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Cell metabolism is dynamical

Weather - dynamic Populations - dynamic
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T See figure from
R Frenkel R, et al

e \ showing oscillations
£ 1 (sum ) of various metabolites
e » Coat in beef extract
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Wikipedia; “Ke p»|»éi""s: law

of planetary motion”

Metabolite
concentrations - dynamic

Frenkel R, Arch Biochem Biophy 125 (1968)
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Calculus and dynamical systems theory

differentiation

d
y=f0)=x2 S ) =2 =
integration dx
Function f(x) gives the relation Derivative f(x) gives the relation
between two variables between small changes in variables
Know this and you can calculate the value of Know this and you can trace how one variable would
one variable given another! change given some changes in another variable!

y 4'4'
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Time derivatives allow ‘predicting’ the future

Consider we had a derivative where
the independent variable is time and
the dependent variable was a physical
entity...

By ‘tracing’ the derivative, we could
see how that entity changes over time!

dx
T =x/(b+ x)

Derivative f(x) gives the relation

between small changes in variables

¥

Know this and you can trace how one variable would
change given some changes in another variable!

XLLIA
»
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Ordinary differential equations (ODEs)

System of interest n-dimensional system of ODEs

]

Linear: All the x on the right side  Nonlinear: The right hand side
appear to the first power only contains products or higher powers of x
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My first ODE ‘model’ — population dynamics

A model of a mice population:

o
o R dN
('d;) Qﬁ:' _=T'N — NtzNO.er't

Change in variable N — A process — mating? - that increases

the population size of N and that has a value dependent on

mice - with respect to time the N at a given time.... more mice
should make it easier to find a mate!

Is this a good model?
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A more ‘realistic’ ODE model for population dynamics

A ‘better’ model of a mice population:

Paer
L dt ~ r-N-= K integration Ol SO easy::
/ lCan we use ‘tracing’ ??
A new process — death? - that X |
decreases N and that has a value
dependent on the N at a given time....

more mice make it harder to find food!
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Time tracing — a.k.a. ‘numerical integration’

A ‘better’ model of a mice population:

&S
L= an r-N?
e Ly —— =T N-—— —p N0t SO easy!!!

r. N2 Keep iterating
) at — P Xpiqr =X T f(Xy) - dt

Dynamics of Cell Metabolism — Orkun S Soyer, Slide 9 %8




Time tracing — a.k.a. ‘numerical integration’

No+at = No +dN

Nosar = No+N . a¢ ¢
o+dt — Y0 dt ,
- N, =
N0+dt =N0+<T'N0—r 0>'dt NO 135

K Steady state!!!

Keep iterating. Computers are

good at this! N No I

o Regardless of N,, the mice
Try this in MATLAB or R S _ - | population always grows
N towards a fixed value!
™ Ny =1

0 20 40 60 80 100
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Steady state

At long time, the population stabilised
at a fixed value. There seems to be
no change in N with time!

dN

T -
dt 0

dN r-N?
- N

. N2
TN—r-N — s | N=K

The situation, where the differential

equation is 0, is known as the steady state.
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Interim summary
System of interest : — integrate | |
Interactions, processes... Modelling ODTS \‘_’ Functional relation

# Great Horned

Numerical  Steady state dx _ 0

integration  analysis dt

! 1

Parameter ‘sweeping’  Stability analysis

Field Mouse Rabbit
A ] ,
\ fl 15' "I‘{Mt{MJ Grasshopper Blueberry
: ‘\l;'{'ng’fj’l i BBush
Girass
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Chemical reactions and thermodynamics

A generic reversible chemical reaction....

ViA+vgB=v.C+vpD

‘reactants’ ‘products’ e

..... under constant temperature and pressure:

AGC = AGO+R-T-1 <[C]VC [D]"D> Sometimes AG is given as A,.,,G.
o . - In

The subscript, e.g AG? , refers to
VA VB ’ )
[A] [B ] standard states (chemicals at 1M). To
refer to biochemical standard conditions,

AG® = AG°(C) + AG° (D) — (AG°(A) + AG°(B)) i.e. all at 1M, but pH=7, use; AG®'
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Law of Mass Action

Internal
energy

AG <0

VAA + VBB = Vcc + VDD

AG = 0!

AG >0

Y

> £ Reaction advancement

AG=0=AG°+R -T-In ([C]\ezi[D]sg>
[A] a[Bl.
Law of mass action
o _R.T.ln<[C]Zg[D123> Ao [C]VE[D]MP
[A]\e)A[B]\e)B - . _ eq eq =
A[BIE ) | R [A]A[B] "
—AGO _ ln([C]ZZ[D]\e}éI))
R - [14]\;'211 [B]ZE
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Law of Mass Action — A process (rate) based view

AG <0 VAA+VBB\_—\V6C+VDD AG >0
Internal /
energy a6 = Og
- , &
Reaction proceeds Reaction at Reaction proceeds
forwards steady state backwards
Forward reaction rate: k. [A]YA[B]'B Backward reaction rate: k_[C]V¢[D]'D

Law of mass action
Ve VD A0
Atequiliorium: ke, [A]"4[B]7 = k_[C]'¢[D]"> mmmm |ke = ClelPled _ g o

Vv Vv -
k- [Al41Bl.s 1

The rate of a chemical reaction is proportional to the probability of
collision of the reactants, which is in turn proportional to the
concentration of reactants to the power of their stoichiometry.
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Mass action model

Ky
V4A +vgB=v.C+ vpD
k_

. . . alA]l _ Vg Vg \Zs Vp .
Ordinary differential o = — ki [A]A[B]YE+ k_[C]Y¢[D] e
equations (ODEs) for

3 ( ) J =29 = Kk, [A]*A[B]VE — k_[C]¥c[D]¥

this ‘system’: dt

Remember that, according to thermodynamics, k., Ky lCle§pleg
and k_ are related. We can not choose them freely! k- [al;4(B1,Z — ¢4

Reversible mass action model || = k, [A]YA[B]'B — I’{‘_+ [C]V¢[D]¥P
eq
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Interim summary

A generic chemical reaction model:

_ dlc] _ valR1vE
J = g ki [A]VA[B]

Irreversible mass action model

Inconsistent with thermodynamics, but
might be fine for far from equilibrium
reactions.

Net flux not zero at equilibrium.

Flux only depends on substrates’
concentrations.

k4
V4A +vgB=v-C+vpD
k_
J =% = kalAIMA[B]' — L [C]e[D]?

Reversible mass action model

« Consistent with thermodynamics.

» Net flux reaches zero at equilibrium.

* Flux is a function of both substrates’ and
products’ concentrations
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Biochemical reactions are enzymatic

KA N
¢\ /
V4
Internal /

energy

Reaction
» ¢ advancement

Accounting for enzyme activity (function):

Enzyme-Ser Substrate Tetrahedral transition state Acyl-enzyme intermediate
RA
peptide R
- % sRA \RA K’ released !
2 N Rt 8 E-JGHIEO Ry
%, ? lﬁ
Base Base Base
(His) (His) (His)
Substrate(s) and ‘free’ enzyme Substrate(s) ‘bound’ on enzyme  Products(s) and free enzyme
E+S<=ES ES=E+P
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Enzymatic reaction dynamics — modelllng strategy

Subs rahedral tr n state Acyl-enzyme intermediate
R R peptide Rg
% ‘_A \/ o 7~ released
”%% E—CH,—0 RB% E-JCHESD" e
8 !

(HIS] (His) (His)

1. Create ‘cartoon’ model of enzyme ‘mechanism’:

2. Convert mechanism into elementary (bio)chemical reactions: eg E +S=ES

3. Write ODEs by assuming law of mass action: eg.  dlSI _ _ p re|g)+ k_[ES]

4. Make further assumptions to create simplifications:
y Hmp P eg.  [E]+ [ES] = const.

_ . . . ki ks k
| h lied t hemical r 37
Outlined approach can be applied to any biochemica E4 SoES—EP—F + P

reaction scheme, no matter how complex! e.g.
ko ki ke
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Enzymatic reaction dynamics — example

1. Enzyme with single binding site and substrate ks ks ks
_ _ _ E+ S=ES ES=EP EP=E + P
2. Elementary (bio)chemical reactions: k_ k., ke
3. Make assumptions: ke = 0; k3, k4 very large —» ES = EP instantenous
. . k+
4. New reaction scheme: E+4 S=ES ps et b L p
k_
5. Write ODEs by assuming
- d[S] d[P
law of mass action: Wl g, [S)[E] + k_[ES) % — ko [ES]
d[ES]
7 = K+[SIE] = k- [ES] = kcac[ES]
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Enzymatic reaction dynamics — example

6. Make further assumptions: ki ko > ke ki Koat
E1+ [ES] = const. = E, E + S];—_ES ES—E+P
Quasi steady state assumption: | ¢LES]
dt
Model d|ES] kiEo[S]
———— =0 = k,[S|(Ey — [ES]) — k_[ES] — keqt[ES] [ES] =
reduction 7t +[S1(Eo — [ES]) [ES] ([ES] |ES] ST+ ks

dlP] _ kearEo[S] dP] _; _ Vmax [S]
dt [S]+ (k_+k.qt) /K4 dt [S] + K,
Irreversible Michaelis — Menten model for

the reaction flux of an enzymatic reaction!
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A reversible model of enzymatic reaction dynamics

1. Enzyme with single binding site and
substrate

2. Elementary (bio)chemical reactions:
3. Make assumptions:

Try this derivation!

E+ S=ES
ks

ES=EP
Ky

EP=E + P
Ke

d[ES] _d[EP]

dt dt
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A reversible model of enzymatic reaction dynamics

+ |S - [P
e % ks kcat[ ]/Ks_kcat[ ]/Kp
E+ S=ES ES=EP EP=E +P ] = |Eo] S
k> ks ke 1+ /KS+ /Kp
+ ksks . _ koky Kokatkoks+ksks, , _ Kpkat+Koks+ksks
Kear = Kear = =

katkatks' €A T kotkatky S kq(kstkatks) ' P T ke(kptkstky)

Haldane relation

kaat - Kp _ kiksks _ ([P])
kear * Ks  kokuks 1517,

cat

At [Ep] - k:at . [S]/KS B [Eol * kcar - [P]/KP
Equilibrium: 51/, Pl 1 Bl PPl

= Keq

»

As expected from principle of equilibrium: Lewis, G.N. PNAS 11:3, 1925
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A reversible model of enzymatic reaction dynamics

E+ S=ES ES=EP EP=E+P
k k4 kg

¢

[5]/
] = [Eo] ’k;rat< Ks

1+ [S]/KS +

[ < Keq

Internal
energy

-

s
Keq

=K,

eq

Keq

AG

] . [E ] kz‘-at[S]/KS_kC_at[P]/Kp
— 0
1+[S]/KS+[P]/KP
) F
> ] =Vmax k- (1——)
['> Keq ]=vmax-ic-(1—eﬁ
> ¢ Noor et al. 2013

Reaction advancement
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Interim summary

Irreversible enzymatic model Reversible enzymatic model
°5
ky . kg k3  EP2E+P
E4+ S=ES pseatp L p E+ S2ES ES2EP k.
k k2 Ky
S
[S] ] | ]/ K; I
J = Vmax (—) = Umax * [s] [P] *(1--)
[S]+ K 1+ /KS + /KP Keq
< — (a) Driving Force [kJ/mol]
B
10 V+ 1.0
= . 8r ,7 {08
o 2t e s |

Concentration of S [M]

[S1(umol)
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Modelling metabolic systems

Toy models mimicking aspects of metabolism

Re-occurring motifs and their dynamics

Partial, but detailed, models of specific pathways

Large-scale models with much coverage as possible

“All models are wrong, some are useful”

attributed to a 1976 paper by George Box (statistician)
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Toy model of (upper) glycolysis
) Model without feedback with ‘Trehalose’ feedback

/—@—>
Tre 6-P Glc ATP [Glc] [ATP]
m , Umax,HK * [ ]/KGZC : [ ]/KATP " _ VUmax,HK * /KGlc /KATP
-ps P~ HMP HK = HK —
[Glc] , [ATP] ( [Glc] _ [HMPT? / ) [ATP]
AP (1 + /KGZC) (1 T /KATP) 1 + /KGl 1 + /KATP)

ADP

Fru 1,6-P,
4 ADP

See Figures from van Heerden JD et al showing model behavior with metabolite
FATP accumulation and not.

2 EtOH

HMP and Fru accumulate without bound! All metabolites reach steady state
Teusink. B. et al. Trends Biochem Sci. 23:5, (1998)
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Co-substrate cycling motif — a simpler model

) d[M,] _ K Umax * [Mo]
n Kout - tin
e My ey e dt K + [My]
M,] = kin - K M, accumulates
0 Vmax — Kin g towards Inflnlty as kin
approaches V.,
Y\
ATP  ADP d[M,] Umax * [Mo] - [ATP] ‘
kin ut B m - )
e N e ar K+ [Mo] - [ATP]
kin * K * (k5 + k6)
C = [ATP] + [ADP] Mol = (€ ke — kun) - (e — )

West, R. and Delattre. H. et al. unpublished results
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Autocatalytic cycling motif

pep + gluc — 2 pep + pyr

flux

flux

Barenholz. U. et al. eLife 6 (2017)

fa A+ X —2X

stable zero steady state

[X]

unstable non-zero
steady state

[X]

----I1 4

flux

stable non-zero
steady state

[X]

no stable steady state

—

\

[X]
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Metabolic motifs suggest constraints on metabolic fluxes

i ATP . f\ fa A+ X —2X
AT.P ADP .
Tpsipl- HMP kin ut
ATP = === Mo M M1 I'<°—> X
{ \fﬁ
Different models, same insight: Avoiding metabolite
accumulation requires balance of fluxes (i.e. enzyme
capabilities)

The ability to provide a certain insight, does not necessarily require a complex
model. It is a useful exercise, to ‘strip’ a model of complexity to see what elements
of it lead to a specific phenomenon
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A cycle model with feedback

Intersections are the steady
states of the system!

Allosteric regulation in cycles

E, &y
T L u,
— S P e
¢ o £ ption
E2 A ;
o _ I Production N
: Vi-[S] _ Vp(c=ISD = R
At steady state: ST = e+ a (S = [SD —
Ky+[S1+ /K3 0O 20 40 60 80 100
P production P consumption [S](umol)

Hervagault JF., Cimino A. J. Theor. Biol. 140 (1989)

%9
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Bistability! — in a cycle model with feedback

F, P F 4P
A real example
%< Phosphofructokinase
of
ATP ADP

Pyruvate Kinase PR

PYR PEP

Nonlinear P production function is Vi - 1S]
essential for bistability, i.e. existence [S] + [5]2/

1 K
of three steady states! 3

0 20 40 60 80 100

[S](umol)
What could be the biochemical basis of

. - Hervagault JF., Cimino A. J. Theor. Biol. 140 (1989)
nonlinearity?
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Bistability! — from multi-site enzyme structure

E,
& = B %
— S c > P >
a ESi1.2
N A
E12 3 complexes
Qo,1 a11,2]
— Co,1 - €1,[1,2]
bo,1 b1 [1,2]
[Stod = [5] + [ES] + [SE] + 2[SES] + [P] a2 @ (121
c c
(Ewod = [E] + [ES] + [SE] + [SES] E4+SSSE-SE+P SE+S S SESMsp4p
by » by [1,2]

Hayes. C. et al. ACS Syn Bio (2021)
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Bistability! — from multi-site enzyme structure

N A €
£
206
1.2 0.4
4 .
11\ P production flux - 0.2 P production flux
08l (total) . 1. JPconsumption flux
= 0 2 4 6 8
E Ssum[mM]
=
| «—— Nonlinear production flux arises from
dynamics of substrate-enzyme complexes
P production — ,
flux (E12) 00 5 ; : ; P production flux
Ssum[mM] (E1 and E2)
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Bistability! — from multi-site enzyme structure

P production flux (total)

E 1571
_ arh
£ - g — P @, 11
S a A

P production flux]

P production
flux (E12)

(E1 and E2)

Low E12 catalysis : High E12 catalysis:

E12 0.5+
. . J e
0 : : - : 0 : : : ===
0 2 4 6 8 0 20 40 60 80 100 120
Ssum[mM] Ssum[mM]

Bistable dynamics Monostable dynamics

Same conclusion as from ‘substrate inhibition’ model
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Rich dynamics from simple models

Similar, cyclic motif as before, but with two allosteric regulation points:

v E
—ISO (I) o.-Ketoglutarate( oK) L»

N

IDH

See Figure from Guidi,

GM et al showing See Figure from Guidi,
oscillatory behavior AV ~GM et al showing
from this model NADP*(S) ——~ \\NADPH ®) blstable_behawor from
this model
\ DIA /
High v gives rise to Low v gives rise to bistability

oscillations

Guidi G.M., Goldbeter A. Biophy. Chem. 72 (1998)
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Dynamical models and parameters

108—10“4M
Enzyme levels
E;
<~ T Fluxes | 102-10'(M - min)"
a—* S P—s
Cll \_E/ TCK Enzyme kinetic Vinax * [5]
2 parameters K, + [S]

Substrate levels CAUTION: Mostly based on in vitro enzymology!

10%-102M
Kear: 10— 107 (min)-! Binding/unbinding
10’=10"9(M - min)-*
K.,.10%-102M 102 — 106 (min)-"
BRENDA database: www.brenda-enzymes.org
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Dynamical models and experiments

A model is something no one believes except the creator of the
model, while an experiment is something everyone believes
except the experimenter

quote attributed to A. Einstein
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Dynamical models and experiments

Stationary phase

Exponential
phase

> time
Uptake:
13C or other isotopes

Internal metabolites:
* Fluorescent microscopy + Media Media and

fluorescent reporters inflow cell outflow, d dN
« Cell lysis + mass spec or E=T-N—d-N

chemical detection -
N
Output: k =0 | r=d

—— . . dt
Filtration + mass spec or chemical detection Chemostat
‘Online’ detection, e.g. gases, pH, etc.
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Dynamical observations — flux changes

Substrate

Shift between fermentation and (sugars)

respiration and respiro-fermentation in
yeast, bacteria, and mammalian cells.

U=0Qr— 20, __ Fermentation
® " (internal NAD+/NADH “neutrality”)
All the tumours grafted o
intraperitoneally show a '\‘
carbohydrate metabolism Respiration ®
conforming to that found by (02)
Warburg. A positive U, or excess ‘ ,
fermentation, is a common contre-effect Pasteur
(“Crabtree effect”)
property.
Crabtree H. G. Biochem. J., 23 (1929) De Deken R. J. Gen. Microbiol., 44 (1966)
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Dynamical observations — flux changes

M9 with 1gr/1l Glucose (~5mM)

_ Media Media and
See Figure 3 from inflow cell outflow, d  dN
Nanchen, A et al —=r-N—d-N
showing measured dt
glucose consumption / — dN
acetate production in — =0 r=d
chemostats dt
Chemostat

Nanchen A. et al. Appl Environ Microbiol, 72:2 (2006)

%9
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Dynamical observations — heterogeneity (bistability?)

~2500 cells observed,
while fed with fluorescent
glucose analog 2NBDG:

DynamiCS of / See Figure from

LT Simsek E et al
individual cells

- showing glucose
metabolising NBDG consumption behavior

of individual cells

Dynamics of
individual cells not —
metabolising NBDG

Simsek E. & Kim M., ISME J. 12:5 (2018)
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Dynamical observations — oscillations

Yeast cells in a chemostat with pH

control. Dilution rate was maintained
at 0.085 h-1.

See Figure from

. : oy Keulers M et al
After reaching sustained oscillation, showing oscillatory

chemostat was switched to an behavior of glucose

ethanol-based medium (15 gL' ~ Consumpt'F’”t?”d_
: : : oxygen respiration in

300mM). The population is seemingly A i

synchronised under these

conditions!

Keulers, M., et al. FEMS Mirobiol. Lett., 142 (1996)
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Dynamical observations — oscillations

|—> Truncated list....oscillations observed for most metabolites!

[ h
See Figure from Murray D et al Reductive phase

showing oscillatory behavior of glucose l\
consumption, oxygen respiration, and
various metabolite concentrations in NADH NAD+

yeast populations \r

Oxidative phase

Murray, D., et al. PNAS, 104:7 (2007)
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Metabolic systems are capable of rich dynamics, including bistability, oscillations,
and hetereogenity.

These dynamic features are ‘expressed’ under some conditions and can determine
cell physiology and higher level functions (e.g. dormancy).

ODE models and assumptions can give us insights independent of experimental
data or explain specific experimental dynamics.

Multiple models can result in same behaviors and is not always possible to
distinguish or disentangle these alternative explanations from each other.

The condition dependency of metabolic behaviors makes it important that each
experimental finding is considered in the context of the experimental setup used.
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Additional reading and resources

Core reading:

* Ch. 1in “Nonlinear Dynamics and Chaos with Applications to ...”, Strogatz, S. Perseus Books (1994)

* Ch. 1-3in “Calculus Made Easy”, Thompson, S. P. The Macmillan Company (1910)

+ Ch. 2 and 3 in “Mathematical Modelling in Systems Biology: An Introduction”, Ingalls, B. at:
https://www.math.uwaterloo.ca/~bingalls/MMSB/Notes.pdf

Recommended reading:
* Ch. 2 and 3 in “Principles and Problems in Physical Chemistry for Biochemists”, Price N. C., et. al. Oxford U. Press
« Ch. 3 and 4 in “Structure and mechanism in protein science” by Fersht, A. Freeman and Company

Optional, but fun reading:

+  “Textbook errors: IX. More about the laws of reaction rates and of equilibrium”, Guggenheim, E.A., J Chem Educ 33:11 (1956)
*  “A new principle of equilibrium”, Lewis G. N., PNAS 11:3 (1925).

*  “On the validity of the steady state assumption of enzyme kinetics”, Segel. L. A. Bull Math Bio 50: 6 (1988)

*  “A note on the kinetics of enzyme action”. Noor E. Flamholz, A., et al. FEBS Lett 587:17 (2013)

*  Further chapters in Thompson’s and Strogatz’s books.

*  “The growth of bacterial cultures” by Jacques Monod (Nobel laureate, 1965).

Optional resources:

Mathematical systems biology models: htip://www.ebi.ac.uk/biomodels-main/
BRENDA database: www.brenda-enzymes.org

Database for models and experimental data: https://datanator.info
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Questions & Exercises?

What is a function? Plot the following function and consider how y and x relate to each other:

Explain the meaning of the derivative and slope.

Develop an ODE model for the concentration of a protein, considering only its translation from mRNA and its
degradation by proteases

What is the formula for K,,? What does K., stand for, i.e what does it mean?

Can you state the ‘rate based’ formulation of the law of mass action? Can you explain what a ‘rate
coefficient’ is in the context of law of mass action?

Write the ODEs for the following reactions based on reversible (irreversible) mass action models:

Where does the following equation come from? A+B=D
(the question is not to answer, but to encourage you to read more 2A+B=0D
into thermodynamics — see 15t slide) [ C]"C[D]"D)

[A]Va[B]B

AG=AG0+R-T-ln(
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Questions & Exercises?

What is the formula for Haldane relation? What does it stand for, i.e what does it mean?

Can you explain the assumptions made for obtaining this rate equation?

Write the reversible rate equation the following enzymatic reaction. A+B=C

Work out a model for a single substrate reaction mediated by an enzyme with two binding sites.

What is the ‘principle of equilibrium’?

(don’t have to answer for this module, but you are encouraged to take a look at the highly recommended
Lewis paper!)

Can you develop a model to explain the observed oscillations in NAD(P)H?

Dynamics of Cell Metabolism — Orkun S Soyer, Slide 48 %8



Additional slides
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Calculus and dynamical systems theory

“What one fool can do, another can.”
Ancient Simian(!) Proverb introduced by Silvanus Thompson

Function is a mathematical expression that states a relation between physical entities
that can change, e.g. length and height of a triangle, position of a car, weight of a
body. In other words, a function defines the relation between variables:

y=f(x)
yl\
a
X

y = x - tan(a)
/ Constant
Dependent Independent
variable .
variable

Dynamics of Cell Metabolism — Orkun S Soyer, Slide 50



Calculus and dynamical systems theory

The derivative of a function simply provides the relation between a small change in
one variable with regards to a small change in another. In other words, a derivative
defines the relation between changes in variables:

Function f(x) Derivative of f(x): f(x)

y=f(x)=x2 > f’(x)=%=2x

/ t The derivative is
dy = (x + dx)? — x? y also known as

) . Assume f(X) the slope of the
dy = x° + 2xdx + dx* — x 2x —dx =~ 2x line segment that

is tangent to f(x)

The derivative is always an J dy at point x.
dy = dx(2x — dx) approximation! The smaller the dx

step size, the more accurate

dy = 2xdx + dx?
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Derivative (i.e. differential equation) models

We can ‘construct’ differential equations, using time as
an independent variable, for a system of multiple
variables that all depend on time.

The ‘construction’ of derivatives should take into account
processes that affect the variables!

An example: & 4y ?? Can you guess how the
function tvs. x would look like ??

Change in A process that A process that
variable x with  increases x and decreases x and that
respect to time that has a has a value dependent
constant value on the value of x at a
with respect to x given time
and time
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A caution about the derivative
and the numerical integration

Function Derivative of f(x): f(x)
f(x
An example and a -(y—i FQ) = 2 £100) _dy_
visual help: \ dx
dy = dx(2x — dx) ﬁne
2x —dx =
60 Plot of Ny = Ny - e X

is assumption? It can,
and will always, cause inaccuracies
in numerical integration.

Numerical integration offl—lz =r-N.
Using Euler or method.
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Chemical reactions and thermodynamics

r f

Internal \/
energy
' Reaction

» ¢ advancement

VaqA+vgB=v.C+vpD

The position of the reaction along axis ¢ is usually denoted as
the mass action ratio I';

£

I'is a point in the [A]x[B]x[C]x[D] space
instead of a point on the ¢ line

[C]e[D]"?
[A]A[B]

AG = AGO +R-T- ln([C]VC[D]VD> l" —

[A4[B] B

AG =AG°+R-T-In(l)
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A note about assumptions

Assumptions are usually made to achieve simpler models that are easier
to understand.

Assumptions should rely on some actual physical or biochemical
conditions. Hence, they have a direct relation to reality!

ki ks
E+S<=ES<=E+P
k. k.,
[EY+ [ES] = Eo Reaction dynamics faster than gene expression dynamics
Irreversibility of step 1 or 2: k_1=0k_,=0
ok Keat Instantaneous equilibrium of step 1: ki, k_q > ks
diEs] _ Quasi Steady State of ES: [Eo] < [So] + K’

dt
Segel. L. A. 1988. 10.1016/S0092-8240(88)80057-0
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Reversible models and flux-force relation

k+ kl k3 k5
E+ S=ES ES=EP EP=E+ P
V4A +vgB=v-C+vpD ks ke ke
k_
[5]/
J = k. [A]YA[B]'B _E[C]"C[D]VD ] = Viax ( [5] KS[P] ) - (1 —_F)
Keq 1+ /KS + /KP eq

| |

AG AG
J =] =) =Jo(1 - em) J =] =) =Jo(1 - em)

[Eol - kae - S/

1+ [S]/Ks + [P]/Kp

J+ = k. [A]Y4[B]'B

J+ =

AG
- _ L _ &

J+  Keq

Flux-Force relation
D. A. Beard and H. Qian, PLoS One 2007 Vol. 2:1
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Paradox of Crabtree effect?

Crabtree positive yeast Crabtree negative
| yeast

; 200 ~ 1
3

-
w
o

100

8

w
o

Fermentation (u1. CO,/107 organisms)
wv
(=]

Fermentation (ul. CO,/107 organisms

1 ]
10 20 30 10 ‘ ' 20
Time (min.) Time (min.)

o

Adaptation to a fermentative metabolism needs to —
happen in Crabtree negative yeast, but not in | This is a paradox! Full

crabtree positive yeast (unless it is fully enforced). respiration of glucose can
P yeast ( y ) generate about 20 ATP, while

fermentation can generate 4.
Why aren’t all yeast simply
Crabtree negative?

On the converse, crabtree positive yeast always
seems to use fermentative metabolism, even under
conditions where respiration should be perfectly fine.
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Biochemical basis of oscillations?

Re-cap from lecture 7. Other models of
oscillation also exists, e.g.

Wolf J., Heinrich R. Biochem. J. 345 (2000)

Similar, cyclic motif as before, but with two
allosteric regulation points:

v E
— IS0 (I) o-Ketoglutarate( oK) —m

IDH

Ay

/
NADP*(S) - —~ ~=NADPH (P)

e
AN

-
N

DIA

Guidi G.M., Goldbeter A. Biophy. Chem. 72 (1998)
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Oscillations: cells breathing in and out

Metabolic oscillations in single cells are separate from, but
coupled with, cell cycle oscillations.

See Figure from Papagiannakis A et al showing oscillatory behavior oxygen respiration

and NAD(P)H, as well as cell cycle markers in yeast populations

Papagiannakis, A., et al. Mol Cell, 65:2
(2017)

Yeast cells were grown on high glucose (10 gL' ~ 50mM). Single cell analysis in the absence of
synchronization.

Cells incubated in a microfluidic device. Possible caveats: Oscillations induced by microfluidic
pumps? Imaging of NAD(P)H causing cell damage?
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Metabolic bistability?

o Model without Model with
{ ) trehalose feedback ‘Trehalose’ feedback
i L . See Figures from van Heerden JD et al
e showing model behavior with
metabolite accumulation and not, and
anTP also growth of different mutants

2 EtOH

Presence of an imbalanced state is
observed in yeast trehalose

mUtantS van Heerden J.D. et al., Science 343:6174 (2014)

Dynamics of Cell Metabolism — Orkun S Soyer, Slide 60 a




Metabolic bistability?

While several modelling and experimental papers indicate potential for bistability in
metabolic systems, clear experimental evidence for bistability is currently lacking.
Bistability is observed, however, in enzymatic re-constitution experiments in vitro:

PK

PYR PEP

F P E P [ATP]tot =
3mM One

Steady State See Figure from Cimino A et al
showing bistability behavior from

different starting points (initial
concentrations)

[ATP]iot =
6mM Two
Steady
States

Cimino A. & Hervagault J

., FEBS Lettr. 263 (1990)
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