki)?

Blackboard
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Maximizing flux through an unbranched pathway

Proof of Conjecture 1: We can define the following aggregate kinetic parameters:

Ai ≡ k1
k−1

· k2
k−2

· · ·
k(i−1)

k−(i−1)
· ki

Then, solving for the flux J given a set of enzyme concentrations Ei [6]:

J =

(
S0 − Sn

n∏
i=1

(k−i/ki)

)(∑
i

(AiEi)
−1

)−1

In other words, J is proportional to a weighted harmonic mean of the Eis. This
function is maximized (for a given total

∑
iEi = const) when:

Ei ∝ A
−1/2
i
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A historical overview of kinetic rate laws
Consider a reaction S −−⇀↽−− P catalyzed by
an enzyme E.

▶ 1913 - Michaelis and Menten [7] were
first to suggest a mechanism for
Victor Henri’s formula [8] for enyzme
inital rate.

▶ 1930 - Haldane [9, 10] generalized it
to reversible kinetics (and beyond
initial rates).

▶ Based on this derivation, Haldane also
found a relationship that always holds
between the kinetic parameters of the
enzyme and the equilibrium constant
of the reaction (Keq).

Cost of metabolic pathways 16/35



A historical overview of kinetic rate laws
Consider a reaction S −−⇀↽−− P catalyzed by
an enzyme E.

▶ 1913 - Michaelis and Menten [7] were
first to suggest a mechanism for
Victor Henri’s formula [8] for enyzme
inital rate.

▶ 1930 - Haldane [9, 10] generalized it
to reversible kinetics (and beyond
initial rates).

▶ Based on this derivation, Haldane also
found a relationship that always holds
between the kinetic parameters of the
enzyme and the equilibrium constant
of the reaction (Keq).

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

[S]/KM

v
/
V
m
a
x

Michaelis-Menten

Vmax
[S]

KM+[S]
Vmax
KM

[S]

Cost of metabolic pathways 16/35



A historical overview of kinetic rate laws
Consider a reaction S −−⇀↽−− P catalyzed by
an enzyme E.
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first to suggest a mechanism for
Victor Henri’s formula [8] for enyzme
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to reversible kinetics (and beyond
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▶ Based on this derivation, Haldane also
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v = [E0]
k+cat[S]/KS − k−cat[P ]/KP

1 + [S]/KS + [P ]/KP
(3)

(* for the unimolecular case)
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between the kinetic parameters of the
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of the reaction (Keq).

v = [E0]
k+cat[S]/KS − k−cat[P ]/KP

1 + [S]/KS + [P ]/KP
(3)

(* for the unimolecular case)

k+cat
k−cat

· KP

KS
= Keq (4)
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The Factorized Rate Law

Using the Haldane relationship, the Haldane rate law can be rewritten2 in the following
form [11]:

v = [E0] k
+
cat ·

(
1− e∆rG′/RT

)
· [S]/KS

1 + [S]/KS + [P ]/KP︸ ︷︷ ︸
kapp

(5)

where

∆G′
r = ∆G′◦

r +R · T · ln ([P ]/[S])

∆G′◦
r = −R · T · lnKeq

2Exercise: show that equation 5 is equivalent to standard Haldane rate law formulation.
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Using the Haldane relationship, the Haldane rate law can be rewritten2 in the following
form [11]:

v = [E0] k
+
cat ·

(
1− e∆rG′/RT

)
· [S]/KS

1 + [S]/KS + [P ]/KP︸ ︷︷ ︸
kapp

(5)

where

∆G′
r = ∆G′◦

r +R · T · ln ([P ]/[S])

∆G′◦
r = −R · T · lnKeq

Note that v = [E0]kapp is the rate law used in Resource Balance Analysis, where kapp
is a constant estimated from empirical data.

2Exercise: show that equation 5 is equivalent to standard Haldane rate law formulation.
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The Factorized Rate Law

v = [E0]k
+
cat · ηrev · ηsat

ηrev ≡ 1− e∆rG′/RT

ηsat ≡ [S]/KS

1 + [S]/KS + [P ]/KP

* ηrev and ηsat are unitless and range between (0, 1)
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The Factorized Rate Law

v = [E0]k
+
cat · ηrev · ηsat

ηrev ≡ 1− e∆rG′/RT

ηsat ≡ [S]/KS

1 + [S]/KS + [P ]/KP

* ηrev and ηsat are unitless and range between (0, 1)

▶ [E0]k
+
cat = 1 mM/s

▶ ∆rG
′◦ = 0

▶ KS = 1 mM

▶ KP = 1 mM
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Enzyme Cost Minimization

Let’s go back to our linear pathway:

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

But now, all enzymes have general kinetics
based on the factorized rate law:

vi = Ei · k+cat, i · η
rev
i · ηsati∑

i

Ei ≤ Etot

How to solve

In this case, it is not possible to ex-
press J as a function of Ei. But,
we can use the following trick: mini-
mizing

∑
iEi for a given J is equiv-

alent to maximizing J for a given∑
iEi = Etot. The only free vari-

ables will be the metabolite concen-
trations.
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Enzyme Cost Minimization

Let’s go back to our linear pathway:

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

Given a flux J find the set of metabolite
concentrations S that minimizes:∑

i

Ei =
∑
i

J

k+cat, i · ηrevi · ηsati

where ηrevi and ηsati are both functions of S.

How to solve

Solving this problem analytically is
not possible in general, but it can be
done numerically using convex opti-
mization [12].
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ECM example for a toy model
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Figure: A 3-step toy model showing the enzyme cost as a function of metabolite concentrations.

Cost of metabolic pathways 21/35



Examples using Jupyter Notebook

click here
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https://gitlab.com/principlescellphysiology/book-economic-principles-in-cell-biology/-/blob/master/summer-school-2022/lpi-slides/lectures/PAT/exercises/exercise_PAT.ipynb
https://gitlab.com/principlescellphysiology/book-economic-principles-in-cell-biology/-/blob/master/summer-school-2022/lpi-slides/lectures/PAT/exercises/exercise_PAT.ipynb


Example of two glycolyses

Figure: Metabolic network showing both types of glycolysis.
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A tale of two glycolyses
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Figure: Optimized enzyme concentrations based on ECM results. Pathway flux = 0.01mM/s,
kcat = 200s−1, KM = 200µM , enzyme MW = 40kDa
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Running ECM on a model of E. coli central metabolism

Reaction flux k+
cat KS ∆G′◦

PGI 0.39 mM/s 17.8 1/s 0.15 mM 2.5 kJ/mol
PFK 0.44 mM/s 12.5 1/s 0.07 mM -16.1 kJ/mol
FBA 0.44 mM/s 19.0 1/s 0.22 mM 21.4 kJ/mol
TPI 0.44 mM/s 967.7 1/s 8.43 mM 5.49 kJ/mol
GAP 0.92 mM/s 170.2 1/s 0.61 mM 5.23 kJ/mol

.

.

.

The data was collected from online databases such as BRENDA and eQuilibrator.
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Optimal enzyme costs can predict actual in vivo concentrations

Figure: A flux map of central metabolism (left) and the optimized enzyme concentrations
(right).

* note that enzymes with a small minimial cost (blue bar) tend to have higher thermodynamic (orange) and saturation (brown) costs.
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Optimal enzyme costs can predict actual in vivo concentrations

Figure: Comparing the optimized enzyme concentrations from ECM to a quantitative
proteomics dataset.
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Max-min Driving Force

Enzyme Cost Minimization requires full knowledge of all enzyme kinetic parameters,
but often our knowledge is limited. One approximation would be to only consider
thermodynamic constraints.
Max-min Driving Force is a method based on the argument avoiding
close-to-equilibrium reactions reduces enzyme cost (i.e. ηrev should be as high as
possible).

v = [E0] · k+cat︸︷︷︸
assume constant

·
(
1− e∆rG′/RT

)
︸ ︷︷ ︸

ηrev

· [S]/KS

1 + [S]/KS + [P ]/KP︸ ︷︷ ︸
assume ηsat=1
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ηrev
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Cost of metabolic pathways 28/35



Max-min Driving Force

For MDF analysis, we assume that costs are
inversly proportional to the thermodynamic
term in the factorized rate law.

[E0] ∝ (1− e∆rG′/RT )−1

Instead of minimizing the sum of costs (like
in Enzyme Cost Minimization), we try to
maximize the driving force (−∆rG

′/RT )
of all reactions simultaneously [11]. 0 2 4 6 8 10
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R
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Elementary Flux Modes and global optimization of enzyme cost

Final thoughts
In many cases, we don’t have only a pair of pathways to choose between. Rather, we
have a complex metabolic map with a huge number of possible steady-state flux
solutions.
We will address that scenario in the next talk, given by Meike Wortel.
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Quantifying the effects of enzyme and reactant concentration

The Haldane derivation is based on this model of catalysis:

S + E
k1−−⇀↽−−
k2

ES
k3−−⇀↽−−
k4

EP
k5−−⇀↽−−
k6

P + E
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S + E
k1−−⇀↽−−
k2

ES
k3−−⇀↽−−
k4

EP
k5−−⇀↽−−
k6

P + E

which translates to the following ODE system:

d[ES]

dt
= [E] · [S] · k1 + [EP ] · k4 − [ES] · (k2 + k3)

d[EP ]

dt
= [E] · [P ] · k6 + [ES] · k3 − [EP ] · (k4 + k5)

d[P ]

dt
= [EP ] · k5 − [E] · [P ] · k6
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Quantifying the effects of enzyme and reactant concentration

The Haldane derivation is based on this model of catalysis:

S + E
k1−−⇀↽−−
k2

ES
k3−−⇀↽−−
k4

EP
k5−−⇀↽−−
k6

P + E

which translates to the following ODE system:

d[ES]

dt
= [E] · [S] · k1 + [EP ] · k4 − [ES] · (k2 + k3)

d[EP ]

dt
= [E] · [P ] · k6 + [ES] · k3 − [EP ] · (k4 + k5)

d[P ]

dt
= [EP ] · k5 − [E] · [P ] · k6

Haldane assumed the system quickly reaches a quasi-steady-state and therefore all
time derivatives are equal to 0. In addition, the total enzyme concentration
[E0] = [E] + [EP ] + [ES] does not change over time.
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Quantifying the effects of enzyme and reactant concentration

The easiest way to solve this system of equations is by using a matrix notation:[S]k1 −(k2 + k3) k4
[P ]k6 k3 −(k4 + k5)
1 1 1

 [E]
[ES]
[EP ]

 =

 0
0

[E0]

 , (6)

where the first two rows of the matrix correspond to d[ES]
dt = 0 and d[EP ]

dt = 0, and the
last row represents conservation of total enzyme concentration (note, that the equation
d[P ]
dt = 0 is redundant and therefore not used).
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The reversible Haldane rate law
Solving3 equation 6 yields:

v = [E0]
k+cat[S]/KS − k−cat[P ]/KP

1 + [S]/KS + [P ]/KP
(7)

where:

KS =
k2k4 + k2k5 + k3k5
k1(k3 + k4 + k5)

KP =
k2k4 + k2k5 + k3k5
k6(k2 + k3 + k4)

k+cat =
k3k5

k3 + k4 + k5

k−cat =
k2k4

k2 + k3 + k4

3Exercise: solve the linear ODE system using Gaussian elimination.
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The Haldane relationship

In addition, Haldane noticed that there is a dependency between the four kinetic
parameters:

k+cat
k−cat

KP

KS
=

k1k3k5
k2k4k6

. (8)
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The Haldane relationship

In addition, Haldane noticed that there is a dependency between the four kinetic
parameters:

k+cat
k−cat

KP

KS
=

k1k3k5
k2k4k6

= Keq . (8)

According to mass-action kinetics, this fraction is equal to the equilibrium constant of
the S −−⇀↽−− P reaction.
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The Haldane relationship

In addition, Haldane noticed that there is a dependency between the four kinetic
parameters:

k+cat
k−cat

KP

KS
=

k1k3k5
k2k4k6

= Keq . (8)

According to mass-action kinetics, this fraction is equal to the equilibrium constant of
the S −−⇀↽−− P reaction.

Today, this is commonly known at the Haldande relationship. Since Keq is a physical
constant independent of the enzyme, this means that uni-uni enzyme kinetic
parameters have only three degrees of freedom (rather than four).
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