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The cell as considered by FBA

maximize c’v (growth rate)

veR™
subject to
Qu=0
= a <v < B
e R —
where () is the stoichiometry matrix
e Metanatic oL and c¢ is the objective function (as

growth rate maximisation).
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An effective modeling framework . . .
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Can FBA predict some well-established phenomena (as the catabolic repression)?
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Monod’s experiments is not recovered by FBA

Predicted use of carbon source by
other constraint-based modeling
methods (FBA)
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A relevant modeling framework, but unable to predict some well-established biological
phenomena in an autonomous way.



Advantages and drawbacks of Flux Balance Analysis

Advantages
P no parameters;
» include the whole metabolic network through mass conservation: Q.v = 0;

P an optimization problem which can be easily solved.

Drawbacks
» choice of the objective function (maximization of biomass);
» need to limit superior bounds on uptake fluxes to have a solution;

> genetic regulations are not included.

Conclusion: FBA problem is not enough constrained.
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Include other structural constraints active during exponential
growth (as mass conservation)

» FBAwWMC for FBA with Molecular Crowding: Vazquez et al. Impact of the solvent
constraint on Escherichia coli metabolism. BMC Systems Biology, 2:7. 2008.

> RBA for Resource Balance Analysis: Goelzer et al. Cell design in bacteria as a convex
optimization problem. Automatica. 47(6):1210-1218. 2011.
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Description of biomass

Medium
Energy and Reducing power

A\ 4 Y

— >
" repicat (A
epliation
—)IM— Transcription iy

Membrane
Cell wall

Membrane and Cell wall
synthesis

Membrane  jniracetiuiar

Extracellular

Peptoglycan

) X - Molecular Processes
The Metabolic Function

Cell Components

Different molecular processes produce cellular components. ..

Resource allocation models




An implicit coupling: proteins
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An implicit coupling: proteins
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Need to integrate the protein concentration in the optimization problem.
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Three structural constraints during exponential growth
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Exponential growth
By definition of the "balanced” regimen of exponential growth, we have
> the growth rate y is constant;

V(t) = uv (1)

> the concentrations of the different cellular components are also constant.

A first consequence: for each protein P; of concentration P;,
dP;(t)
—= = pj(t) — pPy(t)
dt < =l
Production Dilution

— a constant flux of protein production of p; = uP; # 0 is required in exponential
growth (steady-state).

For all proteins, a total flux equal to Zj Dj = ,uzj P; of protein production is
required.
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A first structural constraint

Ribosomes are composed of proteins.

Consequence 2: for the ribosomes of concentration R,
» a synthesis flux of ¥ = uR is required in steady-state;

» which leads to a constraint on the capability of the protein production
pR<krR — p<kr.

k7 is related to the efficiency of the translation of ribosomes.

A first structural constraint on the capability of protein production by the translation
apparatus

3 Resource allocation models 11/32



Let us now distinguish another set of proteins . ..

Resource allocation models



Another set of proteins P
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Impact of nonribosomal proteins

Let us consider another set of proteins P of concentration P.

k7, an optimistic superior bound ?

R+ P)<krR <k
w(R+P) <krR = T

—>the superior bound is decreasing.
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Impact of variations of P

Objective: Mimic the repression of the protein synthesis.

> Initial state of given concentration P;
R+ P) <krR

» Let 6P € [0, P;) such as P, = P, — §P.

u(R+ P+ 0P) < krR
» by choosing du = ,u%,
(u+ou)(R+ P) <krR

= [ can increase.
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Two sets of nonribosomal proteins

/N

\
p \ 4

AA
Transpor I 1 _t'_l
Membrane
"' ° Membrane
Extracellular || Intracellular synthesis Cell wall
Cell Components
'- Molecular Processes

The Metabolic Function

Medium

Energy and Reducing power

» Py involved in the metabolic network;
» Pq belonging neither to Py nor to R.
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A second structural constraint

Let v the flux of metabolic precursors produced by Pys. So
V= /,L(OZRR + agPg + OcMPM)

where
> «p is the amount of precursors required to ribosome synthesis;
>« is the amount of precursors required to Pjs synthesis;

P> ¢ is the amount of precursors required to Pg synthesis.

A second structural constraint on the capability of production of the metabolic network
to provide the metabolic precursors required for the cell growth

= - o
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An important assumption

Integrate the link between flux and enzyme concentration.
Recall that v = far(S, P)Pyr, where far(S, P) is the apparent catalytic rate (also
called apparent turnover rate) of the enzyme.

Assumption: for a given exponential growth condition, metabolite concentrations are
constant. So we simplified the non-linear relation f/(.S, P) by one parameter kj;.

» A mass balance constraint.
v = pu(arR + agPg + arPyr)

> A capacity constraint.
/
_kMPM <rv< kMPM

where kj; and k;w are the apparent catalytic rate in the forward and backward
direction of Pyy.
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A third structural constraint
Let us return to

R+P)<krR — <k
R+ P) < kr M_TR+P

Theoretically, we could have

lim kT kT .

R—0 R+P:

BUT: The intracellular volume is limited.
= Every cellular component has a maximal concentration.

A third structural constraint on the volume of cellular compartments and membrane
occupancy

oms . . o
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Three structural constraints
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And the mass conservation and the stoichiometry of metabolic network
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Generalization to the whole cell
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At steady state Resource Balance
(constant growth rate)

Metabolic processes

Stoichiometric matrix §
is first extracted from the
genome-scale metabolic model.

Sv — pvp — pvp + prvp =0
Metabolism additionally needs to be
able to produce sufficient Precursors
and Energy carriers, and to recycle
the metabolic Byproducts of

different cellular processes.

| Mass

conservation
constraint C;

Cellular processes

Analysis in a nutshell

Macromolecular processes
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Abundance of
housekeeping prot

For fixed Fg >0, p >0,

eins

Growth rate

find
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The RBA optimisation problem

Abundance of
molecular machines

Metabolic fluxes

Fixed abundances of macro-components
(i.e. cell wall precursors, etc.)

Y e RGP, v eR™,

—Qu+ p(CYY + C5B +C5Ps) =0
w(CHY + C¥Ps) — KrY <0
fK,EY <v< KgY \ Efficiencies of

molecular machines

CgY + CgPG -D <0 (i.e. kapp)

\

Densities of compartments




The RBA optimisation problem

Abundance of
housekeeping proteins

Growth rate
Abundance of
l molecular machines

For fixed FPe >0, pp > 0, / Metabolic fluxes
find Y e R v e R™,
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Theoretical properties of Py(1)

The following theoretical properties are obtained:

1. P(pu) is a Linear Programming problem;
— same complexity as the FBA problem, the RBA problem is easily solvable!

2. For a set of given environmental conditions, there exists a maximum growth
rate

> without defining any objective function (by constrast to FBA);
» defined by a trade-off on proteins;

» for which a protein distribution (enzyme/ribosome) exists;

> which can be computed by dichotomy with P (u);

3. Theoretical predictions of induced/repressed metabolic sub-systems with respect
to the concentrations of extracellular nutrients:

4. Every mechanism allowing to save proteins increases the growth rate.
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What predicts RBA?

For a set of given extracellular concentration of nutrients, RBA computes
> the maximal growth rate
> the metabolic fluxes including the substrate uptake and by-product secretion rates

> the abundances of molecular machines such as enzymes, transporters, chaperones
and proteins involved in the translation apparatus

But if an objective function is added, one can look for the cellular configuration
maximizing the production of a compound (metabolite, or protein) of interest at given
growth rate.
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Prediction of the Monod'’s curve p = f(Glucose)

Iy . . .
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RBA captures the macroscopic/microscopic behavior of bacteria

Monod’s experiments
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concentration. Solid line is drawn to equation (2) with Rg =1.35 divisions per hour, 9 05 1

and €;=0.22 M X10~* (11). Temperature 37° C. Glucose (mM)




Prediction of the relation Ribosome = (1)

Iy . . .
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RBA captures the macroscopic/microscopic behavior of bacteria
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Marr’s experiments

Ribosomes
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Prediction of a hierarchy in the use of nutrients
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Monod'’s experiments recovered by RBA
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RBA predicts a hierarchy in the use of carbon sources

Most induced/repressed sub-systems in the metabolic network coincides
with a known regulatory structure

) Promising to predict the cell phenotype in combined stress conditions 11



Estimation of model parameters

Resource allocation models 27/32 :.




Parameters to be estimated

For fixed Fo > 0, u > 0,

find Y e RLGP,v € R™,
subject to

©)  C+ Gy (TP +CEPe) =0

(Caa) M@Y +@PG) - KrY <0
(Cap) ~KpY <v< KgY

) @ @r-pso
From the stoichiometry From annotation

of chemical reactions & bioinformatics




Proteomics
(Q.,RA)

Parameters to be estimated

Physiology

Proteomics - -
(Q.,RA.) \M‘ From literature

biomass comp

\ or o
find Y e RV e R, oreata.
subject to
(1) —Qu+ u(CEY + CEB ¥ C3Ps) =0
(Caq) w(CMY + CM Pg) @Y <0
(Cav) €Ryy <v <(Epy
(Cs) CRY +CBP; L D)< 0

Q.: quantitative

RA.: relative/absolute

‘ Total protein content + proteomics + protein localization
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Identification of apparent catalytic rate of 600 enzymes
(Consistency with the expected distribution)
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Measured growth rate (1/h)

Quantitative prediction of the resource allocation
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Generation of RBA models
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How to build a resource allocation model for another bacterium?

For model building, one needs
P the annotated genomic sequence
> a genome-scale metabolic model in SBML format

> description of the molecular machines of the macro-molecular processes that you
want to include in RBA

For model calibration, one needs
> quantitative proteomic datasets

> uptake and excretion rate of nutrients, fluxomics

=9 Resource allocation models 29/32 -



Use RBApy to generate a calibrated RBA model
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Conclusion

The RBA framework provides theoretical properties for the cell design in bacteria
» The trade-off on resources structurally limits the growth rate;
» Every mechanism allowing to save resources increases the growth rate.

The RBA framework can efficiently predict for a set of concentrations of extracellular
nutrients
> The maximal growth rate;
» The resource repartition of the cell: the abundance of enzymes, transporters and
non-metabolic molecular machines as ribosomes and metabolic fluxes;
» The impact of a rational modification of the bacterial strain (e.g. plug-in an
entire metabolic pathway).

RBApy makes RBA model generation and simulation accessible for a large diversity of
prokaryotes

see https://rba.inrae.fr/ for existing RBA models and code availability.

= - o
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We are hiring | (30 months position to develop a RBA model of
cancerous and healthy cells)

i /30 @
Resource allocation models  32/32 Zg




