Economic Principles in Cell Physiology

Paris, July 4-6, 2022

Flux balance analysis

Steffen Waldherr

From metabolic networks to models

A whole-cell perspective on metabolism

Optimality principle instead of kinetics: Maximize growth subject to flux balance and uptake constraints

Restrictions for "basic" FBA:

- Fixed composition of biomass
- (Quasi-)steady state
- Metabolite concentrations fall out of the model
- Limited consideration of thermodynamics

Constraints on fluxes

1. Steady state constraint

Sv = 0

- Fluxes constrained to subspace
- 2. Irreversibility constraints on some fluxes (from thermodynamics/heuristics/empirical evidence)

 $v_i \ge 0, \qquad i \text{ irreversible}$

- Fluxes constraint to flux cone
- 3. Flux bounds from capacity constraints, maintenance, ...

 $v_{i,min} \leq v \leq v_{i,max}$

Fluxes constraint to convex polytope

Flux space \rightarrow cone \rightarrow polytope example

Construct the ...

- flux space;
- flux cone assuming v_2 , $v_3 \ge 0$;
- flux polytope assuming $v_1 \leq 0.5$.

Molar balancing:

$$\dot{x} = \begin{pmatrix} 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Flux balance analysis 6/27

Flux space from Sv = 0

Plane defined by

$$v_1 - v_2 - v_3 = 0$$

Flux cone

Flux cone

1

Add irreversibility

 $v_2, v_3 \ge 0$

Flux polytope

Add upper bound(s) $v_1 \le 0.5$ $\frac{1}{2}$ v_1 $^{-1}$ v_2 -1

 v_3

 $^{-1}$

Setting up the constraint based model (CBM)

Constraint based model useful if non-trivial steady state fluxes exist

The steady state equation

$$Sv = 0$$

should have a non-zero solution $v \Rightarrow$ non-trivial steady state flux space

• We need $\operatorname{rank} S < m$; most models have more reactions than metabolites anyway.

Metabolite / flux units

- In CBMs, metabolites are usually considered in molar amounts per dry biomass: mmol/g
- \blacktriangleright Fluxes are then in $\rm mmol/(gh)$

System and cellular exchange fluxes

$$S = \begin{pmatrix} -1 & 0 & 0 & -1 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 \end{pmatrix}$$

- Steady state on system level: Sv = 0
- "Outer" exchange fluxes for nutrients / secretions
- Convention: Outer exchange fluxes go outwards of system
- Consumption: negative flux Production: positive flux

Biomass composition

E. coli biomass composition

Compound Proportion [% g/g DV	
Protein	72
DNA	4
RNA	10
Lipids	9
Polysaccharides	2.5
Mureine	2.5

Chassagnole *et al.* 2002, via bionumbers.hms.harvard.edu, ID 108705 Varies depending on environmental conditions (nutrients, aerobic/anaerobic, growth rate, ...)

Break down to metabolites

- 20 proteinogenic amino acids
- ▶ 8 D/R nucleotides
- phospholipids
- cofactors / vitamins
- ATP hydrolysis required for biomass assembly ("growth associated maintenance" GAM)

Biomass reaction

Biomass reaction formalizes consumption of metabolites to generate biomass

$$v_{bio}: \qquad \sum_{i=1}^n c_i X_i o 1 \,\, {
m g} \,\, {
m dry} \,\, {
m biomass}$$

- Based on pre-determined constant biomass composition
- Coefficients c_i commonly in mmol / g dry biomass
- Unit of v_{bio} becomes 1/h: interpretable as dry biomass growth rate μ !

Maintenance

"Non-growth associated maintenance" (NGAM):

- membrane voltage gradients and osmolarity (ion pumps)
- movement (flagella)
- macromolecule (RNA/protein/carbohydrates) turnover
- ► Energy demand is commonly represented by a single ATP hydrolysis reaction

 v_{maint} : ATP + H₂O \rightarrow ADP + Pi + H⁺

- Put as constraint into constraint based model
 - $v_{maint} \ge \alpha \text{ [mmol / (h \cdot g \text{ biomass)]}}$
 - ▶ NGAM rate estimates: E. coli 8.4 mmol/g/h; S. cerevisiae 1.0 mmol/g/h

Optimization principle

Constraint based model

Sv = 0

$$v_{i,min} \le v_i \le v_{i,max}$$

- ▶ Underdetermined system of equalities / inequalities: flux polytope
- ▶ How do we determine fluxes v that we expect to occur in nature?

Add an optimization objective

Hypothesis: Cells regulate fluxes within constraints to achieve an "optimal" configuration from an evolutionary perspective.

$$\max J(v)$$
s.t. $Sv = 0$
 $v_{i,min} \le v_i \le v_{i,max}$

Useful objective functions

Туре	Objective $J(v)$	Principle	
Biomass yield	$\max v_{bio}$	Biomass flux at fixed max. substrate up- take	
ATP yield	$\max v_{ATP}$	ATP flux at fixed max. substrate up- take	
Minimal flux	$\min \ v\ ^2$	$\begin{array}{lll} {\sf Minimization} & {\sf of} \\ {\sf overall} & {\sf flux} & (\sim \\ {\sf enzyme} \ {\sf usage}) \end{array}$	
Biomass flux yield	$\boxed{\max v_{bio}/\ v\ ^2}$	Biomass yield per overall flux unit	

Empirical evaluation of objective functions: Schuetz, R., Kuepfer, L., & Sauer, U. (2007). Systematic evaluation of objective functions for predicting intracellular fluxes in *Escherichia coli*. Molecular Systems Biology, 3, 119.

Collections of constraint based models

BiGG Models

Home Advanced Search Data Access Memote Validator 3

Search Results

Search Database Search

Exclude multistrain models from search

Models

(0) (0) 1 to 108 (100) (0) (0)						
BIGG ID e	Organism	e Motabolites	Reactions	e Genes e		
e_col_core	Escherichia coli str. K-12 substr. MG1655	n	95	137		
IAB_RBC_283	Homo sapiens	342	460	346		
iAF1260	Escharichia coli str. K-12 substr. MG1655	1668	2362	1261		
iAF12606	Escharichia coli str. K-12 substr. MG1655	1668	2368	1261		
WE032	Methanosarcina barkeri str. Fusaro	628	650	692		
WE087	Geobacter metallireducens GS-15	1109	1205	987		
IAM_P5448	Plasmodium berghei	903	1067	448		
IAM_Po455	Plasmodium cynomolgi strain B	907	1074	455		
WW_P9480	Plasmodium faloiparum 307	909	1063	490		
WM_PM459	Plasmodium knowlesi strain H	909	1079	459		
WM_P461	Plasmodium vivax Sal-1	909	1078	461		
IAPECO1_1312	Escherichia coll APEC O1	1942	2735	1313		
IAT_PLT_636	Homo sapiens	738	1008	636		
IB21_1397	Escherichia coli BL21(DE3)	1943	2741	1337		
IRW0 1329	Fachasizhia rell RW2852	1940	2741	1329		

BiGG models database: http://bigg.ucsd.edu/models

Linear programs

A linear program in standard form:

Example

$$\max_{v_1, v_2} v_2$$

s.t. $v_1 + v_2 = 1$
 $v \ge 0$

Thus:

$$c^{\mathrm{T}} = \begin{pmatrix} 0 & 1 \end{pmatrix}$$
$$A = \begin{pmatrix} 1 & 1 \end{pmatrix}$$
$$b = 1$$

Generalized geometrical interpretation

Non-uniqueness of optimal solutions

Set of optimal solutions is a face of the polytope

Unboundedness

Unboundedness: $\max c^{\mathrm{T}}v = \infty$

Infeasibility: Constraint set is empty

Example

$$v_1 + v_2 \le -1$$
$$v_1, v_2 \ge 0$$

Flux balance analysis (FBA)

FBA to maximize biomass yield as LP

 $J^* = \max v_{bio}$ s.t. Sv = 0 $v_{i,min} \le v_i \le v_{i,max}$

► Typical relevant constraint is glucose / oxygen uptake rate

$$-v_{e,gluc,max} \le v_{e,gluc} \le 0$$

- ▶ For practical reasons $v_{i,max} = M$ (10⁶ mole/h/g) even if no capacity constraint
- \blacktriangleright Typically no unique optimal flux distribution v^{\ast}

FBA example: E. coli core

- ► Core carbon network from BiGG database: 72 metabolites, 95 reactions
- Network visualization from https://escher.github.io/

Flux variability analysis (FVA)

What are maximum / minimum fluxes achievable within an "optimal" flux distribution?

1. Compute objective for optimal flux distribution

$$J^* = \arg \max c^{\mathrm{T}} v$$
s.t. ...

2. Put objective as constraint and optimize individual fluxes

$$ar{v}_j = rg \max / \min v_j$$

s.t. $Sv = 0$
 $v_{i,min} \le v_i \le v_{i,max}$
 $c^{\mathrm{T}}v \ge (1 - \varepsilon)J^*$

Product yield vs. biomass yield

 \blacktriangleright Extracellular biochemical product $\mathrm{P}_{\mathrm{e}},$ with exchange reaction

 $v_{prod}: \mathbf{P_e} \longrightarrow$

$\bar{}$ Minimize / maximize v_{prod} at fixed biomass flux $ar{v}_{bio}$

 $\begin{array}{l} \max \ \pm v_{prod} \\ \text{s.t.} \ Sv = 0 \\ v_{i,min} \leq v_i \leq v_{i,max} \\ v_{bio} = \bar{v}_{bio} \end{array}$

Production envelopes

- 1. Fix growth rate (v_{bio}) at different values
- 2. Compute maximum / minimum for product flux for each growth rate by FVA

Outlook: extensions of FBA

- Dynamic FBA
- Thermodynamic FBA
- Resource allocation models:
 - ME models
 - Resource balance analysis
 - Dynamic enzyme-cost FBA

Exercise this afternoon

Run FBA on the carbon core model (Jupyter notebook \rightarrow Google Colaboratory)

