Economic Principles in Cell Physiology

Paris, July 4-6, 2022

What makes up a cell?

Diana Széliová & Pranas Grigaitis

Cells as chemicals

99% of cell mass

1% of cell mass: Na, K, Fe, Mo, Cl, Ca...

Bacteria: $CH_{1.77}O_{0.49}N_{0.24}$ **Yeast:** $CH_{1.61}O_{0.56}N_{0.16}$

Cells as bags of things

Prokaryotic

- bacteria, archaea
- do not have organelles

Eukaryotic

- yeast, plant, animal cells
- have organelles

Biological molecules

Biological molecules

Small molecules

- < 1000 Da
- mono-/dimers
- thousands of different compounds
- metabolites, cofactors
- various functions

$$\begin{array}{c} CH_2OH \\ OH \\ OH \\ OH \\ OH \end{array}$$

Macromolecules

- polymers
- proteins, nucleic acids, polysaccharides, (lipids?)

Nucleic acids – polymers of nucleotides

Nucleic acids – functions

DNA

- stores genetic information
- all info to make a new cell

RNA

- transcribed from DNA (e.g. ATCG to UAGC)
- **rRNA** synthesizes proteins
- mRNA template for protein synthesis
- tRNA brings AAs to the synthesis site
- small RNAs

Important nucleotide – ATP

- energy currency
- powers processes in a cell

Proteins – polymers of amino acids

- 20 proteinogenic AAs
- 100 AA protein 20¹⁰⁰ combinations
- Poll: Is average protein length in bacteria < 1000 AAs?
- 325 AAs in E. coli
- AA chain folds into 3D structures
- can form multimers

Protein functions

Carbohydrates

Monomers/dimers (e.g. glucose)

• carbon & energy source

Polymers

- storage glycogen, starch
- structure mannan, part of peptidoglycan

Lipids – diverse hydrophobic compounds

Bilayer membranes

Membranes
around cells
organelles

Golgi, ER – protein synthesis & processing

Storage

Biological machines – huge complexes of macromolecules

Ribosome

- complex of rRNA + proteins
- makes proteins

DNA, RNA polymerases

- protein complexes
- synthesis of DNA and RNA

PDB-101: Educational resources supporting molecular explorations through biology and medicine. Christine Zardecki, Shuchismita Dutta, David S. Goodsell, Robert Lowe, Maria Voigt, Stephen K. Burley. (2022) *Protein Science* **31**: 129-140 doi:10.1002/pro.4200

Amounts of cell components

Cells: 70% water, 30% dry mass

Dry mass composition – similar

engineered yeast cells – up to 80% lipids

Amounts have to be expressed in relation to other quantities

Units:

- number
- mol
- gram

Per:

- cell
- volume
- dry mass
- surface area

Poll:

How many proteins are there in E. coli cell?

Raise your hand if you think $> 10^6$

Exercise

How many proteins are there per μ m³?

- Protein mass per volume: 0.2 g/ml
- Molecular mass of a protein: 30000 g/mol
- Avogadro number: 6×10²³ 1/mol
- 1 mL = $10^{12} \mu m^3$

How many proteins are there per cell?

Cell volumes:

$$\frac{0.2\frac{g}{mL} * 6 * 10^{23} \frac{1}{mol}}{30000 \frac{g}{mol}} = 4 * 10^{18} \frac{1}{mL}$$

$$4 * 10^{18} \frac{1}{mL} * 10^{-12} \frac{mL}{\mu m^3} = 4 * 10^6 \frac{1}{\mu m^3}$$

Variability of cell composition

Biomass component amounts change with growth rate

Nutrient growth law (Schaechter 1958)

- Cell size, absolute DNA, RNA, protein content increase with growth rate
- Bacterial/yeast/mammalian cells
- Holds when growth rate modulated by carbon source (not temperature)

Relative composition changes with increasing growth rate

Cells reallocate resources to support higher growth rate

RNA & RNA:protein ratio

- measure of proteosynthetic capacity
- most RNA involved in protein synthesis

Higher growth rate → more protein synthesis → more ribosomes

Ribosome – ¾ rRNA, ⅓ protein

More tRNA

Other factors that change composition but not growth and vice versa

- O₂ concentration
- Medium composition
- Mutations
- Temperature

AA composition - constant in various conditions (bacteria, yeast, mammals)

Composition is not uniform throughout a cell

- different concentrations in different organelles/areas
- transport regulated
- different pH, membrane potential
- consequence different enzyme rates, direction

same number of molecules different concentration

Populations are not uniform

- processes in a cell stochastic
- important at low copy numbers

same genome

different phenotype

http://book.bionumbers.org/how-much-cell-to-cell-variability-exists-in-protein-expression/

bet-hedging

Cell size and density

Cell size – huge variability

Cha	nges	with
	_	

- growth rate (nutrient growth law)
- conditions
- cell cycle

Name	Unit	E. coli	S. cerevisiae
Cell size	μm	1-2	5
Cell surface area	$\mu \mathrm{m}^2$	6	70
Cell volume	$\mu\mathrm{m}^3$	1	60

Exercise – buoyant density estimation

What is the buoyant density of a typical bacteria?

	density of component (g/mL)	mass fraction per cell
water	1	0.7
proteins	1.3	0.18
nucleic acids	1.7	0.08
lipids	1	0.03
carbohydrates	1.5	0.01

Buoyant cell density – rule of thumb

1.1 g/mL

Cell density – variable, but the range is small

- 1.05-1.15 g/mL
- some species constant at different growth rates, during cell cycle
- others changes during cell cycle, in stationary phase
- increases with osmolarity

exceptions – fat cells, gassy cells – lower density

Is there an optimal density?

Physical ("hard") constraints – cannot be bypassed

Temperature, pH, osmolarity

Diffusion limit

- enzyme + substrate have to collide
- perfect enzymes specific and fast limited only by diffusion (rare)
- no known enzymes above the diffusion limit

Macromolecular crowding

- concentration of macromolecules
- limits cellular processes, e.g. translation

Is there an optimal density?

Too few molecules

Collisions rare

Too many molecules

Crowding – slow diffusion

Macromolecule synthesis & needed resources

What does a cell need to grow?

- precursors
- enzymes that catalyze precursor synthesis
- "machines" that synthesize enzymes + themselves

- Processes have to be coordinated
- There needs to be physical space/volume

Precursor synthesis – **bow-tie structure of metabolism**

- Allows growth in various environments
- Many microorganisms grow on a minimal medium (Single source of C, N, S, P)
- Synthesis of macromolecule precursors competes for the same molecules

Metabolic enzymes – convert nutrients to precursors

wide variety of sizes and functions

main characteristics:

- k_{cat} turnover number
- K_M measure of affinity
- k_{cat}/K_{M} kinetic efficiency

Different enzymes are needed in different environments

Methionine dropout

Complete medium

Pathway	Enzyme	Proteome mass fraction (%)		Turnover value k_{cat} (s^{-1})
ratiiway		Met dropout	Complete	$\frac{1}{1}$ Idiffover value K_{cat} (S.)
Glycolysis	Enolase (Eno)	0.53	0.53	192.95
Amino acid biosynthesis	Methionine synthase (MetE)	7.45	0.009	0.12

Enzymes in living cells

- k_{cat} highest possible efficacy when enzyme is saturated
- in cells we observe apparent turnover rate k_{app}
- enzyme efficiency k_{app}/k_{cat}

Macromolecule polymerisation

catalyzed by large complexes – DNA/RNA polymerases & ribosomes

Ribosomes:

- synthesis of metabolic enzymes & other proteins
- their own synthesis significant cost (precursors & energy)
- average protein in E. coli ~ 33 kDa vs. ribosome 2300 kDa

Processes have to be coordinated

- synthesis of many subunits
- e.g. ribosome: 3-4 rRNA molecules and > 50 proteins
- ribosomal proteins similar length

Ribosomes are optimized for autocatalytic production

Shlomi Reuveni, Måns Ehrenberg & Johan Paulsson ⊠

Nature 547, 293–297 (2017) Cite this article

Processes have to be coordinated

transcription & translation

Transcription: E. coli 62 nt/s S. cerevisiae 30 nt/s

Physical proteome space is limited

- cells have a finite volume
- most of dry mass protein (ribosomal proteins, metabolic enzymes)
- optimal allocation is necessary to achieve high growth rate

Björkeroth, Johan, et al. Proceedings of the National Academy of Sciences 117.35 (2020): 21804-21812.

Biomass composition in mathematical models

models often focus on proteome

different levels of detail (total protein ➤ protein subgroups ➤ individual proteins)

fixed vs. variable biomass composition

Acknowledgement

Pranas Grigaitis

Wolfram Liebermeister

Elad Noor

Figures were generated using Bioicons: https://bioicons.com/

Thank you for your attention!