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Metabolism is chemistry, is physics, is mathematics….

Biochemistry Thermodynamics Calculus & Systems Dynamics
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Cell metabolism is dynamical

Frenkel R, Arch Biochem Biophy 125 (1968)

Metabolite 
concentrations - dynamic

Wikipedia; “Kepler’s law 
of planetary motion”

Weather - dynamic Populations - dynamic

See figure from 
Frenkel R, et al 

showing oscillations 
of various metabolites 

in beef extract
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Calculus and dynamical systems theory

y = 𝑓 𝑥 = 𝑥! 𝑓" 𝑥 =
𝑑𝑦
𝑑𝑥 = 2𝑥

Function f(x) gives the relation 
between two variables

differentiation

integration

Derivative f’(x) gives the relation 
between small changes in variables

Know this and you can calculate the value of 
one variable given another!

Know this and you can trace how one variable would 
change given some changes in another variable!

𝑥

𝑦
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Time derivatives allow ’predicting’ the future

𝑑𝑥
𝑑𝑡 = 𝑥/(𝑏 + 𝑥)Consider we had a derivative where 

the independent variable is time and 
the dependent variable was a physical 
entity… 

By ‘tracing’ the derivative, we could 
see how that entity changes over time!

Derivative f’(x) gives the relation 
between small changes in variables

Know this and you can trace how one variable would 
change given some changes in another variable!
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Ordinary differential equations (ODEs)

𝑑𝑥!
𝑑𝑡

= 𝑥!" = 𝑓(𝑥!, 𝑥#, … , 𝑥$)

𝑑𝑥#
𝑑𝑡

= 𝑥#" = 𝑓(𝑥!, 𝑥#, … , 𝑥$)

𝑑𝑥$
𝑑𝑡

= 𝑥$" = 𝑓(𝑥!, 𝑥#, … , 𝑥$)

…

System of interest 

𝑥! 𝑥#

𝑥$ Interactions, 
processes, …

n-dimensional system of ODEs

Linear: All the x on the right side 
appear to the first power only

Nonlinear: The right hand side 
contains products or higher powers of x
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My first ODE ‘model’ – population dynamics

A model of a mice population:

𝑑𝑁
𝑑𝑡 = 𝑟 0 𝑁

Change in variable N –
the population size of 
mice - with respect to time

A process – mating? - that increases
N and that has a value dependent on 
the N at a given time…. more mice 
should make it easier to find a mate!

Is this a good model?

integration
𝑁# = 𝑁$ 0 𝑒%&#
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A more ‘realistic’ ODE model for population dynamics

A new process – death? - that 
decreases N and that has a value 
dependent on the N at a given time…. 
more mice make it harder to find food!

integration
𝑑𝑁
𝑑𝑡 = 𝑟 0 𝑁 −

𝑟 0 𝑁!

𝐾
Not so easy!!!

Can we use ‘tracing’ ??

A ‘better’ model of a mice population:
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Time tracing – a.k.a. ‘numerical integration’

𝑑𝑁
𝑑𝑡 = 𝑟 0 𝑁 −

𝑟 0 𝑁!

𝐾
Not so easy!!!

𝑁$'(# = 𝑁$ + 𝑑𝑁

𝑁$'(# = 𝑁$ +
𝑑𝑁
𝑑𝑡 0 𝑑𝑡

𝑁$'(# = 𝑁$ + 𝑟 0 𝑁$ −
𝑟 0 𝑁$!

𝐾 0 𝑑𝑡
Keep iterating

𝑥)'(# = 𝑥) + 𝑓"(𝑥)) 0 𝑑𝑡

A ‘better’ model of a mice population:
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Time tracing – a.k.a. ‘numerical integration’
𝑁%&'( = 𝑁% + 𝑑𝑁

𝑁%&'( = 𝑁% +
𝑑𝑁
𝑑𝑡

, 𝑑𝑡

𝑁%&'( = 𝑁% + 𝑟 , 𝑁% −
𝑟 , 𝑁%#

𝐾 , 𝑑𝑡

Keep iterating. Computers are 
good at this!

Try this in MATLAB or R

0 20 40 60 80 100

0
50

10
0

15
0

Index

N

Regardless of N0, the mice 
population always grows 
towards a fixed value!

N

time

Steady state!!!

𝑁% = 1

𝑁% = 135

𝑁% = 40
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Steady state

0 20 40 60 80 100

0
50

10
0

15
0

Index

NN

time

Steady state!!!

At long time, the population stabilised 
at a fixed value. There seems to be 
no change in N with time!

𝑑𝑁
𝑑𝑡 = 0

𝑑𝑁
𝑑𝑡 = 0 = 𝑟 0 𝑁 −

𝑟 0 𝑁!

𝐾

𝑁 = 𝐾𝑟 0 𝑁!

𝐾 = 𝑟 0 𝑁

The situation, where the differential 
equation is 0, is known as the steady state.

With this little analysis we have found that this 
model will reach a steady state when N equals K. 

𝑁% = 1

𝑁% = 135

𝑁% = 40
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Interim summary

ODEs

Numerical 
integration

Steady state 
analysis

Functional relation

𝑑𝑥
𝑑𝑡 = 0

integrate
’Modelling’

Stability analysisParameter ‘sweeping’

‘Insights’

System of interest
Interactions, processes… 
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Chemical reactions and thermodynamics

A generic reversible chemical reaction….

ν!A + ν"B ⇌ ν#C + ν$𝐷

Δ𝐺 = Δ𝐺$ +𝑅 0 𝑇 0 𝑙𝑛
𝐶 *! 𝐷 *"

𝐴 *# 𝐵 *$

…. under constant temperature and pressure:

‘products’‘reactants’

Δ𝐺$ = Δ𝐺$ 𝐶 + Δ𝐺$ 𝐷 − (Δ𝐺$ 𝐴 + Δ𝐺$ 𝐵 )

Sometimes ∆𝐺 is given as ∆)*$𝐺. 
The subscript, e.g ∆𝐺% , refers to 
standard states (chemicals at 1M). To 
refer to biochemical standard conditions, 
i.e. all at 1M, but pH=7, use; ∆𝐺%!
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Law of Mass Action

𝜉

Internal 
energy

𝜉∗

Δ𝐺 < 0 Δ𝐺 > 0

Δ𝐺 = 0

Δ𝐺 = 0 = Δ𝐺% + 𝑅 ' 𝑇 ' 𝑙𝑛
𝐶 &'

(! 𝐷 &'
("

𝐴 &'
(# 𝐵 &'

($

Δ𝐺% = −𝑅 ' 𝑇 ' 𝑙𝑛
𝐶 &'

(! 𝐷 &'
("

𝐴 &'
(# 𝐵 &'

($

−Δ𝐺%

𝑅 ' 𝑇
= 𝑙𝑛

𝐶 &'
(! 𝐷 &'

("

𝐴 &'
(# 𝐵 &'

($

𝑒
+,-)
.&/ =

𝐶 01
*! 𝐷 01

*"

𝐴 01
*# 𝐵 01

*$ = 𝐾01

ν,A + ν-B ⇌ ν.C + ν/𝐷

Reaction advancement

Law of mass action
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Law of Mass Action – A process (rate) based view

𝜉

Internal 
energy

𝜉∗

Δ𝐺 < 0 Δ𝐺 > 0

Δ𝐺 = 0

ν,A + ν-B ⇌ ν.C + ν/𝐷

Reaction proceeds 
forwards

Reaction proceeds 
backwards

Reaction at 
steady state

Forward reaction rate: Backward reaction rate:𝑘' 𝐴 *# 𝐵 *$ 𝑘+ 𝐶 *! 𝐷 *"

At equilibrium: 𝑘' 𝐴 *# 𝐵 *$ = 𝑘+ 𝐶 *! 𝐷 *" 2*
2+
=

3 ,-
.! 4 ,-

."

5 ,-
.# 6 ,-

.$ = 𝐾01 = 𝑒
+/0)
123

Law of mass action

The rate of a chemical reaction is proportional to the probability of 
collision of the reactants, which is in turn proportional to the 
concentration of reactants to the power of their stoichiometry. 
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Mass action model

4[6]
48

= − 𝑘9 𝐴 (# 𝐵 ($+ 𝑘: 𝐶 (! 𝐷 ("

Remember that, according to thermodynamics, 𝑘'
and 𝑘+ are related. We can not choose them freely!

ν!A + ν"B
𝑘%
⇌
𝑘&
ν#C + ν$𝐷

𝐽 = 4[;]
48

= 𝑘9 𝐴 (# 𝐵 ($ − 𝑘: 𝐶 (! 𝐷 ("

𝐽 = 𝑘' 𝐴 *# 𝐵 *$ − 2*
7,-

𝐶 *! 𝐷 *"

Ordinary differential 
equations (ODEs) for 
this ‘system’:

Reversible mass action model

<%
<&
=

; '(
)! = '(

)"

6 '(
)# > '(

)$ = 𝐾&'
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Interim summary

ν!A + ν"B
𝑘%
⇌
𝑘&
ν#C + ν$𝐷

𝐽 =
𝑑[𝐶]
𝑑𝑡

= 𝑘! 𝐴 "! 𝐵 ""

Irreversible mass action model

A generic chemical reaction model:

𝐽 = #[%]
#' = 𝑘! 𝐴 (! 𝐵 (" − )#

*$%
𝐶 (& 𝐷 ('

Reversible mass action model
• Consistent with thermodynamics.
• Net flux reaches zero at equilibrium.
• Flux is a function of both substrates’ and 

products’ concentrations

• Inconsistent with thermodynamics, but 
might be fine for far from equilibrium 
reactions.

• Net flux not zero at equilibrium.
• Flux only depends on substrates’ 

concentrations.
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Biochemical reactions are enzymatic

𝜉

Internal 
energy Reaction 

advancement

Accounting for enzyme activity (function):

Substrate(s) and ’free’ enzyme Substrate(s) ‘bound’ on enzyme Products(s) and free enzyme

E + 𝑆 ⇌ 𝐸𝑆 𝐸𝑆 ⇌ 𝐸 + 𝑃
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Enzymatic reaction dynamics – modelling strategy

𝐸 + 𝑆 ⇌ 𝐸𝑆

1. Create ‘cartoon’ model of enzyme ‘mechanism’:

2. Convert mechanism into elementary (bio)chemical reactions:

3. Write ODEs by assuming law of mass action:

4. Make further assumptions to create simplifications:

#[+]
#'

= − 𝑘! 𝑆 [𝐸] + 𝑘,[𝐸𝑆]

e.g. [𝐸] + 𝐸𝑆 = 𝑐𝑜𝑛𝑠𝑡.

Outlined approach can be applied to any biochemical 
reaction scheme, no matter how complex! E + 𝑆

𝑘8
⇌
𝑘!
𝐸𝑆
𝑘9
⇌
𝑘:
𝐸𝑃
𝑘;
⇌
𝑘<
𝐸 + 𝑃

e.g.

e.g.

e.g.
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Enzymatic reaction dynamics – example
1. Enzyme with single binding site and substrate

2. Elementary (bio)chemical reactions:

3. Make assumptions:

4. New reaction scheme:

𝐸 + 𝑆
𝑘9
⇌
𝑘:
𝐸𝑆 𝐸𝑆

𝑘?
⇌
𝑘@
𝐸𝑃 𝐸𝑃

𝑘A
⇌
𝑘B
𝐸 + 𝑃

𝑘B = 0; 𝑘?, 𝑘@ 𝑣𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒 → 𝐸𝑆 ⇌ 𝐸𝑃 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑒𝑛𝑜𝑢𝑠

𝐸 + 𝑆
𝑘9
⇌
𝑘:
𝐸𝑆 𝐸𝑆

<*+, 𝐸 + 𝑃

5. Write ODEs by assuming 
law of mass action: 4[C]

48
= − 𝑘9 𝑆 [𝐸] + 𝑘:[𝐸𝑆]

𝑑[𝑃]
𝑑𝑡

= 𝑘DE8[𝐸𝑆]

𝑑[𝐸𝑆]
𝑑𝑡

= 𝑘9 𝑆 𝐸 − 𝑘: 𝐸𝑆 − 𝑘DE8[𝐸𝑆]
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Enzymatic reaction dynamics – example

𝑑[𝑃]
𝑑𝑡

= 𝑘DE8[𝐸𝑆]

6. Make further assumptions:
[𝐸] + 𝐸𝑆 = 𝑐𝑜𝑛𝑠𝑡. = 𝐸%

𝑘9, 𝑘: ≫ 𝑘DE8

𝑑[𝐸𝑆]
𝑑𝑡

≈ 0Quasi steady state assumption:

𝑑[𝐸𝑆]
𝑑𝑡

= 0 = 𝑘9 𝑆 𝐸% − [𝐸𝑆] − 𝑘: 𝐸𝑆 − 𝑘DE8[𝐸𝑆]
Model 

reduction
𝐸𝑆 =

𝑘9𝐸%[𝑆]
𝑘9[𝑆] + 𝑘: + 𝑘DE8

𝑑[𝑃]
𝑑𝑡

=
𝑘DE8𝐸%[𝑆]

[𝑆] + (𝑘:+𝑘DE8)/𝑘9

𝑑[𝑃]
𝑑𝑡

= 𝐽 =
𝑣FEG [𝑆]
[𝑆] + 𝐾F

Irreversible Michaelis – Menten model for 
the reaction flux of an enzymatic reaction!

𝐸 + 𝑆
𝑘9
⇌
𝑘:
𝐸𝑆 𝐸𝑆

<*+, 𝐸 + 𝑃
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A reversible model of enzymatic reaction dynamics

𝐸 + 𝑆
𝑘H
⇌
𝑘I
𝐸𝑆 𝐸𝑆

𝑘?
⇌
𝑘@
𝐸𝑃 𝐸𝑃

𝑘A
⇌
𝑘B
𝐸 + 𝑃

𝑑[𝐸𝑆]
𝑑𝑡

=
𝑑[𝐸𝑃]
𝑑𝑡

= 0

1. Enzyme with single binding site and 
substrate
2. Elementary (bio)chemical reactions:
3. Make assumptions:
…..

…
..Try this derivation!
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A reversible model of enzymatic reaction dynamics

𝐽 = 𝐸-
)()*# .+ ,+,)()*

- .. ,.
/! .+ ,+! .. ,.

𝐸% , 𝑘01(& , C𝑆 𝐾2
1 + C𝑆 𝐾2 + C𝑃 𝐾3

=
𝐸% , 𝑘01(4 , C𝑃 𝐾3

1 + C𝑆 𝐾2 + C𝑃 𝐾3

At 
Equilibrium:

𝑘DE89 ' 𝐾J
𝑘DE8: ' 𝐾C

=
𝑘H𝑘?𝑘A
𝑘I𝑘@𝑘B

=
[𝑃]
[𝑆] &'

= 𝐾&'

Haldane relation

As expected from principle of  equilibrium: Lewis, G.N. PNAS 11:3, 1925

𝐸 + 𝑆
𝑘!
⇌
𝑘#
𝐸𝑆 𝐸𝑆

𝑘5
⇌
𝑘6
𝐸𝑃 𝐸𝑃

𝑘7
⇌
𝑘8
𝐸 + 𝑃

𝑘01(& = 9"9#
9"&9$&9#

; 𝑘01(4 = 9%9$
9%&9"&9$

; 𝐾2 =
9%9$&9%9#&9"9#
9& 9"&9$&9#

; 𝐾3 =
9%9$&9%9#&9"9#
9' 9%&9"&9$
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A reversible model of enzymatic reaction dynamics

Noor et al. 2013 
(10.1016/j.febslet.2013.07.028)

𝐸 + 𝑆
𝑘!
⇌
𝑘#
𝐸𝑆 𝐸𝑆

𝑘5
⇌
𝑘6
𝐸𝑃 𝐸𝑃

𝑘7
⇌
𝑘8
𝐸 + 𝑃

𝐽 = 𝐸% , 𝑘01(&
C𝑆 𝐾2

1 + C𝑆 𝐾2 + C𝑃 𝐾3

1 −
G𝑃 [𝑆]
𝐾:; 𝐽 = 𝑣=>? 0 𝜅 0 (1 −

Γ

𝐾:;
)

𝐽 = 𝑣=>? 0 𝜅 0 1 − 𝑒
<=
>?

𝜉

Internal 
energy

Γ < 𝐾:;

Reaction advancement

Γ = 𝐾:;
Γ > 𝐾:;

𝐽 = 𝐸-
)()*# .+ ,+,)()*

- .. ,.
/! .+ ,+! .. ,.
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Interim summary
Irreversible enzymatic model Reversible enzymatic model

𝐸 + 𝑆
𝑘9
⇌
𝑘:
𝐸𝑆 𝐸𝑆

<*+, 𝐸 + 𝑃 𝐸 + 𝑆
𝑘!
⇌
𝑘#
𝐸𝑆 𝐸𝑆

𝑘5
⇌
𝑘6
𝐸𝑃

𝐸𝑃
𝑘7
⇌
𝑘8
𝐸 + 𝑃

𝐽 = 𝑣=>? 0
C𝑆 𝐾2

1 + C𝑆 𝐾2 +
C𝑃 𝐾3

0 (1 −
Γ

𝐾:;
)𝐽 = 𝑣@1* ,

[𝑆]
[𝑆] + 𝐾@

The apparent enzymatic parameters, i.e. kcat
+ , kcat

! , Ks and Kp, are di-
rectly derived from the mass-action kinetic parameters by [7]:

Ks ¼
k2k4 þ k2k5 þ k3k5

k1ðk3 þ k4 þ k5Þ

Kp ¼
k2k4 þ k2k5 þ k3k5

k6ðk2 þ k3 þ k4Þ

kþcat ¼
k3k5

k3 þ k4 þ k5

k!cat ¼
k2k4

k2 þ k3 þ k4
: ð4Þ

The kcat values are the maximal forward and backward rates per
unit of enzyme (E), and Ks and Kp are the Michaelis constants, de-
noted more generally by KM.

In his original paper, Haldane noticed an inherent dependency be-
tween the kinetic parameters and reaction thermodynamics [7].
When assuming a reaction has reached equilibrium, and equating
Eq. (3) to zero, the ratio between enzyme efficiencies, i.e. kcat/KM, in
both directions equals K 0eq – a thermodynamic constant representing
the ratio between the concentrations of the product and the substrate
at equilibrium [8]. This was later denoted the Haldane relationship:

kþcat=Ks

k!cat=Kp
¼ K 0eq: ð5Þ

1.2. Rohwer–Hofmeyr decomposition

Rohwer and Hofmeyr [9,10] highlighted the fact that the revers-
ible Michaelis–Menten equation can be rewritten as

v ¼ E & kþcat

Ks
& 1
1þ s=Ks þ p=Kp

& s! p & k
!
cat=Kp

kþcat=Ks

 !
: ð6Þ

To simplify this equation, they defined the rate capacity V+/Ks

(where Vþ ' E & kþcat) and the binding term H ' 1/(1 + s/Ks + p/Kp).
Using the Haldane relationship, the last term was reduced to

s! p=K 0eq

! "
. Therefore, the reaction rate is:

v ¼ Vþ

Ks
&H & s! p

K 0eq

 !
: ð7Þ

The initial rate of reactions in the linear regime, i.e. when s( Ks

and p = 0, is approximated by v ) (V+/Ks) & s. Therefore, the rate
capacity can be directly measured as the slope of v as a function
of s in such conditions.

2. Decomposing the reversible Michaelis–Menten rate law

2.1. A separable rate law

We choose to rewrite the reversible rate law to reflect the
combined effect of the maximal rate, the enzyme saturation le-
vel and the thermodynamic driving-force. We recast Hofmeyr’s
Eq. (7) by moving Ks from the first term to the second term,
like in Refs. [11,12], and moving s from the third term to the
second:

v ¼ E kþcat &
s=Ks

1þ s=Ks þ p=Kp

# $
& 1! p=s

K 0eq

 !
ð8Þ

(a)
(b)

(c)

Driving Force [kJ/mol]
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Fig. 1. The capacity, saturation and thermodynamic terms in the separable rate law as a function of the concentration of S and the driving force (!DrG0). The yellow and red lines
show the value of the capacity term (V+) and the net rate (v) in units of lmol mg!1 min!1. The green and blue lines show the values of the saturation (j) and thermodynamic terms
(c) – which are without units. The parameters used for the plot are T = 300 K, V+ = 10 lmol mg!1 min!1, Ks = 3 lM, Kp = 100 lM, and DrG

0* = 0. The concentration of product (p) is
1 lM in (a), 0.1 lM in (b), and 10 lM in (c). The places on the x-axis where the reaction is at equilibrium are highlighted in blue, i.e. where the reaction driving force is 0. With the
DrG

0* chosen in this example, this occurs when the substrate and product concentrations are equal. Any point with a lower concentration of S will have a negative net rate (v < 0) –
not shown in this plot. These examples show that, depending on the concentration of the product, the response of the reaction net rate (v) to changes in the concentration of
substrate can be dominated by thermodynamics (c), saturation (b), or both (a). Similarly, the values of DrG

0*, Ks, and Kp have similar effects on the relationships between the curves.

E. Noor et al. / FEBS Letters 587 (2013) 2772–2777 2773
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Modelling metabolic systems

Toy models mimicking aspects of metabolism

Partial, but detailed, models of specific pathways

Re-occurring motifs and their dynamics

Large-scale models with much coverage as possible 

“All models are wrong, some are useful”
attributed to a 1976 paper by George Box (statistician)
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glucose-accelerated death in yeast.
Using a mathematical model of yeast
glycolysis, we present an explanation
for the phenotype of these particular 
S. cerevisiae mutants. Unexpectedly, the
turbo design of yeast glycolysis appears
to be central to the metabolic problems
experienced by these mutants. Our analy-
sis shows that metabolic pathways with
turbo design require special types of
regulation in environments that have
rapidly changing substrate availability.

The phenotype of the tps1-! mutant
The fdp1, cif1 and byp1 mutants are

unable to grow on glucose. It was sur-
prising to find that the mutations are al-
lelic12 and that the primary lesion is in
the TPS1 gene, which encodes trehalose
6-phosphate (Tre 6-P ) synthase13–15. Up
until then, trehalose synthesis was con-
sidered to be a branch of glycolysis with
no function other than in the formation
of storage carbohydrates and the acqui-
sition of stress tolerance16. Very little
trehalose is made during exponential
growth on glucose17; consequently, it
seems puzzling that trehalose metab-
olism is needed for growth on glucose.

A TPS1 disruptant accumulates hexose
phosphates, but consumes ATP and in-
organic phosphate rapidly8,9,12,18–20. No
steady state is attained and the accumu-
lation of hexose phosphates continues
until all phosphate has been incorpo-
rated into sugar phosphates. The first
steps of glycolysis appear to be too fast
for the rest of the yeast’s metabolism to
cope with13.

It is now clear that a metabolic func-
tion of Tps1p is to inhibit (one of) the
first steps of glycolysis and thereby re-
strict the flux of glucose into glycoly-
sis13. In tps1-! mutants, growth on glucose
can be restored by reducing HK19 or glu-
cose transporter activity21. The finding
that Tre 6-P, the metabolic product of
Tps1p, inhibits HK in vitro, suggests a 
direct mechanism for HK inhibition in
wild-type cells22; however, the possibility
that Tps1p interacts directly with a glu-
cose transporter and HK cannot be ex-
cluded13,20,23. In this paper, we shall not
discuss the exact molecular mechanism
of inhibition, but rather address the
question of why and when such a ‘guard
at the gate of glycolysis’ is required13.

Simulation of glycolysis without feedback
inhibition of hexokinase (HK)

We have examined the behaviour of 
a core model of yeast glycolysis that
lacks any special regulation of the first
ATP-consuming step. Focusing on the

essentials, this model con-
sists of only four steps: the HK
reaction, the PFK reaction, the
‘lower part’ of glycolysis, and
a general ATPase to remove
the excess ATP produced by
glycolysis (see Fig. 2, and
Box 1 for details of stoichio-
metry and enzyme kinetics).
Figure 3a,b shows a time
course for this model at high
glucose concentrations (i.e.
high relative to the affinity of
the HK block for glucose).
Without feedback inhibition of
HK, hexose monophosphate
and fructose 1,6-bisphosphate
(Fru 1,6-P2) accumulated, and
the ATP concentration barely
recovered from an initial
drop to below 0.3 mM (Fig.
3a). Although hexose phos-
phate levels did not reach a
steady state, the rates of the
reactions became constant
(Fig. 3b), as did the ATP level.

The concentration of ATP
remains constant whenever
the rate of ATP consumption
("consumption) is equal to the
rate of ATP production ("production). In the
model, the following relationship should
then hold:

The data in Fig. 3a confirm that this is
the case for our core model: after about
ten minutes, the rates of the reactions
fulfilled the above relationship and, there-
fore, the level of ATP became constant.

The system will only reach a true
steady state when two criteria are satis-
fied: (1) the rates of the HK reaction, the
PFK reaction and the lower part of gly-
colysis are equal; (2) the rate of the
ATPase reaction is twice that of the other
steps. In the steady state, the following
relationship will therefore apply:

This second steady-state condition was
not met in the simulation of unguarded
glycolysis (i.e. the rate of the lower part
of glycolysis did not become equal to
those of the HK and PFK modules).
Rather, the kinase fluxes greatly ex-
ceeded the flux through lower glycolysis
("HK # "PFK # "lower; see Fig. 3b), caus-
ing the accumulation of both hexose
monophosphate (because "HK # "PFK)
and Fru 1,6-P2 (because "PFK # "lower; see

(2)"HK $ "PFK $ "lower $ 2"ATPase

(1)"consumption ($ "HK % "PFK % "ATPase ) 

$ "production ($ 4"lower )
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Figure 1
Comparison of an activated catabolic pathway with a
turbo engine. (a) General scheme for a catabolic path-
way in which the first step involves coupling of ATP hy-
drolysis to activation of a substrate (S). Downstream,
the conversion of an intermediate (I) to a product (P)
generates a surplus of ATP. (b) Schematic represen-
tation of a turbo engine, in which exhaust gases are
used to increase the influx of fuel.
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Figure 2 
Schematic representation of the core
model of glycolysis. See Box 1 for kinetic
details of each step. In this model the
lower part (downstream reactions) of gly-
colysis is represented by a single step.
Glc, glucose; HMP, hexose monophos-
phate; Fru 1,6-P2, fructose 1,6-bisphos-
phate; Tre 6-P, trehalose 6-phosphate;
EtOH, ethanol; HK, hexokinase; PFK,
phosphofructokinase; Tps1p, Tre 6-P syn-
thase; lower, lower part of glycolysis. 
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HMP and Fru accumulate without bound! All metabolites reach steady state

See Figures from van Heerden JD et al showing model behavior with metabolite 
accumulation and not.
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Co-substrate cycling motif – a simpler model

𝑑[𝑀%]
𝑑𝑡

= 𝑘KL −
𝑣FEG ' [𝑀%] ' [𝐴𝑇𝑃]
𝐾 + [𝑀%] ' [𝐴𝑇𝑃]

[𝑀%] =
𝑘KL ' 𝐾 ' 𝑘A + 𝑘B

𝑣FEG ' 𝐶 ' 𝑘B − 𝑘KL ' 𝑣FEG − 𝑘KL
𝐶 = [𝐴𝑇𝑃] + [𝐴𝐷𝑃]

M0 accumulates 
towards infinity as kin 
approachesVmax

𝑑[𝑀%]
𝑑𝑡

= 𝑘KL −
𝑣FEG ' [𝑀%]
𝐾 + [𝑀%]

[𝑀%] =
𝑘KL ' 𝐾

𝑣FEG − 𝑘KL

West, R. and Delattre. H. et al. unpublished results
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Autocatalytic cycling motif

and metabolite concentrations. For a formal, mathematical definition, see Materials and methods

section "Formal definition of an autocatalytic metabolic cycle".
While rarely discussed as such, a systematic search in the central carbon metabolism core model

of E. coli (see Materials and methods section "Systematic identification of autocatalytic cycles in met-

abolic networks") shows the ubiquity of compact autocatalytic cycles. On top of the previously dis-

cussed CBB cycle (Figure 2, example I), we show two other prominent examples:

. The glyoxylate cycle within the TCA cycle, which turns an internal malate and two external ace-
tyl-CoAs into two malate molecules. This is achieved by transforming malate to isocitrate,
while assimilating acetyl-CoA, and then splitting the isocitrate to produce two malate mole-
cules, assimilating another acetyl-CoA (Kornberg, 1966) (Figure 2, example II).
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Figure 2. Three representative autocatalytic cycles in central carbon metabolism: (I) The Calvin-Benson-Bassham cycle (yellow); (II) The glyoxylate cycle

(magenta); (III) A cycle using the phosphotransferase system (PTS) to assimilate glucose (cyan). Assimilation reactions are indicated in green. Arrow

width in panels represent the relative carbon flux.

DOI: 10.7554/eLife.20667.004

The following figure supplements are available for figure 2:

Figure supplement 1. An autocatalytic cycle assimilating ribose-5-phosphate using the pentose phosphate pathway.

DOI: 10.7554/eLife.20667.005

Figure supplement 2. An autocatalytic cycle assimilating dhap while consuming gap using the fba reaction in the gluconeogenic direction.

DOI: 10.7554/eLife.20667.006
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. A cycle formed by the glucose phosphotransferase system (PTS) in bacteria. This transport sys-
tem imports a glucose molecule using phosphoenolpyruvate (pep) as a co-factor. The
imported glucose is further catabolized, producing two pep molecules via glycolysis (Figure 2,
example III).

Two additional examples are presented in Figure 2—figure supplements 1 and 2 and discussed
below.

The ubiquity of compact autocatalytic cycles in the core of central carbon metabolism motivates
the study of unique features of autocatalytic cycles, as derived below, which may constrain and

shape the kinetic parameters of a broad set of enzymes at the heart of metabolism.

Steady state existence and stability analysis of a simple autocatalytic
cycle
To explore general principles governing the dynamic behavior of autocatalytic cycles, we consider

the simple autocatalytic cycle depicted in Figure 3A. This cycle has a single intermediate metabolite,

X. We denote the flux through the autocatalytic reaction of the cycle by fa, such that for any unit of

X consumed, it produces two units of X. The autocatalytic reaction assimilates an external metabolite

(denoted A), which we assume to be at a constant concentration. We denote the flux through the

reaction branching out of the cycle by fb. Biologically, fb represents the consumption of the interme-

diate metabolite X. In the cycles we find in central carbon metabolism, the branch reactions provide

Figure 3. Analysis of a simple autocatalytic cycle. (A) A simple autocatalytic cycle induces two fluxes, fa and fb as a function of the concentration of X.

These fluxes follow simple Michaelis-Menten kinetics. A steady state occurs when fa ¼ fb, implying that _X ¼ 0. The cycle always has a steady state (i.e.

_X ¼ 0) at X ¼ 0. The slope of each reaction at X ¼ 0 is Vmax=KM . A steady state is stable if at the steady state concentration d _X
dX

< 0. (B) Each set of kinetic

parameters, Vmax;a;Vmax;b;KM;a;KM;b determines two dynamical properties of the system: If Vmax;b >Vmax;a, then a stable steady state concentration must

exist, as for high concentrations of X the branching reaction will reduce the concentration of X (cyan domain, cases (I) and (II)). If Vmax;b

KM;b
< Vmax;a

KM;a
, implying

that Vmax;b

Vmax;a
< KM;b

KM;a
, then zero is a non-stable steady state concentration as if X is slightly higher than zero, the autocatalytic reaction will carry higher flux,

further increasing the concentration of X (magenta domain, cases (I) and (IV)). At the intersection of these two domains a non-zero, stable steady state

concentration exists, case (I).
DOI: 10.7554/eLife.20667.007
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Metabolic motifs suggest constraints on metabolic fluxes
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imported glucose is further catabolized, producing two pep molecules via glycolysis (Figure 2,
example III).
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glucose-accelerated death in yeast.
Using a mathematical model of yeast
glycolysis, we present an explanation
for the phenotype of these particular 
S. cerevisiae mutants. Unexpectedly, the
turbo design of yeast glycolysis appears
to be central to the metabolic problems
experienced by these mutants. Our analy-
sis shows that metabolic pathways with
turbo design require special types of
regulation in environments that have
rapidly changing substrate availability.

The phenotype of the tps1-! mutant
The fdp1, cif1 and byp1 mutants are

unable to grow on glucose. It was sur-
prising to find that the mutations are al-
lelic12 and that the primary lesion is in
the TPS1 gene, which encodes trehalose
6-phosphate (Tre 6-P ) synthase13–15. Up
until then, trehalose synthesis was con-
sidered to be a branch of glycolysis with
no function other than in the formation
of storage carbohydrates and the acqui-
sition of stress tolerance16. Very little
trehalose is made during exponential
growth on glucose17; consequently, it
seems puzzling that trehalose metab-
olism is needed for growth on glucose.

A TPS1 disruptant accumulates hexose
phosphates, but consumes ATP and in-
organic phosphate rapidly8,9,12,18–20. No
steady state is attained and the accumu-
lation of hexose phosphates continues
until all phosphate has been incorpo-
rated into sugar phosphates. The first
steps of glycolysis appear to be too fast
for the rest of the yeast’s metabolism to
cope with13.

It is now clear that a metabolic func-
tion of Tps1p is to inhibit (one of) the
first steps of glycolysis and thereby re-
strict the flux of glucose into glycoly-
sis13. In tps1-! mutants, growth on glucose
can be restored by reducing HK19 or glu-
cose transporter activity21. The finding
that Tre 6-P, the metabolic product of
Tps1p, inhibits HK in vitro, suggests a 
direct mechanism for HK inhibition in
wild-type cells22; however, the possibility
that Tps1p interacts directly with a glu-
cose transporter and HK cannot be ex-
cluded13,20,23. In this paper, we shall not
discuss the exact molecular mechanism
of inhibition, but rather address the
question of why and when such a ‘guard
at the gate of glycolysis’ is required13.

Simulation of glycolysis without feedback
inhibition of hexokinase (HK)

We have examined the behaviour of 
a core model of yeast glycolysis that
lacks any special regulation of the first
ATP-consuming step. Focusing on the

essentials, this model con-
sists of only four steps: the HK
reaction, the PFK reaction, the
‘lower part’ of glycolysis, and
a general ATPase to remove
the excess ATP produced by
glycolysis (see Fig. 2, and
Box 1 for details of stoichio-
metry and enzyme kinetics).
Figure 3a,b shows a time
course for this model at high
glucose concentrations (i.e.
high relative to the affinity of
the HK block for glucose).
Without feedback inhibition of
HK, hexose monophosphate
and fructose 1,6-bisphosphate
(Fru 1,6-P2) accumulated, and
the ATP concentration barely
recovered from an initial
drop to below 0.3 mM (Fig.
3a). Although hexose phos-
phate levels did not reach a
steady state, the rates of the
reactions became constant
(Fig. 3b), as did the ATP level.

The concentration of ATP
remains constant whenever
the rate of ATP consumption
("consumption) is equal to the
rate of ATP production ("production). In the
model, the following relationship should
then hold:

The data in Fig. 3a confirm that this is
the case for our core model: after about
ten minutes, the rates of the reactions
fulfilled the above relationship and, there-
fore, the level of ATP became constant.

The system will only reach a true
steady state when two criteria are satis-
fied: (1) the rates of the HK reaction, the
PFK reaction and the lower part of gly-
colysis are equal; (2) the rate of the
ATPase reaction is twice that of the other
steps. In the steady state, the following
relationship will therefore apply:

This second steady-state condition was
not met in the simulation of unguarded
glycolysis (i.e. the rate of the lower part
of glycolysis did not become equal to
those of the HK and PFK modules).
Rather, the kinase fluxes greatly ex-
ceeded the flux through lower glycolysis
("HK # "PFK # "lower; see Fig. 3b), caus-
ing the accumulation of both hexose
monophosphate (because "HK # "PFK)
and Fru 1,6-P2 (because "PFK # "lower; see
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Figure 1
Comparison of an activated catabolic pathway with a
turbo engine. (a) General scheme for a catabolic path-
way in which the first step involves coupling of ATP hy-
drolysis to activation of a substrate (S). Downstream,
the conversion of an intermediate (I) to a product (P)
generates a surplus of ATP. (b) Schematic represen-
tation of a turbo engine, in which exhaust gases are
used to increase the influx of fuel.
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Figure 2 
Schematic representation of the core
model of glycolysis. See Box 1 for kinetic
details of each step. In this model the
lower part (downstream reactions) of gly-
colysis is represented by a single step.
Glc, glucose; HMP, hexose monophos-
phate; Fru 1,6-P2, fructose 1,6-bisphos-
phate; Tre 6-P, trehalose 6-phosphate;
EtOH, ethanol; HK, hexokinase; PFK,
phosphofructokinase; Tps1p, Tre 6-P syn-
thase; lower, lower part of glycolysis. 

Different models, same insight: Avoiding metabolite 
accumulation requires balance of fluxes (i.e. enzyme 
capabilities)

The ability to provide a certain insight, does not necessarily require a complex 
model. It is a useful exercise, to ‘strip’ a model of complexity to see what elements 
of it lead to a specific phenomenon



A cycle model with feedback
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Bistability! – in a cycle model with feedback
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A real example

Hervagault JF., Cimino A. J. Theor. Biol. 140 (1989)
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to this aspect basically deal with theoretical approaches 
or predictions. Studying analytically a Monod-Jacob 
model for induction and repression, Babloyantz and 
Nicolis [24] have shown that, if due to temporary 
metabolic advantages, a pathway is in a situation where 
it has a head start, all the other pathways will be in- 
hibited permanently. Hahn et al. [25], when consider- 
ing the dynamic behavior of a simple compartmental- 
ized michaelian enzyme in which the product of the 
reaction alters the supply of substrate, mention some 
conditions under which irreversible transitions may oc- 
cur. Later on, the same authors again take up this con- 
cept in order to attempt a plausible interpretation for 
the growth of crown gall tumors (personal communi- 
cation). 

Our aim in the present work is to show experimental- 
ly that in a simple model substrate cycle such irreversi- 
ble transitions can be observed in the absence of any 
drastic constraints imposed on the enzyme kinetic pro- 
perties and/or the parameter values. 

1.2. Model vs experimental 
Our goal is to illustrate experimentally certain par- 

ticular dynamics behaviors of a previously described 
model cycle; we will first recall briefly its main features 
and conditions of validity. Two metabolites, S1 and SZ, 
bounded by moiety-conservation (Sr + Sz = ST) are 
converted in a cyclic manner by two enzymes, El and 
E2. Enzyme El is inhibited by an excess of its substrate 
Sl. Because both enzymes require different 
cosubstrates, A and C, the two pathways are ther- 
modynamically favorable at the same time. The enzyme 
kinetics are supposed to be zero-order with respect to 
their cosubstrates. In that cycle, the two control 
parameters are (1) the moiety total concentration, ST, 
and (2) the ratio, V, of the interconverting enzymes’ 
maximal activities. Monostability and reversible 
bistability (hysteresis) can be observed when either Sr 
or V are varied. Irreversible transitions occur when and 
only when Sr is taken as the control parameter. The on- 
ly kinetic requirement is that the maximal activity of 

Fig. 1. The model minimal cycle and the experimental system under 
investigation. 

the non-inhibited enzyme (E2) is lower than the optimal 
activity of the inhibited one (Ei). 

The model experimental system we have chosen is the 
interconversion of the moiety ATP/ADP (Sr/S2) by en- 
zymes phosphofructokinase (PFK = Ei) and pyruvate 
kinase (PK = E2). Enzyme PFK exhibits an important 
inhibition by excess of its substrate, ATP. The standard 
Gibbs free energies (AC”‘) of the reactions catalyzed 
by PFK (ATP + F-6-P --t ADP + F- 1,6-dip) and PK 
(ADP + PEP - ATP + Pyr) are -3.4 and 
-7.5 kcal. mol-‘, respectively. In order to ensure that 
cosubstrates, F6P (A) and PEP (C) are present at a con- 
stant level during the time course of the reactions prior 
to reach the steady-states, their initial concentrations 
are large with respect to their K,,,s. The minimum model 
cycle and the experimental system are depicted in 
Fig. 1. 

2. MATERIALS AND METHODS 

2.1. Individual enzyme activity measurements 
All the kinetic studies to he presented were carried out in a freshly 

prepared sodium phosphate buffer, 0.1 mM, pH 6.8 (working buf- 
fer), at 20°C. Enzymes and chemicals (analytical grades) were pur- 
chased from Sigma Co. 

The initial activity dependence of pyruvate kinase (PK; EC 
2.7.1.40, from rabbit muscle) as a function of ADP was studied by 
using the pyruvate coupled assay. Measurements were performed in 
the presence of 5 mM phosphoenol pyruvate (PEP), 1 mM MgC12 
and 0.3 mM NADH. The reaction was initiated by introduction of 
1.5 and 3 IU .ml-’ PK and lactic dehydrogenase (LDH; EC 
1.1-l .28), respectively. 

For phosphofructokinase (PFK; EC 2.7.1.1, from rabbit muscle), 
the kinetic measurements were made by using the aldolase (ALD; EC 
4.1.2.13)/triosephosphate isomerase (TPI; EC 5.3.1.l)/glycerol-3- 
phosphate dehydrogenase (NAD+) (G-3-PdH; EC 1.1.1.8) coupled 
assay, in the presence of 1 mM MgC12, 1.1 mM F-6-P and 0.3 mM 
NAD+. The amounts of the three coupling enzymes were lo-50-fold 
the maximal PFK activity, i.e. 0.07, 0.7, 3 and 3 IU.ml-’ for PFK, 
ALD, TPI and G-3-PdH, respectively. The increase in the NAD+ 
concentration is followed at 340 nm. 

The concentrations of F-6-P (PFK) and PEP (PK) were chosen 
such that the enzymes operate under zero-order conditions with 
respect to these substrates ([F-6-P] = 16 K,,, and [PEP] = 45 K,). 

2.2. Operation of the complete cycle 
The kinetic studies dealing with the complete bienzyme cycle, in- 

cluding PFK and PK, were carried out in a thermostated closed reac- 
tor (12 ml) containing F-6-P 1.1 mM, PEP 5 mM, and MgCla 1 mM. 
Samples (0.5 ml) are taken at regular intervals, then diluted in a solu- 
tion of acetonitrile/working buffer (1: 2 v/v) up to a final volume of 
2 ml, in order to stop the reactions. The samples can thus be stored 
congealed at -20°C. The steady-states are supposed to be attained 
when the difference in the ATP (ADP) concentrations between two 
consecutive samples is less than 5%. 

2.3. HPLC nucleosides determination 
The samples were centrifuged for 5 min at 2000 x g, and the super- 

natant was then filtered on a Millex filter (0.4 pm). A 100 pl aliquot 
of the filtrate was injected through an automatic sampler (WISP, 
Waters) into a SAXrBondapak Waters column, using a radical com- 
pressor module (8 x 10 Waters) under isocratic conditions. The elu- 
tion solution is made of KH2P04 0.25 M and KC1 0.5 M at pH 4.0. 
Nucleoside mono-, di- and triphosphates were detected spec- 
trophotometrically at 260 nm (LS Waters detector). Total elution was 

200 

Phosphofructokinase

Nonlinear P production function is 
essential for bistability, i.e. existence 
of three steady states!

𝑉8 0 [𝑆]

𝐾8 + 𝑆 + N[𝑆]!
𝐾9

What could be the biochemical basis of 
nonlinearity?

Pyruvate Kinase
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 510 
 511 
Figure 1. A. Cartoon representation of a generic n-site model, where n-E indicates an enzyme with n 512 
substrate binding sites. The substrate binding sites are numbered in a consecutive fashion and substrate-513 
bound sites are shown in blue. Note that there are 2n – 1 possible substrate-enzyme complexes. B. 514 
Cartoon representation of a 2-site enzyme model. The substrate (S) and product (P) are shown in blue 515 
and red respectively. Substrate binding is allowed in any order on each site, and both sites are assumed 516 
to have catalytic activity. The 3 possible substrate-enzyme complexes are shown on the right. See 517 
Methods for reactions and differential equations for this 2-site enzyme model. C. The steady state 518 
concentration of each of the substrate-enzyme complexes with increasing concentration of substrate. 519 
The parameters, as listed in Eq. 4, are set to the following values for these simulations; k1 = k4 = k6 = 520 
k10 = 108 M-1min-1, k2 = k5 = k7 = k11 = 104 min-1, k3 = 105 , k12 = 1.5 ⋅105 min-1, k8 = k13 = 103 min-1, Stot 521 
= 2.31 ⋅10-3 M, Etot = 4.15 ⋅	10-5 M. Panels from left to right show the steady state concentrations of the 522 
two single-substrate complexes, and the fully-bound complex. A simplified version of Eq. 2, describing 523 
the steady state concentration of the complexes is shown on each panel, highlighting the degree of the 524 
polynomials. On the right-most panel, the dashed line indicates total enzyme concentration. 525 
 526 
 527 
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concentration, that is free substrate, substrate bound to enzyme, and the product, are conserved. 379 
We relaxed the latter assumption in subsequent models that were built from this core model. 380 
For the core model, the resulting binding and catalytic reactions for an enzyme with n–binding 381 
sites is given in Eq. 1. Additional reactions in the subsequent models and involving the product, 382 
and sometimes the substrate, are considered, either as occurring with a constant rate or 383 
mediated by an additional enzyme. Our mathematical analyses consisted of writing ordinary 384 
differential equations (ODEs) for such reaction systems using mass action kinetics. The ODEs 385 
for the core, general model shown in Fig. 1, as well as the alternative models shown in Fig. 3, 386 
are provided in full in the SI along with the detailed derivations leading to Eq. 2, Eq. 3 and Eq. 387 
4. As an illustration, we provide here the reaction system for the core model, for n = 2, i.e. a 388 
two-binding-site enzyme:  389 
 390 

# + !
E;
⇆
E@
#! A&→ # + * 391 

 392 

# + !
EB
⇆
EC
!# A'(() # + * 393 

 394 

#! + !
E;!
⇆
E;;

!#! A'&() #! + * 395 

 396 

!# + !
ED
⇆
EE
#! A)→ !# + *													(#7. 5)  397 

 398 
where the single- and double-bound enzyme complexes are denoted as ES, SE, and SES 399 
respectively. The corresponding set of ODEs resulting from this reaction system can be written 400 
using mass action kinetics for each of the reactions shown in Eq. 4, as we have done in the 401 
provided MATLAB code (see SI file1). The conservation relations for this system are: 402 
 403 

[Stot]	=	[S]	+	[ES]	+	[SE]	+	2[SES]	+	[P]	404 
	405 

[Etot]	=	[E]	+	[ES]	+	[SE]	+	[SES]	 	 (Eq.	6)	406 
  407 
Symbolic and numerical computations. For all symbolic computations, utilised in finding 408 
steady state solutions and deriving mathematical conditions on rate parameters, we used the 409 
software Maple 2020. For simulations, run to numerically analyse select systems, we again 410 
used Maple, or the MATLAB package, with the standard solver functions. 411 
 412 
Bifurcation analysis and physiologically realistic kinetic parameters and Stot and Etot 413 
ranges. To analyse if multiple steady states would be realised in physiologically realistic 414 
parameter regimes, we used a cyclic reaction system with a two-binding site enzyme (Fig. 4A). 415 
For such an enzyme, we have used kinetic parameter values in physiologically feasible ranges 416 
as found in the literature and listed below (16,20,21). We then used our mathematical condition 417 
shown in Eq. 4, and bifurcation analyses to derive the Stot and Etot ranges that guarantee multiple 418 

Assumptions

Hayes. C. et al. ACS Syn Bio (2021)
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P production flux
P consumption flux

Nonlinear production flux arises from 
dynamics of substrate-enzyme complexes
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𝛼
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P production flux (total)

Low E12 catalysis : 
Bistable dynamics

High E12 catalysis: 
Monostable dynamics

P production flux 
(E1 and E2)

P production 
flux (E12)

Same conclusion as from ‘substrate inhibition’ model



Rich dynamics from simple models
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High v gives rise to 
oscillations

Similar, cyclic motif as before, but with two allosteric regulation points:

Guidi G.M., Goldbeter A. Biophy. Chem. 72 (1998)

The system of Eq. (7) admits a single steady state,
because of the assumption of a constant input of sub-
strate I. Nevertheless, we shall see that the occurrence
of oscillations in system (7) can be related to the
occurrence of bistability in system (5) that pertains
to conditions in which the concentration of isocitrate
is kept constant.
Linear stability analysis of Eq. (7) yields the

conditions in which sustained oscillations of the
limit cycle type occur around an unstable steady
state. Two examples of sustained oscillations gener-
ated by the model are shown in Fig. 10 (upper and
middle panels, referring to situations denoted a and
b, respectively). The thick gray curve in the lower
panel yields the steady-state value of NADPH (P0)
as a function of the quantity h (which, as shown by
Eq. (9), reduces to EI when I is in excess) in the
absence of influx of isocitrate, as determined in Sec-
tion 3.

Fig. 8. Bistability with or without hysteresis can occur sequentially as a function of a control parameter. The steady state concentration of the
product, NADPH (P0), is plotted as a function of the logarithm of the total amount of substrate, Z, for different values of the ratio (EI/EII) of
IDH versus DIA concentrations. Bistability with hysteresis is observed for (EI/EII) = 0.43 (top left panel). For (EI/EII) = 0.38 (top right panel),
the phenomenon is followed by the occurrence of bistability without hysteresis. As (EI/EII) further decreases, the limit points LP2 and LP3
progressively come closer to each other until they merge when (EI/EII) = 0.3652 (lower left panel). At lower values, e.g. (EI/EII) = 0.33, only
bistability without hysteresis subsists (lower right panel).

Fig. 9. Bienzymatic system considered for sustained oscillations.
The model, involving isocitrate dehydrogenase and diaphorase, is
similar to that considered for bistability in Fig. 1, but the second
substrate, isocitrate, is injected at a constant rate, while the product
a-ketoglutarate is removed in an auxiliary reaction catalyzed by
some enzyme EIII.

207G.M. Guidi, A. Goldbeter / Biophysical Chemistry 72 (1998) 201–210

Low v gives rise to bistability

See Figure from Guidi, 
GM et al showing 

oscillatory behavior 
from this model

See Figure from Guidi, 
GM et al showing 

bistable behavior from 
this model
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Enzyme levels

Fluxes

Enzyme kinetic 
parameters

𝑉=>? 0 [𝑆]
𝐾= + 𝑆

CAUTION: Mostly based on in vitro enzymology!Substrate levels
10-6 – 10-2 M

10-8 – 10-4 M

Km: 10-6 – 10-2 M

Binding/unbinding
107 – 1010 (M・min)-1

102 – 106 (min)-1

kcat: 101 – 107 (min)-1

BRENDA database: www.brenda-enzymes.org

10-2 – 101 (M・min)-1
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A model is something no one believes except the creator of the 
model, while an experiment is something everyone believes 
except the experimenter

quote attributed to A. Einstein
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Population of cells

Batch

Chemostat

…

Media 
inflow

Media and 
cell outflow, d 𝑑𝑁

𝑑𝑡
= 𝑟 ' 𝑁 − 𝑑 ' 𝑁

𝑑𝑁
𝑑𝑡

= 0 𝒓 = 𝒅

Log(N)

time

Exponential 
phase

Stationary phase

Uptake:
13C or other isotopes

Output:
Filtration + mass spec or chemical detection
‘Online’ detection, e.g. gases, pH, etc.

Internal metabolites:
• Fluorescent microscopy + 

fluorescent reporters
• Cell lysis + mass spec or 

chemical detection
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De Deken R. J. Gen. Microbiol., 44 (1966)

𝑈 = 𝑄- − 2𝑄.

All the tumours grafted 
intraperitoneally show a 
carbohydrate metabolism 
conforming to that found by 
Warburg. A positive U, or excess 
fermentation, is a common 
property.
Crabtree H. G. Biochem. J., 23 (1929)

Shift between fermentation and 
respiration and respiro-fermentation in 
yeast, bacteria, and mammalian cells.



Dynamical observations – flux changes
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M9 with 1gr/1l Glucose (~5mM)

Nanchen A. et al. Appl Environ Microbiol, 72:2 (2006)

Chemostat

Media 
inflow

Media and 
cell outflow, d 𝑑𝑁

𝑑𝑡
= 𝑟 ' 𝑁 − 𝑑 ' 𝑁

𝑑𝑁
𝑑𝑡

= 0 𝒓 = 𝒅

See Figure 3 from 
Nanchen, A et al 

showing measured 
glucose consumption / 
acetate production in 

chemostats



Dynamical observations – heterogeneity (bistability?)
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~2500 cells observed, 
while fed with fluorescent 
glucose analog 2NBDG:

Dynamics of 
individual cells not 
metabolising NBDG

Dynamics of 
individual cells 
metabolising NBDG 

Simsek E. & Kim M., ISME J. 12:5 (2018)

See Figure from 
Simsek E et al 

showing glucose 
consumption behavior 

of individual cells



Dynamical observations – oscillations
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Keulers, M., et al. FEMS Mirobiol. Lett., 142 (1996)

Yeast cells in a chemostat with pH 
control. Dilution rate was maintained 
at 0.085 h-1.

After reaching sustained oscillation, 
chemostat was switched to an 
ethanol-based medium (15 gL-1 ~ 
300mM). The population is seemingly 
synchronised under these 
conditions!

See Figure from 
Keulers M et al 

showing oscillatory 
behavior of glucose 
consumption and 

oxygen respiration in 
yeast populations



Dynamical observations – oscillations
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Murray, D., et al. PNAS, 104:7 (2007)

Truncated list….oscillations observed for most metabolites!

NADH NAD+

Reductive phase

Oxidative phase

See Figure from Murray D et al 
showing oscillatory behavior of glucose 
consumption, oxygen respiration, and 
various metabolite concentrations in 

yeast populations
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Summary
Metabolic systems are capable of rich dynamics, including bistability, oscillations, 
and hetereogenity.

These dynamic features are ‘expressed’ under some conditions and can determine 
cell physiology and higher level functions (e.g. dormancy).

ODE models and assumptions can give us insights independent of experimental 
data or explain specific experimental dynamics.

Multiple models can result in same behaviors and is not always possible to 
distinguish or disentangle these alternative explanations from each other.

The condition dependency of metabolic behaviors makes it important that each 
experimental finding is considered in the context of the experimental setup used.
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Additional reading and resources
Core reading:
• Ch. 1 in “Nonlinear Dynamics and Chaos with Applications to …”, Strogatz, S. Perseus Books (1994)
• Ch. 1-3 in “Calculus Made Easy”, Thompson, S. P. The Macmillan Company (1910)
• Ch. 2 and 3 in “Mathematical Modelling in Systems Biology: An Introduction”, Ingalls, B. at: 

https://www.math.uwaterloo.ca/~bingalls/MMSB/Notes.pdf

Recommended reading:
• Ch. 2 and 3 in “Principles and Problems in Physical Chemistry for Biochemists”, Price N. C., et. al. Oxford U. Press
• Ch. 3 and 4 in “Structure and mechanism in protein science” by Fersht, A. Freeman and Company

Optional, but fun reading: 
• “Textbook errors: IX. More about the laws of reaction rates and of equilibrium”, Guggenheim, E.A., J Chem Educ 33:11 (1956)
• “A new principle of equilibrium”, Lewis G. N., PNAS 11:3 (1925).
• “On the validity of the steady state assumption of enzyme kinetics”, Segel. L. A. Bull Math Bio 50: 6 (1988)
• “A note on the kinetics of enzyme action”. Noor E. Flamholz, A., et al. FEBS Lett 587:17 (2013) 
• Further chapters in Thompson’s and Strogatz’s books.
• “The growth of bacterial cultures” by Jacques Monod (Nobel laureate, 1965).

Optional resources:
Mathematical systems biology models: http://www.ebi.ac.uk/biomodels-main/
BRENDA database: www.brenda-enzymes.org
Database for models and experimental data: https://datanator.info

https://www.math.uwaterloo.ca/~bingalls/MMSB/Notes.pdf
http://www.ebi.ac.uk/biomodels-main/
http://www.brenda-enzymes.org/
https://datanator.info/


Questions & Exercises?
What is a function? Plot the following function and consider how y and x relate to each other:

Develop an ODE model for the concentration of a protein, considering only its translation from mRNA and its 
degradation by proteases

Explain the meaning of the derivative and slope.

What is the formula for 𝐾/0?What does 𝐾/0 stand for, i.e what does it mean? 

Where does the following equation come from? 
(the question is not to answer, but to encourage you to read more 
into thermodynamics – see 1st slide)

Δ𝐺 = Δ𝐺, + 𝑅 , 𝑇 , 𝑙𝑛
𝐶 17 𝐷 18

𝐴 19 𝐵 1:

Can you state the ‘rate based’ formulation of the law of mass action? Can you explain what a ‘rate 
coefficient’ is in the context of law of mass action?
Write the ODEs for the following reactions based on reversible (irreversible) mass action models:

A + B ⇌ 𝐷
2A + B ⇌ 𝐷
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What is the ‘principle of equilibrium’?
(don’t have to answer for this module, but you are encouraged to take a look at the highly recommended 
Lewis paper!)

Can you explain the assumptions made for obtaining this rate equation?

Write the reversible rate equation the following enzymatic reaction. A + B ⇌ 𝐶

What is the formula for Haldane relation?What does it stand for, i.e what does it mean? 

Work out a model for a single substrate reaction mediated by an enzyme with two binding sites. 

Can you develop a model to explain the observed oscillations in NAD(P)H?
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Additional slides
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Calculus and dynamical systems theory
“What one fool can do, another can.”
Ancient Simian(!) Proverb introduced by Silvanus Thompson

y = 𝑓 𝑥

Function is a mathematical expression that states a relation between physical entities 
that can change, e.g. length and height of a triangle, position of a car, weight of a 
body. In other words, a function defines the relation between variables:

y = 𝑥 , tan(𝛼)

a

y = 𝑎2 − 𝑥2𝛼
𝑥

𝑦

Dependent 
variable Independent 

variable

Constant

x
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Calculus and dynamical systems theory
The derivative of a function simply provides the relation between a small change in 
one variable with regards to a small change in another. In other words, a derivative 
defines the relation between changes in variables:

y = 𝑓 𝑥 = 𝑥2 𝑓3 𝑥 =
𝑑𝑦
𝑑𝑥

= 2𝑥

Function f(x) Derivative of f(x): f’(x)

𝑑y = 𝑥 + 𝑑𝑥 2 − 𝑥2

𝑑y = 𝑥2 + 2𝑥𝑑𝑥 + 𝑑𝑥2 − 𝑥2

𝑑y = 2𝑥𝑑𝑥 + 𝑑𝑥2

𝑑y = 𝑑𝑥 2𝑥 − 𝑑𝑥

Assume 
2𝑥 − 𝑑𝑥 ≈ 2𝑥

𝑦

𝑑𝑥
𝑑𝑦

The derivative is 
also known as 
the slope of the 
line segment that 
is tangent to f(x) 
at point x.

f(x)

The derivative is always an 
approximation! The smaller the 
step size, the more accurate



Derivative (i.e. differential equation) models
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We can ‘construct’ differential equations, using time as 
an independent variable, for a system of multiple 
variables that all depend on time.

The ‘construction’ of derivatives should take into account 
processes that affect the variables!

𝑑𝑥
𝑑𝑡

= 𝑘 − 𝑎 " 𝑥An example:

Change in 
variable x with 
respect to time

A process that 
increases x and 
that has a 
constant value 
with respect to x 
and time

A process that 
decreases x and that 
has a value dependent 
on the value of x at a 
given time

?? Can you guess how the 
function t vs. x would look like ??
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A caution about the derivative 
and the numerical integration
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An example and a 
visual help:

y = 𝑓 𝑥 = 𝑥! 𝑓" 𝑥 =
𝑑𝑦
𝑑𝑥 = 2𝑥

Function 
f(x)

Derivative of f(x): f’(x)

𝑑y = 𝑑𝑥 2𝑥 − 𝑑𝑥
Assume 
2𝑥 − 𝑑𝑥 ≈
2𝑥Remember this assumption? It can, 
and will always, cause inaccuracies 
in numerical integration.

Numerical integration of #$
#%
= 𝑟 " 𝑁. 

Using Euler or Midpoint method.

Plot of 𝑁% = 𝑁& " 𝑒'(%
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Chemical reactions and thermodynamics 

νCA + νDB ⇌ ν$C + νE𝐷

The position of the reaction along axis 𝜉 is usually denoted as 
the mass action ratio Γ;

Γ =
𝐶 17 𝐷 18

𝐴 19 𝐵 1:

𝜉

Internal 
energy

𝜉∗
Γ

Γ is a point in the 𝐴 × 𝐵 × 𝐶 × 𝐷 space 
instead of a point on the 𝜉 line

Γ

𝜉

Reaction 
advancement

Δ𝐺 = Δ𝐺& + 𝑅 " 𝑇 " 𝑙𝑛 Γ

Δ𝐺 = Δ𝐺& + 𝑅 " 𝑇 " 𝑙𝑛
𝐶 *! 𝐷 *"

𝐴 *# 𝐵 *$
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A note about assumptions
Assumptions are usually made to achieve simpler models that are easier 
to understand.

Assumptions should rely on some actual physical or biochemical 
conditions. Hence, they have a direct relation to reality!

E + 𝑆
𝑘8
⇌
𝑘+8

𝐸𝑆
𝑘!
⇌
𝑘+!

𝐸 + 𝑃

Reaction dynamics faster than gene expression dynamics
Irreversibility of step 1 or 2: 𝑘%T = 0, 𝑘%2 = 0
Instantaneous equilibrium of step 1: 𝑘T, 𝑘%T ≫ 𝑘2
Quasi Steady State of 𝐸𝑆: 𝐸, ≪ 𝑆, + 𝐾U1

Segel. L. A. 1988. 10.1016/S0092-8240(88)80057-0
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𝑑[𝐸𝑆]
𝑑𝑡

= 0

𝑘+, 𝑘, ≫ 𝑘-.%

[𝐸] + 𝐸𝑆 = 𝐸&
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Reversible models and flux-force relation

𝐽 = 𝑣123 &
[𝑆 𝐾/

1 + [𝑆 𝐾/ +
[𝑃 𝐾0

& (1 −
Γ

𝐾12
)

𝐸 + 𝑆
𝑘3
⇌
𝑘!
𝐸𝑆 𝐸𝑆

𝑘4
⇌
𝑘5
𝐸𝑃 𝐸𝑃

𝑘6
⇌
𝑘7
𝐸 + 𝑃ν5A + ν6B

𝑘'
⇌
𝑘+
ν3C + ν4𝐷

𝐽 = 𝑘+ 𝐴 *# 𝐵 *$ − 8%
9&'

𝐶 *! 𝐷 *"

𝐽 = 𝐽+(1 −
:
9&'
) = 𝐽+(1 − 𝑒

()
*+) 𝐽 = 𝐽+(1 −

:
9&'
) = 𝐽+(1 − 𝑒

()
*+)

𝐽+ = 𝑘+ 𝐴 *# 𝐵 *$
𝐽4 =

𝐸5 & 𝑘6274 & D𝑆 𝐾8
1 + D𝑆 𝐾8 + D𝑃 𝐾9;,

;%
= :

9&'
= 𝑒

()
*+

Flux-Force relation
D. A. Beard and H. Qian, PLoS One 2007 Vol. 2:1
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This is a paradox! Full
respiration of glucose can
generate about 20 ATP, while
fermentation can generate 4.
Why aren’t all yeast simply
Crabtree negative?

Adaptation to a fermentative metabolism needs to
happen in Crabtree negative yeast, but not in
Crabtree positive yeast (unless it is fully enforced).

On the converse, Crabtree positive yeast always
seems to use fermentative metabolism, even under
conditions where respiration should be perfectly fine.

Paradox of Crabtree effect?
Crabtree positive yeast Crabtree negative 

yeast
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Biochemical basis of oscillations?
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Re-cap from lecture 7.

Similar, cyclic motif as before, but with two 
allosteric regulation points:

Guidi G.M., Goldbeter A. Biophy. Chem. 72 (1998)

The system of Eq. (7) admits a single steady state,
because of the assumption of a constant input of sub-
strate I. Nevertheless, we shall see that the occurrence
of oscillations in system (7) can be related to the
occurrence of bistability in system (5) that pertains
to conditions in which the concentration of isocitrate
is kept constant.
Linear stability analysis of Eq. (7) yields the

conditions in which sustained oscillations of the
limit cycle type occur around an unstable steady
state. Two examples of sustained oscillations gener-
ated by the model are shown in Fig. 10 (upper and
middle panels, referring to situations denoted a and
b, respectively). The thick gray curve in the lower
panel yields the steady-state value of NADPH (P0)
as a function of the quantity h (which, as shown by
Eq. (9), reduces to EI when I is in excess) in the
absence of influx of isocitrate, as determined in Sec-
tion 3.

Fig. 8. Bistability with or without hysteresis can occur sequentially as a function of a control parameter. The steady state concentration of the
product, NADPH (P0), is plotted as a function of the logarithm of the total amount of substrate, Z, for different values of the ratio (EI/EII) of
IDH versus DIA concentrations. Bistability with hysteresis is observed for (EI/EII) = 0.43 (top left panel). For (EI/EII) = 0.38 (top right panel),
the phenomenon is followed by the occurrence of bistability without hysteresis. As (EI/EII) further decreases, the limit points LP2 and LP3
progressively come closer to each other until they merge when (EI/EII) = 0.3652 (lower left panel). At lower values, e.g. (EI/EII) = 0.33, only
bistability without hysteresis subsists (lower right panel).

Fig. 9. Bienzymatic system considered for sustained oscillations.
The model, involving isocitrate dehydrogenase and diaphorase, is
similar to that considered for bistability in Fig. 1, but the second
substrate, isocitrate, is injected at a constant rate, while the product
a-ketoglutarate is removed in an auxiliary reaction catalyzed by
some enzyme EIII.

207G.M. Guidi, A. Goldbeter / Biophysical Chemistry 72 (1998) 201–210

Other models of 
oscillation also exists, e.g.

Wolf J., Heinrich R. Biochem. J.  345 (2000)
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Metabolic oscillations in single cells are separate from, but 
coupled with, cell cycle oscillations.

Papagiannakis, A., et al. Mol Cell, 65:2 
(2017)

Yeast cells were grown on high glucose (10 gL-1 ~ 50mM). Single cell analysis in the absence of 
synchronization.

Cells incubated in a microfluidic device. Possible caveats: Oscillations induced by microfluidic 
pumps? Imaging of NAD(P)H causing cell damage? 

Oscillations: cells breathing in and out

Dynamics of Cell Metabolism – Orkun S Soyer, Slide 59

See Figure from Papagiannakis A et al showing oscillatory behavior oxygen respiration 
and NAD(P)H, as well as cell cycle markers in yeast populations



Metabolic bistability?
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Presence of an imbalanced state is 
observed in yeast trehalose 
mutants:

TIBS 23 – MAY 1998

163

glucose-accelerated death in yeast.
Using a mathematical model of yeast
glycolysis, we present an explanation
for the phenotype of these particular 
S. cerevisiae mutants. Unexpectedly, the
turbo design of yeast glycolysis appears
to be central to the metabolic problems
experienced by these mutants. Our analy-
sis shows that metabolic pathways with
turbo design require special types of
regulation in environments that have
rapidly changing substrate availability.

The phenotype of the tps1-! mutant
The fdp1, cif1 and byp1 mutants are

unable to grow on glucose. It was sur-
prising to find that the mutations are al-
lelic12 and that the primary lesion is in
the TPS1 gene, which encodes trehalose
6-phosphate (Tre 6-P ) synthase13–15. Up
until then, trehalose synthesis was con-
sidered to be a branch of glycolysis with
no function other than in the formation
of storage carbohydrates and the acqui-
sition of stress tolerance16. Very little
trehalose is made during exponential
growth on glucose17; consequently, it
seems puzzling that trehalose metab-
olism is needed for growth on glucose.

A TPS1 disruptant accumulates hexose
phosphates, but consumes ATP and in-
organic phosphate rapidly8,9,12,18–20. No
steady state is attained and the accumu-
lation of hexose phosphates continues
until all phosphate has been incorpo-
rated into sugar phosphates. The first
steps of glycolysis appear to be too fast
for the rest of the yeast’s metabolism to
cope with13.

It is now clear that a metabolic func-
tion of Tps1p is to inhibit (one of) the
first steps of glycolysis and thereby re-
strict the flux of glucose into glycoly-
sis13. In tps1-! mutants, growth on glucose
can be restored by reducing HK19 or glu-
cose transporter activity21. The finding
that Tre 6-P, the metabolic product of
Tps1p, inhibits HK in vitro, suggests a 
direct mechanism for HK inhibition in
wild-type cells22; however, the possibility
that Tps1p interacts directly with a glu-
cose transporter and HK cannot be ex-
cluded13,20,23. In this paper, we shall not
discuss the exact molecular mechanism
of inhibition, but rather address the
question of why and when such a ‘guard
at the gate of glycolysis’ is required13.

Simulation of glycolysis without feedback
inhibition of hexokinase (HK)

We have examined the behaviour of 
a core model of yeast glycolysis that
lacks any special regulation of the first
ATP-consuming step. Focusing on the

essentials, this model con-
sists of only four steps: the HK
reaction, the PFK reaction, the
‘lower part’ of glycolysis, and
a general ATPase to remove
the excess ATP produced by
glycolysis (see Fig. 2, and
Box 1 for details of stoichio-
metry and enzyme kinetics).
Figure 3a,b shows a time
course for this model at high
glucose concentrations (i.e.
high relative to the affinity of
the HK block for glucose).
Without feedback inhibition of
HK, hexose monophosphate
and fructose 1,6-bisphosphate
(Fru 1,6-P2) accumulated, and
the ATP concentration barely
recovered from an initial
drop to below 0.3 mM (Fig.
3a). Although hexose phos-
phate levels did not reach a
steady state, the rates of the
reactions became constant
(Fig. 3b), as did the ATP level.

The concentration of ATP
remains constant whenever
the rate of ATP consumption
("consumption) is equal to the
rate of ATP production ("production). In the
model, the following relationship should
then hold:

The data in Fig. 3a confirm that this is
the case for our core model: after about
ten minutes, the rates of the reactions
fulfilled the above relationship and, there-
fore, the level of ATP became constant.

The system will only reach a true
steady state when two criteria are satis-
fied: (1) the rates of the HK reaction, the
PFK reaction and the lower part of gly-
colysis are equal; (2) the rate of the
ATPase reaction is twice that of the other
steps. In the steady state, the following
relationship will therefore apply:

This second steady-state condition was
not met in the simulation of unguarded
glycolysis (i.e. the rate of the lower part
of glycolysis did not become equal to
those of the HK and PFK modules).
Rather, the kinase fluxes greatly ex-
ceeded the flux through lower glycolysis
("HK # "PFK # "lower; see Fig. 3b), caus-
ing the accumulation of both hexose
monophosphate (because "HK # "PFK)
and Fru 1,6-P2 (because "PFK # "lower; see

(2)"HK $ "PFK $ "lower $ 2"ATPase

(1)"consumption ($ "HK % "PFK % "ATPase ) 

$ "production ($ 4"lower )

TALKING POINT
(a)

(b)

Fuel Exhaust

Turbo engine

S I P

ATP ADP

ATP activated
step

ATP yielding
metabolism

ADP ATP

+

Compressor

Figure 1
Comparison of an activated catabolic pathway with a
turbo engine. (a) General scheme for a catabolic path-
way in which the first step involves coupling of ATP hy-
drolysis to activation of a substrate (S). Downstream,
the conversion of an intermediate (I) to a product (P)
generates a surplus of ATP. (b) Schematic represen-
tation of a turbo engine, in which exhaust gases are
used to increase the influx of fuel.

ATP

Glc

HMP

Fru 1,6-P2

2 EtOH

Tre 6-P

HK

PFK

Tps1p

ATP-
ase

ADP

ATP

ADP

lower

4 ADP

4 ATP

-

Figure 2 
Schematic representation of the core
model of glycolysis. See Box 1 for kinetic
details of each step. In this model the
lower part (downstream reactions) of gly-
colysis is represented by a single step.
Glc, glucose; HMP, hexose monophos-
phate; Fru 1,6-P2, fructose 1,6-bisphos-
phate; Tre 6-P, trehalose 6-phosphate;
EtOH, ethanol; HK, hexokinase; PFK,
phosphofructokinase; Tps1p, Tre 6-P syn-
thase; lower, lower part of glycolysis. 

Model with 
‘Trehalose’ feedback

Model without 
trehalose feedback

van Heerden J.D. et al., Science 343:6174 (2014)
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See Figures from van Heerden JD et al 
showing model behavior with 

metabolite accumulation and not, and 
also growth of different mutants



Metabolic bistability?
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While several modelling and experimental papers indicate potential for bistability in 
metabolic systems, clear experimental evidence for bistability is currently lacking. 
Bistability is observed, however, in enzymatic re-constitution experiments in vitro:

Cimino A. & Hervagault J., FEBS Lettr. 263 (1990)

Volume 263, number 2 FEBS LETTERS April 1990 

to this aspect basically deal with theoretical approaches 
or predictions. Studying analytically a Monod-Jacob 
model for induction and repression, Babloyantz and 
Nicolis [24] have shown that, if due to temporary 
metabolic advantages, a pathway is in a situation where 
it has a head start, all the other pathways will be in- 
hibited permanently. Hahn et al. [25], when consider- 
ing the dynamic behavior of a simple compartmental- 
ized michaelian enzyme in which the product of the 
reaction alters the supply of substrate, mention some 
conditions under which irreversible transitions may oc- 
cur. Later on, the same authors again take up this con- 
cept in order to attempt a plausible interpretation for 
the growth of crown gall tumors (personal communi- 
cation). 

Our aim in the present work is to show experimental- 
ly that in a simple model substrate cycle such irreversi- 
ble transitions can be observed in the absence of any 
drastic constraints imposed on the enzyme kinetic pro- 
perties and/or the parameter values. 

1.2. Model vs experimental 
Our goal is to illustrate experimentally certain par- 

ticular dynamics behaviors of a previously described 
model cycle; we will first recall briefly its main features 
and conditions of validity. Two metabolites, S1 and SZ, 
bounded by moiety-conservation (Sr + Sz = ST) are 
converted in a cyclic manner by two enzymes, El and 
E2. Enzyme El is inhibited by an excess of its substrate 
Sl. Because both enzymes require different 
cosubstrates, A and C, the two pathways are ther- 
modynamically favorable at the same time. The enzyme 
kinetics are supposed to be zero-order with respect to 
their cosubstrates. In that cycle, the two control 
parameters are (1) the moiety total concentration, ST, 
and (2) the ratio, V, of the interconverting enzymes’ 
maximal activities. Monostability and reversible 
bistability (hysteresis) can be observed when either Sr 
or V are varied. Irreversible transitions occur when and 
only when Sr is taken as the control parameter. The on- 
ly kinetic requirement is that the maximal activity of 

Fig. 1. The model minimal cycle and the experimental system under 
investigation. 

the non-inhibited enzyme (E2) is lower than the optimal 
activity of the inhibited one (Ei). 

The model experimental system we have chosen is the 
interconversion of the moiety ATP/ADP (Sr/S2) by en- 
zymes phosphofructokinase (PFK = Ei) and pyruvate 
kinase (PK = E2). Enzyme PFK exhibits an important 
inhibition by excess of its substrate, ATP. The standard 
Gibbs free energies (AC”‘) of the reactions catalyzed 
by PFK (ATP + F-6-P --t ADP + F- 1,6-dip) and PK 
(ADP + PEP - ATP + Pyr) are -3.4 and 
-7.5 kcal. mol-‘, respectively. In order to ensure that 
cosubstrates, F6P (A) and PEP (C) are present at a con- 
stant level during the time course of the reactions prior 
to reach the steady-states, their initial concentrations 
are large with respect to their K,,,s. The minimum model 
cycle and the experimental system are depicted in 
Fig. 1. 

2. MATERIALS AND METHODS 

2.1. Individual enzyme activity measurements 
All the kinetic studies to he presented were carried out in a freshly 

prepared sodium phosphate buffer, 0.1 mM, pH 6.8 (working buf- 
fer), at 20°C. Enzymes and chemicals (analytical grades) were pur- 
chased from Sigma Co. 

The initial activity dependence of pyruvate kinase (PK; EC 
2.7.1.40, from rabbit muscle) as a function of ADP was studied by 
using the pyruvate coupled assay. Measurements were performed in 
the presence of 5 mM phosphoenol pyruvate (PEP), 1 mM MgC12 
and 0.3 mM NADH. The reaction was initiated by introduction of 
1.5 and 3 IU .ml-’ PK and lactic dehydrogenase (LDH; EC 
1.1-l .28), respectively. 

For phosphofructokinase (PFK; EC 2.7.1.1, from rabbit muscle), 
the kinetic measurements were made by using the aldolase (ALD; EC 
4.1.2.13)/triosephosphate isomerase (TPI; EC 5.3.1.l)/glycerol-3- 
phosphate dehydrogenase (NAD+) (G-3-PdH; EC 1.1.1.8) coupled 
assay, in the presence of 1 mM MgC12, 1.1 mM F-6-P and 0.3 mM 
NAD+. The amounts of the three coupling enzymes were lo-50-fold 
the maximal PFK activity, i.e. 0.07, 0.7, 3 and 3 IU.ml-’ for PFK, 
ALD, TPI and G-3-PdH, respectively. The increase in the NAD+ 
concentration is followed at 340 nm. 

The concentrations of F-6-P (PFK) and PEP (PK) were chosen 
such that the enzymes operate under zero-order conditions with 
respect to these substrates ([F-6-P] = 16 K,,, and [PEP] = 45 K,). 

2.2. Operation of the complete cycle 
The kinetic studies dealing with the complete bienzyme cycle, in- 

cluding PFK and PK, were carried out in a thermostated closed reac- 
tor (12 ml) containing F-6-P 1.1 mM, PEP 5 mM, and MgCla 1 mM. 
Samples (0.5 ml) are taken at regular intervals, then diluted in a solu- 
tion of acetonitrile/working buffer (1: 2 v/v) up to a final volume of 
2 ml, in order to stop the reactions. The samples can thus be stored 
congealed at -20°C. The steady-states are supposed to be attained 
when the difference in the ATP (ADP) concentrations between two 
consecutive samples is less than 5%. 

2.3. HPLC nucleosides determination 
The samples were centrifuged for 5 min at 2000 x g, and the super- 

natant was then filtered on a Millex filter (0.4 pm). A 100 pl aliquot 
of the filtrate was injected through an automatic sampler (WISP, 
Waters) into a SAXrBondapak Waters column, using a radical com- 
pressor module (8 x 10 Waters) under isocratic conditions. The elu- 
tion solution is made of KH2P04 0.25 M and KC1 0.5 M at pH 4.0. 
Nucleoside mono-, di- and triphosphates were detected spec- 
trophotometrically at 260 nm (LS Waters detector). Total elution was 

200 

[ATP]tot = 
3mM One 
Steady State

[ATP]tot = 
6mM Two 
Steady 
States
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See Figure from Cimino A et al 
showing bistability behavior from 

different starting points (initial 
concentrations)


