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An economist’s perspective

» What are the costs associated with keeping an enzyme at a certain level E7
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An economist’s perspective

» What are the costs associated with keeping an enzyme at a certain level E7
» What are the benefits associated with keeping an enzyme at a certain level E7

» What are the costs associated with keeping a set of pathway enzymes at a certain
level Eiot?
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An economist’s perspective

» What are the costs associated with keeping an enzyme at a certain level E7
» What are the benefits associated with keeping an enzyme at a certain level E7

» What are the costs associated with keeping a set of pathway enzymes at a certain
level Eiot?

» What are the benefits associated with keeping a set of pathway enzymes at a
certain level Eio?
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Cells adapt their macro-composition based on the growth conditions
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Figure: The concentration of protein (P) as a function of the concentration of ribosomes (R)
in E. coli, which follows the line P = 3.0-10° — 1.6 - 10*R [1].
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The R and C sections of the proteome

Ribosome synthesizing
Inactive ribosome fraction fraction
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Figure: Schematic illustration of the growth model. Figure from [2].
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Resource balance analysis*

> Start with a genome-scale stoichiometric
model of a metabolic network

» Add reactions that describe tRNA,
transcription, translation

» Obtain apparent kinetic constants for all
reactions (ratio between flux and enzyme
cost)

> Maximize growth rate (by non-linear
optimization)

* More on this tomorrow at Anne Goelzer's
talk on “Resource allocation models”.
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Resource balance analysis*

>

>

Start with a genome-scale stoichiometric
model of a metabolic network

Add reactions that describe tRNA,
transcription, translation

Obtain apparent kinetic constants for all
reactions (ratio between flux and enzyme
cost)

Maximize growth rate (by non-linear
optimization)

* More on this tomorrow at Anne Goelzer's
talk on “Resource allocation models”.

Different approach

>

Quantify only the metabolic protein
fraction cost

Focus on a single pathway or flux mode
(not the entire network)

Try to use all available data about every
enzyme

Ask general questions about optimality
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Maximizing flux through an unbranched pathway
Consider the following linear pathway [3]:

V1 Vo Vn

So S1 Sn

where Sp and S, are the (pre-defined) concentrations of the first substrate and last
product, S; is the (variable) concentrations of intermediate ¢, and E; is the (variable)
concentration of the enzyme catalyzing reaction 1.
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Maximizing flux through an unbranched pathway
Consider the following linear pathway [3]:

V1 Vo Vn

So S1 Sn

where Sp and S, are the (pre-defined) concentrations of the first substrate and last
product, S; is the (variable) concentrations of intermediate ¢, and E; is the (variable)
concentration of the enzyme catalyzing reaction 1.

We assume that each reaction follows the rate law v; = E; - (k;Si—1 — k—iS;)

E;ki Si—1
.

Si 4
¢ E;k_;S;

Si (1)

* This rate law corresponds to unsaturated Michaelis-Menten kinetics, where k; = kcar/Kas
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Maximizing flux through an unbranched pathway
Consider the following linear pathway [3]:

Vi V2 Vin

So S1 Sh

where Sy and S, are the (pre-defined) concentrations of the first substrate and last
product, S; is the (variable) concentrations of intermediate ¢, and Ej is the (variable)
concentration of the enzyme catalyzing reaction 1.

We assume that each reaction follows the rate law v; = E; - (k;Si—1 — k—iS;)

E; ki Si—1
i—1 : i (1)

E;k_;S;

Finally, assume we have a fixed amount of total enzyme concentration (Fiot).

ZEi < Eiot
%
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» Constants: Sy, Sy, ki, k—i, Erot
» Variables: v;, E;, S;
» Constraints: v; = F; - (k;Si—1 — k—_iS;) > Bi < Ero vi =J

Blackboard
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Maximizing flux through an unbranched pathway

At steady-state, all rates must be equal to the pathway flux (J):

J = vV = Ei . (k‘z‘Si_l — k_lSl)
J

o
kiSi—1 — k—iS;
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Maximizing flux through an unbranched pathway

At steady-state, all rates must be equal to the pathway flux (J):
J = V; = Ei . (k‘z‘Si_l — k_zSz)
J
E; _—
kiSi—1 — k—iS;

Conjecture 1:
to achieve the highest pathway flux .J, the optimal enzyme allocation [4][5] is:

Optimal allocation

) A-_1/2
E’L = EtOt : Z /i4_1/2
k k ki
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Blackboard
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Maximizing flux through an unbranched pathway

First, we solve a simplified version of the conjecture, where all k; = k_; = 1.

Conjecture 1.1: Given a pathway in steady-state with n reactions described by:

J = vy = Ei‘(Si_l —SZ’)

Y Ei < Pt

flux is maximized when the enzymes are distributed uniformly along the pathway:

Ei = Etot/n
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Maximizing flux through an unbranched pathway

Proof of Conjecture 1.1:

First, we note that the constraint on FEi,; must be realized, otherwise we can increase

all enzyme amounts proportionally (until reaching the maximum) and thus increase J

by the same factor.

Then, we note that there is a simple relationship between two consecutive metabolites:

J = E;- (Si—l — Si)
Si = Si-1—J/E;.

Starting with S, and iteratively substituting .S; using this formula until reaching Sp:
Sn = So—JY E;!
i

7 _ So — Sn

B
(2 7
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Maximizing flux through an unbranched pathway

Proof of Conjecture 1.1:
So, we find that J is proportional to the harmonic mean of E;:

J=(S—8 <ZE >_1 (2)

and together with the fact that ), E; = Ei, we can see! that the maximum is

reached at E; = Eiot/n. O
0.3
i oz} :
0.1} :
0

| | | |
0 02 04 06 08 1
T

!Exercise: prove that the harmonic mean is maximized by a uniform distribution.
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Maximizing flux through an unbranched pathway

Obviously, the assumption that k; = k_; = 1 is very oversimplified. Imagine what
would happen if:

- ; -
Cost of metabolic pathways 14/35 g



Maximizing flux through an unbranched pathway

Obviously, the assumption that k; = k_; = 1 is very oversimplified. Imagine what
would happen if:

» one of the enzymes was much slower (i.e. low values of k; and k;_1)?
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Maximizing flux through an unbranched pathway

Obviously, the assumption that k; = k_; = 1 is very oversimplified. Imagine what
would happen if:

» one of the enzymes was much slower (i.e. low values of k; and k;_1)?

» one of the reactions was thermodynamically unfavorable (k_; > k;)?

Blackboard
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Maximizing flux through an unbranched pathway

Proof of Conjecture 1: We can define the following aggregate kinetic parameters:

Then, solving for the flux J given a set of enzyme concentrations E; [6]:
n -1
J = (so — Sy H(k_i/ki)> (Z(A@-Ei)_1>
i=1 i

In other words, J is proportional to a weighted harmonic mean of the F;s. This
function is maximized (for a given total ), I; = const) when:

Ez' X A-_1/2
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A historical overview of kinetic rate laws

Consider a reaction S == P catalyzed by
an enzyme F.
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A historical overview of kinetic rate laws

Consider a reaction S == P catalyzed by
an enzyme F. Michaelis-Menten

» 1913 - Michaelis and Menten [7] were
first to suggest a mechanism for

Victor Henri's formula [8] for enyzme
inital rate.

v/vmax
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A historical overview of kinetic rate laws
Consider a reaction S == P catalyzed by
an enzyme F.

» 1913 - Michaelis and Menten [7] were
first to suggest a mechanism for
Victor Henri's formula [8] for enyzme

inital rate.
» 1930 - Haldane [9, 10] generalized it
. . . v = [EO] cat[ ]/KS Cat[ ]/KP (3)
to reversible kinetics (and beyond ¥ [S]/Ks + [P]/Kp
initial rates).

(* for the unimolecular case)
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A historical overview of kinetic rate laws
Consider a reaction S == P catalyzed by
an enzyme F.

» 1913 - Michaelis and Menten [7] were
first to suggest a mechanism for
Victor Henri's formula [8] for enyzme

inital rate. v = [Ey] k(—:gt[S]/KS — keat[Pl/Kp 3)
» 1930 - Haldane [9, 10] generalized it 1+ [S]/Ks + [P]/Kp
to reversible kinetics (and beyond (* for the unimolecular case)
initial rates).
» Based on this derivation, Haldane also kst . ﬁ = Keq (4)
found a relationship that always holds keaw Ks

between the kinetic parameters of the
enzyme and the equilibrium constant
of the reaction (K¢q).
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The Factorized Rate Law

Using the Haldane relationship, the Haldane rate law can be rewritten? in the following
form [11]:

T, S)/K
v =Bl e (1= e ) e e ®

Kapp

where

AG. = AGP+R-T-In([P)/[S))
AGP = —R-T InKe

2Exercise: show that equation 5 is equivalent to standard Haldane rate law formulation.
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The Factorized Rate Law

Using the Haldane relationship, the Haldane rate law can be rewritten? in the following
form [11]:

» S)/K
v =Bl e (1= e ) e e ®

~~

kapp
where
AG; = AG;°+R-T-ln([P]/[S])
AG;,O = —R-T-InKeg

Note that v = [Ep|kapp is the rate law used in Resource Balance Analysis, where k,pp
is a constant estimated from empirical data.

2Exercise: show that equation 5 is equivalent to standard Haldane rate law formulation.
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The Factorized Rate Law

v o= [Eo]k:;:t . nrev . nsat
T’rev = 11— eArG’/RT
sat [S]/KS

1+ [S]/Ks +[P]/Kp

* n' and 7** are unitless and range between (0, 1)
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The Factorized Rate Law

v = [Eo]ké;t . nrev . nsat
nrev = 1_ eATG’/RT
sat [S]/KS

1+[S]/Ks+[P]/Kp

* n'v and 7% are unitless and range between (0, 1)

2

> [Eglkly =1 mM/s L2 iz

> AGP =0 g ’

> Kg=1mM ! )

» Kp=1mM ! o
gD "% logio(is])

2
1.5
§ 2 1
= 0.5
g ! 0
T oo
2
2
1 1
logio([P]) logyo([S))
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Enzyme Cost Minimization
Let's go back to our linear pathway:

Vi V2 Vin

So S1

But now, all enzymes have general kinetics
based on the factorized rate law:

Vi

; Ez . kj;t, . nlr_'ev . nlgat
Z E; < FEio
%
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Enzyme Cost Minimization
Let's go back to our linear pathway:

Vi V2 Vin

So S1 Sp

How to solve

In this case, it is not possible to ex-
press J as a function of FE;. But,
we can use the following trick: mini-

But now, all enzymes have general kinetics
based on the factorized rate law:

v, = E;- k;‘;t’ ot mizing ), I; for a given J is equiv-

ZE < B alent to maximizing J for a given

_ B S Do > i Ei = Eit. The only free vari-
1

ables will be the metabolite concen-
trations.
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Enzyme Cost Minimization
Let's go back to our linear pathway:

Vi Vo Vn

So S1

Given a flux J find the set of metabolite
concentrations S that minimizes:

Z EZ Z + rev
7

cat i nz

sat

1

rev

where 7® and 73" are both functions of S.
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Enzyme Cost Minimization
Let's go back to our linear pathway:

Vi Vo Vn

So S1

Given a flux J find the set of metabolite
concentrations S that minimizes:

How to solve

Solving this problem analytically is
Z E; Z T not possible in general, but it can be

rev sat q 0 .
Pl AR A done numerically using convex opti-

mization [12].

where 7® and 73" are both functions of S.
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ECM example for a toy model

Enzyme demand in reaction 1 Enzyme demand in reaction 2 Enzyme demand in reaction 3
l7/a>Koq
External o
_ @ metabolite ; Enzyme demand
g 2 Infeasible
& High
Internal
@ ==
§ log [A] Ina TAT log [A]
Internal Total enzyme demand Lowerk , ; value Total enzyme demand
. metabolite |
e Upper bound on [A] Low
2
g
&
External
Y ) metabolite

Figure: A 3-step toy model showing the enzyme cost as a function of metabolite concentrations.
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Examples using Jupyter Notebook

click here



https://gitlab.com/principlescellphysiology/book-economic-principles-in-cell-biology/-/blob/master/summer-school-2022/lpi-slides/lectures/PAT/exercises/exercise_PAT.ipynb
https://gitlab.com/principlescellphysiology/book-economic-principles-in-cell-biology/-/blob/master/summer-school-2022/lpi-slides/lectures/PAT/exercises/exercise_PAT.ipynb

Example of two glycolyses

glucose
xk ATP
DP-
EMP Pathway . J., ED ,ligphway
IADPH
pgi 2wf H,0
ol
fructose-6P gluconate-6P
Fpfk -ATP *edd
*ADP K—»MIO
fructose-1,6P KDPG
foa *eda,

DHAP —“" > glyceraldehyde-3p
‘gapdh NAD", Pi

NADH<—]

lycerate-1,3P

o pak "ADP

AT

glycerate-3p
bam

2x
glycerate-2p
eno

hosphoenolpyruvate
phosphoenolpyruy

ATP-
pyruvate

idh NADH
mur__J F;

lactate

Figure: Metabolic network showing both types of glycolysis.
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A tale of two glycolyses

The EMP pathway (total = 70 uM) The ED pathway (total = 15 pM)

10 10
B capacity [M] B capacity [M]
W thermodynamic W thermodynamic
B saturation N saturation
-5 -5

210 210

=} °

=4 =4

© ©

£ £

S S

© 1078 © 107°

210 210

> >

N N

c =4

] ]

" I " I IIII I

§2} o < © a Q x o x el < 12] = ) kel © Q x o x © =
823885258288 % 823 EREEEER

Figure: Optimized enzyme concentrations based on ECM results. Pathway flux = 0.01mM/s,
keat = 20051, Ky = 200uM, enzyme MW = 40kDa
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Running ECM on a model of E. coli central metabolism

Reaction flux | kE | Kg AG'°
PGI 0.39 mM/s 17.81/s 0.15 mM 2.5 kJ/mol
PFK 0.44 mM/s 1251/s 0.07 mM -16.1 kJ/mol
FBA 0.44 mM/s 19.01/s 0.22 mM 21.4 kJ/mol
TPI 0.44 mM/s 967.7 1/s 8.43 mM 5.49 kJ/mol
GAP 0.92 mM/s 170.2 1/s 0.61 mM 5.23 kJ/mol

The data was collected from online databases such as BRENDA and eQuilibrator.
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Optimal enzyme costs can predict actual in vivo concentrations
1 ECM solution

o 3
o o o
-5
10 O
0 o 0 ¢ { measured
¢ I 9] BN capacity [M]
1070 9 W thermodynamic
EEE saturation
107
10° I
4EEEP58E55RRRR 8552855} 0030584

Figure: A flux map of central metabolism (left) and the optimized enzyme concentrations
(right).

enzyme demand [M]

* note that enzymes with a small minimial cost (blue bar) tend to have higher thermodynamic (orange) and saturation (brown) costs.

Cost of metabolic pathways
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Optimal enzyme costs can predict actual in vivo concentrations

Enzyme Concentrations

L o)
-4| RMSE =0.47 .
10 2 =054 acni CEba =
(p = 5.3e-06) acn2 fe Ko)
; gpm ,* pgk
PAIQ = Lo i
s pfkoy
3 10 ) pts 1
2 . om
8
& e O ognd
0.0 82'?690
& <
10 o osdh T
..’. Okgd
107° 107° 107

measured [M]

Figure: Comparing the optimized enzyme concentrations from ECM to a quantitative
proteomics dataset.
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Max-min Driving Force

Enzyme Cost Minimization requires full knowledge of all enzyme kinetic parameters,
but often our knowledge is limited. One approximation would be to only consider
thermodynamic constraints.

Max-min Driving Force is a method based on the argument avoiding
close-to-equilibrium reactions reduces enzyme cost (i.e. 7" should be as high as

possible).
U S]/KS
— [EJ-  k+ (1 — AG/RTY | [
vl k(e R R
assume constant 77:2” ~

assume n%t=1
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Max-min Driving Force

Enzyme Cost Minimization requires full knowledge of all enzyme kinetic parameters,
but often our knowledge is limited. One approximation would be to only consider
thermodynamic constraints.

Max-min Driving Force is a method based on the argument avoiding
close-to-equilibrium reactions reduces enzyme cost (i.e. 7" should be as high as

possible).
U S]/KS
— [EJ-  k+ (1 — AG/RTY | [
vl k(e R R
assume constant 77:2” ~

assume n%t=1
[Eg] oc (1—eAr@/RT)=
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Max-min Driving Force

10
For MDF analysis, we assume that costs are
inversly proportional to the thermodynamic 7 8 .
term in the factorized rate law. é_\ ’
[EO] x (1- eArG’/RT)—l EZ
<l® 4 |
Instead of minimizing the sum of costs (like |
in Enzyme Cost Minimization), we try to = 2 L *
maximize the driving force (—A,G’/RT) | | | |
of all reactions simultaneously [11]. 00 5 4 6 8 10

~A,G'/RT
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Elementary Flux Modes and global optimization of enzyme cost

Final thoughts
In many cases, we don’t have only a pair of pathways to choose between. Rather, we

have a complex metabolic map with a huge number of possible steady-state flux

solutions.
We will address that scenario in the next talk, given by Meike Wortel.
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Quantifying the effects of enzyme and reactant concentration
The Haldane derivation is based on this model of catalysis:

MR S mp EapyE
ko kg ke

S+E
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Quantifying the effects of enzyme and reactant concentration
The Haldane derivation is based on this model of catalysis:

S+E—ES =2 FP =2 P4+ E
ko kg ke

which translates to the following ODE system:

d[zs] = [E]-[S]- k1 + [EP] - ks — [ES] - (k2 + k3)
d[gtp] = [E]-[P]-ke+ [ES] ks — [EP]- (ks + ks)
% = [EP] ks — [E] - [P] - ke
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Quantifying the effects of enzyme and reactant concentration

The Haldane derivation is based on this model of catalysis:

S+E—-LFES = FP X£.P4E
ko ka4 ke

which translates to the following ODE system:

—d[ZS] = [E]-[S] b1 + [BP] - ks = [ES] - (ko + ks)
—d[ftp] = [E] - [P] - k¢ + [ES] - k3 — [EP] - (ka + k)
% = [EP] - ks — [E] - [P] - ko

Haldane assumed the system quickly reaches a quasi-steady-state and therefore all
time derivatives are equal to 0. In addition, the total enzyme concentration
[Eo] = [E] + [EP] + [ES] does not change over time.

Cost of metabolic pathways 32/35 :.



Quantifying the effects of enzyme and reactant concentration

The easiest way to solve this system of equations is by using a matrix notation:

[S]k1 — (ko + k3) ky [E] 0
[Plke k3 — (ks + k5) ESI = 0 |, (6)
1 1 1 [EP] [Eo]

where the first two rows of the matrix correspond to d[fts] =0 and @ =0, and the
last row represents conservation of total enzyme concentration (note, that the equation

% = 0 is redundant and therefore not used).
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The reversible Haldane rate law
Solving® equation 6 yields:

kelS)/ Ks — kel P/ Kp (7)
1+ [S]/Ks +[P]/Kp

v = [Ep]

where:
koky + koks + ksks
ki(ks + ks + ks)
koky + koks + k3ks
k‘@(k‘g + k3 + k‘4)
ksks
ks + kg4 + ks
koky
ko 4 k3 4 k4

Kg

Kp =
k::‘;t =

kcat =

3Exercise: solve the linear ODE system using Gaussian elimination.
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The Haldane relationship

In addition, Haldane noticed that there is a dependency between the four kinetic
parameters:

k& Kp _ Fkaksks (8)
ke Kg kokske '
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The Haldane relationship

In addition, Haldane noticed that there is a dependency between the four kinetic
parameters:

Ko Kp _ kikshs _ -
kear Ks kakakg s

According to mass-action kinetics, this fraction is equal to the equilibrium constant of
the S == P reaction.

Cost of metabolic pathways 35/3



The Haldane relationship

In addition, Haldane noticed that there is a dependency between the four kinetic
parameters:

kg:,t Kp  kiksks
2P = Keg . 8
ke Ks  kokaks (®)

According to mass-action kinetics, this fraction is equal to the equilibrium constant of
the S == P reaction.

Today, this is commonly known at the Haldande relationship. Since Kq is a physical
constant independent of the enzyme, this means that uni-uni enzyme kinetic
parameters have only three degrees of freedom (rather than four).
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