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Proclaimer

Economic Principles in Cell Physiology

Goals of this talk
I Motivate what is about to follow, i.e. the economy-of-the-cell

analogy

I Establish ‘our’ view on ‘economic principles’, and ‘our’ subset
of ‘cell physiology’

I Set the mathematical background (mostly: optimization) and
cell modeling via the constraint-based framework

www.menti.com, Code: 7059 8798
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Non-goals/Beyond the book/talk

© BIOVISIONS at Harvard,
2011

(Molecular-) Simulation

I “High-level” physics and
chemistry

I spatially distributed
phenomena

I (Some) applications:
I DNA folding
I diffusion processes
I information theory

I http://www.xvivo.net/
animation/
the-inner-life-of-the-cell
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Outline

Book chapter “OPT”

1. Optimality principles in biology

2. History of mathematical optimality
problems and their applications

3. Mathematical optimality problems

4. Examples of optimality problems in
cells

5. Constraints and trade-offs in
models: relation to empirical
knowledge, mechanisms, and
optimality

6. Multi-objective problems

7. Discussion: beyond optimality
thinking

Outline of this session

1. Primer on
Optimization

2. Connection to
‘Economy’ and
‘Evolution’

3. ‘Chapter 1’:
Primer on
metabolic
networks

4. Examples

5. Some historical
notes

6. Discussion
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A Primer on Optimization
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Optimization Problems (I)

Optimization problems (f. ex. 1-D)

Choose x such that some value
f(x) becomes maximal/minimal.

x

f

x1 x2 x3 x4

f(x)

I ‘Choose ‘the best’ out
of possible decisions.’

I ‘Find ‘the best’
possible
configuration.’

I ‘Pick ‘the best’,
according to your
preferences and/or
quantifiable criteria.’

min
x∈S

f(x) or max
x∈S

f(x)
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Optimization Problems (II)

Optimization problems (f. ex. 2-D)

Choose x such that some value
f(x) becomes maximal/minimal.

I ‘Choose ‘the best’ out
of possible decisions.’

I ‘Find ‘the best’
possible
configuration.’

I ‘Pick ‘the best’,
according to your
preferences and/or
quantifiable criteria.’

min
x∈S

f(x) or max
x∈S

f(x)
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Optimization Problems (III)

min
x∈S

f(x) or max
x∈S

f(x)

Optimization Problems (f. ex. n-D)

x1

x2

x3
x4 . . .

xn x

x1x2x3x4

· · ·
· · · xn



x1
x2
x3
x4
...
xn


f(x)

‘Picking’ the optimum

x1

x1x2x3x4x5

f(x1)

x2

x1x2x3x4x5

f(x2)

x3

x1x2x3x4x5

f(x3)

x4

x1x2x3x4x5

f(x4)

Cell Models and Optimality 8/37



Optimization Problems (IV)

min
x ∈ S

f(x) or max
x∈S

f(x)

Constraining the Feasible Points

x1

x2

−2

−2

−1
−1

1

1

2

2
Constraint by means of

I (non-) linear inequalities
x1 ≥ 0

I (non-) linear equalities
x1 + x2 = 0

I set inclusions
x2 ∈ Z
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Optimization Algorithms: Some theory

Simplest Case: Gradient Descent for minx f(x)

Iteration:

xn+1 := xn −∇xf(x
n)

x

f

x1

f(x)

x2x3 x4

−2 −1 0 1 2
−2

−1

0

1

2

If necessary: Gradient
approximation:

∂f

∂xi
≈ f(x+ hei)− f(x)

h
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Optimization Algorithms: Some theory
min
x∈S

f(x) or max
x∈S

f(x)

So-called ‘genetic’ (global optimization) algorithms

0. Pick a sample of initial guesses x0,0, x0,1, ...

1. Calculate function values

2. Sort out the worst cases, adapt/mix the best performers, goto 1.

x0,0

x1x2x3x4x5

f(x0,0)

x0,1

x1x2x3x4x5

f(x0,1)

x0,2

x1x2x3x4x5

f(x0,2)

x0,3

x1x2x3x4x5

f(x0,3)

x1,0

x1x2x3x4x5

f(x1,0)

x1,1

x1x2x3x4x5

f(x1,1)

x1,2

x1x2x3x4x5

f(x1,2)

x1,3

x1x2x3x4x5

f(x1,3)

x2,0

x1x2x3x4x5

f(x2,0)

x2,1

x1x2x3x4x5

f(x2,1)

x2,2

x1x2x3x4x5

f(x2,2)

x2,3

x1x2x3x4x5

f(x2,3)
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Optimization Algorithms: ‘Practice’

???

fminsearch.m

linprog.m

fmincon.m

scipy.optimize

cvxopt.py

APMonitor

CPLEX

GUROBI

IPOPT

NLopt
...
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Connection to ‘Economy’ and ‘Evolution’
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Our understanding of ‘economy’

A

B

C

D

E F
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Our understanding of ‘economy’

time

© Nature Education, 2010
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Evolution

“Case study ‘Plant eater’ ” ;-)

Quintessentially

I Even if “Cells don’t optimize”, they have been optimized by
evolution.

I “Optimization is the last religion in science.”
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Back to the Mentimeter

Evolution

filter X
chaos X

improvement X
optimization X
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Primer on Metabolic Network Modeling
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Metabolic Network Models

C2H5OH + 2 O2 −−→ 2 CO2 + 3 H2O

B

O

C

W

B

O

C

W

v

Input-Output

B
O
C
W


1 out
2 out
2 in
3 in

 

−1
−2
2
3

 = S

(Time-) Dynamical System

Description as an ODE/IVP

ẏ = S · v
y(0) = y0

plus rate laws, enzymes, genes,

regulation, etc.
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Metabolic Network Models
The “well-stirred” metabolism

3A + B ↔ C
Flow dependent on quota

Dynamics

ẏ(t) = S · v(t)

0 = S · v(t)

Simple rate laws

I Mass action: fi(t) ∝ y3
A(t) · yB(t)

3 A
B

C

I Michaelis-Menten: fi(t) ∝ yA(t)
yA(t)+KM A

I Hill-function (act.): fi = f̃i · yαE
Kα+yα

E
• •
E

I Hill-function (inh.): fi = f̃i · Kα

Kα+yα
E

• •
E

(Quasi) Steady State
Approximation

I Some reactions
orders of
magnitude faster
than others

I Model assumption:
Always at
equilibrium.
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Constraint-based Modeling

source: https://doi.org/10.3390/metabo3010001

Continuous
Description

dyi
dt

=
n∑

j=1

Sijvj

⇒ ẏ = S · v(y,p)
+ Very accurate

- Computationally
expensive

- Not sufficient
information

Discrete Description

Y
(n+1)
i

= IF(Y n
j ∧ ¬Y n

i ∨ . . .)

⇒ Y (n+1) = Φ(Y (n);p)

+ Single simulations
easy

- Very crude

- Just rough
qualitative
understanding

‘Constraint-Based’

v1

v2

v3
0 =

n∑
j=1

Sijvj

⇒ S·v = 0, lb ≤ v ≤ ub

I Consider just the
data ‘you know’

I Add
(consecutively) as
constraints

I hard/soft
constraints
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Examples
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Examples (I)
Tuesday: Flux Balance Analysis

vt1 vt2

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13v14

v15

C1 C2

A

B

C D De

E Ee

F

Fe

G

HHe

Oe

O2ATP NADH

Bio

Covert/Schilling/Palsson, 2001
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Examples (I)

Flux Balance Analysis

I Collect what you know (stoichiometrics plus lower/upper flux
bounds)

I Find flux distribution from linear optimization

max
v

f(v) = b> · v
s.t. 0 = S · v

lb ≤ v ≤ ub
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Examples (I)

Growth (i.e. Bio) maximization

vt1 vt2

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13v14

v15

C1 C2

A

B

C D De

E Ee

F

Fe

G

HHe

Oe

O2ATP NADH

Bio
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Examples (I)

“E” maximization

vt1 vt2

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13v14

v15

C1 C2

A

B

C D De

E Ee

F

Fe

G

HHe

Oe

O2ATP NADH

Bio
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Examples (II)
Optimal enzyme levels

A linear reaction chain

N S1 S2 Bio
E1, k1

v1

E2, k2

v2

E3, k3

v3
Klipp et al. 2002

Network’s constraints: S · v = 0, 0 ≤ v

v ≤ diag(k1, k2, k3) ·

E1

E2

E3


I Goal: Maximize growth reaction v3

I ‘Costs’: Enzyme activation E2
1 + E2

2 + E2
3
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Examples (II)
Optimal enzyme levels

(Toy-) example: k1 = 3, k2 = 2, k3 = 1.

J =

(1− λ) ·

(E2
1 + E2

2 + E2
3)−

λ ·

v3

E1

E2

E3

0 0.5 1

0

5

10

λ

en
zy

m
e

le
ve

ls

Gain:
0.3673
Cost:
0.3673

0 1,000 2,000

10−2

10−1

100

101

cost

ga
in
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Examples (II)
Optimal enzyme levels

(Toy-) example: k1 = 3, k2 = 2, k3 = 1.

J = (1− λ) · (E2
1 + E2

2 + E2
3)− λ · v3

0 0.5 1

0

5

10

λ

en
zy

m
e

le
ve

ls

0 1,000 2,000

10−2

10−1

100

101

cost

ga
in

Cell Models and Optimality 28/37



Examples (III)
Wednesday: “Optimality in Time”

Time-optimal behavior in a self-replicator J = tend
N M

Tr

R

∅vN

vTr

vR

vdTr

vdR
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Köbis et al., 2022
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Potential Objective Functions
Given: stoichiometrics, flux bounds, some dyn. data, ...

Biologically inspired optimization principles

1. Cell efficiency: “Minimize fluxes” (“Tikhonov regularization”)

J :=
∫
‖v(·)‖2∗dt plus minimum growth conditions

2. Growth (a): Maximize biomass/macro molecule production of the
cells

J := −
∫
‖wobj(t)

> · y(t)‖2∗dt
3. Growth (b): Maximize flux through biomass reaction(s)

J := −
∫
‖V ygrowth

(t)‖2∗dt

4. Robustness (a, b): Maximize survival time, minimize response times

J = −tend = −
∫
1dt and cell survival

5. Robustness (c): Maximize nutrient uptake

J = −
∫
‖wobj(t)

> · v(t)‖2∗dt

6. “Multiobjective” optimization, inverse optimality, etc.
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Historical Notes
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Historical Notes (I)
Optimization Methods in the Natural Sciences

Ramm, E. (2011) GAMM-Mitteilungen 34(2), 164–182 (recommended by J. Banga)
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Historical Notes (II)
Optimization Methods in Economy

I 1881: Edgeworth, Mathematical Psychics
I 1939: Production Planning using linear optimization

(Kantorovich)
I 1939–1945: World War II (Operations Planning)
I 1944: von Neumann, Morgenstern, Theory of games and

economic behavior
I 1947: Simplex Algorithm (Dantzig)
I 1954: Markowitz (quadratic programming, portfolio analysis,

later: risk measures)
I 1973: Maynard, Price The logic of animal conflict

CC Wikipedia
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Historical Notes (III)
Optimization Methods in (Systems) Biology

1967 1996 1996

I Flux balance analysis: 1990

I (Modern) systems biology full established: 2000–2010
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Concluding Remarks/Discussion
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Conclusion (I)

Central issue: Lack of first principles in (systems) biology

Optimization in Constraint-based Modeling

I Optimization itself not necessarily driving force but often as a
proxy based on
I the viewpoint of cells as ‘economic actors’
I ”cells do not optimize”, BUT ”cells have been optimized by

evolution”

I “Sometimes, things look optimal.”

Optimization techniques go beyond this

In theory and application (e.g. network reconstruction, parameter
fitting, a.i., multi-objective, game theory, robustness, inverse
problems, control problems, etc.)
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Conclusion (II)

‘Essentially, all models are wrong, but some are useful.’
George Box, Norman Draper, Empirical Model-Building and Response Surfaces

(1987) CC Wikipedia

Thank You!
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Discussion
e. g. Mentimeter, part 2(?)

Economic goals from the bio-viewpoint?

Money X?
Survival/Competition X?
Long-term prosperity X?

Innovation/Sustainability X?
Efficiency X?
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Image sources

matlab logo: https://se.mathworks.com/content/mathworks/se/en/company/newsletters/articles/the-mathworks-logo-is-an-
eigenfunction-of-the-wave-equation/ jcr content/mainParsys/image 2.adapt.full.medium.gif/1469941373397.gif
Fortran logo: https://github.com/fortran-lang/fortran-lang.org/blob/master/assets/img/fortran-logo.svg
tanker: https://openclipart.org/detail/318334/tanker-silhouette
offshore rig: https://openclipart.org/detail/323036/an-offshore-oil-rig
oil pump: https://openclipart.org/detail/310626/simple-oil-pump
oil refinery: https://openclipart.org/detail/279473/oil-refinery-silhouette
rape flower: https://openclipart.org/detail/238177/rapeseed-low-resolution
lipstick: https://openclipart.org/detail/311193/full-lipstick
money: https://openclipart.org/detail/222589/money
truck: https://openclipart.org/detail/182107/oil-and-gas-tanker-truck
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