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About this book

Living cells, shaped by billions of years of evolution, have developed many ways to
adapt to their environment in order to thrive and to maximize their chance for sur-
vival. Cell metabolism is shaped by the rules of physics and chemistry, which enforce
boundaries on what cells can achieve. But within these boundaries, we can still ask
how cells should allocate their resources. By looking at cells through this economic
lens, we may uncover some general design principles that characterize life. The goal
of this book is to describe some of these governing principles, linking them to fun-
damental questions in cell physiology. The book gives an overview of established
approaches and topics in cellular economics, from descriptions of simple metabolic
systems to cell growth, variability, and dynamic behavior. It is written as a free and
open textbook to which anyone can contribute.
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Preface

Wolfram Liebermeister

How can a cell maintain itself as a living being? Living cells, shaped by billions of
years of evolution, have developed many ways to adapt to their environment, for
example, by regulation of gene expression. But the rules of physics and chemistry
enforce certain boundaries on what cells can achieve and how they can allocate their
own resources. Shaped by evolution, cells “do certain things right”, and computa-
tional models of cells often assume that this "doing something right” can be described
by evoking optimality principles. The goal of this book is to uncover some of these
governing principles. Although biological optimality is often contested for good rea-
sons, theories based on economic principles can explain many observations (about
cell growth or the usage of cellular resources) much better than purely mechanistic
models. Methods such as Flux Balance Analysis are well established, but the idea of
resource allocation is gaining ground, and metaphors like "currency metabolites” or
"energy budget” are common in cell biology. Optimality principles are often applied
ad hoc, and a coherent picture in which many single observations or models would
have their place is still missing. This book - a free and open textbook to which any-
one is invited to contribute - gives an overview of established approaches to "cellular
economics”, from descriptions of simple metabolic systems to cell growth, variability,
and dynamic behavior.

Compared to non-living matter, living organisms have some very specific abilities.
How can a tiny cell maintain itself, while a cloud fades away? How can it grow and
divide, how can it make copies of itself? Or in other words, what does it take to be
alive? There is no special “life force”; what makes matter alive is its microscopic struc-
ture or molecular organization. Living matter follows the laws of physics. However, to
understand life, physics alone is not enough! On the one hand, living beings are com-
plex at many levels of organization, from biomolecules to cells, body, population, and
ecosystem. Each of these levels follows its own laws, but in some cases, a change on
the lowest level, a point mutation, may change the fate of a population. On the other
hand, living systems do not just exist as they are, but have been shaped by billions of
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Figure 1: Protein abundances in the yeast Saccharomyces cerevisiae. Measured
amounts of different sorts of proteins are shown as areas, proteins of related func-
tions are arranged into larger regions, shown by colors. Why does the cell invest such
a large fraction of their protein budget into the glycolysis pathway? Such "economic”
guestions are central in this book.

years of evolution. This is also why some of their features look like they were perfectly
engineered. Since we do not know - and certainly cannot always consider - evolution
in its entirety, we often use "optimality” as a shortcut. To explain a biological feature,
like the shape of dolphins, we might tell all the story of dolphin evolution and how
changes in shape appeared and some were conserved. But instead, we may simply
say: this is the shape that functions best, and apparently evolution, by mutation and
selection, converged to this shape.

In this book, we mostly focus on microbes, and how they function internally: what
compounds they need to produce, and how, in order to live and self-replicate. We
can describe this at three different levels. Level 1, the ‘inventory’ of a cell, from a
molecular point of view, consists of molecules and biochemical reactions, which form
a complex chemical network. Level 2, the dynamics of molecule concentrations, is de-
termined by physical laws like the conservation of mass and by specific biochemical
regulation mechanisms, for example molecular recognition. But there is also a third
level, concerning the function (or possibly optimality) of these dynamics, for which
economic metaphors are appropriate. Given a limited "protein budget”, what bio-
chemical pathways should a cell prioritize to thrive, grow, and survive? In this book,
we focus on the third layer, the "economy of the cell”, which, in fact, encompasses the
previous two.

What do we mean by the "economy of the cell”? Economic theory is, of course, vast



and only a small bit of it has made its way into biology so far. In this book, by "econ-
omy” we mean primarily resource allocation and scheduling problems: What is the
best allocation of protein resources in a bacterial cell (see the graphic above)? How
should photosynthetic bacteria adjust these investments during the day-night cycle?
Our answers to such questions, also in this book, are often based on an underlying as-
sumption of optimality. But often we simply consider all the constraints under which
a cell needs to act and figure out what cellular behaviors are possible.

As we look at cells from the perspective of resource allocation, we will neglect other
aspects: we will rarely talk about regulation (e.g. the mechanisms for regulation of
gene expression), and even more rarely about gene or protein sequences. Instead,
we assume that certain mechanisms are in place in the cell, and that molecules en-
coded by sequences exist, and either ask why (that is, for what functional reason) they
are the way the are, or what the cell can do with them to perform certain tasks. This
often means that we assume a mechanistic system with possible ‘choices’ (among flux
profiles, expression levels, enzyme parameters, etc.) and ask, first, what choices exist
(considering all the constraints) and, second, how profitable these choices are for the
cell (assuming certain objectives). While we are hardly concerned with genetics, we
are certainly interested in how optimality may arise from evolution - to connect the
two, we need to think about fitness (how long-term fitness can be defined and how
it gives rise to “momentary” or “local” optimization objectives in a given part of the
cell).

The source of inspiration for the book and the questions (discussions) that motivated
the investigation of the various mechanisms the cell uses to allocate resources in the
most efficient way possible were a series of events in formal settings such as an an-
nual summer workshop, the monthly online Forum "Economic principles in cell phys-
iology”, and more informal hackathons. The development of the book is an endeavor
that is truly global in scope, drawing on the expertise and integrating the contribu-
tions of scientists who were members of a global network (formed a global commu-
nity) representing research institutions located in more than a dozen countries on
three continents. Those who contributed to the creation of the book recognize that
the success they achieved in bringing it to a satisfactory conclusion is due, in no small
part, to the support of the institutions with which they are affiliated and are grateful
to INRAE, the Learning Planet Institute Paris, and the home institutions of all other
authors (as well as the taxpayers who finance these institutions) who encouraged
the creation of the book by providing its authors and contributors with the time and
space necessary to sustain its development and achieve its completion.

Finally, why did we choose to write this textbook as a collaborative, open book? Pub-
lishing with a commercial publisher has several downsides, most of which reflect a



clash of interests between publishers, authors, and readers. We wish to write this
book as a community for the community. Many colleagues were and are involved,
and we would be glad to welcome you as part of the team! If you would like to join
for writing, reviewing chapters, designing graphics, or discussing new ideas, please
have a look at our website and get in touch.



Overview

Getting started
What is this book about?

In biology, the "economy of the cell” has become increasingly central as a way of un-
derstanding cells. In particular, it has been used as a perspective on metabolic states,
the allocation of protein resources in cells, and the interplay between production pro-
cesses and cell growth. In this book, we focus on diverse biological topics of interest
and, where possible, use economic analogies to show that, much like in human eco-
nomics, balance and resource management are crucial for cells. The “economy of the
cell” is based on, and is a part of, systems biology, a branch of biology that is typically
concerned with networks, large cell biological data sets, and dynamic models.

Functional thinking - as opposed to describing cells mechanistically, as physical ob-
jects - is fundamental to biology. In biology, the notion of "function” is justified by
the fact that organisms emerged from evolution - that is, as a result of mutation and
selection - where completely "nonfunctional” solutions are probably being selected
against. Evolution itself is an open-ended process and does not entail any simple cri-
terion for "optimality”. Since selection depends on changing environments, and since
environments themselves can be shaped by organisms, there is no simple, general
criterion for Darwinian fitness (except for the fact, post hoc, that a species managed
to survive over a long period of time). However, if we look at the end result - an
evolved species, or an evolved trait in microbes, for example, how cells allocate their
resources - and assume that this species evolved in a constant environment, it is
tempting (and, as we argue here, meaningful) to describe this result by optimality ap-
proaches or economic thinking. Hence, it is not by chance that some cell models
bear strong resemblances with economic models.

Since the integration of systems biology and economics is long overdue-and no books
currently focus on the intersection of these two fields, despite some addressing sys-
tems biology from an economic perspective-we decided to write a textbook that cov-
ers the fundamentals of cellular production processes, their regulation, and how they



can be described in terms of resource allocation, costs, and benefits.

Who is this book for?

The book focuses on the application of economic principles to cell biology, providing
readers with a quantitative framework to understand how cells allocate resources,
optimize processes, and make trade-offs. The topic of this book has emerged from
the field of systems biology, and accordingly, we address students and researchers in
related fields with a background in biology, physics, engineering, or math who want
to explore this interdisciplinary field. For students, the textbook offers a structured
introduction to the economic principles that govern cellular behavior, starting with
basic concepts and advancing to more complex models. For researchers, it provides
an overview of the current literature, helping those in related fields quickly grasp
key ideas and approaches in this area of study. For readers without a biological
background, we recommend the book “Cell biology by the numbers” (book.bionum-
bers.org), which takes the reader on a journey through various aspects of cell biology.

Our aim is to make this book accessible to as many people as possible by ensuring
that the concepts are accessible to everyone, covering both beginner and advanced
topics, and by offering it as a free resource. The book and its individual chapters can
be downloaded from our book website. A new version is released every three months
and since the project is still ongoing, the text will be improved edition by edition.

A guide to the book

Chapters overview

A main topic of this book is resource allocation in cells. Focusing on metabolism, we
can ask, more specifically, about (potentially optimal) configurations of fluxes, protein
concentrations, and metabolite concentrations. This question may be given in a sim-
plified form, e.g. as a choice of fluxes under constraints (in Flux Balance Analysis mod-
els) or an allocation of a finite protein budget to cellular tasks (as in whole-cell models).
But the overall aim behind this is to describe an entire growing cell. If we simplify this
again by looking at parts of a cell (e.g. considering small-molecule metabolism only)
or looking at "low resolution” (i.e. considering only a few global variables), this leads
to different modeling approaches which we explore in this book.

The reader will learn how economic principles such as optimization, resource alloca-
tion, and trade-offs can be applied to cellular biology. The chapters are organized to
guide the reader from basic concepts to more advanced applications. The book cov-
ers foundational topics first and then progresses to more specialized areas, including
how to develop and analyze models that explain how cells manage resources and op-
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Figure 2: Background knowledge and modeling in this book - Many topics in this
book are presented via mathematical models. Models can capture and structure
knowledge from biology, chemistry and physics in a mathematical formulation. As
a “simplified replica” of reality, they highlight certain aspects of cells that we would
like to describe and make them amenable to analysis. In the book, most models ei-
ther describe cell metabolism (as a whole, or parts of it) or a growing cell as a whole.
Aside from the basic description of steady states (in metabolism) or steady growth
states (of cells), the book captures some advanced topics related to cell behavior in
time, in cell communities, in uncertain environments, or aspects of spatial structure.

timize their internal processes. By the end of the book, the readers will have a solid
understanding of how economic principles can be used to analyze and model cellular
behavior.

The book chapters are related to a number of larger topics, as shown in Figure 3.

1. The functioning of cells - After the introductory chapter 1, “The cell as a factory”,
you will find two chapters with background information about cells and their metabo
Chapter 2, “An inventory of cell components” describes the main components of
a cell, their functions, and their typical abundances in a cell. In a self-replicating
cell, these are the components that need to be reproduced while also acting as
the "materials” and "machines” that make reproduction possible. Chapter 3, “Cell
metabolism”, focuses on metabolic reactions and pathways and shows how chem-
ical conversions depend on enzyme kinetics and reaction thermodynamics. Read-
ers familiar with cell biology and metabolic models may skip these two chapters.

2. Metabolism - The following four chapters concern metabolic models, starting with
models focusing only on metabolic fluxes (chapters 4, “Metabolic flux distribu-
tions”, and 5, “Optimization of metabolic fluxes”) and then continuing with mod-
els that consider enzyme kinetic rate laws to link metabolic production to enzyme
demand. Chapter 6, “The enzyme cost of metabolic fluxes” assumes that (desired)
metabolic fluxes are given and asks how much enzyme is needed to support them,
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Figure 3: Topics of the book shown as the branches of a tree, and book chapters
shown as fruit - The first chapters provide background knowledge, represented by
the roots of the tree. In the following chapters we explain different modeling ap-
proaches that focus on different aspects, represented by the tree’s trunk. In the chap-
ters on metabolism and on cell models, we assume steady (growth) states and move
step by step towards more complex models (resource allocation in cells), shown as
the first line of branches of the tree. Finally, we consider more specific aspects such
as time, variability, and space, as higher branches of our tree. The numbers in the
figure indicate chapters (for chapter titles see text).

and how metabolite concentrations should be chosen to minimize this enzyme de-
mand. Chapter 7, “Optimization of metabolic states”, combines these aspects and
presents a general way to determine optimal metabolic fluxes, metabolite con-
centrations, and enzyme levels at the same time. At the end of these chapters,
you will have learned what arrangements of fluxes and concentrations make cell
metabolism maximally efficient, that is, allowing to produce a maximal amount of
product at a limited enzyme capacity.

3. Cell models - In the following two chapters, we consider the cell as a whole. Chap-
ter 8, “Principles of cell growth”, describes what a system, the cell, needs to do in
order to replicate, and what internal arrangements will lead to a maximal growth
rate. Self-replication can be seen as a form of autocatalysis, which is described in
detail in in Chapter 9. Chapter 10, “Resource allocation in complex cell models”,
shows how these general principles are applied in large cell models that describe
small-molecule and macromolecule metabolism at a great level of detail.

4, Time and uncertainty - While the models in the previous chapters all assumed
steady states, and often a simple choice of the “best state” for a cell, the following
chapters explore some more possibilities and how one can describe them by mod-
els. Chapter 11, “Optimal cell behavior in time”, extends the question of optimal
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Figure 4. Metabolic models and levels of description - (A) Main elements of metabolic
models. The example shows a linear pathway of 3 enzyme-catalyzed reactions. Fol-
lowing the convention in kinetic models, the “boundaries” of the model are external
metabolites (marked as "ext”). In flux analysis models, the boundaries are typically
not formed by metabolites, but by exchange reactions. (B) Levels of description of
a metabolic model, from network structure (metabolites and reactions) to a quanti-
tative physical description (comprising for example concentrations and fluxes) and
further to a function-related “economic” description (comprising physiological con-
straints, costs, and benefits).

resource allocation to optimal scheduling processes in time, where the cell needs
to achieve its goal in a certain time horizon and resources can be shifted between
different moments in time. The next two chapters are concerned with variability.
Chapter 12, “Diversity of metabolic fluxes in a cell population”, explores how cells
in a population, instead of realizing the same optimal flux distribution, may realize
different fluxes, creating random differences between individual cells in a given en-
vironment. On the contrary, Chapter 13, “Cells in the face of uncertainty” assumes
that cells live in an unpredictable environment and need to “make bets” on how the
environment will change in the future, and addresses what are the best strategies.

5. Sizes and shapes - The last two chapters of the book are concerned with space in
a broader sense. Chapter 14, “Strategies for cell size control” describes how cells
choose the moment of cell division, which determines the distribution of cell sizes
in cell populations. Chapter 15, on the “Economy of organ form and function”,
goes beyond microbiology and describes more broadly how systems in the body
and their physiological usage - in this case, the lungs in mammals and the speed
and depth of respiration - are shaped by their size, and how general scaling laws
for shapes can give rise to similar laws for biological function and the “economics”
of the system in question.



Some words about mathematical models

As shown in Figure 2, in this book, cells and cell behavior will be largely described with
the help of mathematical models, often used in biology to gain insight into biological
systems through simulations and quantitative analysis.  As shown in Figure 4, our
models typically describe a set of metabolites and the reactions that convert them,
forming a network; we then attribute concentrations to the metabolites and chem-
ical fluxes to the reactions and describe their dynamics; and finally, based on this
dynamics, we consider "economic” questions, often in the form of optimality prob-
lems. Although different chapters will focus on different types of models (describ-
ing metabolic fluxes, compound concentrations, cell growth, or all of these aspects
together) and models of different size (from simple instructive 3-variable models to
models covering thousands of different cell components), all these models eventually
describe different aspects of one cell and the same cell. Therefore, the different types
of model are closely related and sometimes one model can be seen as a simplified
form of another one. Figure 5 shows a basic scheme of a cell, where precursors pro-
duced in metabolism are converted into proteins, which then constitute the machines
that catalyze metabolic reactions (as enzymes) or protein production (as ribosomes).
By “zooming in” and focusing on different aspects of this scheme, we obtain the main
types of models that we will encounter in this book.

Where to find more information

In addition to the main text, the book offers additional material.

Background knowledge and literature. Cellular economics - and systems biology
more generally - builds on knowledge from different disciplines and on a history of
ideas in biology and beyond. In the section "Reading recommendations” at the end of
the book, you will find a number of books, articles, and online resources that provide
background information.

Reading recommendations for individual chapters. For readings specific to individ-
ual chapters, please see the "Recommended readings” sections at the end of each
chapter.

Boxes. In the chapters, some specialized topics or thoughts on the side can be found
in separate boxes. Most of these boxes belong to one of these categories: Economic
analogies, Philosophical remarks, Physical thoughts and analogies, Mathematical de-
tails, Experimental methods in biology. The remaining boxes contain ideas that did
not fit into this simple scheme. A list of all the boxes can be found at the end of the
book.

Book website. More information about the book and the economic cell collective be-
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Figure 5: Simple scheme of a cell, and common function-based (“economic”) cell mod-
els - A microbial cell, depicted here by a very simplified scheme (center top), can be
viewed in various ways. Two main views on cells come from quantitative data ob-
tained from experiments (here represented by the proteome, top right) and from
the network of metabolic reactions (left), covering all (or a part) of the production
and conversion processes in the cell. These conceptual pictures can be translated
into mathematical models that describe (and predict) a number of cell variables. The
three remaining boxes refer to three common types of resource allocation models
presented in this book, each covering a different scope - from metabolism to entire
cells. The formulae are explained in later chapters (n: stoichiometric matrix; v: vector
of fluxes; »v): flux benefit function; «v): flux cost function; «.,,: apparent catalytic rate
of an enzyme; «(,¢): rate law of an enzymatic reaction, giving the rate as a function of
enzyme level . and metabolite concentration vector c).

h|nd it can be found on our WEbSite https://principlescellphysiology.org/book-economic-principles/.

Problems and computer exercises. The problems at the end of each chapter are a
mix of conceptual questions, paper-and-pencil calculation exercises, and computer
exercises. Solutions to some of the problems can be found in the end of the book.
More computer exercises (Jupyter notebooks) can be found on our website.


https://principlescellphysiology.org/book-economic-principles/
https://principlescellphysiology.org/book-economic-principles/problems.html

Lectures. All book chapters have been presented as lectures at our "Economic Princi-
ples in Cell Biology” summer schools at LPI Paris. Lecture slides are provided on our
website.

You can participate in writing this book. You can participate in our project in many
ways. If you have direct feedback for us (which may concern anything from typos to
proposing new topics), please let us know via our feedback form on the website. If
you would like to be directly involved (in writing, reviewing, proofreading, graphics
design, or any other smaller or larger tasks), please contact us anytime. For more
information, see the book website.


https://principlescellphysiology.org/book-economic-principles/lectures.html
https://principlescellphysiology.org/book-economic-principles/

Chapter 1

The cell as a factory

Ohad Golan

The term "metabolism” is usually used to describe the chemical reactions that oc-
cur within biological organisms to produce and transform molecules needed to sus-
tain life. Although this definition is useful, it does not give scientific or mathematical
ground for the analysis of metabolic systems. Here we consider metabolic systems
in @ much broader sense, and in order to provide a logical framework for the anal-
ysis of metabolic systems, we begin with a more formal definition that also covers
systems outside biology. Metabolic system: "A well-defined system that takes up nu-
trients and uses them to sustain itself”. This definition can be represented by a simple
chemical equation:

nutrients — metabolic system + waste products

The process is carried out by the metabolic system itself - a point we will expand on
later. The waste products are typical leftovers of the reaction in case such products
exist. The most obvious example of a metabolic system is a biological system that
takes up substances from its environment and assimilates them to reproduce its own
components (often summarized as "biomass”). The chemical equation of metabolism
for biological systems is:

¢ SUEAr + ¢, OXYgen + ¢, ammonia — biomass + waste products

The equation describes all the nutrients, including sugar, oxygen, and ammonia, that
are necessary to sustain a biological system. Other molecules such as certain metals
and phosphate are also necessary for the reaction to occur, but we neglect them for
the sake of brevity. The typical waste products are water, carbon dioxide, and other



Economics analogy 1.A A cell and a construction firm as black boxes

black box description of microbial growth

sugar —> —) acetate
oxygen —Jp —)p carbon
ammonia —Jp —)p biomass

economic analogy (construction company)

cement —Pp —J) houses
timber —> —) waste
iron ) —)p value

Another, less typical, example of a metabolic system in this general sense is an
economic firm supplying a product. In this example we will consider for simplicity
a firm that builds houses, but any kind of product can be equally used. Such a
firm takes in land and different construction materials, these would be equivalent
to the nutrients, and by the use of the labor force, which would be equivalent to
the proteins, uses them to build houses. The houses are then sold to maintain
and increase the value of the firm, just as the biological cell maintains itself. The
chemical equation of metabolism for a construction firm is:

« land +¢, construction materials — value + ., waste

possible chemicals secreted by the system.

In this book we focus on the analysis of biological metabolic systems. However, given
that economic systems fall under the same definition of a metabolic system, we will
use them as analogies to simplify explanations. Whenever an analogy to economical
systems is presented in this book, it will be displayed in an "Economic analogy” box
such as the one above.

Many metabolic systems use a strategy of reproduction to sustain itself. That is, nu-
trients are used to make more of the metabolic system and not only to maintain it.
This means that the output of the metabolic process is more of the metabolic system.
This creates a system that, when unlimited resources are available, grows exponen-
tially - the metabolic system takes in nutrients which it uses to replicate, the output of
the process is also the metabolic system which takes in more nutrients and also repli-
cates. Metabolism includes all the processes that take place in order to carry out the
overall chemical conversion of metabolism - that is, everything that happens inside
the black box described above. The most fundamental model of a metabolic system
is one that takes nutrients from the environment, breaks them down into building
blocks, and uses these building blocks to sustain itself. In biological systems, these
processes are termed catabolism and anabolism. In catabolism, the cell takes up car-
bon and nitrogen sources from the environment and uses them to synthesize the



Economics analogy 1.B A cell to a construction firm as growing systems

In an analogy to an economic system of a construction firm, the catabolic process
would correspond to the purchase and transfer of the construction materials to
the construction site, and the anabolic processes would correspond to the con-
struction of the house; the catalytic enzymes would correspond to the workers
carrying out the transfer of the materials and construction process. The growth
process in bacteria is analogous to the growth of the firm - when the construction
of the house is complete, the house is then sold to increase the value of the firm.
'rl;he increased value enables the company to hire more workers and build more
ouses.

microbial growth

construction company

L A e n

necessary building blocks: amino acids, nucleic acids, and fatty acids. In the anabolic
process, the building blocks are used to form biomass which includes the function-
ing systems of the cells, proteins, DNA strands, and the membrane. Each process is
catalyzed by a specific set of enzymes. These enzymes that catalyze the reactions are
actually the metabolic system itself. When the cell grows, it makes more enzymes to
catalyze more reactions - this is the reproduction process that leads to exponential
growth.

The metabolic system controls the allocation of the available resources. When co-
ordinating the process, the metabolic system decides between different strategies
on how to best use the resources. For example, the cell decides how much of the
available enzymes to allocate to the catabolic process and how much to the anabolic
process. When making these decisions, the cell takes into account different physical
constraints. Examples of these physical constraints are: a limited physical volume
to maintain and carry out the metabolic processes, a limited surface area that con-
strains the ability to take up nutrients, or limiting thermodynamic constraints on the



activity of the enzymes. There is no one best strategy that is always utilized - dif-
ferent organisms decide on different strategies based on the living conditions. This
decision process is carried out by many mechanisms in the cell, the main information
processing core of the cell being DNA. The decisions carried out by the cell are based
on the evolutionary process the metabolic system has gone through during its exis-
tence. A description of cell information processing and how it is carried out is given
in Appendix A.

So far, we describe the most fundamental metabolic system. This is a coarse-grained
description in which the cell catabolizes nutrients into one type of precursor and does
not take into account all the processes that take place in catabolism and anabolism. In
a biological metabolic system, the cell requires multiple different types of precursors,
such as amino acids, nucleic acids, and fatty acids. To create all the different precur-
sors, the cell takes in nutrients from the environment and, through a set of chemical
reactions, turns the nutrients into the precursors that are necessary for the cell to
sustain itself. Each chemical reaction in the metabolic process is carried out by pro-
teins. The different precursors can be produced through different sets of chemical
reactions known as metabolic pathways, and the different chemicals in the metabolic
pathways are known as metabolites. The cell decides which metabolic pathway to ac-
tivate by producing the necessary enzymes. In an analogy to the economic system of a
construction company, each chemical reaction is one process carried out by a worker
- for example, the assembly of the frame of the house requires a carpenter, while
the next step in the construction pathway is to place the foundation in the correct
location, which is done by another worker. The workers are analogous to enzymes,
and the different parts necessary for construction are the metabolites.

Many metabolic pathways have overlapping metabolite reactants and products. Some
of the key parameters that describe metabolic pathways are the enzyme catalytic
rates. These parameters describe the rate at which the enzymes consume and pro-
duce metabolites and at which concentration of reactants they saturate. In the anal-
ogy to the construction firm, the enzymatic parameters are parameters that describe

Economics analogy 1.C Allocation of workforce

In an analogy to the economic system of a construction company, the company
manager faces the decision of how to allocate his workforce, how many of his
workers to assign to bring in materials from the factory and how many of his work-
ers to assign to the construction process. In a similar way to the biological system,
there are different limiting constraints, such as a difficult topographic construction
site or limited available resources. Unlike the biological cell, though, in which the
decision-making is embedded by the evolutionary processes, here the decision is
made by the manager of the construction site.
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Figure 1.1: A self-replicating cell - In the metabolic process the cell takes in available
nutrients and through a set of biochemical reactions, turns them into precursors nec-
essary for growth. The chemical reactions are carried out by proteins in the cell.

the rate of work of each worker. Given that each metabolic pathway is made up of
a series of chemical reactions, each with different catalytic rates, the different en-
zymes of each pathway must be coordinated perfectly to avoid any excess buildup of
metabolites - just like in a factory assembly line, all the workers must be coordinated
together to avoid buildup of an intermediate.

In order to make sense of the complex network of metabolic reactions, different
mathematical models were developed. The models take into account the known ex-
perimental data for the different reactions and compile them together to predict the
overall response of the system under different growth conditions.

The metabolic models described above describe biological systems that are discon-
nected from the environment except for some artificial supply of nutrients. In natural
ecological systems, different organisms exist together under a limited supply of nu-
trients. They compete or cooperate to best utilize the limited available resources. All
organisms try to improve their chances of survival according to the laws of evolution.
In such a setting, the metabolism of organisms living in an ecological system is di-
rectly dependent on the other organisms that co-exist with them. In an analogy to an
economic system, this would be a competition between different companies for the
same possible clientele. Some companies would compete against each other, while
others would cooperate to improve their profit.






Chapter 2

An inventory of cell components

Pranas Grigaitis and Diana Széliova

Chapter overview

o The main components of a cell are proteins, RNA, DNA, lipids and carbohydrates.

o The quantities of these components vary depending on the cell type and the cell's
environment.

o These components are synthesized by enzymes and molecular machines such
as ribosomes and DNA/RNA polymerases.

o There are many parallel processes happening in cells and they have to be coor-
dinated.

o Cellular processes are constrained by factors like temperature, diffusion limits,
and density.

2.1 Describing and counting cellular components

Cells contain a diverse spectrum of molecules, needed to create two cells out of one
(as Rudolf Virchow proposed, omnis cellula e cellula, all cells come from cells). These
molecules come in different sizes and properties and therefore create a demand for
a cell to keep these components in different places (spatial organization) with dif-
ferent patterns of use (temporal organization), and book-keep their quantities. Cell
composition directly influences cell function: thus we observe different cellular make-
up in different organisms or even in different cells of the same organism.

Historical research and the latest advances in instrumentation allow us to character-
ize the constituents of cells in increasing depth. Today, collections of such biological
numbers, like BioNumbers [1], store thousands of values available at your finger-
tips, a long way from scouting the numbers in original publications. Specialized open
databases, e.g. Human Serum Metabolome Database [2], bring increasing amounts


https://bionumbers.hms.harvard.edu/search.aspx
https://serummetabolome.ca/

of measurement data available to the community.

Being able to operate basic biological numbers has multiple benefits when thinking
of the cellular economy. To name a couple, first, it allows “back-of-envelope” calcula-
tions, where we aim to estimate the plausible order of magnitude of a derived value,
rather than the exact value. This sort of thinking boosts interpretation of results con-
siderably, as it allows us to rule out unrealistic outcomes. Second, computational
models of cell growth (Chapter 8) usually use numbers like average cell size or protein
mass as parameters. Consequently, the choice of parameters has a direct influence
on the quantitative predictions. Last but not least, these simple calculations allow us
to establish relationships between different components of the cells - and cells are
nothing but heavily intertwined networks of molecules.

Counting molecules in a cell is as important to the cellular economy as counting dif-
ferent sorts of fruits and vegetables in a warehouse - and is a key ingredient in the
journey towards understanding of the principles behind the cellular economy. As we
unveil throughout the book, it seems that cells can be treated as “little bookkeepers
under the microscope”. Thus in this chapter, we will do a census of cellular compo-
nents: we will discuss what molecules make up a cell, what they are derived from,
how to measure these components in the lab, and we will briefly consider allocation
of resources, directed to synthesize individual cellular components.

2.2 The components of a cell

2.2.1 Elemental composition of the cell

Although living matter comes in different shapes and sizes, over 99% of the cellular
mass can be described by only a handful of chemical elements. 6 most abundant
elements form the famous CHNOPS notation: carbon (C), hydrogen (H), nitrogen (N),
oxygen (O), phosphorus (P), and sulfur (S). Taken together, these 6 elements encom-
pass the vast majority of the mass, namely, ca. 97.5% in budding yeast Saccharomyces
cerevisiae [3]. Living cells also contain minute amounts of different metal ions, such
as sodium (Na), potassium (K), iron (Fe), molybdenum (Mo) and others - usually facil-
itating signal transduction or supporting enzymatic catalysis.

2.2.2 Biological molecules

Although cells contain many different molecular species (“molecular identities”), we
can crudely categorize them into small molecules and macromolecules based on their
molecular weight and complexity. Small molecules, as the name suggests, are small
chemical compounds, up to 1000 Daltons in mass (1 Dalton = 1 atomic mass unit,
1 amu), and are usually composed of a non-repeating single chemical unit (called



monomer). Macromolecules, on the contrary, are up to several megadaltons (vpa = 10°
pa) in Weight, and are frequently composed of multiple monomers (forming so-called
polymers). Compounds in the cells, both macro- and small molecules, based on their
chemical nature, fall into 5 big groups: proteins, nucleic acids (both macromolecules),
carbohydrates (exist as both small molecules and polymers), lipids (small molecules),
and cofactors/other small molecules.

Proteins are polymers, composed of amino acids. Proteins are an exceptionally di-
verse class of molecules: in Nature, 20 amino acids can be incorporated into pro-
teins (so-called proteogenic amino acids), which, combinatorially provides 20 options
for each position in the protein chain. Therefore, there is an enormous amount of
possible combinations to make a protein of a length of 100 amino acids (20, to be
precise), even for a amino acid chain way shorter than the average in E. coli, around
325 amino acids (BioNumbers ID (BNID) 108986). This diversity gives rise to the spec-
trum of functions proteins can do, for instance, catalysis (catalytic proteins are also
called enzymes), transport of molecules, keeping structural integrity of membranes,
and others. Also two notable properties of proteins are that they (1) need to acquire a
specific three-dimensional structure (“to fold”) in order to become functionally active,
and (2) sometimes, they also need to form complexes of the same or other proteins
(called multimers). Protein production is a major consumer of energy and biosynthetic
intermediates in the cell, therefore, in this book we will frequently consider proteins
as central players in implementing economic principles in cell physiology.

Nucleic acids are another category of macromolecules; their monomers are called
nucleotides. There are two major classes of nucleic acids, RNA (ribonucleic acid) and
DNA (deoxyribonucleic acid). RNA and DNA chemically have a slight, yet critical dif-
ference: the sugar, which is a part of the nucleotides, differs between RNA (ribose)
and DNA (deoxyribose). The two sugars are almost the same but for one chemical
group: one of the carbon atoms in ribose is connected to two another carbon atoms,
a hydrogen atom, and a chemical group, called hydroxy- (-o#). In deoxyribose, the
hydroxy-group is substituted with another hydrogen atom, hence the prefix “deoxy-"
(“minus oxygen”). RNA and DNA have different functions in the cell: the primary func-
tion of DNA is to store genetic information, while RNA can work both as an intermedi-
ate agent to transfer that genetic information to protein production (messenger RNA,
MRNA) or to participate in catalysis and protein production in general (e.g. transfer
and ribosomal RNA, tRNA and rRNA, respectively). Outside the polymers, nucleotides
can also act as energy-accumulating compounds (e.g. ATP, adenosine triphosphate)
or signaling molecules (e.g. cyclic adenosine monophosphate, cCAMP). In this text, we
will mostly refer to the energy-storing function of the nucleotides, although other
functions, such as signaling, also are essential aspects of describing cell physiology.
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Carbohydrates are another major class of biological molecules, and are important
both as monomers and high molecular-weight polymers. Monomeric carbohydrates
(sometimes also referred to as simple sugars) are mainly used as carbon and energy
sources for organisms, e.g. glucose or fructose. Oligosaccharides made up of two
or three linked monomers can also used as energy source and many of them are
specific to certain groups of organisms (e.g. melezitose, a trisaccharide found in in-
sect honeydew). In oligomeric form (up to 10 monomers), carbohydrate chains are
essential for cellular sensing systems: proteins can be “decorated” with chains of car-
bohydrate monomers to be recognized by receptor molecules on the surface of the
cell. Finally, polymers of carbohydrates usually serve as structural components (part
of peptidoglycan, major part of bacterial cell walls) or energy/carbon storage (glyco-
gen in, e.g. yeasts and animal cells, or starch in plants).

Lipids are a vaguely-described class of compounds, which have an overarching sim-
ilarity, being water-insoluble. The major function of lipids in biological cells is struc-
tural: a very abundant subclass of lipids, phospholipids, is an essential constitutent
of biological membranes. As discussed in Section 2.2.1, membranes themselves have
a variety of functions, which are mostly carried out by lipids (structural) or proteins
(transport, sensing, signaling etc.). Some lipids can also undertake other functions,
such as signaling (various sterols), or energy storage (tryglycerides, or fats).

As we see, the metabolism of biological molecules is tightly interlinked, although they
exhibit major differences in their abundance, size and chemical properties. Macro-
molecules are presentin very low concentrations, and their biosynthesis usually takes
minutes. Meanwhile, the time scale of small molecule reactions is usually seconds (or
fraction of), and the concentrations of small molecules are usually several magnitudes
higher than these of macromolecules. Yet, despite acting at different rates and con-
centrations, these two types of biological molecules work in an orchestrated manner.
To begin with, a number of different small molecules are required to produce both
other small molecules and the macromolecules. In return, the macromolecules en-
sure cell integrity and growth by, among other functions, operating the reaction net-
works of small molecule interconversions (which we usually refer to as metabolism).
Additionally, presence of some small molecules can influence the function of macro-
molecules, both directly (e.g. essential cofactors, needed for enzymatic reactions; en-
zyme activation or inhibition), and indirectly (e.g. modulation of gene expression, sig-
naling). Therefore, a lot of different processes have to happen in parallel to ensure
the operation of the cells. Having defined the major types of molecules we find in
living cells, next we will discuss how abundant are different components of the cells.



Box 2.A Macromolecular machines

An important consideration about both proteins and nucleic acids is that they
are polymerized by very specialized protein- and protein-nucleic acid complexes.
These molecular machines use energy (in terms of ATP equivalents) to form chains
of the respective monomers.
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For proteins, amino acids (AA) are combined into a so-called peptide chain in a pro-
cess called translation, which is catalyzed by ribosomes - large complexes made
from proteins and RNA. Nucleic acids (RNA and DNA) are synthesized from nu-
cleotides (NT) though a process called transcription by enzyme complexes known
as nucleic acid polymerases. There are two major classes of them, RNA and DNA
polymerases, each specific to their respective nucleic acid.

2.3 Cell organization and size

In an extremely simplified way, cells can be looked at as bags of fluid-like material,
kept together by a membrane. These “bags of things” can also contain other mem-
brane structures inside them, forming so-called organelles. In cell biology, we call
cells prokaryotic if they do not possess these membrane structures, and eukaryotic if
they do. The divide between prokaryotes and eukaryotes can be illustrated by com-
paring two organisms: the prokaryotic bacterium Escherichia coli and the eukaryotic
yeast Saccharomyces cerevisiae. They both are organisms, composed of a single cell
(thus called unicellular), and they both are very small, compared to a typical human
cell. However, E. coli does not contain any additional membrane structures except
from the plasma membrane (which encompasses the cellular contents). Meanwhile,
a handful of different organelles can be observed in S. cerevisiae. The cellular organi-
zation of these cells is shown in Figure 2.2.



2.3.1 Membrane-bound structures of the cell

Most biological membranes and membrane-based structures, including the plasma
membrane itself, have multiple functions (not only separating space), and are highly
dynamic. Some membranes can fold into very compact structures with extremely
high surface area (endoplasmic reticulum, Golgi apparatus), occupy different volumes
- from small vesicles to large vacuoles, occupying a major fraction of the cell volume.
Moreover, some molecules can form very large structures, which might be transient
(short-lived), thus capturing and defining them remains a major challenge. For these
reasons, the fine structure of cells is unclear - some findings (e.g. organelle contact
sites, see [4] for a recent review) hint into some functional organization of organelles,
yet the canonical way to look at the cellular structure remains as to a “bag of things”.

A notable example of a highly specialized organelle is the mitochondrion. The mito-
chondrion is separated from the rest of the cell by two (outer and inner) membranes;
this feature is essential for their function. In eukaryotes, mitochondria are a major
hub of metabolism: they house essential biochemical pathways, such as tricarboxylic
acid cycle (also known as citric acid-, or Krebs cycle), as well as the so-called respira-
tory chain, the machinery for generating energy with the use of oxygen (see Chapter 3
for more details). While the most biochemical interconversions happen inside the
mitochondria (in mitochondrial matrix), the respiratory chain proteins are located in
the inner mitochondrial membrane: these proteins create an electrochemical gradient
across this membrane, and use it to drive the conversion of energy, stored in nutri-
ents, into the energy the cell can use (in a form of ATP). What makes mitochondria
even more interesting is that they also contain mitochondria-specific genetic informa-
tion (mitochondrial DNA), which is essential for mitochondria to function inside the
cell. In many organisms, the loss of mitochondrial DNA results in impaired growth
(in yeasts, that is called the petite phenotype) [5], and some organisms cannot grow
unless mitochondrial DNA is present (petite-negative yeasts).

2.3.2 Cellsize

There is a remarkable variability of cell sizes in nature (Figure 2.1). Figure 2.2 shows
the typical sizes of bacterial, yeast and mammalian cells, which range from 1 to 15 um.
However, we can easily find more extreme values. For example, one of the largest
cells in the human body, the egg cell, is 100um in diameter (BNID 111184). Bacteria
are usually considered very small, in fact, the diameter of the smallest known bac-
terium Mycoplasma is only o.2um (BNID 104717). Meanwhile, on the other side of the
spectrum, the largest bacteria Thiomargarita magnifica can reach up to 2.m [6] which is
even more than most mammalian cells. However, this giant bacteria looks very differ-
ent from typical bacteria like E. coli - it has hundreds of thousands of genome copies



in organelle-like structures. There are exceptional cases where cells can reach even
bigger sizes. The largest known single-celled organism is the alga Caulerpa taxifolia. It
has many nuclei that are not separated by a membrane and reaches up to one meter
[7]. Another special case is a neuron - its body has a small diameter (100 um), but its
axons can extend to more than a meter (BNID 109548).

For many organisms, cell size changes with environmental conditions. As already
mentioned in Section 2.4.1, the size of the cell varies with the growth rate, and de-
pends on how a particular growth rateis reached. More than 60 years ago, Schaechter
et al. discovered the nutrient growth law - cell volume increases exponentially with
growth rate (as a result of the nutrient availability in the medium) [8]. Since then, the
correlation between cell size and growth rate was also observed for other organisms
[9,10,11](BNID 107948, 110191, 105103). However, when the growth rate is changed
by other means, for example by temperature, this relationship is not observed [8, 12].

2.3.3 Variation of single-cell sizes and shapes

The relationships above refer to an average cell volume in the population. However,
at the single-cell level, size changes throughout the cell cycle. Before cells divide, they
essentially need to double their size. Otherwise, they would get smaller and smaller
with each division. However, they also cannot grow too much, or the average cell size
would get bigger and bigger. There are various mechanisms of how cells maintain a
cell size homeostasis, and they are discussed in detail in Chapter 14.

Aside from cell size, we need to consider the importance of cell shape. Different cell
types come in different shapes, such as spheres, ovals, rods, or spirals. Differently
shaped cells may have the same volume but very different surface area and surface
area to volume ratio (SA/V). Spheres have the lowest possible SA/V while more com-
plicated shapes have higher SA/V. What happens to the shape when a cell changes
its volume (for example, in response to environmental conditions)? For many cells,
the shape remains roughly the same - for example E. coli always looks like a rod. As
a result, SA/V decreases as cells get larger. On the other hand, some cells vary their
size and shape but maintain a constant condition-specific SA/V [13].

The changing SA/V ratio can impact cell biology in various ways. For example, it can

Smallest E. coli Mammalian cells Biggest Longest neurons
bacteria Yeast bacteria Alga Caulerpa
[ I I T TTTTTI I I T TTTTTI I T TTTTTT I [T TTTTTI I [T TTTTTI I I T TTTTTT I T TTTTT
0.1 1 10 100 1000 10000 100000 1000000
Cell size [um]

Figure 2.1: Variability of cell size across organisms



change cell composition - a larger membrane area increases the lipid fraction of the
cell. The SA/Vratio also affects nutrient uptake. A bigger surface area allows faster nu-
trient uptake per unit volume because more transporters can fit into the membrane.
Additionally, cell shape influences the rate at which molecules diffuse from one end
of the cell to another. Understanding these effects is relevant for some modeling
approaches, especially those that consider membrane synthesis or diffusion.

2.4 Cell composition in numbers

Throughout this book, we will explore various ways to model cells mathematically.
For that, we need to know not only what the main components are but also what are
their quantities. For example, proteins are usually the most abundant constituent
of the biomass, and many simplified mathematical models focus solely on proteins.
However, some models include a much more detailed description of the biomass
composition. Additionally, we need to know how biomass composition changes in dif-
ferent environments. For instance, the observation that RNA/protein ratio increases
with growth rate hinted how cells reallocate resources to grow faster, inspiring the
development of mathematical models that capture this behavior.

Cells are composed of around 70% water and 30% dry mass. As mentioned pre-
viously in the chapter, we can describe the composition of the dry mass with the
most abundant chemical elements. For example, the elemental formula for E. coli
is CH; 7704 49N 24 (BNID 101800) and for S. cerevisiae CH, 5,04 5¢Np 16 (BNID 101801).
However, this kind of description is not particularly useful for understanding cells
because it does not capture the variety of molecules that exist in a cell.

Therefore, we are more interested in biomass composition in terms of the main
macromolecules (proteins, nucleic acids, lipids, and carbohydrates) and small molecule
(metabolites, cofactors, and ions). Table 2.1 summarizes an average composition of
E. coli and S. cerevisiae during exponential growth, the typical molecular masses and
copy numbers of the components. The most abundant component is protein, which
forms around half of the dry mass of the cell. When we divide the proteome into func-
tional groups, we find that the biggest fractions belong to translation, central carbon
metabolism, folding, sorting and degradation, and biosynthesis. A substantial frac-
tion belongs to proteins that are not mapped (especially in mammalian cells), illus-
trating that we still lack knowledge about the function of many proteins (Figure 2.2).

RNA forms 20% of dry cell mass in E. coli, but this number is lower in eukaryotes, such
as yeast (11%) or mammalian cells (4%). While the total amount of RNA is variable

1The icons bacterium-interior, golgi-3d-1, mitochondrium-3, endoplasmatic-reticulum-3d-medium,
endoplasmatic-reticulum-rough-3d-2, endoplasmatic-reticulum-rough-3d, and nucleus by Servier are li-
censed under CC-BY 3.0 Unported.
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Figure 2.2: Biomass composition and cell structure of a typical bacterial, yeast, and a
mammalian cell - The area of each polygon corresponds to a mass fraction of a com-
ponent per cell. While the average composition is quite similar in the three groups,
there are major differences in size and internal organization (especially when com-
paring prokaryotes with eukaryotes). Data for proteome groups (length-weighted
protein abundances) was obtained from Proteomaps. Sources of composition data:
bacteria [14], yeast (BNID 108200, 108196, 107234, 100261, [15]), mammalian cells
(BNID 107131, 107235, 107234). Pictures of cells were created using Bioicons’.

in different organismes, its relative composition is similar - most of the RNA mass is
formed by rRNA (80%), followed by tRNA (15%) and mRNA (5%) (BNID 100258, 100261,
106154). Lipid content is the highest in mammalian cells (13%) compared to yeast
and bacteria (4-10%, BNID 111209, Table 2.1). Remarkably, there are cases where
engineered yeast cells accumulated up to 80 % of lipids per cell dry mass [16]. The
content of storage carbohydrates varies from around 30% in yeast to 3% in bacteria
(Table 2.1). In bacteria, carbohydrates are stored as the polysaccharide glycogen,
while yeast cells use glycogen and the disaccharide trehalose. Yeast cells also contain
structural polysaccharides, such as mannan and glucan [15]. Bacteria contain the
structural molecule peptidoglycan (3% of dry mass) - a polymer of sugars and amino
acids, which forms bacterial cell walls. In addition, some bacteria (e.g. E. coli) also
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have lipopolysaccharides on their cell wall (3% of dry mass).

A small fraction of the cell mass (2- 3%) is formed by small molecules (< 1000 pa) such
as metabolites and ions. This group contains thousands of different molecules with
vastly different functions and concentrations. For illustration, the concentrations of
the most abundant metabolites in E. coli range from 10! to 10-” moles per cell, corre-
sponding to a range of 10t to only 100 copies per cell [14]. Possibly, there are metabo-
lites with even lower concentrations, but these are much more difficult to quantify.
Similarly, the concentrations of the most common inorganic ions (K*, Na*, Mg**, Ca*",
Cl™) span several orders of magnitude [14].

% of dry mass I\/Iassger cell [fg] Molecular mass [Da] C0|
E.c.

E.c. S .c S.c
ProteinS 55 o1 165 7650 40000 55000 3 x 1
RNA 20 11 60 1650 104-10° 104-100 3 % 1
DNA (chromosomal) 3 0.5 9 75 3 % 10° 2.5 x 108 2
Lipids 9 6 27 900 800 800 2 x 1
Storage carbohydrates 3 0.5 9 75 109 variable 4000
Structural polymers 6 23 18 3450 variable variable -
Metabolites/cofactors 3 2 9 300 < 1000 < 1000 -

Other 1 6 3 900 - - -

Table 2.1: Amounts, characteristic molecular masses and copy numbers of the main
biomass components for Escherichia coli (E. ¢.) and Saccharomyces cerevisiae (S. c.).
The composition data is shown for E. ¢. with a doubling time of 40 minutes (BNID
104954) and for S. ¢. with a doubling time of 110 minutes ([17], BNID 111755). The
storage carbohydrates include glycogen for E. c¢. / glycogen and trehalose for S. c..
The structural carbohydrates include peptidoglycan and lipopolysaccharides for E. c.
/ mannan and glucan for S. c.. Sources for molecular masses (BNID 105861, 115091,
101838, 104886, 107678, 109645, 102502, 100459); molecule copy numbers (BNID
108248, 108197, 114950).

2.4.1 Variability of biomass composition

Table 2.1 shows biomass composition of a typical E. coli and S. cerevisiae cell - these
are average values in certain environmental conditions. However, cell size, mass, and
composition vary with growth rate and environmental conditions. One of the most
extensively studied relationships in the literature is the correlation of growth rate with
cell size. The increase of cell mass and volume with growth rate has been observed in
bacteria (Figure 2.3), yeast, and mammalian cells [8, 9, 10, 11] (BNID 107948, 110191,
105103). For example, the cell mass of E. coli can vary fivefold - 150 to 870 ¢ per
cell for generation times between 100 and 24 minutes [14]. Larger cell mass goes
hand in hand with larger amounts of individual biomass components. The absolute
amounts of protein, RNA, and DNA increase with cell size. However, the ratios of the
components do not stay the same and the relative composition changes with growth
rate [8, 12].



Box 2.B Orders of magnitude

The quantities of biomass components are usually expressed in relation to other
quantities. The most common units are copy numbers, moles, grams, or fractions
which can be expressed per cell, per gram dry mass, or per cell volume. Membrane
components can also be expressed per surface area. Often, experimental data for
these quantities is not readily available, so we need to extract it from literature.
Useful sources for average or “rule of thumb” values include BioNumbers database
[1] and the book Cell Biology by the numbers [14]. Some useful quantities are
summarized in the table below The%are organized inincreasing order with respect
to the dimensions (1 - mass, size, thickness; 2 - area; 3 - volume, density). Notice
how the dimensions influence the numerical values. For example, while the cell
size differs only about 3-fold between bacteria and yeast, the surface area differs
by more than tenfold and the volume by about 60-fold. Because volume grows
faster than area, the ratio of cell surface area to volume (SA/V) gets smaller and
smaller as cells get bigger (see more in Section 2.3.2). Note that these are just
“rule of thumb” values. In reality, these values typically cover a broad range and
depend on environmental conditions.

Name Unit E. coli S. cerevisiae BNID/Reference
Surface area/volume (SA/V) um' 6 1.2 calculated here
Dry cell mass pg 0.3 15 104954, 108315
Total cell mass (with water) g 1 60 104954, 108315
Bilayer membrane thickness um 4 4 [14]

Cell size um 1-2 5 [14], 101796
Cell surface area um?> 6 70 101792, 113854
Cell volume um® 1 60 101788, 101794
Cell density gmL~! 1.1 1.1 103875, 103876

One of the most consistent observations is that the relative amount of RNA per cell
increases with a higher growth rate [8, 12, 18], (BNID 111460, 111755, 108200). On
the other hand, the data for relative protein content is more variable. For example,
in bacteria, protein content decreases with growth rate in some studies [12, 18] but
goes up and down in another (BNID 111460); in yeast, it increases (BNID 108200,
111755). Nevertheless, when looking at RNA/protein ratio we consistently find a pos-
itive correlation with growth rate across various species of bacteria (see Figure 2.3)
and yeast [19, 20]. RNA/protein ratio is a measure of protein production capacity
since most RNA is dedicated to protein synthesis. 80% is rRNA, which forms 2/3 of
the mass of a bacterial ribosome - the molecular machine that makes proteins, and
15% is tRNA which brings new amino acids to the ribosome (for more details about ri-
bosomes, see Section 2.5). Indeed, we also observe a correlation between ribosome
content and growth rate. The increase of RNA/protein ratio and ribosome content
with increasing growth rate reflect higher biosynthetic needs of faster-growing cells.
To support higher growth rate, cells need to reallocate resources according to the
growth demands (for example, make more ribosomes which can then make more
proteins) [19].For more details about resource allocation and how it is modeled see
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Chapters 8 and 10.

Similarly to protein content, there is no clear correlation between the relative DNA
and lipid content with growth rate across studies [12] (BNID 111460, 111755, 108196).
The content of storage carbohydrates decreases at higher growth rates in yeast and
bacteria [18] (BNID 111755, 111460).

As we have seen, the composition of the biomass changes with the growth rate, and
for some components, we can describe this relationship with simple mathematical
equations [18, 12]. However, the growth rate is the result of environmental condi-
tions such as the amount or quality of a carbon source, temperature, oxygen con-
centration, or presence of inhibitors, among others. Different conditions may lead to
the same growth rate but may not result in the same changes in cell physiology [9].
For example, modulation of growth rate by temperature rather than medium com-
position does not significantly affect cell size and composition [8, 12]. Inhibition of
ribosomes with an antibiotic decreases the growth rate but increases the ribosome
content, contrasting to the nutrient law shown in Figure 2.3 [19].

In contrast, environmental factors can influence cell composition without affecting
growth rate. This shows that cell metabolism is flexible - cells can reach the same
growth rate in different ways, depending on the conditions. For example, in yeast,
changes in O, concentration lead to changes in biomass composition while keeping
growth constant using a chemostat [22]. In mammalian cells, a change in a culture
medium leads to significant changes in lipid composition without having a consider-
able effect on the growth rate [11].
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Figure 2.3: Growth laws in E. coli - (A) Cell volume grows exponentially with growth
rate (data from [21]). (B) RNA/protein ratio grows linearly with growth rate (data from
[19]). In both cases, growth rate was varied by changing medium composition.



2.4.2 Biomass composition varies within and between cells

In the previous paragraphs, we considered average cells with a homogeneous com-
position across the cell. However, we must keep in mind that cells have an internal
structure and that biomass components are not uniformly distributed throughout
the cell (as illustrated in Figure 2.4). Although prokaryotic cells do not have compart-
ments separated by membranes, they have some internal organization. For example,
DNA is not spread across the cytoplasm, but wrapped around proteins and packed in
a compact structure called a nucleoid. Another example is that certain proteins are
preferentially localized on the poles in rod-shaped bacteria. Eukaryotes have com-
partments with different compositions, pH, and membrane potential. DNA is local-
ized only in the nucleus and mitochondria, and many proteins localize only in a par-
ticular compartment. Small molecules and ions also have different concentrations in
the different compartments. Often they cannot freely diffuse through membranes,
but transport is regulated and requires energy.

These differences in concentrations have implications for cellular functions. Some
processes are restricted only to a particular compartment/area. For example, tran-
scription only occurs in the nucleus and mitochondria (nucleoid), and some metabolic
pathways occur only in a specific compartment (e.g. tricarboxylic acid cycle in the mi-
tochondria). Even if the same enzyme is present in several compartments, it might
work at a different rate or in the opposite direction because of the different con-
centrations of substrates or products. In eukaryotes, certain digestive enzymes only
work at low pH present in lysosomes (thus preventing a cell from digesting itself).
Sometimes, consecutive enzymes in a metabolic pathway do not freely float in a cell
but form an assembly or bind to a scaffold, allowing intermediates to be channeled
directly from one enzyme to another. This accelerates metabolic reactions because
intermediates do not diffuse away into the bulk solution and are not consumed by
competing reactions.

Finally, we need to zoom out from a single-cell (or average) view of a cell and consider

Figure 2.4: Two cells with the same numbers of molecules, but different spatial dis-
tributions. Although the average concentration is the same in both cells, the second
cell has varying concentrations in different compartments.
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the heterogeneity at the population level. This heterogeneity is often neglected, and
we use a single number to describe a concentration of a molecule in a cell/compart-
ment - an average value of the population. However, biological processes are stochas-
tic (noisy), and the actual molecule numbers follow a certain distribution (Figure 2.5),
which can be characterized by mean and variance. The effect of the heterogeneity
becomes especially important at low copy numbers.

The heterogeneity in molecule copy numbers leads to a heterogeneity in cell phe-
notypes such as generation time, cell size, stress tolerance, and others. The hetero-
geneity of the population can affect fitness in a positive or negative way, depending
on the conditions. For example, when a cell population encounters an unexpected
environment, a certain subpopulation might be better suited to survive. In a differ-
ent environment, another subpopulation might thrive. We can view this as a microbial
“bet-hedging” which increases the chances that at least some part of a population will
survive the new conditions. However, when cells try to maximize the growth rate, the
variability in the population can decrease fithess because it decreases the average
population growth rate [23]. This topic is discussed in detail in Chapter 13.

2.5 Macromolecule synthesis and the resources needed

In the previous sections, we have explored the diversity of nature and the abundance
of biological molecules. The combination of smaller building blocks into functional
units, let it be proteins, membranes, or DNA that conserves information about the
organism, is the major stepping stone from an unorganized pack of molecules into
what we could call a living system. Therefore, in this section, we will consider the
coordination of how cell components are produced, focusing on the biosynthesis of
macromolecules.

The overall cell growth can be called self-replication: a cell makes a copy of itself by



O Experimental methods 2.C Quantification of biomass composition

We can measure biomass composition at different levels of detail - from a coarse
elemental or macromolecular composition of an average cell to the quantities of
individual molecules in each cellular compartment.

To quantify the main chemical elements (CHNOPS), we can use devices called ele-
mental analyzers. The main macromolecular components - the total protein, lipid,
carbohydrate, DNA, and RNA content - can be quantified with simple assays such
as detection with fluorescent dyes, chemical reactions that lead to color change,
or extraction and weighing of a component. Going into more detail thlcaIIy re-
quires more sophisticated methods such as liquid or gas chromatography (LC, GC),
mass spectrometry (MS) or nuclear magnetic resonance (NMR). For example for
proteins, we can measure an average amino acid composition, and for lipids, the
main lipid classes (glycerophospholipids, sphingolipids, sterols, etc.).

If we go down to the level of individual molecules, we enter fields of study col-
lectively termed as omics, which aim to characterize and quantify certain pools of
biomolecules. Omics methods typically involve high-throughput measurements of
hundreds or thousands of different molecules and require a lot of resources (spe-
cialized equipment, computational resources) and expertise. The classic omics
fields include genomics, transcriptomics, and proteomics which study DNA, RNA
and proteins, respectively. Other examples include metabolomics which focuses
on small metabolites or fluxomics which measures metabolic fluxes (for example
13C metabolic flux analysis).

Combinations of different omics can help us obtain other parameters that are
difficult to measure. For example, turnover numbers of enzymes (..) are no-
toriously difficult to quantify because the measurements are error-prone and
low-throughput. With proteomics and fluxomics data we can calculate apparent
turnover numbers (k.,,) at various conditions (see Figure 2.9) and use the maximum
value (x==x) as an estimate of in vivo k... [24].

app

synthesizing macromolecules by using molecules it either produces or takes up from
the environment, all in the right amounts and proportions. How, how fast and how
big two cells rise from a single parent cell is the question we explore in our field, and
often try to complement the experimental observations (what and in what amounts
produced) with computational models of growth (how and why like that).

In general, three essential types of resources are needed for the synthesizing of macro-
molecules: (1) small molecule precursors, (2) catalysts, and (3) physical space/volume
for the process to happen (Figure 2.6). We will thus discuss how these resources are
primed and used for macromolecule synthesis, together with different considerations
surrounding each type of these resources. We will first start with discussing the “de-
mand” side of the balance, requirement for the small molecule precursors of the cells,
and will continue to zoom out towards the whole-cell economy of volume.



O Experimental methods 2.D Examples of biomass quantification methods

Component/- e

parameter Examples of quantification methods

Cell size microscopically

Dry cell mass weighing of a defined amount of dry
cells

Buoyant den- Percoll gradient

Sity

Protein colorimetric (Bradford assay; Lowry as-
say)

Lipid weighing of extracted and dried lipids
colorimetric (anthrone assay; phenol-

Carbohydrates sulphuric acid assay)

RNA fluorimetric (RiboGreen), spectrophoto-
metric

DNA fluorimetric (PicoGreen, Hoechst), spec-

trophotometric

Amino acid-
s/lipid classes LC/MS, GC/MS

next-generation sequencing (NGS) - Illu-

Genomics mina, PacBio, Nanopore
Transcrip- .

tomics NGS (RNA-seq), DNA microarrays
Proteomic. LC/MS, GC/MS, NMR

s/metabolomics

To visualize composition data, consider using Voronoi diagrams instead of the tra-
ditional pie charts or bar plots. An online tool is available at bionic-vis.biologie.uni-
greifswald.de for proteomics data, but there is also a tool that works with any type
of input data (GitLab repository on the book website).

"machines" that make
precursors enzymes + themselves

enzymes O
that make
precursors . Coordination

Limited space

Figure 2.6: The basic building blocks of cells are small molecule precursors - The pre-
cursors are needed to make catalysts such as enzymes and machines. In turn, these
catalysts synthesize both the precursors and themselves, forming a self-replicating
system. These processes need to be coordinated while being constrained by space.
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Economics analogy 2.E Comparing the cell to a bakery

The diversity of metabolic intermediates/end products, stemming from small num-
ber of nutrients (e.g. minimal mineral media for yeast growth, containing glucose,
ammonium, phosphate and sulphate salts), can be imagined as a bakery. Every
pastry starts with a small array of ingredients (flour, water, salt, sugar, ...) and
using some machinery (e.g. ovens), one ends up baking bread, pretzels, cookies,
muffins etc., which are way diverse in their features, compared to the starting mix-
ture. Likewise, by taking only a handful of compounds, cells, especially microor-
ganisms, can synthesize most of the molecules they need to eventually replicate.

2.5.1 Precursors of macromolecules

Biosynthesis of macromolecule precursors (e.g. amino acids, nucleotides, energy equiv
alents) is an important part of every metabolic network. Many microorganisms can
grow on a very limited number of nutrients (in the laboratory context, the so-called
minimal media), which usually consist of a single source of carbon, nitrogen, phos-
phorus, and sulfur. For instance, a minimal growth medium with glucose as the sole
carbon source can fully support growth: glucose enters glycolysis as the main energy-
harvesting route; however, some of the glycolytic intermediates serve as substrates
for, e.g. amino acid, lipid, or nucleotide biosynthesis.

A particularly interesting fact is that metabolic networks can be described as bow-
tie structures [25]: a large variety of nutrients can be converted into a very small
number (usually counted up to 12) essential metabolic intermediates, which give rise
to, again, a diverse set of molecules (for a detailed discussion, see Chapter 3). This
provides two important insights into metabolic networks. First, this plasticity of the
metabolic networks allows organisms to grow in various environments, where differ-
ent nutrients are available. Second, because of this organization, the biosynthesis of
macromolecule precursors competes for the same starting molecules independently
of the initial nutrients.

2.5.2 Catalysts needed for macromolecule synthesis

Many steps of the biosynthesis of macromolecules, as discussed previously, need
catalysis to proceed. Therefore, another kind of investment into macromolecule syn-
thesis is expression of necessary proteins and RNAs (in the latter case - ribosomal
RNA). Expression of proteins, starting from transcription of messenger RNAs, their
translation into proteins, folding, and degradation, involve many steps with energy
investment (ATP hydrolysis) and consume large amounts of precursors (nucleotides,
amino acids). Talking in energetic terms alone, protein expression accounts for about
40% of energy investments in yeast S. cerevisiae [26], and the energy investments for



every stage of protein expression are illustrated in Table 2.2 for typical bacterial and
eukaryotic cells. This concerted action of several systems, as described above, with
substantial investments at every intermediate step, means that these investments
thus happen on two levels: investments in the metabolic machinery and in the ma-
chinery, producing proteins themselves. We will consider these two levels in the fol-
lowing.

Metabolic enzymes. First, metabolic enzymes need to be expressed to convert nu-
trients into biosynthesis precursors. Some enzymes are active only in a form of com-
plexes, which also creates a demand to express proteins at defined ratios. Enzymes
and their complexes come in different sizes and flavors, and their activity can be de-
scribed (in very coarse-grained way, for more details see Chapter 3) by two kinetic
aspects: the efficacy (represented by the turnover number &...) and substrate speci-
ficity (Michaelis constant x,) of an enzyme. Importantly, these two parameters are
intertwined: high substrate specificity usually comes at the cost of efficacy and vice
versa. Therefore, although some enzymes tend towards extremes in terms of their
specificity or efficacy, most of the enzymes land close to the average/median values of
these parameters, when considering the distribution of enzyme parameters among
different organisms [28] (Figure 2.7).

The metabolic networks need to work in a concerted manner, even though different
enzymes need to perform different amounts of “work” (described as metabolite flux
through these enzymes, +). Thus, even given the similarities in “average” (or “mod-
erate”) enzyme properties, the expression of proteins and the abundance of their
substrates span several orders of magnitude. Based on the kinetic interpretation of
enzyme kinetic parameters, we can link them to either expression level of the enzyme
e (e o =) Or substrate concentration s (usually, o.1xy < s < 10Ky). Note that for substrate
concentrations, the suggested range (order-of-magnitude difference from the x, to
each side) is arbitrary, yet supported by empirical observations. On the higher end,
the benefit from high substrate concentration becomes negligible (saturation kinet-
ics) as the concentration moves from the order of magnitude of x, (see Exercises for

Expression stage Bacteria Eukaryotes

DNA synthesis 101 I, 263 L, (x2 for diploids)
RNA transcription 2 n, £,(23+6.t) Nu(46 X Lyt + 217 X 55t Ly pre)
Protein synthesis NpLy[(Ean — 1) + 56,1]

Table 2.2: The estimated energetic costs (units of ATP hydrolysis) of biosynthesis of
a gene, as computed by [27]. The estimates are represented as functions of the fol-
lowing parameters: r,, gene length; ~,, the steady-state number of mRNAs; z.,.. and
L.y the length of precursor and mature mRNA, respectively; 5., the degradation rate
of MRNA,; +, division time of a cell; ~,, the steady-state number of protein molecules;
r,, length of the protein chain; .., average cost of an amino acid; s,, the degradation
rate of proteins.
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Figure 2.7: Distributions of the ... and x, values (in s-* and mum, respectively), collected
for E. coli, yeast and human enzymes - The vertical solid line depicts the median of

angc]h distribution. Values were collected from the BRENDA database, release 2022.1

an example). The lower bound of concentrations is defined through high demand of
enzymes: in order to sustain flux, a lot of enzyme would have to be produced. As
cells have a finite volume to accommodate proteins, such a strategy works only for a
very small number of enzymes. Taken together the limitations on the both sides of
the spectrum, enzyme kinetics set the bounds for the concentrations of metabolites
in the cells.

To illustrate the diversity of enzyme turnover values ... and the condition-dependent
expression of enzymes (dictated by the flux » these enzymes have to sustain), we can
consider the proteome composition of E. coli under two conditions: growth medium
with the complete supplement of amino acids (all 20 proteogenic amino acids present
in medium), in contrast to the supplement with a single amino acid not presentin the
mix (a “dropout” medium) (Figure 2.8). The growth of E. coli in a nutrient-rich medium
(glucose + amino acid supplement) is indeed a very fast one (with doubling time of
Tarien = 2154104 VS, Tymmma = 56.3+0.5 Minutes). The omission of methionine from the amino
acid supplement does increase the doubling time (-, ... = 265 + 1.1 minutes), yet the
growth rate remains high, and so is the methionine biosynthesis demand in these
conditions.

Methionine is an amino acid that is energetically the most expensive to make [31],
and the final enzymatic reaction in the methionine synthesis pathway is so-called rate-



(A) Methionine dropout (B) Complete medium

Figure 2.8: Proteome composition of E. coli, grown on the growth medium with full
amino acid supplement (B) or its version without amino acid methionine (A). Pro-
teome composition data from [30]. Each polygon represents a protein, and its size
indicates the amount. Proteins are grouped into sections based on their functions.
You can create Proteomaps like this using nttps: //wiw.proteomaps .net/.

limiting, or the reaction which dictates the flux through the whole pathway. Moreover,
the enzyme methionine synthase (MetE) is a very slow enzyme (Figure 2.8, table on the
bottom), thus required at large quantities to provide enough methionine for protein
synthesis at high growth. Consequently, it was observed that MetE alone could occupy
up to ca. 7.5% of the total proteome (by mass) in medium lacking methionine, and
growth on a medium, containing methionine, would reduce the proteome fraction by
ca. 800-fold, to 0.009% [30]. To contrast this highly condition-dependent expression
of MetE, we considered a protein in the lower glycolysis, enolase (Eno) (Table 2.3). The
expression of glycolytic proteins, including Eno, was determined to be similar, as both
the complete- and the methionine-free media contained glucose as the main carbon
source. A noticeable contrast of Eno vs. MetE is also a ca. 3 orders-of-magnitude
higher .. value compared to the one of MetE: having to invest less (per mass) into
this enzyme contributes to the ability to sustain a very high flux through enolase when
cells grow fast on glucose [30] (see Chapter 6 for a more detailed discussion).

The variable concentrations of metabolic substrates, and their relation to the enzyme
parameters (x, in this case), also bring additional kinetic considerations. The above-
introduced turnover value .., represents the highest possible efficacy of the enzyme,
where all substrates are accessible in concentration needed to sustain this efficacy
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Figure 2.9: The relation between the apparent and measured turnover value (k.,,
and .., respectively) - Factors, leading to low net rate of reaction per unit of pro-
tein (e.g. low substrate concentration) lead to &, being significantly lower than the
measured &, value, latter of which corresponds to the maximal rate of the reaction.

(also called saturating concentrations). Turnover values are usually measured in vitro,
with all the substrates highly in excess, thus deliberately minimizing many kinetic ef-
fects (enzyme saturation, reversibility of reactions, etc.) that are prevalent in more
physiological conditions (see Chapter 3 for details). Therefore, what we usually ob-
serve in living cells is not the enzyme efficacy in terms of «..., but rather their apparent
turnover value r,,, (Figure 2.9). The ratio of these values (=) is then called the enzyme
efficiency and can be used to infer how far the enzyme is from its optimal working
conditions. The &, value of an enzyme in vivo can be computed as follows: knowing
the k... value, the flux through the reaction, one can calculate the minimal demand (in
moles) of the enzyme to maintain that flux. Then, the &, value can be computed by
taking the ratio between the predicted minimal enzyme demand and the abundance
of enzymes in the cells.

Macromolecule polymerization. Moving from metabolic enzymes to macromolec-
ular synthesis machinery, the polymerization of macromolecules (DNA replication,
RNA transcription, and protein translation) is catalyzed by large enzyme complexes
(@and RNA, in the case of ribosomes). DNA and RNA polymerases (DNAP, RNAP) and
ribosomes. The resources needed for their expression also contribute significantly
to the total costs of macromolecule biosynthesis. For example, the molecular weight
of an intact ribosome in E. coli is ca. 2.3 MDa (BNID 111560), and the E. coli ribosome
consists of 62% RNA and 38% protein (in mass %, BNID 109047). Meanwhile, eukaryal

Pathway Enzyme Proteome mass fraction (%)
Met dropout  Complete
Glycolysis Enolase (Eno) 0.53 0.53
Amino acid biosynthesis Methionine synthase (MetE) 7.45 0.009

Table 2.3: Abundance and .., values of two selected proteins from Figure 2.8: enolase
(independent on amino acid supplementation) and methionine synthase (dependent
on amino acid supplementation).



ribosomes are even larger, ca. 3.3 MDa for S. cerevisiae and ca. 4.3 MDa for human H.
sapiens (BNID 111560), and have higher protein content [32]. For a comparison, the
average length of a protein in E. coli is ca. 300 amino acids (BNID 100017) and aver-
age amino acid weight is ca. 109 Da (BNID 104877). By multiplying these numbers,
the molecular mass of an average protein is ca. 32.7 kDa, roughly 7~ lower than the
ribosome that synthesizes this protein.

The nature of these large complexes requires an exceptional coordination of resources
The first consideration is the number of individual proteins that form these com-
plexes: the RNA polymerases of S. cerevisiae contain up to 17 subunits (BNID 111568),
and 79 ribosomal proteins form a fully functional ribosome [33]. Therefore, the as-
sembly of these complexes must be fast and robust: Thus, cells contain a number of
assembly factors to facilitate these processes. Next, the coordination also has to be
temporal, especially for prokaryotes, where both messenger RNA transcription and
protein translation can happen simultaneously. In E. coli, this is well illustrated by
the 3-fold difference between elongation rates of mMRNAs and proteins, ca. 62nts-t and
21aas~1, respectively (BNID 103021, 107868). This coordination is essential for coordi-
nated transcription and translation happening at the same time [34], as translation
happens in steps, 3 nt each (so-called triplets). Even in eukaryote S. cerevisiae we ob-
serve a similar pattern: mRNA elongation rate of ca. sonts— (BNID 103016) and protein
chain elongation rate of ca. 105aas! [35], nearly a sx difference. Also, the polymeriza-
tion of macromolecules is very tightly connected to the metabolism: different kinds of
growth limitations (limiting amounts of nutrients) were shown to create bottlenecks
at different stages of protein expression [36], and the optimal regulation of these
processes were selected for by the evolution [37, 38].

2.5.3 Physical proteome space

A final type of asset required for macromolecule synthesis is the physical volume in
the cell. As the cells are, again, “bags of things”, they possess a finite volume, thus
different processes compete for available proteome volume (also called “proteome
space” interchangeably). A general trend across microorganisms is that ribosomes
occupy larger proteome mass fraction (in the range of 10-40% total proteome) with
increasing growth rate [19, 39], with an estimated maximum in E. coli of ca. 55% of
total proteome mass [19]. Alongside ribosomes, biosynthetic pathways also occupy a
substantial share of total proteome (e.g. enzymes, required for amino acid biosynthe-
Sis occupy up to 15% of the proteome space in S. cerevisiae [39]). Experimentally, the
optimal allocation of proteome space can be challenged by, e.g. varying expression of
an unneeded (gratuitous) protein. Both for E. coli and S. cerevisiae it was shown that
increasing gratuitous protein expression directly affects the maximal growth rate on



both minimal and rich media [40, 36], suggesting that the decrease in growth rate is
not dependent on the nutrient status of the cell.

Numbers provided above were measured for cells, grown in minimal medium, and
some of the costs we discussed - not only proteome space, but also precursors and
enzymes - could be alleviated by growth in rich medium. Uptake of biosynthetic pre-
cursors usually is less costly than biosynthesis, as expression of a single type of trans-
porter can substitute the need of expressing a biosynthetic pathway with tens of en-
zymes associated. Indeed, transfer of S. cerevisiae cells to a amino acid-rich growth
medium resulted in an increase of growth rate, caused by increased proteome allo-
cation to ribosomes, in place of the proteins of de novo amino acid biosynthesis [41].
In conclusion, the physical space that proteins can occupy is also an asset that the
proteins are competing for, and thus the optimal allocation of the available space is
key for the cells to grow in the most favorable way under specific conditions.

2.6 Physicochemical considerations about cells
2.6.1 Cell density

Most cellular parameters we discussed so far - cell size, mass, and composition -
vary greatly with the cell type, growth rate, or conditions. However, one quantity
does not show such variability - buoyant cell density. Buoyant density is the ratio
of cell mass to volume, usually expressed as ¢mr-t. For most organisms, prokaryotic
or eukaryotic, the buoyant cell density is around 1.05-1.15 gmr~! [42, 14]. This range
results from the fact that cells are 70% water which has a density of 1gmr-* and that
most dry mass is formed by proteins, which have a density of 1.2-1.4 relative to water
(BNID 111208, 104272, 101502). Other components range from 1 for lipids (BNID
108142) to 1.4-2 for nucleic acids (BNID 111208). To try the calculation of bacterial
density, see Problem 2.4.

For many organisms (E. coli, the yeast Schizosaccharomyces pombe, Chinese hamster
ovary cells, mouse cells), cell density is constant throughout the cell cycle and at differ-
ent growth rates when growing exponentially. However, it was observed to increase
in stationary phase for E. coli and S. pombe [42, 43]. On the other hand, the density
of S. cerevisiae fluctuates during the cell cycle, which might be related to a different
division mode. The organisms mentioned earlier divide by binary fission - cells di-
vide in the middle and produce two (roughly) identical daughter cells. In contrast,
S.cerevisiae divides asymmetrically - it grows a bud that breaks away and becomes a
smaller daughter cell.

Nevertheless, despite the variability, the range of the observed values is relatively
small and similar for most organisms, from bacteria to mammalian cells. There are



special cases where cell density deviates from the characteristic values - for example,
cells with very high fat content or gas bubbles have lower densities. However, assum-
ing the density of 1.1gmL~! is probably a good guess unless you work with a particularly
fatty or gassy cell type.

The invariability of cell density suggests that this property is highly regulated and
brings us to the next question - is there an optimal density? And what are the con-
straints that (possibly) determine this optimum? These questions (among others) are
discussed in the next section.

2.6.2 Physical constraints of cell growth

The living cells are constantly subject to a handful of so-called physical constraints,
which are directly linked to the physics and the chemistry of life. Cells cannot override
(evolve to bypass) these limits - only try to cope with them. Thus, sometimes these
constraints are also called “hard” constraints. Notice that we consider the “hardness”
of these constraints only in the space where conditions can still sustain life: some of
these limitations could be relaxed by changing abiotic conditions, but would resultin
breakdown of biological systems.

One of the abiotic factors would be temperature; however, increased temperatures
cause proteins to denature (lose their 3D-folded structure, thus functionality) and
destabilize biological membranes. Although there are organisms, which live in ex-
tremely high temperatures (so-called thermophiles), as a rule of thumb, we usually
consider the temperature above 393k (120°c) to be close to the limit of life. There is an
organism known as Strain 121 (Geogemma barossii) which can grow at 121 °c (hence the
name), currently the highest temperature known [44]. Next, the suboptimal concen-
tration of inorganic salts (osmolarity) or pH could also drive similar changes, disfa-
voring life. Here we will consider two prominent physical limits in life: the diffusion
and density limits. These two limits describe two aspects of how molecules move in
aqueous environments, in our case - living cells.

The diffusion limit describes the state where enzymatic catalysis is so specific and so
fastthat the reaction speed is determined only by the collisions of substrate molecules
to the enzymes, which all result in conversions (i.e. no futile collisions) [45]. Usually,
the number of futile collisions vary between 1 and 10 per successful conversion, and
thus having as little futile collisions as possible greatly enhances the overall rate of the
reaction. Enzymes approaching (operating at) the diffusion limit are also called perfect
enzymes. Currently there are no enzymes reported which are considerably “above”
diffusion limit (see [45] for an in-depth discussion), suggesting the universality of the
underlying constraint. Nonetheless, cells do have a strategy to counter the diffusion
limit. Consecutive enzymes from a pathway can be placed on a scaffold, which allows



the product of one reaction to be channeled directly into the next reaction without
diffusing away.

Another aspect to consider is the density, or sum concentration of molecules, of the
fluid. As described in previous sections, cell cytosol contains a spectrum of different
molecules at different sizes and concentrations. We normally assume that some sort
of optimal cell density that maximizes fitness exists, however, the density is known to
fluctuate substantially in time and across conditions [46]. One of the most prevalent
properties, linked to cytosolic density, is macromolecular crowding. As the name sug-
gests, it describes the concentration of biological macromolecules, mainly proteins, in
cytosol (thus in bacteria, the genomic DNA also contributes to molecular crowding).
For example, the macromolecular crowding is suggested to impose a limit on the
protein translation [47], therefore, increased crowding would result in a growth rate
decrease. The state of macromolecular crowding is relevant for the cellular function,
and is proposed to be in homeostasis (reviewed in [48]): optimal macromolecular
crowding corresponds to a state where crowding reduces the path proteins have to
diffuse, yet does not substantially decrease the speed of diffusion. In such a way,
maintaining high macromolecular crowding is suggested to maximize reaction rates
in the cytosol [49].

2.7 Concluding remarks

In this chapter, we discussed the properties and the quantities of the main cellular
components, how the composition changes in different environmental conditions,
and what resources are needed for a cell to replicate itself. It may seem that we
already have a vast amount of data, but a lot is still missing. Most available data
comes from model organisms such as E. coli, S. cerevisiae, or humans, but the data for
other organisms is still limited. Single-cell data (ideally with subcellular resolution)
is also not widely available. Even though we can sequence a genome within a few
hours or days, we still do not know the functions of many genes. Many experiments
still need to be done, and new high-throughput experimental methods developed to
fill the gaps in our knowledge.

Nevertheless, with the basic knowledge from this chapter, we can dive deeper into
studying cellular economics and resource allocation with mathematical modeling.
How is biomass represented in mathematical models? Often, models only focus on
proteome as it is a cell's most abundant and expensive component. However, some
models also include other major components (RNA, DNA, lipids, carbohydrates, co-
factors, etc.). The components can be modeled at different levels of detail. For ex-
ample, the cell proteome can be represented simply as a total proteome, divided
into protein subgroups (e.g. metabolic, ribosomal, other), or modeled as individual



proteins. Finally, there are two contrasting ways to include biomass in mathemati-
cal models. On the one hand, some models consider a fixed biomass composition
based on measurements or literature (see Chapters 4 and 5). On the other hand,
some models predict the biomass composition (i.e. they calculate optimal resource
allocation or enumerate all possible compositions, see Chapter 10).

Apart from biomass composition, we can include other cellular properties as con-
straints or parameters in the models, depending on the type of a model and how
detailed it is. For example, we can constrain the transcription/translation rates, en-
zyme turnover rates, cell surface area or volume.,

In conclusion, this chapter introduced the basic building blocks of a cell, processes
that make them, how they are coordinated and how they depend on environmental
conditions. In the next chapters you will learn how to translate this information into
mathematical models and how to use them to gain deeper knowledge of cell biology.
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Problems

Problem 2.1 Intuition for biological numbers
Try to answer the following questions, and only then look up the results:

o What is the volume of a cell?

o What is the size of a protein?

o What is bigger, a protein or the mRNA that encoded it?
o How many protein molecules are there in a cell?

o What is the number of genes in a genome?

o How long does it take to transcribe a gene?

o How long does it take to produce a protein molecule?
o What is the minimal doubling time of a cell?

o What other questions come to your mind?

Precise values do not matter here - think about orders of magnitude.

Problem 2.2 Proteins per cell - estimate one



How many proteins are there in a bacterial/yeast/mammalian cell [14]? Use data
from the following table:

Protein mass per volume 0.2 gmL~!
Molecular mass of a protein | 40000 gmol~

Avogadro’s number 6102 1/mol
E. coli volume 1 pm?

S. cerevisiae volume 60 pm?
Mammalian cell volume 3000 pm?

Problem 2.3 Proteins/ribosomes per cell - estimate two
A typical protein has a volume of 25 num® (BNID 101828) and a ribosome 3400 nm* (BNID
104919). Given that 70% of a cell volume is water, what is the maximum number of
protein/ribosome molecules that fit into a typical E. coli cell (see Table 2.2)? Compare
your answers with the previous problem/values in BioNumbers database.

Problem 2.4 Buoyant cell density
Calculate the buoyant density of a typical bacteria using the following data:

Component Density (em-t) Mass fraction per cell

Water 1 0.7
Proteins 1.3 0.18
Nucleic acids 17 0.08
Lipids 1 0.03
Carbohydrates 15 0.01

Problem 2.5 Concentrations enzymes and substrates

Dourado et al. [50] suggested that there is a relationship between the concentrations
of enzymes and their substrates in E. coli, which is a result of a constraint on the
biomass density. They showed that the reaction flux is maximal when the dry mass
of each substrate is equal to the dry mass of the unsaturated (free) enzyme. What
is the concentration of one enzyme per cell for E. coli (in moiL-1)? What would be
the optimal concentration of its substrate? Use protein mass and cell volume from
Problem 2.2 and the mass of glucose as substrate.

Problem 2.6 Cell size in different dimensions
Imagine a spherical cell that increases its diameter from 1 to 2um. How much do the
surface area, volume, and SA/V change? Think about how this could influence the
import of nutrients and the diffusion across the cell.

Problem 2.7 Alien lifeforms
Imagine alien lifeforms. Would they be composed of cells? Why? What features of



cells could be completely different? What features are so much dictated by physics
that they could not be different in any type of alien cell?

Problem 2.8 Substrate demand to saturate an enzyme
Take the following rate law: v = »==_$_ (also known as irreversible Michaelis-Menten
rate law, see Chapter 3), where ,»= is the maximal reaction velocity. Plug in the
values for » and compare the substrate concentration needed for the reaction rate
to increase from (i) 10% to (ii) 90% of the maximal rate .=, Hint: express the s in

terms of x,, and take the ratio.




Chapter 3

Cell metabolism

Hadrien Delattre, Wolfram Liebermeister, Elad Noor, Herbert M. Sauro, Orkun S. Soyer
and Robert West

Chapter overview

This chapter introduces cell metabolism as a dynamical system. While the previous
chapter gave an overview of the constituents of this system, i.e. enzymes, metabo-
lites, etc., this chapter focuses on conceptual abstraction of the metabolic system
as a whole and how to model its dynamics over time. The key areas introduced
are:

o Conceptualizing cell metabolism as a dynamical system

o Dynamics and regulation of metabolism

o Toolbox for modeling dynamics of metabolism - biochemical reaction rate laws
and their derivations

o Dynamics of metabolism: Examples of experimental evidence and model-based
explanations

o Mathematical derivations and example models

3.1 Conceptualizing cell metabolism as a dynamical sys-
tem

Cell metabolism is a dynamical process that converts available metabolites from the
environment into biomass and other products. The metabolism of a typical cell in-
volves thousands of biochemical reactions and metabolites. What would be a useful
way to think about such a complex, dynamical system? We need a conceptual picture
of metabolism to help us formulate more specific ideas about how it functions, how
it can be manipulated, or even how it has evolved. Here, we first highlight a few such
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Figure 3.1: A map of central metabolism in Escherichia coli bacteria - The diagram

shows the reactions, metabolites, co-factors, and enzymes, as well as a few selected

carbon sources and their catabolic pathways.

‘pictures’, or ways of thinking about metabolism.



Below we will switch back-and-forth between a high-level view on metabolism, con-
sidering all of it, and a more focused, low-level view focusing on modeling individual
reactions or small sets of reaction systems (e.g. pathways or motifs). These two view-
points constitute two ends of a wide spectrum, and our aim in jumping back-and-forth
between them is to allow the reader to obtain the skills to model dynamics of reac-
tion systems that make up metabolism, while at the same time to invite them to think
about the overall function of the metabolic system.

3.1.1 Metabolism as a collection of pathways

The common and historical view of a ‘metabolic system’ stems from pioneering bio-
chemical studies from the 1930s onwards, which identified collections of reactions
as so-called ‘pathways’ [51]. Known mostly through the names of their discover-
ers, these include the Entner-Doudoroff (ED), Embden-Meyerhof-Parnas (EMP) and
pentose-phosphate (PP) pathways involved in glucose uptake and conversion into
pyruvate, and the Krebs pathway (a.k.a. tricarboxylic acid cycle, TCA) involved in the
conversion of pyruvate into amino acid, nucleotides, and biomass precursors [52].
This ‘pathway-centric’ view of cell metabolism lends itself readily to an assembly line
analogy and the notion of (linearly) connected pathways (see Economic analogy 3.A).

Pathways, yes, but not so linear! The identification of well-established pathways
and the subsequent focus upon them gives the false impression that cell metabolism
consists of a series of neatly organized and serially connected pathways. This impres-
sion is facilitated by pictures of isolated linear pathways, common in textbooks and
even research papers. In reality, these pathways are highly interconnected with other
pathways.

Part of these interconnections within metabolism arise from co-substrates and spe-
cific metabolite pairs that participate in many reactions. For example, co-substrates
such as ATP and NADH link many parts of metabolism through reactions in which
they are generated or consumed (Fig. 3.2), while the glutamate - «-ketoglutarate pair
is involved in the TCA cycle as well as acting as a group donor in all amino acid biosyn-
thesis pathways.

The pathway view provides a useful starting point to think about metabolism, but
a complete understanding of metabolism dynamics and metabolic phenotypes re-
quires us to come to terms with the highly connected nature of these pathways (see
below, Box 3.0).

3.1.2 Coarse grained views of metabolism

The highly connected nature of metabolism makes it difficult to understand its over-
all dynamics just from individual pathways. It also makes it hard to conceptualize



Economics analogy 3.A Metabolism as an assembly line

We can make an analogy that presents metabolism as an assembly line in a fac-
tory. Metabolites enter the line from outside the cell and are processed - i.e. acted
upon by enzymes - to create new metabolites that are ultimately incorporated into
cellular biomass. This picture is reinforced by the common textbook illustration
of metabolism as a set of isolated pathways that are placed ‘upstream’ or ‘down-
stream’ of each other, and that‘produce’ or ‘consume’ outputs for each other. A key
shortcoming of this analogy is that it conveys a picture in which events are strictly
linear and progressive in their nature, ignoring the cyclic and inter-connected na-
ture of metabolism. Despite this shortcoming, this analogy captures the point
that the flux of materials through the system can attain a ‘steady-state’ of equal in-
and out-flux across individual reactions (see further discussion of the steady-state
concept in the main text). One important difference however between an assem-
bly line and metabolism is that the rate at a given assembly stage in a factory is
not a function of how many units are waiting to be processed because factory ma-
chines tend run at fixed rates. In metabolism, the rate of a reaction is a function of
the substrate concentration until saturated. This leads to distinctive behavior not
found in factory assembly lines. Another important difference with a factory as-
sembly line is that unlike an assembly line, metabolism in some cases is able to in
both directions along the line. The most well known of these is the bidirectionality
of the glycolytic and gluconeogenic pathways.

metabolism as a single, linear process, or as serially connected pathways. Here, a
coarse-grained viewpoint, focusing on the overall function of cell metabolism, might
prove helpful. There have been several such views developed, with two highlighted
here.
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Figure 3.2: A simplified map of central metabolism, particularly highlighting intercon-
nections among different processes (i.e. pathways) through the NAD(P)+ / NAD(P)H
co-substrate pair.




Metabolism as biomass generator. Awidely applied coarse-grained view of metabolis
considers it as a vehicle to biomass production. In this view, metabolism is con-
sidered as two coupled processes, one producing energy and compounds that can
act as building blocks (e.g. amino acids), and one that uses these to create larger
macro molecules (e.g. proteins and lipids) needed to make a new cell. These two
processes are called catabolic and anabolic metabolism respectively, and their cou-
pling presents the whole cell metabolism (Fig. 3.3 A). This coarse-grained model is
widely used (e.g. [52, 53]. However, it is not always clear how to partition various
pathways and reactions as anabolic and catabolic, and the notion of metabolism or-
ganized solely to satisfy for biomass production does not capture certain metabolic
phenotypes, such as no-growth states or excretion of high-energy metabolites (i.e.
metabolic overflow).

Metabolism as electron flow. An alternative coarse-grained view of metabolism is
obtained from a more chemical standpoint. When one writes down an overall reac-
tion for cellular metabolism, considering compounds taken up from the environment
and created at the end of various metabolic processes, one realizes that this is a re-
dox reaction, a type of reaction where electrons are exchanged between participat-
ing reactants (see Fig. 3.3 B and Box 3.B). This means that the actual reactions within
metabolism that enable this overall reaction must compose also of some redox re-
actions. In other words, we can argue that metabolism consists of (besides other re-
actions) a series of redox reactions that enable flow of electrons. Metabolism is thus
an inter-connected system of reactions that allows flow of electrons from readily ox-
idized compounds (electron rich compounds with low or negative reduction poten-
tials) towards readily reduced compounds (electron poor compounds with positive
reduction potentials) [54, 55]. (Fig. 3.3 B). As the Nobel laureate Albert Szent-Gydrgyi
(1893 - 1986), who studied the TCA cycle and discovered vitamin C biosynthesis path-
ways, once said, “Life is an electron looking for a place to rest.”.

Emphasizing its redox reactions, the metabolic system can be visualized on a reduc-
tion potential chart, which is sometimes called a ‘redox ladder’ (Fig. 3.4 and box 3.B).
This potential chart shows reduction potential of redox half reactions (usually in re-
duction direction) and allows us to readily visualize the thermodynamic feasibility of
redox reaction pairs. The chart is ordered in such a way that any reduction half reac-
tion can be paired with any other placed below it, resulting in a thermodynamically
feasible redox reaction, but not with those above it. We notice that cell metabolism, in
order to maintain electron flows, needs to maintain thermodynamic feasibility of the
overall and all intermediate reactions. The key requirement for this is to have access
to electron donors (e.g. carbohydrates) and terminal electron acceptors (e.g. oxygen).
One must also note that the redox ladder depicted in Fig. 3.4 is derived for standard
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Figure 3.3: Coarse-grained models of cell metabolism - (A) A conceptual drawing
of cell metabolism as provider of precursors (catabolism) and generator of biomass
from those (anabolism). (B) A conceptual drawing of cell metabolism as enabling an
abstract redox reaction between a pair of electron donors and acceptors. The elec-
tron donor can at the same time be the carbon source for biomass generation, or
there can be a separate ‘carbon-donor’. This overall redox reaction is an abstrac-
tion, in the sense that in real metabolism electrons are not directly transferred from
the original donor to biomass precursors but rather there are many intermediary
redox reactions such as those involving key carrier co-substrate metabolite pairs
NAD(P)+/NAD(P)H.

concentrations of metabolites, whereas the reduction potentials would depend on
actual concentrations in the cell.

3.1.3 Keeping flows in a system of interconnected fluxes

It is noticeable that both coarse-grained views presented above involve intercon-
nected fluxes that ultimately enable an overall flux. In the biomass-based view, the
flux between catabolism and anabolism is connected to enable flux into biomass. In
the electron-flow based view, there is again a set of interconnected flows to enable
the overall electron flow from initial donors (e.g. glucose) to final acceptors (e.g. oxy-

gen).

The interconnection of fluxes in metabolism is most clearly visible in reactions involv-
ing co-substrates, such as NAD(P)+ / NAD(P)H and ADP/ATP pairs (see below, Box 3.C).
The NAD(P)+ / NAD(P)H pairs form either the oxidation or reduction half-reaction in
various redox reactions thereby enabling the aforementioned electron flows within
the metabolic system. The ATP+/ADP pair forms an energy carrier, providing driving
energy to reactions that would be thermodynamically infeasible (see section 3.2.1
below on what we mean by this). This pair is seen as forming the flux connection
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Figure 3.4: Metabolism on a redox ladder - Cartoon representation highlighting the
role of electron flows through redox reactions for a functioning metabolism, and a
reduction potential chart listing key redox reactions found in cellular metabolism.
Notice that the reduction potential chart shows reduction potentials of half-reactions
in the reduction direction and using metabolite concentrations under standard condi-
tions, hence the actual potentials would be different and dynamically changing within
the cells. A thermodynamically feasible reaction would need to combine one half re-
action (run in reverse, oxidation direction) with another one lying below it (i.e. at a
higher reduction potential). Two example feasible redox pairs are shown with the
blue and red data points.

between catabolism and anabolism, where the former is considered to result in ATP
production, and the latter is considered to consume this.

Co-substrates are thus essential in connecting different fluxes, and therefore pro-
cesses, within metabolism and their dynamics must be important to keep overall
metabolic flow. It is tempting to speculate that key co-substrates might be an evolu-
tionary outcome that ensures stable electron flows in the face of changing conditions.
While this possibility is difficult to prove or disprove, it is interesting to note that the
NAD(P)H/NAD(P)+ pairs can attain a broad range of reduction potentials that could
enable their redox partnering with many of the different reaction types found in cell
metabolism [57] - in other words, these two redox pairs seem to be a versatile tool to
connect a wide range of redox reactions to each other and ensure electron flows.

3.1.4 Metabolic system and recurring motifs

Within the highly inter-connected system that is metabolism, specific reaction ar-
rangements seem to recur frequently, so-called “reaction motifs”. We have already
mentioned the cyclic reaction systems, involving co-substrates as one such motif.
Other reaction motifs that have been highlighted include autocatalytic cycles [58] and



branch points [59]. As we will discuss below, these reaction motifs can give rise to spe-
cific nonlinear dynamics and act in auto-regulatory capacity or create constraints on
the metabolic system. In general, however, it is difficult to ascertain the evolutionary
significance of reaction motifs. While automated approaches, involving graph the-
oretical analysis of metabolic systems represented as networks, highlighted certain
metabolic motifs as significant compared to random networks, it was subsequently
shown that this result is dependent both on the original network representation used
and the randomized networks used for comparison [60].

3.2 Reaction thermodynamics and enzyme kinetics

Independent of our conceptual views on metabolism, the fact remains that the metabo
system involves flux of matter. A myriad of metabolites are combined, converted,
broken apart, and re-assembled. These biochemical reactions are catalyzed by en-
zymes so to improve kinetic rates, and the entire system must obey the laws of ther-
modynamics (more on these later in section 3.2.1). In summary, metabolism consti-
tutes a ‘system’ of metabolites and their reactions, together with enzymes. Its dynam-
ics over time ensures fluxes of matter.

3.2.1 Biochemical reactions and thermodynamics

Metabolism consists of individual biochemical reactions of the form:
ngA + B —— n.C +nyD (31)

where », are the so-called stoichiometric coefficients, determining the number of
molecules of the i'th chemical species taking part in the reaction (Box 3.D). While these
reactions are catalyzed by enzymes, they still need to obey thermodynamic laws. We
will not provide a full treatise of the thermodynamics of chemical reactions here - we
refer the reader to excellent books on physical chemistry for this (e.g. [66]) and also
to books for a conceptual introduction to thermodynamics (e.g. [67]). Here, it suffices
for us to define the key thermodynamic equation, the Gibbs free energy of reaction,
involving the chemical potential of substrates and products. Chemical potentials are
related to concentrations, where the relation depends on the ionic strength of the so-
lution. Assuming an ideal solution, we will write here the Gibbs free energy of reaction
directly in terms of concentrations:

ArG’:ArG’O—s—R-T-In%, (3.2)
- r

where the small letters indicate the concentrations of the substrates and products
as given in the above reaction. Notice that specifying ‘products’ and ‘substrates’ au-



tomatically specifies a ‘forward’ direction to the reaction (Box 3.D). In the above ex-
pression, the term in the natural logarithm is the ratio of the concentration of the
products to the concentration of the substrates (considering the forward direction of
the reaction) and is commonly denoted as the mass action ratio, r. The term a,¢~ is
the difference between the standard Gibbs free energy of formation of products and
substrates.

The Gibbs free energy of a reaction is the key thermodynamic equation we introduce
here, as it is this equation that determines whether a reaction would run in the for-
ward direction or not. If the Gibbs free energy of reaction, for a given set of substrates
and products concentration, is negative (a.¢’ <o), the reaction will be spontaneous in
the forward direction as it is written (i.e. in the way the ‘substrates’ and ‘products’ are
defined). In other words, chemical reactions proceed in the direction of lower energy
- they minimize the internal energy of the system. We will see later (in section 3.2.3)
that Gibbs free energy will also feature in rate laws for biochemical reactions.

It is important to introduce here the concept of thermodynamic equilibrium, which is
attained when a.¢' = 0. Re-arranging equation 3.2 under this condition, we can obtain:

Ne nd

AGP = —R-T-Inea %ea (3.3)

n np
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where the subscript “«¢” denotes the concentrations of each species at the thermody-
namic equilibrium. The ensuing ratio is known as the equilibrium constant, x., = %%,
Re-arranging equation 3.3, we can derive an expression for ., as follows:

Ko, = o= (3.4)

Notice that ., depends only on a,c~, which is the difference between the standard
Gibbs free energy of formation of products and substrates involved in a reaction,
and which can be calculated from tabulated values (where available). A good source
of k., values of many biochemical reactions is the eQuilibrator tool (equilibrator.weiz-
mann.ac.il) [68, 69].

This thermodynamic treatment, showing that the equilibrium state of a reaction is
captured by a constant relating to the ratios of product and substrate concentrations
at that state, is fully supported by seminal experimental works from the second half
of 1800s conducted on chemical reactions by Peter Waage (1833 - 1900) and Cato
Guldberg (1836 - 1902), and their contemporaries. These works were concerned with
the equilibrium, or steady-state, of chemical reactions attained under different condi-
tions and when initiated from various starting concentrations of substrates. The key
contribution of these studies was the finding that the equilibrium state in a reaction,
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that is the ratio of the concentration of substrates and products at steady-state, is
characterized by a constant [70].

This finding, referred to as the “mass action law”, later gave rise to the notion (rather
erroneously) that reaction rate of a chemical reaction at constant temperature is ‘pro-
portional to the product of the concentrations of the reacting substances’' [71]. This
derived statement actually is not a law but presents a possible rate model that would
be compatible with the experimentally observed equilibrium state (i.e. with the mass
action law of equilibrium) [70, 71] (see Box 3.D and the Appendix A.2).

3.2.2 Enzymes as catalysts of biochemical reactions

We mentioned many biochemical reactions to be catalyzed by enzymes. It is there-
fore worth briefly explaining enzymes. Enzymes are proteins, chains of amino acids,
that fold in the cell in various 3D structures. For our purposes, we do not need to
understand all the intricacies of how enzymes are made or how they fold into their
structures (the reader is directed to excellent books on these subjects [72, 73]). Suf-
fice to say that in their folded-state, enzymes can bind a set of target metabolites in
such a way that puts these metabolites in a specific physio-chemical environment and
physical orientation, where their specific biochemical reaction is facilitated. Thus, en-
zymes are catalysts that facilitate a chemical reaction among metabolites. As we will
discuss further below, modeling of biochemical reactions catalyzed by enzymes re-
quires developing a ‘mechanistic’ picture of how enzymes function. Such models can
be developed based on numerous studies on enzyme structure and function. Here,
we will only state that a generally accepted model involves enzymes binding their
substrates - thereby forming a enzyme-substrate complex - and then transitioning to
a state enabling catalysis. We can expand this model by also considering so-called
allosteric binding sites, where specific molecules (including sometimes the enzyme’s
own substrate or product) can bind and alter the kinetics of either enzyme-substrate
binding or catalytic activity. These allosteric sites, thus, provide a mechanism for reg-
ulation of enzymatic reactions (Fig. 3.5).

3.2.3 Modeling reaction fluxes - reaction rate models

Metabolic reactions can involve diverse biophysical mechanisms (uncatalyzed, enzyme
catalyzed, etc.) and can take place under diverse biophysical conditions inside a
cell (membrane-bound, cytosolic, extracellular, coupled across membranes, etc.). As
such, mechanistically complete, biophysical representation of all metabolic reactions
in dynamic, mathematical models might never be possible [74]. Dynamical models
of metabolic systems, as with all mathematical models, must therefore balance ab-
straction of real mechanistic features of a system with achieving a still useful and



(A) (B)

kcat
substrate
binding
site
flux: vreros-keas

prOdUCt([P]) allosteric site

« €tot
ﬂ altered ke

Figure 3.5: Enzymes and flux regulation - (A) Schematic representation of a biochem-
ical reaction, highlighting the involvement of a catalyzing enzyme. For such enzyme-
catalyzed reactions, the flux has an upper limit relating to total enzyme concentra-
tion and kinetic parameters of the enzyme (see section 3.2.3 and Appendix A.3 for
enzyme catalyzed reaction rate models). (B) Cartoon representation of enzyme struc-
ture and possible mechanisms of allosteric or competitive regulation. Such regulation
can emerge either by the substrate of the enzyme or other metabolites binding the
enzyme (left), and altering its overall reaction rate (either through competition with
the substrate or by altering the enzyme structure and affecting its kinetic parameters,
right).

substrate(s)

insight-providing model. At the core of all dynamical metabolic models are rate laws
that aim to capture the kinetics of biochemical reactions.

Non-enzymatic reactions - the reversible and irreversible mass action rate models
All rate models used in metabolic modeling are based on the so-called ‘mass action
law’ described in Box 3.D above. As discussed in that section, the “mass action law”,
which is derived from thermodynamic principles, is compatible with a rate model that
assumes reaction rate of a chemical reaction at constant temperature to be ‘propor-
tional to the product of the concentrations of the reacting substances’ [71, 70] (see
Box 3.D). This ‘mass action rate model’ is commonly used, especially in the context of
elementary reactions (i.e. reactions involving one single step), and has been shown
empirically to apply in the case of some non-elementary reactions [70]. According to
the mass action model, the net rate of any reaction of the form given in Eq. (3.1) is
given by;

v=ky -a b — ke dM (3.5)

where small letters denote concentration of the relevant species of the same letter,
n; denote the stoichiometric coefficient for species i (as introduced above), and , and
k_ denote kinetic rate constants relating substrate concentrations to reaction rate.

The mass action rate expression is such that if the first term is larger than the second
then » >0, and more reactant will convert to product than product converting to reac-
tant (Box 3.D). This situation will continue until some point, where the second term
will be larger than the first, and the opposite will occur. Consequently, this expression
makes the system converge towards an equilibrium point, or steady-state, where v —o.
As long as the reagents are free to move, they will collide and interconvert (in both



directions) at the microscopic level, even when the equilibrium is reached. However,
at equilibrium, the amount of reactant converting to product equals the amount of
product converting to reactant per unit of time, therefore there is no net consumption
and production of metabolites (Box 3.D). When we have the concentrations that lead
to the thermodynamic equilibrium of the reaction, i.e. equilibrium concentrations, we
will have;

k+ CTLC . d’nd
T

This ratio is known as the reaction’s equilibrium constant x., and hence the ‘mass ac-
tion rate model’ is consistent with the empirical observations of Waage and Guldberg.
As we have shown in Eq. (3.4) above, the equilibrium constant is equivalent to the re-
action’s Gibbs free energy under standard conditions. Note that when considering a
biochemical system (rather than a chemical one), it is customary to report Gibbs free
energies for standard conditions adjusted for a pH of 7, and denoted with superscript
. Thus, we can write;

LA SR, LA (3.6)

k_

where a,¢~ is the Gibbs free energy under biological standard conditions, and rand r
denote the molar gas constant’ and temperature (in Kelvin) respectively (see Box 3.D).
It is important to note here that, given «., is a constant determined by thermodynam-
ics, the parameters r, and . cannot be chosen independently, i..e k- = K. /k,.

Following on from this last point, it is important to consider a reaction with large
K., i.€. a reaction for which a.¢~ is highly negative. In this case, the value of »_ can
become small to the extent that the reverse reaction can be negligible. In this case
the reaction could be considered as effectively irreversible and the rate model can be
approximated by;

v =k am b (3.7)

Enzymatic reactions The mass action rate discussed above forms also the basis of
modeling enzymatic reactions. This approach is justified by considering each enzy-
matic reaction as a series of ‘elementary steps’, each obeying the mass action rate
model. To this end, many alternative elementary steps, or ‘enzyme mechanisms’, can
be considered to ‘capture’ an enzymatic reaction and subsequently many alternative
assumptions can be made to simplify the resulting system of steps. Itis also possible
to include allosteric regulation or other types of inhibition or activation steps within

1The molar gas constant (also known simply as the gas constant) is the molar equivalent to the Boltzmann
constant, expressed in units of energy per temperature increment per amount of substance (quantified in

moles rather than single particles). Its value is about .31 ). K" . mol .



these elementary steps, allowing generation of a rich variety of enzymatic models
and rate laws. Here, we will cover some of the most common of such models, notic-
ing that the construction of these models follows the same general principles of (i)
drawing up elementary reactions, (ii) writing down mass action based kinetic rates
for the system, and (iii) simplifying the system with assumptions on kinetic parame-
ters (see Appendix A.2). The reader can consult additional books (e.g. [75]) for more
specific, elaborate enzymatic reaction schemes, or can attempt them as an exercise.

Single substrate, irreversible enzymatic rate model (Michaelis-Menten model) A
possible representation of an enzyme mediated reaction consisting in the conversion
of a reactant S to a product P could be the following reaction scheme:

k
S+E——ES =, P4 E.

This reaction scheme is rather specific, for example, itignores the possibility that sub-
strate bound enzyme can be converted into product, while remaining bound on the
enzyme. Thus, the above reaction scheme is derived from a more complete and more
complex reaction scheme through application of several assumptions relating to in-
dividual reactions. The resulting rate model from the above scheme is usually known
as the Michaelis-Menten model, named after the biochemists Leonor Michaelis and
Maud Menten who studied enzyme kinetics in the early 1900's, but several studies of
that time and afterwards arrived at a similar model using different assumptions. Im-
plementation of the specific assumptions, as we detailed in Appendix A.3, allows one
to arrive at the above reaction system, which can be represented by a reduced ODE
system, compared to the full system. In this reduced ODE system, the ODE describing
the rate of formation of the product, which is equivalent to reaction rate, becomes:

_ 5 Crot “Kear (3.8)

Ky+s

where ¢, represents the total enzyme concentration, ... is known as the catalytic rate
of an enzyme, and k, is known as the Michaelis-Menten coefficient of the enzyme
and is equal to (x, + k)/k (We Note that depending on the assumptions used, the ex-
pression for x, can vary). Plotting the above rate of formation of product against in-
creasing substrate concentration (see Figure 3.6) shows that the rate is a ‘saturating
function’ of substrate, i.e. the rate approaches a threshold point - given by vmex = ¢y - keu
as substrate concentration increases. Thus, we can see that the enzymatic nature
of the reaction introduces a limiting factor on the reaction rate that depends on »==,
i.e. total enzyme concentration and enzyme's catalytic rate. This fact underpins the
regulation of metabolic flux through regulation of enzyme levels or enzyme’s catalytic
rate, and is a key conceptual point for the constraint-based methods discussed later
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Figure 3.6: Michaelis-Menten rate law - The x- and y-axis show the substrate con-
centration (normalized by «,) and reaction flux (normalized by .==) respectively. The
dashed horizontal line corresponds to vmex, i.€. ey - keas

in this book.

Single substrate, reversible enzymatic rate model (Haldane model) Considering
that all chemical reactions are — at least, in theory — reversible, it is also possible to
express the rate of an enzyme-mediated reaction as a function of the concentration
of both substrate and product. A method to do so has been introduced by Haldane
[76]. It considers the following reaction scheme:

ki ks ks
ES EP — P+ E.

jie) ke

S+E

ko

Deriving the rate law for this reaction scheme is slightly more involved, but it follows
the same strategy as explained above, of creating elementary steps, treating them as
obeying mass action rate, and making additional simplifying assumptions. As shown
in Appendix A.2, we can follow this strategy to derive the reversible rate law as follows:

kc;t/KP
kr '

s—p
kou/Ks
_ cat cat
R I (3.9)

Kp  Ks

where ks and x, are composite constants relating to the substrate and product bind-
ing to the enzyme, and &, and «_, are Haldane coefficients (again, composite parame-

ters of other kinetic constants) describing catalytic rate of the enzyme (see Appendix
A.2 for further details of these parameters).

As done in the above section on kinetics of the non-enzymatic reversible reaction, we
can consider the equilibrium condition for this enzymatic reversible reaction. This
would allow us to derive the corresponding relation between ., and reaction Gibbs
free energy. Recognizing the relation between the Haldane composite parameters
and k., (see Appendix A.2) and the flux-force relation (see below), we can then re-



formulate the reversible rate law as:

0= e -k s (1 o) (3.10)

" 14 p/Kp +s/Ks

where a.¢' is the Gibbs free energy of reaction for a given substrate and product lev-
els under biological conditions and considering the forward direction of the reaction.
This rate law shows that forward reaction rate will be independent of thermodynam-
ics, when the reaction free energy is highly negative (i.e. when the reaction is far from
thermodynamic equilibrium, a.¢' < 0). However, as the reaction Gibbs free energy gets
close to zero, the reaction rate will decrease, and as such, there will be a dependence
of reaction rate on reaction free energy.

Another way of writing equation 3.10 is this one:

a0
s/Ks - (1 e = )

k- LG
1+5/KS.(1+k°“-e%.§)

cat

— +
U = €tot * kcat '

(3.11)

where we replace p/x» with an expression that depends on s and a,¢. This alternative
expression, developed in the context of modeling microbial metabolism [77, 78], can
be useful because it shows us that when the reaction is far from equilibrium (a,¢’ <),
the term 2.¢7n) will approach zero and the above formula can be approximated by
the irreversible Michaelis-Menten rate law (Equation 3.8). In this case, we further
notice that the Haldane coefficient ks becomes equivalent to x, introduced above in
the irreversible reaction scheme (see section 3.2.3).

It is important to note that many reactions within cell metabolism are experimentally
shown to be reversible, indicating that they operate close to thermodynamic equilib-
rium [17, 79, 68].

Rate models for representing allosteric effects Rate models for representing al-
losteric effects, i.e. binding of additional molecules - or their own substrates - on
the enzyme and affecting the enzyme-mediated reaction rate, can be created either
by adjusting the rate laws given above empirically, or by considering the additional
binding events at ‘allosteric sites’ of the enzyme and deriving a new ‘mechanistic’
rate model. To give an example of the former strategy, we can consider a Michaelis-
Menten rate model adjusted for an inhibitory effect of the substrate on the enzymatic
reaction rate. This adjusted rate model can be expressed as:

pmax g

v =
KM—FS-FSQ/KI

(3.12)

where x, represents the saturation coefficient for the binding of the substrate at an



allosteric site on the enzyme. Notice that we used such a model in the small multi-
stable system example introduced above (section 3.3.3) and discussed in Appendix
A.3.

For the same example, the alternative approach (the latter case mentioned above)
would be to develop a mechanistic model involving multiple binding reaction on an
enzyme. The resulting elementary reactions and their mass action implementation
can be then carried out. This process would result in a set of ODEs, which can then
be further simplified to draw a rate model for the proposed allosteric regulation. An
example of this type model is developed in the context of multi-substrate binding
enzymes, and shown to lead to multi-stability under certain parameter conditions
[80].

Flux-force relationship All chemical reactions, including biochemical reactions, must
obey thermodynamic laws. This fact manifests itself in several ways in dynamical
modeling. Firstly, reaction direction (or, rather, feasibility) is determined by the sign
of the reaction Gibbs free energy. Second, the kinetic constants associated with the
elemental reaction steps are constrained by thermodynamics (section 3.2.3). To see
the third relation arising from thermodynamics, we consider again the simple non-
enzymatic mass action model we used above - reaction schematic given in Eq. (3.1)
and the reaction Gibbs free energy given by Eq. (3.2).

We now re-consider the net rate of reaction as given above in Eq. (3.5), and break this
into its components of forward reaction rate (or flux) and reverse reaction rate (or
flux), which are given by;

vy =kg a0

v =k_-c".d™

and then, we can express the net forward flux (/) as:

— k_ . cle . dnd k_
J_”+_”‘_”+'<1_Z+> ”*'(“W)‘”*'(l_m'r)
In this re-organized form of the net forward flux, we notice that the expression in

parentheses on the right hand side can be re-expressed in terms of reaction free
energy (using Eq. (3.6)) as follows:

k_ r el
J=v+-<1—k+-F>=v+-(l—K)zv+-<1—eAR-§>
eq

Thus, we find that the net forward flux of the reaction is given by the forward reac-
tion rate multiplied by a thermodynamic factor. When the reaction is energetically
favored, i.e. has large negative Gibbs free energy, the thermodynamic factor dimin-
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Figure 3.7: The ratio of net forward flux () to forward reaction rate (»,) as a function
of the negative reaction Gibbs free energy

ishes and the net forward flux is fully determined by forward reaction rate alone (see
Figure 3.7). When the reaction is closer to equilibrium, i.e. small negative or near-zero
Gibbs free energy, then the net forward flux will be determined by a combination of
forward and reverse flux rates. This relation between net forward flux and thermody-
namicsis referred to as the flux-force relation [81, 82] and holds also for the enzymatic
reversible reaction model described above (see section 3.2.3).

A note on choosing a reaction rate model In the above sections, we have introduced
several biochemical reaction rate models. These models fall into two main categories,
namely those that model enzyme action (i.e. enzymatic models) and those thatignore
the enzyme action (i.e. non-enzymatic models). Notice that derivation of both cate-
gories of models rely on the mass action law. In the non-enzymatic case, we model
reactions as single-step forward and backward reactions using mass action, while in
the enzymatic case, we consider multi-step reaction mechanisms, but still use the
mass action for each individual step. For each category, we can consider the reaction
thermodynamics and model reactions as reversible, but - as we discussed above - we
can also choose to approximate reactions as ‘irreversible’ when the overall reaction’s
Gibbs free energy is very negative (i.e. when x., is large).

In a given modeling context and metabolic system, it would be a valid question to
ask - which model should one use? This question can be answered in parts. In the
first instance, we can make a decision about the use of reversible or irreversible rate
models. As already mentioned, this decision should be based on the value of ., - a
reaction with a very large «., can be modeled as irreversible, as long as the product
concentrations are known not to reach very high levels (in a cell). However, to rep-
resent a metabolic reaction as irreversible is not without consequences even if the
reaction always runs in the same direction (notice that the assumption of irreversible
reaction means that the reaction rate cannot go negative). Reversible kinetics can
capture the negative feedback of reaction products on reaction rate, and irreversible
reaction models would lose this feature [83]. A recent study by Shen et al [84] showed



how important it can be to include product inhibition to create a predictive metabolic
model.

In the case of lower x., value - in combination with a consideration of possible product
concentration - the modeler should opt for the reversible rate models, which are ther-
modynamically consistent. The decision about use of enzymatic or non-enzymatic re-
action models can be made in a practical manner. If the enzyme associated with the
modeled reaction has measured kinetic rates, it would be sensible to opt for a enzy-
matic model (noting that in vivo enzyme kinetics might differ from those measured in
vitro and that many enzyme kinetics studies use parameter derivations assuming an
irreversible Michaelis-Menten model). Consequently, it may not be possible to find
all the required parameters in the literature, so to model a reaction using reversible
rate model. In the absence of measured enzyme parameters, the modeler can use
‘suesstimated’ parameters, based - for example - on the distribution of known en-
zyme kinetic parameters, or alternatively, use the non-enzymatic model.

Given the discussion in the preceding paragraph, it is a useful exercise to consider
when the non-enzymatic and enzymatic models might behave in the same way. We
have introduced above the concept of flux-force relationship, where we have shown
that the net flux in a reversible reaction would be given by the forward flux multiplied
by a thermodynamic factor:

Tr
J:U+'<1—K )
eq

If we consider this equation for the reversible non-enzymatic and enzymatic models,
we would notice that the thermodynamic factor would show the same behavior for
both models, depending only on reaction «., value and substrate and product con-
centrations. Where the models would differ, would be in the behavior of the ., term,
which takes the form:

For the reversible enzymatic case:
Ui = eror - kg - (3/Ks)/(1+5/Ks +p/Kp)
And, for the reversible non-enzymatic case:
vy =s-ky

Where .., ks, and &, are the enzyme kinetic parameters for the enzymatic model
and &, is the forward reaction rate coefficient for the non-enzymatic model. Thus,
the two models would behave in a similar way, when there is correspondence be-
tween these two terms, which are sometimes referred to as “saturation terms” [82].



By re-arranging the above terms, we can show that correspondence between the two
models can be expressed as:

erot  kear - (1/Ks)/(1+ s/Ks + p/Kp) = ky

We can see that in the regime, where s « ks and » <« k», both models would behave
in a linear fashion and their behavior would correspond exactly with the right choice
of parameters (i.e. assuming (e... - k., /Ks) = k). Outside of this regime, correspondence
would be dependent on both parameters and concentration of s and r. One interest-
ing case to consider is when total amount of s and » would be conserved, for example,
with cycling reaction schemes. In this case, we can introduce a new parameter c to
describe the total pool of the cycled metabolite (e.g. ¢ = s+ r) and the correspondence
would be expressed as:

(etot - kot /Ks)/(1+ (s- Ks —s-Kp)/(Ks - Kp) + C/Kp) ~ ky

Thus, in this case of the sum of substrate and product concentrations being con-
served, we can have correspondence between the non-enzymatic and enzymatic mod-
els when s is small or when &g = k5.

3.3 Dynamics and regulation of metabolism

As explained so far in this chapter, cell metabolism involves biochemical reactions in-
volving metabolites (and often catalyzed by enzymes). Thus, understanding metabolisr
involves studying the dynamics of this system, trying to predict how metabolite levels
will go up or down, or settle to a steady state as cell physiology changes in response
to external or internal processes (e.g. cells encountering glucose or undergoing divi-
sion). Obtaining such understanding requires us to develop models of biochemical
reaction systems and predict the ‘dynamics’ of those systems. In the previous section,
we learned how to model one biochemical reaction. Now we will see how we can
readily expand these models to capture multi-reaction systems. The ‘art’ of develop-
ing and analyzing dynamical models falls under the branch of mathematics known
as calculus and nonlinear dynamics. Many introductory books to these subjects are
available, but we find that two particularly useful ones are those by Silvanus Thomp-
son on calculus [85] and by Steven Strogatz on nonlinear dynamics [86]. Here, we
will not re-introduce these topics but focus solely on various reaction rate models for
metabolic systems that have been developed based on ODEs. We will highlight re-
lations between these models and reaction thermodynamics and explore their pos-
sible limitations and applications in different cases. There are also books that are
solely dedicated to models of biochemical reaction kinetics and enzyme kinetics more



broadly - the reader is advised to further explore the topic with the help of such books,
particularly [72, 75, 87]

3.3.1 Stoichiometric matrix and ordinary differential equations

As mentioned above, metabolic systems consists of many reactions. When describ-
ing multiple reactions in a biochemical ‘system’, it is convenient to represent the stoi-
chiometries of individual reactions in a compact form called the stoichiometric matrix,
N. The rows and columns of this matrix corresponds to » species (i.e. the metabolites),
and to » reactions, found in the system respectively:

N iS d m x n matrix

The intersection of a row and column in the matrix indicates whether the species
represented by that row takes part in the particular reaction represented by that col-
umn, or not. The sign of the element determines whether there is a net loss or gain
of substance, and the magnitude describes the relative quantity of substance taking
part in the reaction. Itis important to appreciate that the elements of the stoichiom-
etry matrix do not concern themselves with the rate of reaction, and just indicate the
quantities taking part in the reaction.

A full description of a biochemical network, including the time-varying, dynamical be-
havior of metabolite concentrations, will augment the stoichiometry matrix with a
rate vector, v, forming a so-called system equation:

9 Nvs) (3.13)

dt

This equation represents a system of ordinary differential equations (ODEs) that de-
scribe the time evolution of the species, s. In other words, the ODE for species s de-
scribes the rate of change in the concentration of s with a given (infinitesimal) change
in time. The ODEs can be solved numerically (i.e. simulated) by computer or studied
analytically.

Notice that in mathematics, the time varying entities in a dynamical systems - in our
context, the concentrations of chemical species - are known as ‘variables’, while any
elements of the system that stay constant over time are known as ‘parameters’. For
aninsightful and accessible mathematical treatment of differential equations and sys-
tem dynamics, the reader is referred to these two excellent books [85, 86], while for
a metabolic view of variables and parameters, the article on the Control of Flux, by
Kacser and Burns, offers a valuable perspective [88].



(A) Thermodynamic steady state

ngA + my B —— n.C + ngD

&
¢ (Reaction adv.)

Internal energy

(B) Dynamic steady states - non-equilibrium thermodynamics

ATP ADP

ki K
in MO M1 out

Figure 3.8: lIllustration of thermodynamic equilibrium and dynamical steady state -
(A) Thermodynamic steady state. (B) Dynamic steady states - non-equilibrium ther-
modynamics. While the former happens only at chemical equilibrium, the latter can
arise in systems that are far from chemical equilibrium. A cartoon of a flowing water
through a tank and a reaction involving co-substrate cycling are shown as examples
of systems that can attain dynamical steady states.

3.3.2 Dynamic steady state

As stated above, the ODEs describe the time evolution of all variables s in the system.
An informative approach to any dynamical system is to consider its steady state, a
state where consuming and generating processes on each variable would have the
same rate, i.e. the ODEs are equal to zero, and there would be no change in the vari-
able amounts. For example, a water tank filling at a constant rate but emptying at a
rate proportional to the height of water in the tank will eventually reach a steady-state
where the output flow equals the inflow of water (Fig. 3.8). Under these conditions
the height of water remains constant, or at a steady state.

It is important to note that the thermodynamic equilibrium mentioned above is also
a type of steady-state, but this does not mean that steady-state is only attained at
thermodynamic equilibrium. In other words, there can be a steady-state where the
system is out of thermodynamic equilibrium but the concentrations of metabolites
are not changing. An example of this would be a linear metabolic pathway of con-
nected reactions, with influx and outflux of an initial and endpoint metabolite (as
seen in Fig. 3.8). In such a system, we can readily consider a scenario where there is
influx of the first metabolite, outflux of the last metabolite, and forward flux through



each of the reactions in the pathway. Thus, we would have a situation where all re-
actions are out of thermodynamic equilibrium, but all metabolite concentrations in
the pathway attain a dynamic steady-state, where their influx and outflux are equal
(Fig. 3.8). The distinction between systems that are both at steady-state and thermo-
dynamic equilibrium, and those that are at steady-state but out of thermodynamic
equilibrium, is an important one. It has been shown that complex dynamics, such
as bistability and oscillations (as discussed below) are only possible in the latter case
[89, 81, 90].

Mathematically speaking, the steady-state is defined when the ODE system, i.e. the
system equation, is set to zero:
& _Nv(s) =0 (3.14)

dt
For simple systems, such as a tank of water filling and emptying, there is only one
unique steady-state. This is perhaps better illustrated with a simple biochemical ex-
ample. Consider a two step pathway where the first step has a constant rate , and
the second step a variable rate determined by a first-order reaction rate, &..

vo = ki SU1:k2‘S (3.15)

The differential equation describing the concentration of metabolite S is given by:

ds (3.16)

dt

Setting this equation to zero and solving for s yields the steady-state level of s:

sl (3.17)

ke

This solution indicates there is only a single steady-state for this system dependent
on the parameters », and k.

3.3.3 Multiple steady-states and oscillations

In the previous section it was shown that a simple two step pathway admitted a sin-
gle steady-state. There can be, however, metabolic systems that can show muilti-
ple steady states. As a simple example, consider the system shown in Figure 3.9.
This shows a linear pathway of two reactions, with the first reaction activated by the
species a.

Under certain parameter and model choices, such a system can admit three steady-
states. Details of a model that can be simulated can be found in Appendix A.3). Other
examples of metabolic systems with multiple steady-states will be given below. In bi-,
or multi-stable systems, there can be multiple sets of steady state concentrations and
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Figure 3.9: Cartoon of a simple pathway that features allosteric enzyme regulation
and that can show multiple steady-state solutions (see Appendix A.2). The metabolite
‘X’ positively regulates the first step, +,. The resulting positive feedback can result in a
bistable system under a certain parameter regime.

flux rates that the system can settle at. Which set of steady-states is realized is usu-
ally determined by initial concentrations or can be caused by a change in one of the
concentrations or parameters. Thus, the system can change its steady-state value
abruptly at a threshold value of a specific parameter of the system. For a metabolic
system displaying bistability, we can expect a rapid switch in multiple fluxes with
changes in the concentration of one or few metabolites [86]. Furthermore, when
bistability is combined with noise in some parameters (e.g. enzyme expression level)
there can be a multi-modal distribution of flux states across genetically identical cells
(e.g. see [91, 92] and section A.1).

3.4 Concluding remarks

In this chapter, we set out to introduce cellular metabolism as a dynamical system.
We have seen that metabolism comprises many biochemical reactions, that are his-
torically cataloged and described into pathways. These pathways are usually not lin-
ear, composing of serial conversions of metabolites, but rather display branching
points and inter-connections through metabolites participating in many reactions.
This inter-connected nature of metabolic systems, together with the large numbers
of participating metabolites and reactions, makes them a complex system to study
and conceptualize.

We have introduced both simplified, coarse-grained viewpoints for describing metabol
and mechanistic approaches for detailed dynamical modeling of it at the level of
single reactions. The former can be used to guide specific ideas on how to study
metabolism, or to develop analogies to other disciplines, while the latter can provide
a toolbox for constructing dynamical models of small or large metabolic systems. We
have provided specific examples of such dynamical models and shown how they can
allow us to relate system behavior - steady state or temporal behavior - to specific re-
action mechanisms or parameters (e.g. allosteric interactions between metabolites
and enzymes, cyclic reaction schemes, branching points).

There are many challenges remaining in the analysis and understanding of metabolism
as a dynamical system. Recent studies found for example that many fluxes, where
measured, are lower than predicted from a enzymaticirreversible reaction rate model
(introduced in Eq. (3.8)) [24], and changes in flux patterns with changing conditions



cannot be explained by enzyme levels alone [93]. These findings lead to the ques-
tion on what determines/limits reaction fluxes and how reaction fluxes are regulated
besides regulation of enzyme levels. There are several possible answers, including
effects relating to allosteric interactions between metabolites and enzymes, reaction
thermodynamics, and substrate-related effects. The experimental study and model
incorporation of these possibilities is ongoing in systems biology, with increasing in-
terest to include also more of the physico-chemical aspects of the cellular environ-
ment into the study of metabolism - such as diffusion of molecules, involvement of
radical chemistry (especially generation of oxygen radicals in respiration) and mem-
brane potential [94, 74]. As such, we are increasingly hoping to move from metabolic
reactions studied inisolation, to cell-scale models and physico-chemical concepts that
unite cell metabolism and physiology. Some of this emerging movement is captured
in subsequent chapters of this book.

Recommended readings

Enzyme kinetics and reaction models

o “Enzymes” by J. B. S. Haldane [76]. Historically important book on enzyme kinetics
and enzymatic reaction models.

o “Fundamentals of Enzyme Kinetics” by A. Cornish-Bowden [75]. General introduc-
tory book on enzymes and enzyme catalysis.

o “Enzyme Kinetics for Systems Biology” (2012) by H. M Sauro [87]. In addition to cov-
ering enzyme kinetics, this book also discusses stochastic kinetics and the kinetics
of gene regulatory systems with an emphasis on systems biology models.

o “Structure and Mechanism in Protein Science: Guide to Enzyme Catalysis and Pro-
tein Folding” by A. Fersht [72]. General introductory book on enzymes and enzyme
catalysis.

Thermodynamics and physical chemistry

o “Understanding thermodynamics” by H. C. van Ness [67]. An excellent book that
de-mystifies thermodynamics. It provides a conceptual treatise, leaving the math-
ematics to the side and focusing on what actually the thermodynamic laws mean.

o “Principles and Problems in Physical Chemistry for Biochemists” by N. C. Price [66].
An introductory book on thermodynamics, physical chemistry, and biochemistry.

Metabolic system dynamics

o “Energy metabolism of the cell: atheoretical treatise” byJ. G. Reich and E. E. Sel'’kov [6
Provides an early view of the importance of reaction dynamics as a 'self-regulatory’
element in metabolism. Emphasizes the importance of cyclic reaction schemes and
interconnections among metabolic processes.



o “Chemical Biophysics: Quantitative Analysis of Cellular Systems” by D. A. Beard and
H. Qian [94]. Provides a rare approach of attempting to combine - co-study the
more physical aspects of cell physiology, including membrane potential and com-
partmentalization, with metabolism dynamics.

o “Systems Biology: An Introduction to Metabolic Control Analysis” (2018) by H. M
Sauro [95]. Discusses biochemical network dynamics from the perspective of metabc
control analysis.

Problems

Computer exercises for this chapter can be found on the book website.

Problem 3.1 An irreversible reaction with simultaneous binding
(@) Write the reaction scheme for an irreversible enzymatic reaction with two sub-
strates. Assume both substrates bind the enzyme simultaneously (forming one
complex es.s,), and both products are released simultaneously from this com-
plex (i.e. without intermediary er,r, stage).
(b) Find the rate of product production for this system.

Problem 3.2 A reversible reaction
(@) Write the reaction scheme for a reversible enzymatic reaction with two sub-
strates. Assume both substrates bind the enzyme simultaneously (forming one
complex rs,s,), and both products are released/absorbed simultaneously from/in
this complex (i.e. without intermediary er,p, Stage).
(b) Find the rate of product production for this system.

Problem 3.3 An irreversible reaction with sequential binding
(@) Write the reaction scheme for an irreversible enzymatic reaction with two sub-
strates. Assume the substrates bind sequentially (forming complexes s, and
£S5,), and both products are released simultaneously from zs,s, (i.e. without
intermediary ep,p, stage).
(b) Find the rate of product production for this system.

Problem 3.4 An irreversible reaction with random-order binding

(@) Write the reaction scheme for an irreversible enzymatic reaction with two sub-
strates. Assume the substrates bind the enzyme in any order (forming com-
plexes ks, £s, and gs,s,), and both products are released simultaneously from
this es,s, (.e. without intermediary er p, stage).

(b) Find the rate of product production for this system. Note that symbolic math
tools such as Mathematica, Maple or the SymPy Python library will be helpful
for this question (though not essential).



We can highlight the overall re-
dox reaction implemented by the
cellular metabolism further, by
writing it as two separate reactions
consisting of an oxidation reaction
(involving a molecule releasing
electrons) and a reduction reaction
(involving a molecule accepting
electrons) (see Fig. 3.3). The feasi-
bility of the paired, overall redox
reaction can be measured by the
Gibbs' free energy, or the closely
related reduction potential, where
a positive reduction potential (or a
negative Gibbs' free energy) indi-
cates a thermodynamically feasible
reaction. Thus, a redox reaction
with a positive reduction potential
implies electrons ‘flowing’ from
a molecule with high reduction
potential towards that with a low
reduction potential - a point that
can be visualized using a “reduc-

tion ladder”, a chart of reduction
potentials (Fig. 3.4). Notice that
considering redox reactions as

composed of individual reduction
and oxidation reactions is merely
a conceptualization,  however,
this provides a useful analogy in
which we can view a metabolic
system as enabling the flux of
electrons across many reactions,
and between an initial electron
donor and a final electron acceptor
[51].  While ﬁlucose and oxygen
are possibly the most well-known
electron donor and acceBtor pairs,
cells, especially microbial cells,
can use a wide-range of donors
and acceptors, including nitrogen
and sulfur containing compounds,
thereby contributing significantly
to biogeochemical cycles of these
compounds [56].
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© Physics box 3.C Cyclic reaction motifs

The involvement of co-substrate and key metabolites results in the coupling of
many different parts of the metabolism and in the emergence of cyclic reac-
tion systems - for example, by connecting different parts of the metabolism, the
NAD(P)H/NAD(P)+ pairs result in cycling between their different forms. This means
that in order to capture the concentration of all the other molecules involved in
these reactions, we need to consider dynamics of a series of intertwined cyclic
reaction systems, rather than linear pathways akin to an assembly line. Indeed,
it has been argued that cyclic reaction motifs should form the basis of develop-
ing a dynamic understanding of cell metabolism [61]. It must also be noted that
co-substrates, and possibly other key metabolites, can have ‘conserved’ concentra-
tions in the time scales of metabolic flux dynamics. In other words, these metabo-
lites form ‘conserved moieties’ within the system, similar to enzymes, such that
altering of the total pool size of these co-substrates or the ratio of their different
forms (e.g. the NAD+/NADH ratio) can possibly affect the flux distribution across
different pathways that they are connected to [62, 63, 58, 64, 61, 65].



Physics box 3.D Mass action law for chemical reactions
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Cartoon representation of Gibbs free energy of reaction and the thermodynamic
equilibrium - As a chemical reaction proceeds, the concentrations of substrates
and products change, which in turn affects the ‘energy in the chemical system’'.
We can, thus, capture the reaction advancement in a graph, where the x-axis rep-
resents the reaction advancement (i.e. the concentrations of substrates and prod-
ucts at different times in the reaction course) and the y-axis the internal energy of
the system. The Gibbs free energy of reaction, in a way, indicates the position of
the system in this graphical representation, where the thermodynamic equilibrium
would be the energy minima. At equilibrium, reaction Gibbs free energy would be
zero, allowing us to derive the relation between substrate and product concen-
trations at that point and their free energy of formation. This relation is known
as the equilibrium constant of the reaction. The same relation can be derived us-
ing a rate model to describe the forward and backward reactions that make up
the overall reaction. The thermodynamic result (or derivation) shows that a given
reaction (under a given temperature) would always have the same substrate and
product concentrations at equilibrium, a point that is empirically verified by exper-
Iments and that is known as the “mass action law". The rate-based interpretation
of this thermodynamic result (or law) is known as the “mass action rate model”
and assumes that rate of a given reaction is proportional to the concentrations of
substrates and products to the power of their stoichiometry, and adjusted by a
rate constant (shown as . and »_ above).



Chapter 4

Metabolic flux distributions

Daan de Groot, Wolfram Liebermeister, Maxime Mahout, Stefan Muller, David Rucker-
bauer, Felipe Scott, and David Tourigny

Chapter overview

o The metabolic capabilities of an organism can be related to the individual chem-
ical reactions it can catalyze

o Elementary flux modes are minimal metabolic strategies that together span all
metabolic capabilities.

o When the analysis of elementary flux modes is prohibited by computational lim-
its, alternatives could be used, such as elementary conversion modes, flux sam-
pling and minimal cut sets.

4.1 Modeling metabolic fluxes in cells

In the previous chapters we have seen that cells can convert substances from their
environment into building blocks for cell components: their metabolism allows cells
to grow, reproduce, repair themselves, and produce compounds needed to resist
environmental stresses. But how does a cell manage this in detail, and does it have
alternative metabolic strategies in case one does not function properly?

The overall metabolic conversion, for example from nutrients and oxygen to all nec-
essary cell components and carbon dioxide, that a cell can use to grow and reproduce
is in fact the consequence of many smaller chemical reactions working in concert. All
chemical reactions that a cell can catalyze by expressing its enzymes form a very ver-
satile ‘metabolic network’, which enables a cell to survive and grow, even when the
availability of nutrients in its environment changes. There are various (semi-)automa-
tized methods available that can be used to reconstruct this metabolic network from
an organism'’s genome sequence (for a review of the various methods, see [96]). In



this chapter we will zoom in on this metabolic network and study the fluxes (reaction
rates) through all individual reactions.

We call the combination of all reaction rates in a cell a ‘metabolic flux distribution’,
and this flux distribution determines if and how a cell succeeds in taking up and con-
verting the right nutrients to sustain itself. For a growing cell, we may ask: what will
its flux distribution be, and how does this distribution change when its environment
changes? Modeling metabolic fluxes allows us to answer specific questions, for in-
stance about the change of a cell's metabolism after a gene is deleted: will it survive,
and if so, will it take up different nutrients or produce different products? In contrast
to the previous chapters, in the current and following chapters we are not satisfied
with verbal descriptions, but seek predictive models that allow us to compute the
state of a cell.

So how can we model metabolism in detail? Our main task is to describe and predict
the uptake, conversion, and production of metabolites, as described by the metabolic
fluxes. The rate at which a chemical reaction runs depends (through kinetics and ther-
modynamics) on metabolite concentrations and enzyme activities. Since enzymes are
synthesized by the cell itself, the reaction rates are not only controlled by external nu-
trient supply, but also by gene expression. These dependencies make this a compli-
cated field of study: the metabolic fluxes depend on the enzyme levels and metabolite
concentrations, while the metabolite concentrations are again determined by the bal-
ance of fluxes through reactions that produce and consume the metabolites. In turn,
enzyme levels are determined by gene expression, which is dependent on both ex-
ternal conditions and internal needs (e.g. the enzyme expression may change when
different macromolecules need to be made in different phases of the cell cycle). To
make matters even less transparent, most of the parameters (e.g. enzyme Kinetic
constants and details of enzyme regulation) are unknown.

For the moment, we therefore make some simplifying assumptions in order to obtain
tractable models:

1. Focus on small molecules We focus on a subsystem of the cell, the metabolism of
small molecules, which generates macromolecular precursors and energy carriers.
All other processes (such as macromolecule synthesis) that happen “outside” our
metabolic network are ignored.

2. Ignore spatial structure We largely ignore the spatial structure of cells: metabo-
lite concentrations and reaction rates are assumed to be homogeneous across the
cell. The exception to this rule occurs when there are cell compartments, in which
case we describe the metabolites in both compartments as if they were separate
compounds (e.g. cytosolic ATP vs mitochondrial ATP), which can be converted in



each other through transport “reactions”.

. Focus on fluxes as the only variables Instead of considering metabolite concentra-
tions, enzyme levels and metabolic fluxes together, we will only focus on metabolic
fluxes. This has important consequences for the mathematical models that we will
construct: many variables, and the corresponding equations, will be ignored. Ad-
ditionally, fluxes cannot be computed through enzyme kinetics, so that we need to
find other, non-mechanistic ways to compute the fluxes!

. Focus on steady-state metabolism In a simplified picture of balanced growth (see
the chapter on Balanced Growth), all metabolic processes are balanced: the rate
at which material flows into the cell matches the rate at which it is converted,
which again matches the production rate of macromolecule precursors. In ad-
dition, we assume that these fluxes are constant, such that the whole metabolic
network is in a ‘steady-state’. Taken together, we thus assume that the metabolic
network can take up and produce external metabolites (e.g. extracellular metabo-
lites and macromolecular precursors), but that all internal metabolites (“inside” the
metabolic network) are mass-balanced, that is, for each of these metabolites, pro-
duction and consumption cancel out.

. Describe precursor demand by a “biomass reaction” We assume that cell growth
(or: biomass production) requires a fixed set of macromolecule precursors in fixed
proportions, corresponding to the average mixture of cell components that are
necessary to make a cell. For metabolism, this means that the production of more
macromolecule precursors only leads to more biomass production when the pro-
duction of all precursors is scaled up proportionally. We formally express this by
a hypothetical “biomass reaction” that consumes a mix of precursors and energy
carriers in the predefined proportions. Hence, in the metabolic models we will
describe the term “biomass” has a special meaning: while it usually means “the to-
tality of compounds in a cell”, here we use it for “the totality of compounds outside
our metabolic model, which metabolism needs to produce”.

. Ignore dilution of small molecules When a cell doubles its size but does not pro-
duce a certain metabolite, the concentration of this metabolite will halve. This basic
principle is called ‘dilution by growth’, and in principle affects all compounds in the
cell. During balanced growth, the production of macromolecules that are produced
but not degraded should balance dilution, i.e. the number of each macromolecule
should double when the cell doubles its size. This requires the rate of precursor
supply to match the dilution rate, and hence the cell's growth rate. Similarly, small



molecules are diluted, but since these are also degraded by consuming reactions,
the rate of dilution is usually negligible compared to the production and consump-
tion by metabolic reactions. Therefore, the models below will usually ignore the
dilution of such metabolites.

7. Constrain solutions by modeling limited resources Since each enzyme has a max-
imal catalytic rate (the k.. value), a reaction flux will require a certain (minimal)
amount of enzyme, which takes up cellular space; since cellular space is limited,
fluxes cannotincrease infinitely since there is always an upper bound on a weighted
sum of reaction fluxes. This constraint implies compromises between different re-
action fluxes: one flux can only be increased at the expense of others.

With these assumptions, we are converging on a mathematical model: we know
which variables to describe (the metabolic fluxes in steady-state metabolism), which
constraints to apply (the balance of production and consumption of all internal metabo
lites) and what main input information we need (the metabolic network, described by
a list of chemical reaction equations). Importantly, the model will be able to describe
compromise: for example, with a given carbon influx and assuming mass balance,
the carbon atoms can either be used to generate energy or biomass; if one func-
tion increases, the other one goes down. To obtain realistic predictions, we may in-
troduce additional constraints, for example known flux directions or experimentally
measured uptake rates. All this information will not suffice to predict metabolic fluxes
precisely, but it allows us to narrow down the possible flux distributions. Importantly,
all formulae in these models are linear, which makes them tractable even for very
large model sizes (with thousands or even hundreds of thousands of variables).

Notably, all these assumptions depend only on the list of chemical reaction equations
(the stoichiometry of the metabolic network), and nothing needs to be known about
enzyme kinetics. So if the networks are already known, what do we gain from this kind
of modeling? Even if a metabolic network structure is known reaction by reaction, this
does not mean that we understand the network-wide behavior, i.e. which overall flux
distributions are possible, and what overall flux distributions are useful for the cell.
Our aim here is to make the step from structural information (about the network) to
physiological insights about how the network can be used. We can learn, for example,
how much biomass can be made from a certain amount of glucose, and whether an
enzyme deletion is lethal because a certain precursor cannot be produced anymore.

Metabolic network structures (in the form of stoichiometric matrices) are approxi-
mately known for many microbial species, and to some extent for higher organismes.
Together with the constraints outlined above, this network determines a range (or
“space”) of possible flux distributions. In this chapter we will characterize this space



of possible flux distributions according to our assumptions, and since we character-
ize fluxes entirely by constraints the models will be called “constraint-based models”.
We will get to know mathematical tools to characterize this space in a simple way: for
instance, to describe all possibilities that a metabolic network provides we can use
Elementary Flux Modes (EFMs).

In the next chapter, we will combine such constraint-based models with optimality
principles: out of the space of possible flux distributions, specific “optimal” flux dis-
tributions will be selected because these are supposedly “most profitable”, either for
the cell or for metabolic engineering purposes. Some of the flux prediction methods
that we will describe refer also to concentrations; for instance, metabolite concentra-
tions play a role in thermodynamic constraints that exclude certain flux directions,
and enzyme concentrations come into play in models that associate fluxes with an
enzyme demand. However, in all cases, the connection between fluxes and concen-
trations is very simple, and real enzyme kinetics are ignored. In later chapters, we
will then see how the models change when more and more of the complex details
are added about metabolite concentrations, enzyme kinetics, and thermodynamics.

4.2 The flux cone

4.2.1 Mass-balance constraints

As described in the introduction, our models will be built on the metabolic network
of all chemical reactions that an organism can catalyze. We can conveniently sum-
marize all these chemical reactions as an ( x »)-dimensional stoichiometric matrix ~
where each of the » rows corresponds to a metabolite and each of the » columns
corresponds to a reaction. The entry n,, is the coefficient of the i-th metabolite in the
j-th chemical reaction. Then, we can gather all » net reaction rates in an »-dimensional
fluxvector: v =(v,,...,»,)7. Thisis convenient because the multiplication n v now captures
the net production and consumption of all » metabolites at this flux distribution, and
is therefore equal to the time derivative of the metabolite concentrations: ds/at = N v.
Therefore, the steady-state assumption, combined with the assumption that dilution
of metabolites due to growth is negligible, can be mathematically captured in a set of
linear equations that we call the mass-balance constraints for v,

N v=0. 4.1)

Since in a typical metabolic reaction network the number of metabolites is smaller
than the number of reactions (= < »), the equations for v are under-determined. This
means that there are infinitely many solutions, v, that satisfy the mass-balance con-



straints. The space of all such v is called the nullspace of ~.

4.2.2 Irreversibility constraints

In principle, all reactions in a metabolic reaction network are able to run in both di-
rections, but in many practical examples certain thermodynamic arguments can be
used to justify treating a subset of reactions as irreversible, meaning that in a given
model they can run in only one direction. The choice of which reactions to assume
irreversible depends on the experimental conditions and affects the results of the
downstream constraint-based analysis.

Due to microscopic reversibility, the net reaction rate «, (of reaction i) is the difference
of the forward and backward reaction rates, that is, v = v -+ (with both +~ > 0 and
v >0 if all reactants are present), and v, can be either positive, zero, or negative. As
stated above, thermodynamics may determine the direction of certain reactions, that
is, the sign of the net reaction rate. In this sense, if a reaction proceeds in the forward
reaction, one adds the nonnegativity constraint » > 0. (Conversely, if a reaction pro-
ceeds in the backward reaction, one redefines the reaction by exchanging forward
and backward and again adds + >0.) For a compact notation, let =~ c 1,....n} be the
index set of the irreversible reactions (and == c {1,....n} be the reversible reactions).
We require v .= vr- >0, thatis, v, >0 if ie r.

4.2.3 The flux cone

Mass balance and irreversibility constraints together define the flux cone
C={v|Nv=0, v’ >0}. (42)

Elements of the flux cone are called flux modes. The flux cone ¢ is called an s-cone
(subspace cone) in Muller and Regensburger (2016) [97], since it arises from a linear
subspace and nonnegativity constraints.

To provide a concrete example, we consider the simple representation of central car-
bon metabolism presented in Figure 4.1. In this example there are four external
metabolites, cex, 0, P, P, and two internal metabolites: ¢ and r. In our model we only
require mass-balance for internal metabolites, such that the steady-state constraint
can be written as

U1

Nv(l 0 0) e (4.3)

where each column thus corresponds to one of the four (reversible or irreversible)



2, Math box 4.A Generators of a polyhedral cone

For every polyhedral cone, and hence for every subspace cone such as the flux
cone ¢, there exists a finite, minimal set of generators (minimal in the sense that
no proper subset forms a generating set). In particular, for the flux cone ¢, there
exists a finite set (r»,..., r®y of »-dimensional vectors such that

L
CZ{VlV:Z/\kf(k) with Akzo},

k=1

that is, any flux vector v in the flux cone ¢ can be expressed as a conical (non-
negative) linear combination of generators {r®,..., r®y.

Remark. The generators ¢® can be multiplied with scalars, that is, any x f® with x> o
could replace ¢® in the set of generators.

Remark. For a general polyhedral cone, there is no unique minimal generating
set. However, there is a unique minimal set of conformal generators; see [97,
Section 3.4]. For subspace cones (such as the flux cone), these are the support-
minimal vectors (EFMs); see Theorem 1 below.

reactions, and where the rows correspond to ¢ and r respectively. The entry 1 in the
first row of the first column thus corresponds to the import of one glucose molecule
¢. The mass-balance equations

vy, — v =0, 2 vg —vg —v4 =0, (443)
and the non-negativity conditions
V1,02,U3 Z O, (4.4b)

induced by the irreversible reactions 1, 2, 3, define the flux cone ¢ as the space of all
flux vectors v that satisfy all of these constraints simultaneously.

4.3 Elementary flux modes

Equation (4.2) gives a mathematical definition of the flux cone (via equations and
inequalities). Here, we will provide an equivalent characterization of this space (via
generators, see Math box 4.A). Note that definition (4.2) makes it easy to check if a
given steady-state flux distribution v lies in ¢c. However, it is not clear how to generate
the flux cone. As a set of generators, we will introduce “minimal” flux distributions,
called elementary flux modes (EFMs), that can be combined to generate all possible
flux distributions inc. These EFMs generate the flux cone, similar to how basis vectors
generate a linear subspace (but with non-negative coefficients).

In order to define EFMs formally, we introduce the support of a vector v as the index
set supp(v) = {i | v; # 0}, that is, the support of a flux vector is the set of reactions that have
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Figure 4.1: A simple representation of central carbon metabolism as a metabolic net-
work. (A) Extracellular glucose, cey, is imported into the cell via reaction 1, and intra-
cellular glucose, ¢, is converted to pyruvate, p, via reaction 2, having stochiometric co-
efficients of two pyruvate molecules for one glucose molecule. Pyruvate is then either
converted to a fermentation product, r, via reaction 4 or, in the presence of oxygen,
o, converted to an oxidative phosphorylation (OXPHOS) terminal product r, via reac-
tion 3. The fermentation product », can also be converted back to pyruvate via the
backward reaction of 4. (B) EFMs rw, s» ¢®, From our understanding of central car-
bon metabolism, r» represents glycolytic fermentation, @ the oxidative metabolism
of glucose, and r® the oxidative metabolism of the fermentation product.

a nonzero rate.

Definition 1. Anonzero vector v < cis an EFM if it is support-minimal, that is, if supp(v') < supp(v)
for any nonzero vector v ec Imp/IeS supp(v') = supp(v).

Remark. If vis an EFM and supp(v') = supp(v), then further v = Av for some scalar x.

Definition 1 states that v is an EFM if there is no nonzero flux vector in the flux cone
that uses only a strict subset of the reactions that are active inv. This also means that if
any of the flux-carrying reactions in an EFM is deleted, the flux through the remaining
reactions must violate the mass-balance constraints and can therefore not occur in
steady-state metabolism; the EFMs are thus minimal in the sense that they cannot be
reduced further.

To illustrate the concept of EFMs, we return to the simple representation of central
carbon metabolism presented in Figure 4.1 with the stoichiometric matrix

N(l -1 0 o) (4.5)
0 2 -1 -1

and the flux vector v = (v1,vs,v3,02)7, Where v,,v.,0; > 0. AS it turns out, the set of EFMs is



given by

—_
—_
o

1 1 ) 0

R A N : (4.6)
0 2 1
2 0 -1

and these are depicted in Figure 4.1 (B). From our understanding of central carbon
metabolism, we see that these three EFMs represent the “minimal” metabolic path-
ways of (r») glycolytic fermentation, (r®) oxidative metabolism of glucose, and (¢®)
oxidative metabolism of the fermentation product.

In Math box 4.A, we have characterized a polyhedral cone (the flux cone ¢) in terms of
its generators (the EFMs). In our toy carbon metabolism network, this means that any
flux vector v can be viewed as a conical combination of these three minimal metabolic
pathways. This interpretation remains true for any metabolic reaction network: el-
ementary flux modes represent the minimal metabolic pathways through the metabolic
reaction network at steady state.

In Math box 4.A, we have also mentioned that EFMs need not form the unique minimal
set of generators, but they form the unique minimal set of conformal generators. We
first motivate conformality by thermodynamic arguments and then provide a formal
definition. For every reaction, Gibbs free energy determines its direction, and hence
for every flux, it determines its sign (-,0,+). Now, since any flux vector is the conical
combination of EFMs, the signs of the flux vector determine the signs of the EFMs. In
particular, if a certain flux component is zero, then this flux component is zero in all
EFMs. (Zero flux cannot arise from a cancellation of positive and negative fluxes.) If
a certain flux component is nonzero, then this flux component has the same sign or
is zero in all EFMs. (Zero flux can arise from a zero enzyme concentration and hence
is thermodynamically sound.)

The above argument can be formalized as follows: For a vector v ¢ r7, we obtain
the sign vector sign(v) € {-,0,+}" by applying the sign function componentwise, that is,
sien(v); = sign(v;). IN order to capture “conformal signs”, we define the partial order o < -
and o<+ on {-,0,+}, which implies the inequalities 0 <0 (zero flux conforms to zero flux),
+,0 < + (positive or zero flux conforms to positive flux), and -0 < - (negative or zero
flux conforms to negative flux). The partial order on {-,0,+} induces a partial order on
{-,0,+}*: for two sign vectors o7 € {-,0,+}, we write - < - if the inequality holds compo-
nentwise, and we say that - conforms to -. If » <+ (and = is given), then o, =~ Or & — 0.
To summarize, if  conforms to -, then it has the same entries or some more zeros.

Now, we can refine the characterization of a flux cone in terms of generators, as given
in Math Box 4.A. Indeed, we have the following conformal sum theorem, see [97,



Theorem 3].

Theorem 1. Let ¢ be the flux cone and {z. ..., r®} be the set of EFMs. Then,

¢
C= {v |v= Z)\k fFo with . >0 and sign(f®) < sign(v)}.
k=1

That is, any flux vector v in the flux cone ¢ can be expressed as a conformal sum of
EFMs (o, ... 03,

Again, we illustrate the theoretical concepts in the simple representation of central
carbon metabolism. The flux distribution v=(1,1,1,1)7 lies in the flux cone, cf. (4.4), and
hence can be written as a conical linear combination of EFMs (in a non-unique way):

—_
—
(an]

—_
o

vV = — f(l) + f(3) — 1 +

—_
(a=)
—_

—_
[N
\
[

(4.7)
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Note that the first sum is not conformal: The fourth component of v is positive, whereas
the corresponding component of @ is negative. That is, the contributing EFMs have

different signs in the net reaction rates of the fourth reaction, which leads to can-

cellation and is not meaningful thermodynamically. (Gibbs free energy determines

reaction directions, see Section 4.4.3.) Still, the second sum is conformal: no cancel-

lation occurs, and the decomposition is thermodynamically meaningful. Theorem 1

states that a decomposition as a conformal sum is always possible.

On the one hand, we introduced EFMs as the support-minimal vectors of the flux
cone, corresponding to minimal metabolic subnetworks. On the other hand, EFMs
form the (unique minimal) set of (conformal) generators of the flux cone. Indeed, the
beautiful thing about EFMs is that they have several equivalent (but complementary)
definitions, see Math box 4.B for examples and proofs.

Viewing EFMs as minimal metabolic subnetworks enables us to interpret an EFM in
terms of its biological function; an EFM can be seen as a metabolic strategy that a
cell can use to obtain steady-state metabolism, and which it can combine with other
strategies to reach its purpose. The interpretation as conformal generators allows us
to write an arbitrary flux vector v < ¢ as a combination of EFMs in a thermodynamically
meaningful way, see Theorem 1. This also means that we can learn something about



all flux vectors v by learning something about all EFMs. For example, if we know that
there is no EFM that produces compound v without using reaction », this immediately
implies that there is no flux vector at all that can do this, and that reaction » is thus
essential for the production of v.

Finally, after reaction splitting, as described in Section 4.3.2, the flux cone is contained
in the non-negative orthant and hence is pointed. Then, EFMs agree with the ex-
treme vectors and can be computed via algorithms based on the double-description
method, as discussed in Section 4.4.4,

So far, we did not consider a limit on the amount of flux that a particular EFM may
carry, since x¢#® is an EFM for any x>0 and any EFM ¢®, and consequently the absolute
value of any flux vector v in ¢ is unbounded. In Section 4.4, we will see that this is not
necessarily true when additional constraints are introduced.

4.3.1 Practical relevance of EFMs

EFMs represent the full set of possible metabolic capacities of an organism, which
can therefore make EFM analysis a useful tool for biology. To this end, application
of EFM analysis to bioengineering has been proposed to guide the genetic manipu-
lation of microorganisms to perform desirable properties such as synthesis of a bio-
compound or efficient production of a recombinant protein (e.g. [98, 99]). From a
more theoretical point of view, EFMs have also been used in attempts to quantify
cellular robustness [100], in particular regarding robustness under genetic perturba-
tions [101]. The relevance of elementary flux mode analysis to cellular robustness
stems from the fact that there is rarely a unique conical combination of elementary
flux modes for any given flux vector, which implies there are multiple combinations of
minimal metabolic pathways to achieve the same desired effect. This redundancy can
be interpreted as a measure for the metabolic robustness of an organism, in terms
of preserving essential metabolic functionalities under loss of a gene, for example.

There have also been several ways that EFM analysis has been incorporated into anal-
ysis of multi-omics data. For example, on the basis of transcriptomic profiling of
microorganisms, metabolic pathways associated with elementary flux modes have
been scored according to their probability of carrying flux [102]. The principle here
is that, although levels of RNA often serve as a poor proxy for flux through the reac-
tion associated with that particular enzyme’s gene, by creating a gene set associated
with an entire EFM there might be a better chance of concretely assessing whether
the metabolic pathway as a whole is likely to carry flux. The study [102] suggested
that the integration of EFM analysis with gene expression data enabled the identifi-
cation of certain metabolic pathways activated during stress conditions, and that the
organization of elementary flux mode utilization in Saccharomyces cerevisiae involves



2, Math box 4.B Equivalent Definitions of Elementary Flux Modes (EFMs)

In the main text, we have introduced EFMs as the support minimal vectors of the
flux cone, see Definition 1. In fact, EFMs can be defined as the support-minimal,
support-wise non-decomposable, sign-minimal, sign-wise non-decomposable,
and conformally non-decomposable vectors of the flux cone; cf. [97]. Here, we
consider the latter definition for three reasons: (i) it matches Theorem 1 on the
decomposition of flux distribtions into conformal sums of EFMs, (ii) it also applies
to general polyhedral cones (not just s-cones such as the flux cone) and even to
polyhedra and polytopes, and (iii) it establishes a link to the case when the flux
cone is contained in the negative orthant. (In the latter case, the cone is pointed
and generated by the extreme vectors.)

Definition 2. A nonzero vector v < ¢ is conformally non-decomposable if v = vt + v> for
any nonzero vectors v',v2 ec with sign(v!), sign(v?) < sign(v) Imp/IeS v~ v2 (that IS, vl = /\VQ).

As stated above, EFMs can be defined as the conformally non-decomposable vec-
tors of the flux cone. Indeed, we have the following equivalence.

Proposition 1. A nonzero vector v < ¢ is conformally non-decomposable if and only if it
is support-minimal.

Proof. Assume that vec is conformally decomposable, that is, v =v' ++v> for nonzero
vi, v2 e ¢ WIth sign(v!), sign(v?) < sien(v) @and v! £ v2. Then also v xv, and there exists a largest
x>0 such that the nonzero vector v = v — av! fulfills sign(v') < sign(v). FOr this », v e ¢ (that
is, Nv' =0 and v~ >0) and sign(v) < sign(v) (in particular, », =0 and v # o for some :). Hence,
supp(v') C supp(v), that is, v is not support-minimal.

Conversely, assume that v e ¢ is not support-minimal, that is, sup(') c supp(v) fOr a
nonzero v < c. Then, there exists a largest i > 0 such that the nonzero vectors vt =
v+ v and v2 = iv— v fulfill sign(vl), sign(v?) < sign(v). FOr this », either sign(v!) < sign(v) OF
sign(v2) < sign(v); IN @Ny case, vi,v2ec and v! xv2. Clearly, v=+v'++2, that is, v is conformally
decomposable. [

Conformally non-decomposable vectors are closely related to extreme (or non-
decomposable) vectors.

Definition 3. A nonzero vector v < ¢ is extreme if v = vi +v2 for any nonzero vectors v', v* e c
implies v ~ v2.

If the flux cone is contained in the non-negative orthant (in particular, after reaction
splitting, as described in Section 4.3.2) and hence is pointed, EFMs can be defined
as the extreme vectors.

Proposition 2. Letc c 2. Anonzero vector v ec is extreme if and only if it is conformally
non-decomposable.

PrOOf. If v,vi,v? € C C R%, then v = vt 42 ImplleS sign(v!), sign(v?) < sign(v), and Definitions 2
and 3 agree. O]

a disparate combination of highly specialized and multi-tasking roles. Beyond tran-
scriptomic profiling, isotope tracing experiments in principle provide a much more
direct insight into quantifying metabolic flux. To interpret isotope tracing data, an
extension of the concept of an EFM was introduced in [103].



4.3.2 Reaction splitting for EFM computation

The computation of EFMs via the double description (DD) method as well as the so-
lution of linear programs (LPs) via the simplex algorithm assume that the flux cone
is given in certain standard forms. (Note, however, that the computation of EFMs via
lexicographic reverse search (Irs) does not involve such an assumption.)

Recall that the flux cone is given by the mass-balance constraints n v=0 and the irre-
versibility constraints v+ > o, whereas standard forms are given by a v =o (for DD) or
Av>o0andvz>o (for LP) with a matrix a of appropriate dimensions. To bring the flux
cone into standard form, we will split reversible reactions into irreversible forward
and backward reactions. First, we order reactions such that

Nv= (v ) (j) , (4.8)

where the superscripts — and = refer to the irreversible and reversible reactions, =~
and ==, respectively. Next, for every reversible reaction i e = with net reaction rate
we define a forward reaction with “rate” »; > 0 and a backward reaction with “rate” - >
o such that v, = w;> —w:-. (In vector form, v==w— - w-.) Note that the “rates” »;*,«:- do not
denote the (microscopic) forward and backward reaction rates +,» that determine
the net reaction rate + = v;* —v-. They are auxiliary quantities, and only their difference
wi—w =v; NAs a biochemical meaning (and is the subject of constraint-based metabolic
modeling). Further, for every irreversible reaction i ¢ =~, we write + = «»;» to obtain a

uniform notation. (In vector form, v =w—.) Now,
Nv= <N—> N= —N:) w |- (4.9)

By introducing the augmented stoichiometric matrix ¥ and the corresponding non-
negative flux vector w, we can write

Nv-Nw With N:<Na N= _Ni), we|we | (4.10)

As a consequence, the augmented flux cone is given by

é:{w|Nw:0,w20} (411)
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Figure 4.2: Pointed polyhedral cones. (A) A pointed polyhedral cone that is not a flux
cone; all its generators lie in the interior of the non-negative orthant. (B) A pointed
polyhedral cone that is a flux cone; its generators arise from the intersection of a
subspace with the boundaries of the non-negative orthant.

or, in LP standard form, by

C={w|Aw>0w>0} with A(N)7 (412)

-N

after writing equations as non-strict inequalities.

Obviously, ¢ is contained in the non-negative orthant and hence pointed. As an im-
portant consequence, EFMs can be defined as the extreme vectors of the flux cone,
see the 'Math box’, and be computed by algorithms based on the DD method.

For examples of pointed polyhedral cones (in the non-negative orthant), see Figure 4.2.
Note that the cone in Figure 4.2 (A) is not an s-cone and hence not a flux cone. In par-
ticular, its generators/extreme vectors lie in the interior of the non-negative orthant.
On the other hand, the cone in Figure 4.2 (B) is an s-cone. Its generators/support-
minimal vectors/EFMs arise from the intersection of a subspace (the nullspace of the
stoichiometric matrix) with the boundaries of the non-negative orthant.

Again, we return to the simple representation of central carbon metabolism pre-
sented in Figure 4.1. After reaction splitting, the mass-balance constraint can be writ-
ten as

Nw(l I 0) | =0 (4.13)

In particular, the reversible fourth reaction has been split into irreversible forward
and backward reactions with reaction vectors (°), (9 and “rates” «;, v, see Equa-
tion (4.5). Now, algorithms based on the DD method can be applied to the mass-



balance and irreversibility constraints in standard form, Nw =0 and w > 0. As it turns
out, the set of EFMs (support-minimal vectors) is given by

1 1 0 0
1 1 0 0
g =1ol. g2=|2|. ¢®=1|1|., and g®—|g]. (4.14)
2 0 0 1
0 0 1 1

EFMs g0, ¢ ¢ correspond to EFMs ro, ¢@ s before reaction splitting, see Equation (4.6
Just recall v, = vy —w;. However, EFM ¢ corresponds to zero flux. More specifically, it
represents the fourth reaction having equal forward and backward “rates” and hence
zero net reaction rate. Such EFMs are artifacts of reaction splitting and need to be
discarded when translating the EFMs of the augmented flux cone back to the EFMs
of the original flux cone.

4.4 Extra constraints and flux polyhedra

4.4.1 Inhomogeneous linear flux constraints

We have so far been working exclusively with mass-conservation and irreversiblity
constraints, which are captured entirely by the stochiometric matrix where each row
is associated with a metabolite concentration at steady state. We also saw that these
considerations alone result in a flux cone that is by definition unbounded, meaning
that a flux vector in this space is allowed to take on any absolute value (i.e. multi-
plying a flux vector in the flux cone by an arbitrarily large positive number again re-
turns a flux vector in the flux cone). However, there are physical constraints limiting
the magnitude of flux vectors, especially on the values of flux through exchange re-
actions that may depend on concentrations of extracellular substrates, numbers of
transporter molecules in the membrane, or for which we might have direct experi-
mental measurements. Typically, such bounds on flux values are imposed using in-
equality constraints of the form .IP <+, < .40 where .l and +uP are lower and upper
bounds, respectively, for the flux through the ith reaction. When reactions have been
decomposed into forward and reverse directions, both upper and lower bounds are
non-negative where the latter is usually zero.

In the example from Figure 4.1, one may impose an upper bound on the flux value
v1, SUggesting that there is a maximal rate at which the cell or organism can import
glucose from the extracellular environment. In this case the total set of constraints



on the flux vector v take the form
Nv=0, v72>0, v ngb, (415)

where U0 is the maximal glucose uptake rate. It is important to note that the new
constraint is of a different kind than the mass-balance and irreversibility constraints:
the right-hand side of the constraint is nonzero. Constraints that involve a nonzero
are called inhomogeneous constraints. We can write these constraints in matrix form
as

G v >h, (4.16)

where in this particular case

G=(1 00 0>, h=<fu9b>- (4.17)

In general, the matrix ¢ will have ¢ rows corresponding to ¢ inhomogeneous linear
constraints of the form
ZGﬂwghj, j=1,...¢. (4_18)

That s, for constraint j, there are » entries ¢;; (i = 1,...,») of the matrix ¢ and the compo-
nent », of the ~dimensional vector n. Many constraints can be written in this general
form. For example, after reaction splitting, one may impose a bound on the total flux
that a cell can catalyze, by setting all entries (in the corresponding row of ¢) to 1.

Altogether, the constraints on v define a flux polyhedron that is necessarily contained
within the flux cone given by the homogeneous constraints n v =0 and v» > o. The
additional inhomogeneous constraints serve to further restrict the cone such that
various (if not all) dimensions become bounded, thus bounding the total magnitude
of the flux vector v.

4.4.2 From the flux polyhedron to the EFM weight polyhedron

Via the conical sum v=3x'_ x s®, constraints on the fluxes v define constraints on the
EFM weights x and hence a corresponding EFM weight polyhedron. Whereas elements
v of the flux polyhedron have entries +, for every reaction i ¢ =, elements x of the EFM
weight polyhedron have entries », for every EFM ¢®, 1 =1,....¢ (and hence can be very
high-dimensional).

In the example from Figure 4.1, let x, x5 > 0 be the weights of the corresponding
EFMs in the (conformal) sum v = 2 x #©. Bounding the extracellular glucose uptake
rate puts an upper bound on the weights of EFMs r® r@ (involving the glucose uptake
reaction),

A+ Ag < 010, (4.19)



see also Figure 4.1 (B). However, the weight of EFM ¢® (associated with uptake and
oxidation of the fermentation product) can remain unbounded.

For this simple example, it is quite straightforward to interpret the geometric conse-
quences of the maximal glucose uptake rate. Any flux vector v in the resulting flux
polyhedron now corresponds to a point (A, x) in the (projected) EFM weight polyhe-
dron depicted in Figure 4.3 (A). However, the weight », remains free, and the (full)
EFM weight polyhedron is depicted in Figure 4.3 (B). In terms of the flux polyhedron,
the maximal glucose uptake has restricted the flux cone along v, while leaving v, o,
unbounded.

In order to obtain a bounded flux polyhedron (a flux polytope), we impose an upper
bound on the uptake rate of the fermentation product, that is, —v, < 4P, In terms of
the EFM weights, we obtain the bound -2x, + ), < w¥b. Since conformal sums are suf-
ficient to generate the flux cone, this simplifies to x; <.{. Altogether, the EFM weight
polyhedron is given by

Moo As >0, At de <olP g <oliD, (4.20)

Indeed, all EFM weights and hence all fluxes are bounded.

More general constraints, for larger metabolic reaction networks will be more difficult
to interpret and visualize in such simple geometric terms. Quite quickly the combi-
natorial complexity associated with combinations of multiple constraints and EFMs
will become unmanageable. The intuitive treatment of inhomogeneous linear con-
straints is partially assisted using the concept of elementary flux vectors on which we
will add a section in a later version of this book, but both geometrically and biologically
these objects are nowhere near as easy to interpret as their EFM counterparts. We
shall see that alternative computational methods for exploring flux space therefore
become imperative.

As a final remark, we clarify once more that the general form of constraints (4.16) is
by no means restricted to sums on the left hand side that involve just a single reaction
and can of course include constraints on weighted sums of flux values for different
reactions. These weighted sums are often associated with particular biological inter-
pretations: in the example from Figure 4.1, we might want to restrict our search of
flux space to those flux vectors v that produce adenosine triphosphate (ATP) at a rate
of at least ,ATP. Although a more elaborate model would of course include ATP as
one of the metabolites, in this example we can use our biological understanding of
central carbon metabolism to see that ATP is produced in reactions », and v,. A lower
bound on ATP production would thus be a lower bound on a combination of », and
vs With coefficients determined by stoichiometry (depending on the organism under
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Figure 4.3: Feasible regions in the space of EFM weights - (A) Possible combinations of
EFM weights A, and »,, given by the inequality A, + x, <»¥P (and A, 1, > 0). (B) Geometry of
the EFM weight polyhedron (blue) representing any flux vector that satisfies the mass-
balance, irreversibility, and maximal glucose uptake rate constraints. While bounded
iN A, ), itis unbounded in »,.

investigation). We could write such a constraint as
a1v1 + aszvg > UATP (421 )

with appropriate coefficients a,,«;. Such a constraint forms an additional row of the
matrix ¢ and we leave it as an exercise for the reader to explore how this affects the
geometry of the flux polytope for various values of the coefficients, minimal ATP pro-
duction rate and maximal glucose and fermentation product uptake rates. Particular
combinations of constraints will be impossible to satisfy simultaneously (i.e. when the
minimal rate of ATP production is impossible to achieve under the given bounds on
glucose and fermentation product uptake rates), resulting in a flux polytope that is
empty. In such cases the set of constraints on v are called infeasible.

4.4.3 Thermodynamic constraints

In Chapter 3 the basic concepts of chemical thermodynamics were introduced, in
particular, the Gibbs free energy of a metabolic reaction was defined in terms of the
concentrations of its products and substrates. For a metabolic reaction network with
stochiometric matrix ~, the vector of Gibbs free energies (one for each reaction in the
network) a,c’ can be written in matrix form as

AG' = A,G°+RT N In(s) (4.22)

where r is the gas constant, r the temperature and s the vector of metabolite con-
centrations at steady state. The components of the vector a,c” are the changes in



standard Gibbs free energy for each corresponding reaction. Typically, these values
are not known precisely for reactions in the network, but can be estimated or ap-
proximated from experimental data using methods beyond the scope of this chap-
ter. Similarly, although it is often difficult to accurately measure all metabolite con-
centrations, in principle the vector s can be obtained experimentally. However, in
practice experimental data on s and a,c~ are almost never available. Various meth-
ods have therefore been developed to combine estimation of a,c~ (sometimes with
partial measurements of s) with advanced computational techniques that allow si-
multaneous optimization (see next chapter) or sampling (see below) of v and s (or
equivalently: a.c’).

The second law of thermodynamics applied to chemical reaction networks can be
summarized by saying that every component of the metabolic flux vector v must sat-
isfy the condition

sign(v;) = —sign(A,G";) (4.23)

where +, and a,¢’; are the ith components of v and a.c’, respectively, and sign(z) denotes
the sign of a variable =, and sign(0) = 0. It is important to point out that this notation is dif-
ferent to that used previously, where we had assumed all », to be non-negative by de-
composing each reaction into irreversible forward and backward reactions. Return-
ing to this reversible notation simplifies the inclusion of thermodynamic constraints
into constraint-based models and also their interpretation. According to the second
law, a reaction can only proceed in a direction where the change in Gibbs free energy
is negative. Thus, to be consistent with mass-balance and the second law of thermo-
dynamics, a flux vector v must simultaneously satisfy both (4.1) and (4.23), with a,c-
defined in (4.22). The consequence of these additional constraints on the geome-
try of the space of metabolic flux distributions is to exclude quadrants incompatible
with the signs of a,c’. Equivalently, imposing the second law of thermodynamics on
metabolic flux distributions removes regions of the space that are associated with
combinations of thermodynamically-infeasible reaction directionalities.

The resulting space of feasible flux vectors is almost always non-convex, which means
more advanced computational methods are required to explore it efficiently. The
intuitive reason for this is that imposing thermodynamic constraints on top of the
mass-balance constraint is usually done in terms of Boolean variables, which breaks
the linearity of the problem that we had and exploited so far. Relating this to the
EFMs that were discussed previously, it for example becomes clear that any EFM
representing an internal cycle -not including any exchange reactions- will never be
thermodynamically feasible. Thus, thermodynamic constraints also reduce the set
of EFMs that are possible in a metabolic network. Interestingly, it turns out that any
thermodynamically-feasible metabolic flux vector can be expressed solely in terms



of thermodynamically-feasible EFMs [104], but the converse statement is not true:
a linear combination of thermodynamically-feasible elementary flux mode does not
necessarily satisfy the thermodynamic constraints. This shows how the workable
properties of convex spaces break down as the mathematical models become more
complex, in this case by accounting for thermodynamics.

4.4.4 Computational challenges for EFM analysis

Enumerating EFMs for large networks can be computationally challenging if not im-
possible. In principle, EFMs can be found by removing one reaction at a time and solv-
ing the resulting mass-balance constraint problem until it is no longer possible to re-
move a reaction and still obtain a flux vector that satisfies the steady state conditions.
However, the equivalence of EFMs and extreme vectors of the flux cone (after reaction
splitting) described in Section 4.3.2 enables the use of algorithms that are specialized
in the efficient enumeration of extreme rays of polyhedral cones, such as the double
description method [105]. Various tools have been developed for elementary flux
mode enumeration based on this algorithm (e.g. EFMTOOL [106] or MetaTool [107]).
However, when the size of the metabolic reaction network grows, the number of EFMs
scales disproportionately, leading to a combinatorial explosion that effectively makes
enumeration impossible for genome-scale networks containing several thousands of
reactions [108]. Currently, EFM analysis is therefore restricted to medium-scale re-
constructions containing on the order of several hundreds of reactions, and results
in the identification of several hundred million EFMs (e.g. enumeration based on the
Escherichia coli core model results in approximately 272 million EFMs).

Approaches to reduce the complexity of dealing with so many EFMs even for metabolic
reaction networks of modest size have also been proposed. These include invoking
transcriptional regulatory constraints to eliminate most of the EFMs to be considered
in downstream analysis. Imposing additional constraints based on thermodynamic
conditions similarly reduces the set of EFMs considerably. A problem with these ap-
proaches is evidently that they do still depend on an initial calculation of all EFMs,
and so do not solve the problem of enumeration complexity. A rigorous study of
the complexity of EFM mode enumeration was performed by Acufia and colleagues
[109]. They showed that the decision problem if there exists an EFM containing two
specific reactions is NP-complete whilst the complexity of enumerating all EFMs re-
mains open.

Later in this chapter we will explore some alternatives to EFM enumeration that re-
duce the difficulty of enumeration, cf. Section 4.5.



4.4.5 Reducing combinatorics of EFMs computation

In order to reduce the combinatorics of EFM computation to a feasible order, the
search space may be limited to the biologically relevant EFMs only. This can be done
by considering additional biological constraints before, during, or after the computa-
tion of EFMs. One way to restrict the search space is to remove all‘irrelevant’ reactions
in @ metabolic network, that is,

o reactions that are not essential for the cell (not part of the core metabolism),

o reactions that are not performed for chemo-physical, kinetic, or thermodynamic rea-
sons,

o reactions that are too expensive in terms of enzymatic resource allocation,

o reactions that transport metabolites which are not present in the growth medium
(‘environmental regulation’),

o reactions that are catalyzed by enzymes whose expression is inhibited by transcrip-
tional regulation.

The purpose of incorporating biological constraints, from the perspective of a mod-
eler, is to reduce the number of pathways the biologist needs to analyze. Additionally,
the computation of EFMs becomes much more efficient because fewer solutions need
to be computed.

Below we are going to illustrate the last two types of constraints: environmental and
transcriptional regulation. Both types can be expressed using Boolean constraints.
A Boolean constraint is a Boolean function . B+ - B, where B = {0,1}, which takes in &
Boolean inputs : < B* and produces a Boolean output s < B such that s - f(-). In our case,
Boolean functions determine whether reactions are allowed or not in EFMs based
on biological conditions. To this end, reactions are associated with a Boolean indi-
cator. The value of this indicator (either o or 1) determines whether that reaction can
participate in an EFM.

The following relationship, for a set of reactions r with corresponding fluxes » and
indicators :, determines how Boolean regulation affects the presence of reactions in
EFMs:

VreR: (2 =0) = (v, =0)

As an example, we consider the following small metabolic model from [111, 110],
which involves transcriptional and environmental regulation. The network contains
18 reactions and 18 metabolites (10 internal and 8 external) and has 80 EFMs. For an
illustration, see Figure 4.4. The formulae describing reaction stoichiometries and reg-
ulation rules are shown in Figure 4.5. This model makes for a good basis for studying
the effect of Boolean constraints on a small scale: out of 80 EFMSs, only 26 are consis-
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Figure 4.4: Metabolic model from [110]. Transcriptional regulation shown in Figure
4.5.

tent with the regulation in the most permissive growth medium - and even fewer are
found when the growth medium gets restricted [110].

As mentioned above, we distinguish two types of Boolean functions. First, environ-
mental regulation applies to uptake transporters and is automatically constructed from
the defined growth medium. For example, the oxygen transport reaction can only
be active if external oxygen is present in the growth medium (“moygen = —200). S€CON,
transcriptional regulation is reconstructed from a literature review and curated by the
modeler. For instance, .7 is regulated by the level of metabolite s in the cell, its en-
zyme cannot be expressed at the same time as B is being produced by 12 (s, = —z7).
Some individual constraints mimic the behavior of E. coli: the activation of respira-
tion reaction rsa, r5h, rres depends on the presence of oxyeen (Motivated by the transcrip-
tional factors ArcA and FNR); .2 is deactivated when faced with carbon1, mimicking the
behavior of glucose catabolite repression by CRP. Ultimately, these transcriptional
and environmental constraints serve to filter out EFMs. For instance, the elementary
Mmode {x2b, 13,4, 15, 18b, rres, th, tox, growth} 1S NOt consistent with regulation. Indeed, we have:
Zisb = Moxygen AN 20 = moxyeenr @ CONtradiction.

Regulation Boolean constraints could be incorporated into the EFM computation by
the method regEFMTool, as well as in the tools SMTTool and aspefm [112, 113, 114].
These constraints lend themselves naturally to logical encoding, making logic pro-



gramming such as Answer Set Programming (ASP) well suited to this type of problem.
Unlike traditional double description methods, which struggle with the combinatorial
explosion of EFMs by the number of reactions and do not inherently handle regula-
tory constraints, ASP allows for an intuitive representation of Boolean constraints
and efficient pruning of infeasible solutions early in the computation. In the simplest
casesreactions that cannot respect the regulation constraints are directly deactivated
in pre-processing.

Adding environmental regulation and restricting the analysis to a limited growth mediun
is crucial for reducing the computational load of the analysis. The software regEFM-
Tool from Jungreuthmayer et al. was tested on Orth, Fleming and Palsson’s E. coli core
model [112, 115], a central carbon metabolic model of 95 reactions containing a com-
plete transcriptional regulation network. The analysis was performed with all uptake
reactions allowed. The total number of EFMs was reduced from 226.3 million to 2
million EFMs after post-processing.

Using aspefm, Mahout et al applied environmental regulation, transcriptional regulation,
as well as thermodynamic constraints in order to further reduce that set to a subset of
only 10* EFMs for post-processing analysis of optimal uptake rates [114, 116]. In gen-
eral, we therefore recommend to routinely incorporate basic regulation constraints
checking in order to drastically reduce the complexity of search of EFMs on metabolic
models. This is particularly true for genome-scale models, which number of reactions
reach thousands and number of EFMs reach billions. Ideally the procedure should be
done in pre-processing, coupled with network compression.

Instead of inactivating reactions, one might be interested by computing all EFMs con-
taining a specific reaction, such as the biomass, or several reactions, e.g. biomass
synthesis and ATP maintenance. This is not a good idea to try to incorporate these
constraints directly into the computation as such a constraint adds an hyperplane on
the solution space, changing the resulting solutions [117, 118]. As a result, these kind
of candidate constraints are best left for post-processing.

4.5 Alternative methods for flux space exploration

As we described above, exploration of all possible flux distributions using EFMs can
become very complex for larger models. A genome-scale model, which comprises
all metabolic reactions that an organism can catalyze, typically contains thousands
of reactions, which prohibits the enumeration of EFMs. At the moment, it is unclear
whether, even if we would have an enormously fast computer that could compute
all EFMs, the number of EFMs would not be so large that we cannot store the EFMs
anywhere, nor analyze it in any meaningful way. Here we discuss several alternatives
for exploring the metabolic capabilities of a cell that try to avoid the combinatorial



complexity that hinders EFM analysis.

4.5.1 Elementary conversion modes

If we are interested in the metabolic capabilities of an organism, is it always necessary
to know all possible flux vectors? For example, what if we want to lab-culture an
organism of which we have a reconstructed metabolic network, but no idea what
nutrients it needs to grow. Then we only need to know from what combinations of
nutrients it can make allits cell components. Or, what if we want to model the possible
cross-feeding interactions between several microbial species? Then we are mostly
interested in what each of them can consume and produce, and not really in how
they do that. Elementary conversion modes (ECMs), introduced in 2005 by Urbanczik
and Wagner [119], capture all possible overall conversions from nutrients to products
that an organism can catalyze, while ignoring which individual reactions are used for
this.

ECMs focus on the net results of metabolism, i.e. on the uptake and production of
compounds external to the metabolic network, such as sugars, nitrogen sources, fer-
mentation products but also ‘biomass’. To get information about these compounds
we need to extend our metabolic network by including the external compounds as
rows in the stoichiometry matrix; this is in general easy to do since we already had ex-
change reactions (reactions where an external compound was imported or exported)
so we only have to find the stoichiometric coefficient in which the external compound
was involved in these reactions. Let us denote the original stoichiometry matrix by
N;, and the submatrix that we add by ~,; together they form ~... We can then define
the conversion cone:

c= {fu — Nexev | Nipv = 0,v > o}. (4.24)

If we look carefully at this definition we can see that the flux vectors v need to satisfy
exactly the same constraints as in the flux cone (Eqg. (4.2)). The only difference be-
tween flux and conversion cones is that we are either interested in the fluxes them-
selves, or rather in the conversions that they induce: ds/dt = Ngyv.

Definition 4. The set of ECMs is the minimal set of conversions (ecm',...ecm‘y (where ecm;,
is the amount of metabolite » produced in the ith elementary conversion mode), such that

1. all conversions ds/at < ¢ can be written as a positive sum of these elementary conversion
modes: ds/dt = 3, ,ecm’, with x, > o,

2. without the production of any metabolite being canceled in that sum, i.e. for all metabo-
lites » we either have for all », > o that ecm;, > o or for all x, > o that ecm;, <.

We will explain both parts of this definition below, but let us first remark that the def-
inition is in fact perfectly analogous to the definition of EFMs: EFMs are the elementary



vectors (or precisely: conformally non-decomposable vectors) of the flux cone, and
ECMs of the conversion cone. The reason that the definition of ECMs has an additional
requirement (2.) is just that the analogous requirement was automatically satisfied
for EFMs because we assumed all reactions to be irreversible.

In Figure 4.6A we show a small metabolic network with external metabolites 4, 5 and
M, and internal metabolites ¢, p and . We can find 9 EFMs in this network: one that
goes from 4 to B, four that produce s starting from 4 and four that produce s from
B. We get four EFMs to go from 4 to sm because there are two ways of going from
¢ to p and again two for converting p into . This makes clear that having a number
of modules of alternative reactions can quickly give rise to large numbers of EFMs,
even though the overall conversion from nutrients to products remains the same. In
contrast, we will explain that we only get three ECMs.

In Figure 4.6B we see the conversion cone in gray. Note that this cone does not live
in flux space, but rather in the space of external metabolite changes, or conversions.
We recognize that the cone can be spanned by two extreme rays, which correspond
to converting 4 into B (blue) and to using 25 to produce sm (yellow), so these rays
correspond to elementary conversion modes following the first part of Definition 4.
Now why do we have a third ECM, when the blue and yellow one already span the
whole conversion cone? Indeed, the third vector in Figure 4.6B can be obtained by
summing the yellow vector and two times the blue vector: 2(-1,1,0) + (0,-2,1) = (-2,0,1).
However, note that the production of metabolite 5 would cancel in this sum, which
is not allowed according to the second part of Definition 4. The reason that this sec-
ond part of the definition is important, is that the elementary conversion modes are
intended to capture all metabolic capabilities of an organism, so taking only the first
two modes would not be enough: we also want to account for the possibility of mak-
ing sm from 4 even if we decide that the elementary conversion mode from 5 to sm
is not possible in the current environment, for example because 5 is not present as a
nutrient in the medium.

Because many EFMs resultin the same overall conversion, the exploration of metabolic
capabilities can now be done in larger networks, at the cost of ignoring information
about which reactions are used [120]. This way of thinking can be pushed even fur-
ther: what if one is not interested in the conversions between all nutrients and prod-
ucts, but only between a subset of these? In that case, one would want to compute
the ECMs only between the external metabolites of the most interest. This can be
done with a small trick. Say that we are not interested in the production of external
metabolite x. Before we start the enumeration algorithm we add a virtual reaction to
the network that consumes and produces x from nothing, i.e. we add x = ¢, and then
we change x from an external metabolite to an internal metabolite. Consequently, it



now has to satisfy the mass-balance constraint (which can always be done trivially us-
ing the added virtual reaction), and will thus never show up in the computed elemen-
tary conversions. In this way it was possible to compute all ECMs between glucose,
oxygen and biomass for a real genome-scale network of E. coli.

4.5.2 Flux sampling

In addition to the computational complexity of EFM enumeration for large metabolic
networks, these objects are not necessarily related to experimentally-derived flux
measurements. This is because when a vector of experimentally-measured flux val-
ues vwould be decomposed into EFMs, this generally does not give a unique solutions
because it can be done in many ways. Flux sampling methods can be employed to
solve both the computational and interpretability problems simultaneously, explor-
ing the set of flux vectors (i.e. directly measurable in principle) by computationally
sampling from the flux space. The goal of flux sampling in general terms is to produce
a sequence of flux vectors that satisfy the steady state constraints until enough sam-
ples have been generated to provide an approximate representation of the entire flux
space. The flux polyhedra defined by mass-balance and additional inhomogenous lin-
ear constraints are convex, and therefore uniform sampling of these flux spaces can
be achieved using variants of an algorithm developed for convex analysis called the
coordinate hit-and-run (CHR) algorithm [121]. Briefly, the most basic implementation
of the CHR algorithm generates a Markov chain of flux vectors by starting in a random
position within the flux polytope, picking a direction at random (uniform), and moving
a random distance (uniform) in that direction from the current point. The resulting
point is returned as a flux vector instance and the process repeats from there. It
has been proven that the CHR algorithm converges to a stationary distribution of the
Markov chain that is a uniform distribution in the flux space. Alternatives to uniform
sampling (i.e. alternative distributions across the flux polytope) can also be achieved
using variants of the CHR algorithm.

As highlighted previously in Section 4.4.3, mass-balance and inhomogeneous linear
constraints alone often do not contain enough information to sufficiently reduce the
space of biologically-feasible flux vectors. For example, thermodynamic constraints
on flux vectors are important for ruling out a large proportion of the sampled flux vec-
tors as infeasible, but this may disproportionately dominate the resulting sampling
distributions. Unfortunately, for mathematical reasons too deep to go into here, sim-
ply removing these infeasible flux distributions post-sampling will not result in a uni-
form distribution over the thermodynamically-feasible portion of flux space. In fact,
this relevant subset of flux space cannot be defined explicitly, and is usually neither
convex nor connected meaning that no Markov chain methods exist for sampling.



As an alternative, a recent method [122] has been developed to combine thermody-
namic constraints, physiological observations and estimated thermodynamic param-
eters, with mass-balance and inhomogeneous linear constraints to provide a prob-
abilistic thermodynamic analysis of metabolic reaction networks. Advances such as
these will almost certainly aid a more complete characterization of flux space as data
and methods become available.

4.5.3 Minimal cut sets

A minimal cut set (MCS) is a set of reactions that, when disabled, disables a set of
modes, which in turn can represent a biological function, such as the secretion of
a side product. This enables the prediction of gene deletion targets, given that the
genes coding for the involved reactions are known. A cut setis minimal if the removal
of one or more reactions from the set leads to at least one of the targeted modes not
being disabled.

In order to avoid also disabling desired functionalities, such as product secretion and
growth, the concept of constrained minimal cut sets (cMCSs) has been developed.
cMCSs enable targeting a set of modes while at the same time making sure that some
elements of another set of modes will remain active.

Motivation for (constrained) Minimal Cut Sets The concept of MCSs was introduced
by Klamt and Gilles in 2004 [123] and subsequently generalized and improved [124,
125, 126]. As briefly outlined above, the idea is to define a set of EFMs which should be
disabled, for example because they generate an unwanted side product or because
they don't generate the product of interest with a sufficiently high yield. Since EFMs
are minimal, removing a single reaction will disable it. A cut set is a set of reactions of
which at least one is active in each of the EFMs in the targeted group. Thus, disabling
the reactions contained in the cut set will disable all of the targeted EFMs, and each
cut set therefore represents the prediction of a set of gene deletions. Since it would
be pointless to remove reactions which only target EFMs that were already targeted
by other reactions, cut sets are required to be minimal. This means that removing a
single reaction from the cut set would lead to one or more of the targeted EFMs to
survive the intervention and also that adding a single reaction to the cut set would
have no additional effect on the set of target EFMs.

The pitfall when using MCSs is that while they guarantee the elimination of the tar-
geted EFMs, all other EFMs may be affected as well. This means that modes with
desired phenotypes, such as high growth and/or high product yield, may become im-
possible. Therefore, cMCSs were developed [127]. In this extension of the concept
of MCSs it is now possible to additionally define a set of EFMs which are desired, i.e.
which can not be disabled by the cMCSs. This is usually implemented by the require-



ment that at least a specified minimum number of EFMs of the desired set need to
remain active. Summarizing, cMCSs are sets of reactions which guarantee that (i) the
full set of target EFMs is disabled and (ii) a certain minimum of desired EFMs has to
remain unaffected. The drawback, with both MCSs and cMCSs, is that the target (and
desired) EFMs need to be defined. This is generally achieved by defining cut-offs in
terms of product yield and growth, which is, however, ultimately arbitrary.

Calculation of (constrained) Minimal Cut Sets Since minimal cut sets in a metabolic
network are EFMs in a dual network [128], methods used for calculating EFMs can be
used to calculate MCSs. Among other approaches [129] one based on binary integer
programming has been developed [130, 131]. While it requires that the EFMs are cal-
culated before it can be applied, the advantage is that the algorithm is very intuitive.
After having calculated the modes, each is represented as a binary vector which is
zero for reactions with zero flux and one otherwise. The EFMs are then divided into
either targeted or desired. A binary vector, corresponding to the cMCSs being calcu-
lated is introduced. It will have a one if the corresponding reaction remains active
and zero if the reaction is disabled. The first requirement is that cMCS needs to dis-
able all target modes and thus the vector must have zero elements such that each
target EFM must have at least one corresponding non-zero element. The second re-
quirement is that at least a defined minimum of desired modes must remain active.
This is achieved by introducing a second binary vector. This vector has an element
for each EFM and is calculated so that it has a zero when the mode is disabled by the
cMCS and one otherwise. By adding the constraint that the number of ones in this
vector must at least equal the previously defined minimum, the second requirement
is met. Maximizing the vector corresponding to the cMCS yields the first solution. The
next solution can be found by adding constraints to make sure that the current one
is excluded.

4.6 Concluding remarks

In this chapter we studied how the individual reactions that an organism can catalyze
together give rise to the overall conversion of nutrients into cell components and
secretion products. For that, we studied the cell's metabolism under a number of
simplifying assumptions, most notably, we model metabolism in steady-state. Given
this steady-state constraint, we explained how all feasible flux distributions form a
space of a specific type: a pointed polyhedral cone. By exploring this ‘flux cone’ we
can chart the metabolic capabilities of an organism.

We have seen that an exhaustive charting of these metabolic capabilities is the com-
putation of all elementary flux modes: minimal subnetworks that can individually give
rise to steady-state flux distributions, and that may be interpreted as minimal metaboli



strategies. An especially important use of EFM analysis can be found in the prediction
of the effect of gene knockouts: when all EFMs that produce compound y use reaction
r, then the organism cannot make this compound when the gene is knocked out that
codes for the enzyme that catalyzes ». And conversely, sometimes gene knockouts
can be found such that the cell cannot grow anymore without producing a certain
compound of interest. Clearly, these analyses can be very useful for the design of
organisms in bio-industry.

On the other hand, we also saw that for large models the computation of all EFMs
becomes impossible. There are simply too many of these minimal subnetworks. We
presented several alternatives. One could use elementary conversion modes if one still
desires an exhaustive list of the metabolic capabilities of the cell. The ECMs are eas-
ier to enumerate because one can choose to focus only on all possible conversions
between (a subset of) the nutrients and products, instead of requiring all informa-
tion about which reactions are used to get these conversions. For the design of gene
knockouts specifically, minimal cut sets may be used. Finally, we discussed that the
flux cone can be sampled randomly to characterize the flux cone, if this characteriza-
tion does not need to be exhaustive.

In many cases we have additional information that determines that part of the flux
cone is infeasible. For example, some metabolic fluxes may have been measured
so that these reaction rates can be fixed to their observed value. In other cases,
one may want to use thermodynamic properties to prohibit reactions from occurring
that would violate the second law of thermodynamics. These additional constraints
can be imposed on top of the mass-balance constraint to further bound the space
of feasible flux distributions; each correctly-imposed constraint narrows down the
space of feasible fluxes, and thus increases our knowledge of the metabolic state of
the cell.

All explorations of the space of feasible flux distributions show one unavoidable con-
clusion: the metabolic network is incredibly flexible. Even when several constraints
are imposed, a genome-scale metabolic model will allow for an almost incomprehen-
sible number of modes in which the metabolic network can function. Consequently,
to predict the metabolic state of a cell in more detail we need to make an additional
assumption. In the following chapter, we will study what predictions we can make
when we assume that the metabolic state is optimized to perform a certain function.

Recommended readings

Elementary flux modes and their applications are introduced in an intuitive way in:
J. Zanghellini, D. E. Ruckerbauer, M. Hanscho, C. Jungreuthmayer (2013). Elementary
flux modes in a nutshell: Properties, calculation and applications. Biotechnology Jour-
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Problems

Computer exercises for this chapter can be found on the book website.

Problem 4.1 A small metabolic network (1)
Spirallus insilicus, a completely fictional organism [133], is characterized by the metabc
network depicted in Figure 4.7 x, s and p represent the biomass, one substrate and
one product, while metabolites A to E denote intracellular metabolites. One direc-
tional arrows indicate irreversible reactions (all but v,)

(@) How many intracellular metabolites, intracellular reactions and transport reac-
tions are involved in the model?

(b) Obtain the stoichiometric matrix (~) and the vector of fluxes. How many ele-
ments are in the product ~n v and what do they represent?

(c) Is the matrix ~ of full rank? How many fluxes should be specified to have a
unique solution?

(d) Transform the set of constraints so that they define a pointed cone. Determine
the number of variables (fluxes) and constraints.

Problem 4.2 A small metabolic network (2)
Consider the following small metabolic network:

Vo

Se —— S,
S. —X P,

V2

P, —— C,
v3

P. —— D,

P.+2C, 23X

Metabolites with a c subscript are located in the cytosol (intracellular) while « stands
for extracellular and x represent biomass. All fluxes are positive.

(@) Represent the model as a reaction network (a sketch with metabolites and re-
actions)


https://doi.org/10.1002/biot.201200269
https://doi.org/10.1371/journal.pcbi.1005409

(b) Obtain the stoichiometric matrix (x) and list the variables of the metabolic model
(v)

(c) Show that there is no solution to the mass balance equation ~ v = o producing
metabolite D. Identify why this is so and modify the model so the production of
D is allowed (v; > 0)

Problem 4.3 Elementary Flux Modes (1)
Assume reaction v, is irreversible from 4 to p in Spirallus insilicus (Problem 4.1). Cal-
culate all the Elementary Flux Modes.

(@) By hand.
(b) Using a software of your choice (e.g. pypi.org/project/efmtool/)

Problem 4.4 Elementary Flux Modes (2)
Consider the following metabolic network

l
>)
—~
(@)
1
©
i

Please note that some stoichiometric coefficients in n are different from 1 (not shown

in the graphics).

(@) In the network drawing, gray dots denote carbon atoms. Check that carbon
atoms are conserved in all reactions. What's the carbon content of the byprod-
uct (not shown) of the reaction from A to D?

(b) All metabolites are treated as internal, that is, they need to be mass-balanced.
Find all EFMs (by pure reasoning or by using a software). Determine all EFMs in
which all fluxes are in forward direction, i.e. along the “conventional directions”
indicated by arrows.

(c) Which of the EFMs are thermodynamically realizable? Explain why.


https://pypi.org/project/efmtool/

(A) Variables
Internal metabolites: m = {A,B,C,D,E,F,G, H, 0,, ATP, NADH}
External metabolites: k= {carbon1, carbon2, Dext, Eext, Fext, Hext, 0xygen, biomass}

: G = {mcarbonh Mcarbon2, MHA, MF, moxygen}
Reactions: r= {r1,r2a,12b, 13,4, r5a, r5b, 16,17, 18, 18b, rres, tcl, tc2, td, te, tf, th, tox, growth}
Flux vector: v = (v, via, veav, - - -}

L z= {Zrh Zr2ay Zr2by - - }
(B) Stoichiometry

Internal reactions
rl: A+ ATP —- B
r2a,12b: B+ 2 ATP + 2 NADH + C
r3:B—-F
r4:C— G
rba: G — 0.8 C+2 NADH
rbb: G — 0.8 C+ 2 NADH
6:C—2ATP+3D
r7:C+4 NADH - 3 E
r8a,r8b : G+ ATP +2 NADH «+ H
rres : NADH + Oy — ATP

Transport reactions
tcl : carbonl — A
tc2 : carbon2 — A
td : D — Dext
te: E — Eoxt
tf : Fext — F
th : Heyy — H
tox : oxygen — Og
growth : C+ F 4+ H 4+ 10 ATP — biomass

(C) Regulation

Zr2b == T'%r2a
Moxygen = TZrpa
Moxygen = TZr5b
Zr2b = 7

MH == TZ8a
“Moxygen == T'Zrres

Mcarbonl = 2tc2

TMcarbon2 = Ztc2
TMcarbonl = TZtcl
My == TZth
Mp —> TZtf

TMoxygen — Ztox

Figure 4.5: Formulae for the metabolic model from Figure 4.4. Stoichiometry is given
for reactions and metabolites; simple arrow or double arrow represent reversibility,
for instance reaction 1 consumes one a and one arp to produce one 8. The names
r2a,r2b ANd rsa,rsb denote the forward and backward directions of the respective reac-
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Figure 4.6: Elementary conversion modes - (A) Small toy network with three ECMs
shown in blue, yellow and red. Note that the red mode can be decomposed as a
positive combination of the blue and yellow elementary conversion modes, but that
would cancel the production of 5 so this is not allowed. (B) The conversion cone is
shown in gray, and the blue and yellow arrow correspond to the blue and yellow ECMs
are the extreme rays. The red ECM needs to be added because itis on the intersection

with the ap/at = 0-plane.
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Figure 4.7: Spirallus insilicus network, adapted from [132]






Chapter 5

Optimization of metabolic fluxes

Hester Chapman, Jan Pilipp Dapprich, Daan de Groot, Stefan Muller, Felipe Scott, and
David Tourigny

Chapter overview

o An optimization objective can be added to constraint-based models to make
more specific predictions.

o Different purposes can be served by choosing different optimization objectives
and constraints

o The optimal solutions can be understood in terms of elementary flux modes

5.1 Can optimality principles help us predict metabolic
behavior?

In the previous chapter, we characterized an organism’s metabolism by listing all the
biochemical reactions that can be catalyzed by the enzymes encoded within the or-
ganism'’s genome. To understand how the genome constrains patterns of metabolic
flux we needed to make several simplifying assumptions. The firstimportant assump-
tion was that intracellular metabolism is at steady-state, i.e., that the production and
consumption of all metabolites is balanced such that their concentrations are con-
stant in time. These resulted in the mass-balance constraints on the flux vector .
The flux cone of all flux vectors satisfying the mass-balance constraints could be fur-
ther reduced by additional constraints on v, based on extra physical and biological
assumptions about the magnitude and directionality of certain reactions within the
network. We introduced several ways in which the entire flux space could be ex-
plored.

When applied to very large metabolic networks, the flux space will often contain an



infinite number of flux vectors v that simultaneously satisfy all constraints. From a
mathematical perspective, this implies that the constraints do not include enough
information to uniquely specify a flux vector v. This makes sense biologically, since
if we imagine constraints are related to experimental observations it is very unlikely
that we will ever be able to make enough to fully account for every reaction encoded
within the entire genome of an organism (no matter how simple it might be). Often,
however, researchers do want to further narrow down the set of flux vectors that they
think biologically relevant to the organism and conditions they are studying, perhaps
even to a unique vimagined to describe the metabolic state of an organism at a given
moment in time. One popular approach for doing so is to provide an additional as-
sumption (or set thereof) in the form of an objective function: it is assumed that the
metabolic state of an organism is such that some function of v (e.g. growth rate) is
maximized to satisfy some criteria (e.g. evolutionary selective advantage). The com-
putational problem then becomes one of constrained-optimization: find a flux vector
v that is optimal in terms of the objective function(s) that simultaneously satisfies all
constraints. The resulting space of optimal flux vectors (sometimes containing just
one unique vector) is often considerably smaller than the space of those that satisfy
only the constraints.

In this chapter, we will study metabolic models based on constrained-optimization.
We will introduce a selection of commonly used objective functions and the computa-
tional methods used to solve the associated constrained-optimization problem. We
will also characterize optimal solutions that we get in terms of the minimal metabolic
strategies that we identified in the previous chapter: elementary flux modes. Finally,
we will explain how we can handle the cases where the solutions are, even after op-
timization, not unique.

5.2 Metabolic modeling based on linear optimization

We begin by introducing linear programs and transforming them into standard form.
(For the history of linear programming, see Box 5.A.) Then, we discuss two types of
inhomogeneous constraints in Flux Balance Analysis (FBA), the application of linear
programming to metabolic modeling. Finally, we illustrate FBA in an example.

5.2.1 Linear programming problems

Linear programs (LPs) are specified for a vector x (of real variables) and involve a
vector ¢ (defining the objective function) as well as a matrix A and a corresponding



vector b (defining the linear inequalities),

max CTX

* (5.1)

S.t. A x < b.

In general, an individual inequality a™x < » (where the vector a denotes a row of the
matrix A and » denotes the corresponding component of b) constrains a weighted
sum of the variables. However, if a has only one nonzero component, e.g. «, =1 and
a; =0 for all j #i, then it restricts a single variable, »; <¢.

Towards LP standard form. Some variables may have nonnegativity constraints. Hence,
we order the variables such that

where the superscripts - and « refer to the index sets of nonnegative and “free” vari-
ables, 7 and 7+, respectively. Now, we can formulate the nonnegativity constraints
as x° > 0. To obtain nonnegativity constraints for all variables, we will consider free
variables as differences of nonnegative variables. Given the order on the variables,

we first write
A x= (Ao A*) (xi) .

Next, for every ic z- (for every free variable =), we introduce 4,4, >0 such that ,; —y; = 2.
In vector notation, we have

Note that this transformation is not one-to-one. There are infinitely many pairs y+,y-
that have the same difference x*. Analogously, for every i c 7 (for every nonnegative
variable =), we introduce ¢ = =, >0 to obtain a uniform notation. That is,

Now, we can write

In short,



involving the augmented matrix A and the non-negative vector y. Correspondingly,
we have to transform the vector

Indeed,

As a result, we obtain an LP in standard form,

max ETy
St.Ay<b (5.2)

and y >o,

which is equivalent to the original LP (5.1) in the following sense:

. On the one hand, if x is a feasible solution of (5.1), that is, a x <, with objective value
c'x, then every y with y» = x> and y+ -y~ = x* is a feasible solution of (5.2), thatis, Ay <b
and y > o, with the same objective value ¢"y = c"x.

In particular, we can choose y+ and y- as follows: for every free variable s, if 2, > 0, then
we set y+ =2, and y; =0, and if z; <o, then we set ;7 =0 and 4 = —2,. Equivalently, we can
choose y+ and y- such that y+ -y~ =x- and 4 .47 =0 for all indices i ¢ 7-.

Note. The latter choice involves if-then statements or nonlinear equations. Hence,
it cannot be written in terms of linear inequalities, that is, it cannot be directly in-
corporated into an LP. Still, the choice can be used to obtain equivalent (but simpler)
formulations of LPs. See the next subsection, in particular, the formulation of enzyme
constraints in FBA.

. On the other hand, if y is a feasible solution of (5.2), then x with x> =y and x* =y*+ —y-
is a feasible solution of (5.1) and y and x have the same objective value.

5.2.2 Metabolic modelingvialinear programs aka Flux balance anal-
ysis

Flux balance analysis (FBA) studies metabolic models via linear programs. The feasi-

ble solutions (fluxes) are specified by

- homogeneous equations arising from mass-balance constraints,

- homogeneous inequalities (nonnegativity conditions) arising from irreversible re-
actions,

- and extra inhomogeneous (in-)equalities encoding lower/upper bounds for individ-



ual fluxes or enzyme constraints involving weighted sums of fluxes.
(See also the previous chapter.)

The objective function can be an individual flux or a weighted sum. Hence, a general
FBA problem can be written as

max CTV

v

St.Nv=0,v’ >0, (53)

and ¢ v>h.

Two types of extra constraints. As already mentioned, the inhomogeneous inequalities
may involve lower/upper bounds for (all) individual fluxes,

£<v<u, (5.4)

so-called box constraints. Componentwise, « < » < « for reaction i. (If there is no
lower or upper bound, one may set ¢, = -« Or v, = «.) Of course, the bounds must be
consistent with the irreversibility constraints.

Additionally/alternatively, one may consider enzyme constraints. First, for every re-
action i e =~ uRr, one introduces the concentration ¢, of the corresponding enzyme.
Then, for every irreversible reaction . ¢ =+, enzyme kinetics implies the inequality
0 <v < k8¢, Similarly, for every reversible reaction i c z=, one obtains

v; < kicaté(ii If v; > O,

(5.5a)
—v; < k‘icat’l_ei if v; < 0.
Finally, using nonnegative weights «,, one formulates a capacity constraint
Z wiei=w'e<N (55b)

IERTURT

(or several such constraints). Clearly, the inequalities (5.5a) involve if-then state-
ments. Hence, they cannot be directly incorporated into an LP. To resolve this prob-
lem, we perform reaction splitting, which ultimately leads to an LP in standard form.
In the following, we describe this transformation in detail.

Reaction splitting. As described in the previous chapter, for every reversible reaction
i e R=With netreaction rate +,, we define a forward reaction “rate” ;> >0and a backward
reaction “rate” »= > o such that v, = w;* —w=. In vector notation, v= = w= - w= With w=,w= > 0.
Again, we note that the “rates” »;*,w- do not denote the (microscopic) forward and
backward reaction rates »;,»- that determine the net reaction rate v, = v;> —v-. They are



auxiliary quantities, and only their difference v - w- = », has a biochemical meaning.
Further, for every irreversible reaction i ¢ =~, we write v = v;> > 0 to obtain a uniform
notation. That is, v= = w~ > 0. We introduce the augmented stoichiometric matrix §

and the corresponding non-negative flux vector w,
N := (N—> N= —N:> and w.— w |,

and find

G = (G% G= _Gﬁ> and c:=| c=

and obtain the LP

max ¢ ' w
W

St. Nw=0,w>o, (56)

and Gw >,

which is equivalent to the original LP (5.3).

Choice of w. To incorporate the enzyme constraints (5.5a), we choose w— and w- as
follows: for every reversible reaction i e ==, if v; >0, then we set v;* =+, and »= =o, and if
v <0, then we set v =0 and v = —v,. We find

w; =w; 4 v; < vigkfat’éei (and w; =0) if v, >0,

w; =w; —v; < —v; < kicat’l_ei (and w; =0) if v; <0

and hence

wi_\/kicat’_\ + wf/kicat’; < e, (ﬁ)

independently of the sign of «; (that is, not involving an if-then statement). To summa-
rize, the if-then statement (5.5a) for v together with our choice for w (another if-then
statement) imply the inequality (=) which can be incorporated into the LP (5.6). In
fact, we further rewrite (=) as

wi_\/k'icat’é <e;, wf/kicat’l_ <e;, and e; +e <e

K3 3



where we introduce the forward and backward enzyme “concentrations”, ¢ and -,
respectively.

The treatment of the other extra constraints is simple. First, for every irreversible
reaction ic v, we get v = v, <3¢, Or, equivalently, v /x4 <¢,. Altogether,

w; < k@, forier>ur~uURr-, (5.7a)
where we use the vectors
kcat—) e~>
kcat = kcat»—‘ and e=|e
kcat’— ez_

to streamline the notation. Second, we adapt the capacity constraint (5.5b). Using
the augmented vector

D= | =
w;‘
we obtain
Wi €; = w; €; + Wi (67\4—6?)
ieRﬁL%;*U’R* z'ezR; iezR; <e;
< Z wj €;
1IERTURT
<Q,
in short,
Y ma-ele<q (5.7b)

IERTURTUR™

Of course, box constraints (5.4) for v can also be written in terms of w: for the ir-
reversible reactions, we get ¢ <w~ <u> (With ¢~ > 0), and for the reversible reactions,
we get ¢= < w— - w= < u= (With ¢= <0 and w= > 0). The latter inequalities can be further
simplified using our choice of w.

Summary. We have shown that an FBA problem (5.3) involving box constraints (5.4)
and enzyme constraints (5.5) can be transformed into an equivalent LP problem (5.6)
in standard form. In particular, for every feasible v (and ¢) in N v =0, v> >0, and (5.5),
thereis afeasible w(ands)inNw=0,w>0,and(5.7), namely, our choice of w. Conversely,
for every feasible w (not necessarily in the form of our choice) in the standard LP
problem, there is a feasible v in the original FBA problem.



Economics analogy 5.A Optimization and economic planning in the Soviet
Union

Linear programming as an algorithmic approach to solving constrained linear op-
timization problems was first developed by soviet mathematician and economist
Leonid Kantorovichin the 1930s [134, 135]. Kantorovich was tasked with helping to
optimize production in the soviet plywood industry, but soon discovered that the
underlying problems could not be solved using analytical methods. He instead
developed a method for solving linear optimization problems using an iterative
process through which a solution is continuously improved until an optimum is
reached. Kantorovich argued that this could be used to make soviet economic
planning more efficient.

Soviet planning was primarily based on material balancing, which aimed to cre-
ate a consistent plan with regards to the inputs and outputs of various industries.
For example, the input requirement of steel consuming industries ought not to
exceed steel production targets. In a balanced plan the input requirements for
steel would match the production of steel. But a balanced plan is not necessarily
an optimal one. There can well be several consistent plans of which some lead to
higher overall production output than others. Kantorovich observed that produc-
tive resources were often not used where they could yield the greatest benefit. By
using linear programming, planners could in principle calculate a plan that made
the best use of economic resources and maximized production output.

One of the problems that needed to be overcome by Kantorovich was that op-
timization always aims to optimize a singular objective function. However, there
was no obvious way of measuring the output of qualitatively distinct products on a
single scale. Without prior valuation of the products (for example through market
prices) it is not clear whether 3 tanks and 10 trucks should be counted as more
than 4 tanks and 8 trucks. Kantorovich circumvented this problem by assuming
that outputs ought to be produced at given proportions. For example, it might be
specified that 2 trucks ought to be produced for every tank. Linear programming
can then be used to calculate the plan that maximizes output at these propor-
tions. Unlike most contemporary economic applications of linear programming,
this does not depend on a monetary objective function. So, what's being max-
imized is not monetary value. Instead, the objective function measures purely
physical quantities (such as number of trucks or tons of steel).

In the context of economic planning, constraints are used to represent limits to
available economic resources (such as fertile land). A plan that uses more re-
sources than are available will not be feasible and must thus be excluded. Con-
straints can also be used to fix the proportions at which distinct outputs ought to
be produced [136]. While it was first developed for economic planning, the fun-
damental principles of linear programming can also be applied to other problems
(for example in biology).

5.2.3 Optimization problems for metabolic fluxes

In the previous chapter, we described how linear homogeneous and inhomogeneous
constraints arising from biological and physical knowledge can be combined into ma-
trix and vector notation and written in the general form presented in Equations (4.1)
and (4.16). The resulting space of all flux vectors v satisfying these constraints is called
the flux polyhedron. The flux polyhedron can remain high-dimensional and, as ex-



plained above, an objective function r can be used to narrow down the set of flux vec-
tors to only those that are optimal (i.e., maximize the objective function). The general
form in which we can write the resulting constraint-based optimization problem is
therefore:

max f(v), such thata v>w, (5.8)
with
Nint O
PO b B e (5.9)
I 0
G h

Recall that ~,.v = 0 models the steady-state assumption, while the multiplication with
the identity matrix (1...v > o) captures the fact that we forced all reactions to be ir-
reversible by splitting reversible reactions into a forward and a backward reaction.
Finally, cv>1n can be used to impose additional ‘inhomogeneous’ constraints that can
be used to input additional biological knowledge such as an experimentally measured
upper bound on the uptake rate of a certain nutrient.

In many cases, the objective function is chosen to be a linear function of the fluxes,
i.e.,
flv)= chi, (51 O)

where coefficients ., weigh the relevance of the different reaction rates in the objec-
tive function. Problems of the form (5.8), (5.9), and (5.10) in general are called linear
programming problems and as the name suggests can be solved using linear program-
ming. Applied to metabolic models, linear programming is called Flux Balance Analysis
(FBA). Linear programming problems are well studied, such that FBA is perhaps the
most popular approach to genome-scale metabolic models [137, 138]. FBA problems
are relatively easy to solve using specialized optimization software, which have been
highly developed due to the general applicability of linear programmingin economics,
logistics, and many other fields also. In the following subsections we will briefly de-
scribe various choices that can be made for the linear objective function f) in FBA.

As an example FBA problem, in Figure 5.1 we have extended the minimal example
from the previous chapter to include ATP and biomass (x) production, assuming the
latter is produced from pyruvate using a single reaction that consumes »x molecules
of ATP with flux value +. We also introduce as a linear objective function the total
rate of ATP production, varp. Since in this example, reactions +, and «, produce ATP
with stoichiometric coefficients », and »;, respectively, the total rate of ATP production
IS given DY varp = nivy +ngvs —nxvx. The FBA problem is then given by simply maximizing
vare SUDJECE TO vy, v0,,v1,v5,0s,04,0x SAtiSFying the mass-balance constraints but, as we will
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Figure 5.1: Asimple representation of the metabolic reaction network for central car-
bon metabolism - Extracellular glucose is imported into the cell via a reaction with
flux +, and converted via intracellular glucose, ¢, to pyruvate, p, via the reaction with
flux », that has a stoichiometric coefficient of two pyruvate molecules to each glucose
molecule. Pyruvate can then either be converted to a fermentation product, pr, via
the reaction with flux «, or, in the presence of oxygen, o, imported via +,,, converted to
an oxidative phosphorylation (OXPHQOS) terminal product r, via the reaction with flux

u5. It can also be converted to biomass x with rate .. The reactions with flux values »,
and v, produce ATP from ADP (in red) with stoichiometry », and »;, respectively, which

can vary between species. The production of 1.0 grams of new cells, in a dry weight
basis, requires one molecule of pyruvate and »x molecules of ATP.

see in the next subsection, this would result in a problem that is unbounded: the flux
vectors and resulting optimal value of v.;» could be indefinitely large. Biologically, this
is because there are no bounds on the uptake rates of glucose ++* and the fermenta-
tion product +. Thus, if we re-impose these bounds as in the last chapter, the result
is an FBA problem that is bounded and therefore has a finite objective value:

max vapp = n1v1 +ngvz — XX, such that
0 =wvo — vy,

0 =wvp, — s,

0=2v; —vy —v3+v4 —vx, (511)
v > g,

ub
Uy Z V4,

Vo, V1, V2,V3,V4 2 0.

To illustrate a particular instance of this FBA problem, we consider the very simple
case where v =0, w5 >0 and »; = n, = 1. It can be checked by hand that an optimal
solution is given by v, = v = vp/2 = v, With v, = v, = vx = 0. The optimal objective value is
given by varp = 3ue.



5.3 Choice of objective functions in Flux Balance Analy-
Sis
Solving the constraint-based optimization problem of (5.8) will reduce the set of flux
vectors to those that are optimal (maximize the objective function), but the biological
validity of this prediction is critically dependent on the particular choice of r. Conse-
quently, there has been a lot of consideration and debate among researchers working
on FBA about the appropriate objective functions to use in different contexts and how
best interpret the results. Below, we will provide some popular examples, but for a

more systematic comparison of different objective functions we refer the reader to
[139, 140, 141].

Evolutionary justifications for objective functions: the rate of biomass production
Objective functions are often based on evolutionary arguments: the objective is cho-
sen to capture some proxy for the evolutionary fithess of an organism. The motiva-
tion behind this is that cells with a metabolic state that scores well on this fithess-
proxy would come to dominate the cell-population because they outgrow their com-
petitors. Proxies for fitness are in principle very hard to choose since evolutionary
fitness is mostly related to the average net reproduction rate of a cell over a very
long time[142]. Therefore, to know the metabolic objective that aligns with the max-
imization of fithess would require us to know what the cell has been selected for in
its evolutionary history. This is a non-trivial question, for example, is an E. coli cell
growing in the human gut selected for the same metabolic objective as a muscle cell
in your body?

An objective that is used very often is the maximization of a biomass production rate,
because this is used as a proxy for maximizing growth rate. It is indeed arguable
that unicellular organisms with high growth rates are selected, since in stationary
conditions these cells will come to dominate the population. Indeed, FBA models
in which the biomass production rate is optimized seem to predict metabolic states
reasonably well [143, 144, 145].

But what exactly do we mean by “biomass™? This is extensively discussed in the Chap-
ter 2, but for our purposes it is sufficient to say that it is the entirety of all components
that constitute a new cell. In metabolic models, however, “biomass” refers to all pre-
cursors that are outputs of the model and that are needed to produce a new cell.
This has two consequences. First, biomass in our model does not only consist of the
components of which the cell is built, but also of components needed to do the build-
ing itself, such as a certain amount of ATP. Second, what is contained in biomass will
depend on where we draw a line around the metabolic network - all necessary cell



components that are not inside are regarded as biomass. In practice, biomass ap-
pears in metabolic networks in the form of a virtual biomass reaction that consumes
all necessary precursor molecules in the right proportions and produces one unit
of “standard biomass”. Maximizing the biomass production rate thus takes the very
simple form of just maximizing the rate through the biomass reaction.

The use of such a fixed biomass reaction represents an important assumption, be-
cause in reality the biomass composition will be condition dependent. For example,
if a cell grows faster and contains more ribosomes, this increases the cellular fraction
of proteins and polynucleotides, and hence the need for the respective precursors
(amino acids and nucleotides). Moreover, biomass composition can even depend on
the choice of metabolic strategy. If a pathway includes enzymes that contain a lot of
iron, then depending on the flux solution (which uses this pathway or not), more or
less iron will be contained in the biomass. So, the flux solution must be known to
know the biomass composition, but the biomass composition must also be known
to get to a flux solution. To resolve this, we would need a model of the entire cell,
including the synthesis reactions of all enzymes. Such models will be discussed later,
in the Chapter 10 on large cell models.

Evolutionary justifications for objective functions: alternative fitness-proxies In
some cases, modeling the maximization of the instantaneous growth rate through
the biomass reaction is an unrealistic proxy of the evolutionary fitness. For example,
in multicellular organisms each cell performs a task that contributes to the fitness of
the whole organism, but this is not related to the reproduction rate of the individual
cells. In those cases, we may still try to capture an evolutionary objective when we
know the main task of the cell-type. For example, beta-cells in the pancreas have
as their main task to produce insulin, and we may thus model their metabolism by
maximizing the production of insulin.

In other cases, our metabolic model is focused only on a very small part of the true
metabolic network, and therefore does not model the production of all biomass pre-
cursors. In such cases, energy production rate in the form of ATP production rate is
often maximized. Yet other objective functions that are sometimes used and have a
(somewhat vague) evolutionary motivation are the minimization of overall ATP usage
and the minimization of overall fluxes.

Synthetic design-oriented objective functions Metabolic modeling can also be used
to identify metabolic states that lead to a certain desired behavior of a microorgan-
ism. For example, we may seek to genetically perturb a microbe such that it produces
a certain compound of industrial or medicinal interest, while it also retains a certain
minimal growth rate [146]. Indeed, it is often desired to retain a certain minimal abil-
ity to grow such that the genetically engineered organisms can be lab-grown after



which the produced compound of interest can be harvested. In that case, we can
combine maximizing the production rate of the compound while imposing an inho-
mogeneous constraint that sets a lower bound on the biomass production rate. This
can even be combined with a calculation in which we solely maximize the biomass
production rate: maximizing the biomass production rate is a model for the wild-type
cell, whereas maximizing the generation of the compound models the desired phe-
notype. By comparing the flux distributions between these ‘strains’, we can search
for target genes that should be up- or downregulated.

5.4 Enzyme-constrained FBA

In its most simple form, flux balance analysis requires a stoichiometric matrix, an
objective function, and at least one flux constraint to ensure that the problem is
bounded. Solving an FBA problem allows for the prediction of intracellular fluxes
and essential gene knockouts, given measured uptake and secretion rates.

However, whilst classical FBA can capture the effects of essential gene knockouts well,
it falls down when it comes to non-lethal knockdowns, and the prediction of growth
phenotypes. For example, overflow metabolism in E. coli, and similarly the Crabtree
and Warburg effects in S. cerevisiae and cancer cells respectively, cannot be captured
in FBA models without ad-hoc flux constraints being imposed. These names refer to
the seemingly wasteful strategy of cells at high growth rates using a combination of
respiration and fermentation, despite the higher ATP-yield of respiration.

It has been proposed that overflow metabolism results from optimal protein alloca-
tion in the cell [147, 148]. In FBA models, we capture this by imposing total proteome
constraints to perform enzyme-constrained flux balance analysis (ecFBA). The usual
formulation for ecFBA can be written as follows [149]:

max v,
v,e

S.t. (a1) Nv=o,

(C2) v; > OVi, (5.12)

(C3) v; <kCOl.¢; Vie R

(C4) > ei<EBp Vkell,... K|

iy

Here, we wish to maximise flux through the objective reaction »,, subject to four con-
ditions. The matrix ~ is our stoichiometric matrix, with all reversible reactions split
into a forward and a reverse reaction, and the condition c2 ensures that all fluxes are
positive. In this formulation, we give all metabolic reactions an associated catalysing
enzyme, and stipulate that the flux through a reaction is equal to the concentration



of this enzyme multiplied by the apparent turnover number (x<at) value (c3). Finally,
we constrain total proteome constraints, in the form of enzyme pools. The total con-
centration of enzymes in the i-th enzyme pool must not exceed the constraint g, (ca).

Predictions using ecFBA do not rely on the input of flux constraints, but rather good
estimates for the total protein in different cellular compartments (for example the
membrane and the cytosol), as well as the «.,-values (for details, see Chapter 10).

The ecFBA formulation ensures that all metabolic enzymes have an associated cost,
relative to the gene product molar mass and turnover number. A simplified tech-
nique to provide a proxy for these costs is parsimonious flux balance analysis (pFBA).
Central to pFBA is the assumption that cells minimize their total enzyme usage. Here,
an optimal objective value is calculated via standard FBA, and the sum of the gene-
associated reaction fluxes is then minimized. pFBA significantly reduces flux variabil-
ity compared to standard FBA, but still does not typically capture overflow metabolism
[150].

5.4.1 Optimal metabolism in terms of elementary flux modes

In the previous chapter we introduced elementary flux modes (EFMs) and identified
them as the fundamental metabolic pathways that carry flux through the metabolic
reaction network. Here, we will show how elementary flux modes also can be very
useful for describing optimal metabolic states. We briefly recapitulate the notion of
elementary flux modes. All metabolic flux vectors v that satisfy both the mass-balance
and irreversibility constraints form a pointed polyhedral cone, called the flux cone.
The EFMs are the extreme rays of this cone, so that they can be used to decompose
all steady-state flux vectors

V= E Ai e,
i

where e, is the i-th EFM and » > o its coefficient in v. Moreover, the EFMs turn out
to be the minimal metabolic subnetworks that a cell can use in steady-state without
needing any other reaction, so that we can view EFMs as minimal metabolic strategies.

In Figure 5.2 we depict the EFMs as black lines, and the region in-between these lines
is the steady-state solution space that is spanned by the EFMs. Note that this illus-
tration is great simplification, usually the flux cone is a high-dimensional object that
can only be visualized in trivial toy examples. In fact, the flux cone is a subspace of
r* Where » (the number of reactions) can be in the thousands for a typical genome-
scale metabolic network. Moreover, the number of extreme rays of the cone would
be overwhelming, due to the complexity issues associated with EFM enumeration as
described in the previous chapter.

Figure 5.2a also shows that there is a direction in which the objective increases fastest.
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Figure 5.2: We show a cartoon of the solution space of a metabolic network, the so-
called flux cone, with respectively (A) zero, (B) one and (C) two constraints. With one
constraint, the optimal solution for any linear objective can be attained in a vertex of
the space, which means that it can be attained in a single EFM. With two constraints,
we need to combine at most two EFMs to describe the optimal solution.

This direction is determined by the choice of objective function, to be specific: the
direction of maximal increase of the objective is given by the vector of coefficients,
le--c,)T, appearing in the linear objective function (5.10). However, as long as we do
notimpose aninhomogeneous constraint, the flux cone is unbounded, so that we can
usually reach infinite values. This makes sense when we think of the metabolic states
in terms of elementary flux modes: when we have an EFM that reaches some nonzero
objective value, we can always multiply it by any positive scalar. This multiplication
will increase the objective value, while the steady-state and irreversibility constraints
will not be affected.

Metabolism, however, is never unconstrained, so we will always have at least one
inhomogeneous constraint. In the previous chapter, inhomogeneous constraint were
written in the general form

S wlvi<h,, p=1,..P (5.13)

where each », corresponds to a component of the r-dimensional vector n and » weights
w? (i=1,...,n) are supplied for each of the r constraints. The second panel of Figure 5.2
shows how a single inhomogeneous constraint (i.e. the case r = 1) can constrain the
flux cone and theory dictates an optimal flux vector is found at a vertex of the result-
ing flux polyhedron, which geometrically corresponds to the intersection of the flux
cone and the hyperplane of the inhomogeneous constraint. One particular biological
argument for such a constraint is related to resource allocation[151, 152]: only a lim-
ited number of macromolecules (proteins, ribosomes, etc) fit inside a cell. Since these

molecules catalyze reactions, reaction rates are proportional to their concentrations:

v; = ¢e; ki(s), (51 4)



where ¢; is the concentration of the enzyme that catalyzes reaction i, and &) is a func-
tion that describes enzyme kinetics in a non-linear way that is for most reactions un-
known. The resource-allocation constraint then takes the form

Zwi e; <1, (515)

where ; are weights that determine how much of the resources are taken up by one
unit of the ith enzyme; these weights can for example be proportional to the volume,
the mass, or the number of amino acids of the enzyme. Making a change of variables
to express the constraint in terms of fluxes gives:

S (5.16)
such that these resource-allocation constraints again fit the form presented in Equa-
tion (5.13). A well-known example of a modeling framework that uses such a con-
straint is FBA with macromolecular crowding (FBAWMC, [153]) where such a constraint
arises due to a physical limitation on the number of enzymes contained within the
cell.

It is not necessarily always the case that an inhomogenous constraint applies to all
EFMs. For example, in a metabolic model of an organism able to grow on multiple
carbon sources, many EFMs may remain unbounded. For treatment of these cases,
the reader is referred to [154]. Moreover, we may have multiple inhomogenous con-
straints on flux values as Equation (5.13) suggests. The third panel of Figure 5.2 il-
lustrates how a second inhomogenous constraint can further constrain the solution
space where theory implies an optimal flux vector is found on a vertex lying on the
edge between two EFMs (as shown in the example in the figure). Imposing additional
inhomogenous constraints can therefore lead to the superposition of additional EFMs
in the solution. In general, if we consider a constraint-based model with x inhomo-
geneous constraints it can be proved that an optimal flux vector will be built out of at
most k EFMs [154]. We therefore see another important property of EFMs: not only
do they form the minimal building blocks that span all metabolic capabilities of the
cell, they are also optimal building blocks. When metabolism is optimized, only few of
these EFMs are used. As a result, solutions to linear constraint-based optimizations
can usually be rationalized in terms of the properties of the available EFMs [155], for
example, a flux balance analysis with only one constraint on a nutrient uptake will just
return the EFM with the highest ‘yield’, i.e. the highest efficiency of making biomass
per nutrient.



5.5 Multi-objective flux analysis and flux variability

5.5.1 Phenotypic phase plane analysis

The analysis of the metabolic response to environmental changes is often sought
assuming that there is only one substrate limiting growth (or other metabolic reac-
tion). For example, we could be interested in the growth and ethanol production by
S. cerevisiae under oxygen limitation in a chemostat. In this experimental setup, ev-
ery other substrate should be provided in excess, including the carbon and energy
source. If no oxygen is supplied, ATP must be produced only using oxidative phos-
phorylation reactions and a fermentation product, such as ethanol, will be produced.
On the other extreme, if enough oxygen is available, a fraction of the carbon source
will be completely oxidized, producing ATP via respiration. In both cases, the frac-
tion of the carbon and energy source not used for energy generation will be used for
the production of biomass at an specific growth rate equal to the dilution rate of the
chemostat.

This behavior can be analyzed using the phenotypic phase plane analysis. To calculate
a phenotypic phase plane (PPhP), the uptake fluxes values under analysis, typically the
uptakes of oxygen and the carbon source are discretized between their upper and
lower values and used to construct a meshgrid containing the 2-D grid coordinates
based on the coordinates contained in the discretized vectors of oxygen and carbon
uptake fluxes. At each tuple in the 2-D grid, an FBA problem is solved after fixing the
lower and upper bounds of the corresponding fluxes to the values in the tuple. Figure
5.3. A shows the PPhP of the metabolic network presented in Figure 5.1 with » = 10,
ni =1, ng =4, vy =0, vi* = 10, AN v =15 mmolg—'n~* (Cell dry mass).

At zero oxygen uptake, Figure 5.3.A shows that growth is possible reaching a specific
growth rate of 1 1/n at the maximum glucose uptake. Notice that the slope of the line
connecting the origin of coordinates and the point of the highest growth rate at a
glucose uptake of 10 mmolg—1n-t (cell dry mass) is 0.1 gmmoi-! (cell dry mass). Biologically,
this slope corresponds to the biomass yield on glucose under anaerobic conditions,
and in terms of linear programming to the negative of the shadow price defined as:
P (5.17)

z:dibz,a

where : is the objective function optimal value (specific growth rate in this case) and »
corresponds to the violation of a mass balance constraint and is equivalent to the up-
take reaction of the i-th metabolite (glucose in this example)[156]. Figure 5.3.C shows
that the glucose shadow price is equal to -0.1 at every point in the feasible region of
the problem. Figure 5.3.D shows the shadow price values for oxygen uptake. For ev-
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Figure 5.3: Phenotypic phase plane of the metabolic model shown in Figure 5.1, cal-
culated as a function of the uptake rates of oxygen and glucose.

ery unitincrease in the oxygen uptake flux, the biomass specific growth rate increases
by 0.4 1n. Thus, the plane of increasing growth rate values in Figure 5.3.A can be de-
scribed by the equation o.1v; + 0.4v0,. COncomitantly, as the oxygen uptake increases,
the flux of product P1 decreases as more ATP is generated in reaction +,.. For every
constant glucose uptake flux, the specific growth rate increases and the production of
P1 decreases until the optimally line (red line) is reached in Figure 5.3.A. This line rep-
resents the optimal relation between the two metabolic fluxes in the PhPP [156]. In
this example, the optimally line represents the combinations of glucose and oxygen
uptake fluxes leading to a complete oxidation of the substrate, and thus supporting
the maximal biomass yield. Finally, increasing the oxygen consumption beyond the
optimally line, at a constant glucose uptake, leads to an infeasible problem since there
is no further glucose to be oxidized.

5.5.2 Non-uniqueness of optimal metabolic states: possible reasons

Although the optimization of some objective function strongly reduces the number
of solutions, it is still possible that many different metabolic states satisfy the con-
straints and reach the same maximal value for the objective. In that case, we are
again undecided on which of the solutions gives the most useful information about



the biological problem. This non-uniqueness of the optimum can be explained in
terms of the elementary flux modes. In the second panel of Figure 5.2 we saw that
the optimal solution was located on the vertex that was as far as possible in the op-
timization direction. One can imagine, however, that the flux cone can be located in
the space such that there are two vertices that both reach out equally far into that di-
rection. In that case, the two corresponding elementary flux modes perform equally
well, and consequently, all convex combinations of these elementary flux modes also
reach the same objective value. In metabolic modeling we often work in a high-
dimensional space with constraints that concern only few of those dimensions (for
example a bound only on a nutrient uptake rate). In such cases it is very likely that
many elementary flux modes perform equally well, so that there is a whole subspace
of equivalent solutions.

5.5.3 Flux Variability Analysis

The equality and inequality constraints of the FBA problem form a polytope where
the problem is feasible, a cone if the problem is written in canonical form. The opti-
mal solutions of the LP problem can lay on a vertex of the polytope, and be unique, or
be non-unique solutions if the objective function hyperplane is parallel to a facet of
the constraint polytope at the solution. This means that one or several variables can
change their values without affecting the value of the objective function. These vari-
ables can be identified using flux variability analysis (FVA), where each flux of the reac-
tions in the metabolic network (the set of s reactions with ~ elements and r metabo-
lites) maximized and minimized, one at a time, while fixing the value of the objective
function to a fraction of the optimal value obtained in the original FBA problem.

max v;(OF minv;), such that:
ZN,L-J-U]- =0, Viel,

- b (5.18)
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Hence, 2n optimization problems need to be solved if there are v unconstrained fluxes.
The results of the FVA analysis should be carefully interpreted. Since the maximum
and minimum fluxes are calculated one at a time, and although changes in this flux
might not affect the objective function, this typically requires changes in the remain-
ing fluxes. Therefore, the polytope that describes all alternate optimal solutions is not
captured by FVA. Instead, FVA inscribes this polytope in the smallest possible “box”



A Philosophical remark 5.B Qualities of a model

When have we made a good model? Is the quality of a model determined by
whether it fits all experimental observations? What is the ideal size of a model?
Is the purpose of a model that it predicts, or rather that it provides insight into the
biological processes?

The answers to these questions are as common as it is unsatisfying: ‘it depends’.
Sometimes a model can be very useful if it just predicts, and does not explain, as
witnessed by the undebatable success that machine learning models have across
the sciences. However, only true understanding of the studied process can lead to
hypotheses and predictions on phenomena that are far away from the currently
available data. The more a model is fitted to a specific dataset, the less we are able
to extrapolate it beyond this dataset.

These questions are very relevant in the context of metabolic modeling. Metabolic
models have many unknown parameters, stemming from our ignorance of the
biological process: What is the true objective? What constraints are relevant for
determining metabolism? It is a deceptive trap to view the success of the model in
reproducing the observed data as a validation that the right parameters, objective
and constraints were chosen. A successful model only indicates that the modeled
mechanism can be similar to the true biological mechanism, but it does not show
it actually is. The problem is that, since we have many different parameters to
choose from, many different models can explain the same metabolic observations
[158].

An especially important question is whether metabolism is truly optimized for
some evolutionary function. It is now an attractive option to view the success of
optimization-based models as proof that the cells are indeed optimized, but this
would be wrong because we can also explain the data with models that do not re-
quire optimization. To really quantify whether metabolism is optimized we should
therefore devise quantitative tests that distinguish between randomly chosen and
optimized metabolic states. An interesting approach for describing the metabolic
outcome of cells, relying on statistical mechanics rather than on a selected objec-
tive function, has already been introduced [159].

[157]. Besides being useful for the identification of alternative solutions, FVA can be
utilized to identify blocked reactions under a given growth condition. These reactions
are characterized by minimum and maximum flux values (as calculated by FVA) equal
to zero and arise due to regulatory constraints imposed to the FBA or due to network
gaps, for example, metabolites lacking a consumption or production pathways for
whom a steady-state mass balance is impossible. Thus FVA, could help in the identi-
fication of dead-end metabolites, and in the long run, in model improvement.

5.6 Concluding remarks

In this and the previous chapter, we have introduced constraint-based analysis of
genome-scale metabolic models. We started by pointing out many of the simplifying
assumptions that are associated with the study of large metabolic reaction networks.
For example, we only considered systems in chemical steady state with their envi-



ronment, we ignored the effects of metabolite dilution, and we made semi-informed
choices for which intracellular molecules are contained in our model or summarized
in a biomass reaction. All these assumptions can be relaxed, at the cost of making
models more complex. Although it is tempting to think that the more complex a
model the more realistic it will be, there is not much use to adding additional com-
plexity if we don't have the data to support it. Constraint-based analysis therefore
provides one way to study metabolism at genome-scale when data are limited. In the
following chapters we will study the consequences of lifting one or more of these
simplifying assumptions.

In constraint-based analysis, one considers reaction rates (fluxes) as the variables
in the model, giving the illusion that these are directly set by the cell to regulate
its metabolic state. In reality, however, the reaction fluxes are the combined con-
sequences of enzyme expression, regulation and metabolite concentrations. If we
wish to model metabolism in more detail, we we should build models that incorpo-
rate gene expression and metabolite concentrations systematically. Some of the next
chapters attempt this, but we have described that FBA is useful when experimental
data are limited. Certain extensions of FBA discussed in later chapters also move
beyond the steady state assumption, allowing the environment to change with time.
One example is the method dynamic FBA, which will also be discussed in a later chap-
ter.

In this chapter we built upon the exploration of flux spaces derived from constraints
by imposing optimality criteria in terms of an objective function. The choice of the
objective function(s) and the constraints depend on the modeling purpose. We will
summarize some of the possible choices by listing three purposes that this type of
models can have.

First, constraint-based optimization can be used to collect, integrate and extrapolate
data on the metabolism of a specific organism. In this case, as much experimen-
tal information as possible can be used to refine the model. For example, measured
fluxes can be fixed with constraints, measured metabolite concentrations can be used
to determine the thermodynamically feasible direction of reactions, and transcrip-
tome information can be used to exclude some reactions because the corresponding
genes are not expressed. One of the applications is then that unknown variables can
be inferred such that they are in accordance with the metabolic network and all the
measured variables.

Second, hypotheses can be tested on why the studied organism attains its metabolic
state. By choosing an objective function we can propose what drives the metabolic
behavior and by choosing the constraints we propose what /imits the metabolic be-
havior. If the model is then in accordance with the experimental observations, we



know that at least the hypotheses were not proven wrong. On the other hand, we
must be careful not to conclude from this that the hypotheses must be right, as we
discussed in the box with philosophical remarks.

Third, we may use these models to search for a metabolic state that results in a certain
desired behavior, for example in the secretion of a product that is useful for industrial
or medicinal reasons. In this case, the objective function is picked such that exactly
the desired behavior is maximized, often while requiring that some biomass produc-
tion is still possible because the cells need to be able to grow before the harvesting
of the product can start.

Despite these useful purposes, we have also identified several limitations of the FBA-
type models that we described here, such as ignoring metabolite concentrations, en-
zyme kinetics, and the assumption of a stationary metabolic state. The reason that
these models are still very popular is their computational simplicity: as long as the
objective function and constraints are linear in the reaction rates, the optimal solu-
tion is relatively easy to find using linear programming. This makes it feasible to make
and run these models on genome-scale metabolic networks, which are networks that
comprise all the metabolic enzymes for which the genome encodes, and can include
thousands of reactions.

Understanding the solutions of such large models can also be very difficult due to
their dimensionality. This is made easier when one uses elementary flux modes: we
have seen that a solution is always a combination of a relatively small number of
EFMs. More precisely, the number of EFMs that are active in the optimal solution
cannot exceed the number of imposed constraints. This means that to understand
the solution, we only need to understand which EFMs are selected and why. As such,
we can interpret optimal solutions in terms of the EFMs, i.e. the minimal metabolic
strategies, that are used.

Recommended readings and tools

Escher FBA Escher FBA (sbrg.github.io/escher-fba/) is a nicely illustrative tool for FBA
on an E. coli core model. Bounds on all reactions can be changed and different ob-
jectives can be explored. The resulting flux distribution is shown graphically.

Problems

Computer exercises for this chapter can be found on the book website.

Problem 5.1 Flux distribution with constraint
Augment the metabolic network of Spirallus insilicus (Problem 4.1) by adding the
in-homogeneous constraint v,,, < 1ommolg~'v-' (Cell dry mass) and calculate the flux dis-
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Table 5.1: Stoichiometry of the metabolic network for problem 5.2. Adapted from
[160] after [156].

tribution if biomass is the objective function (maximize ;).

(a)
(b)
(©)

Using a spreadsheet and its associated linear programming optimizer.

Using an LP solver in Python such as 1inprog available in scipy.optimize.

s the flux distribution unique? Calculate the maximum and minimum values of
each flux (except for the uptake of substrate and biomass production) if »s should
be equal to its optimal value (»:) and if this constraint is relaxed to v; > 0.9 vz.

Problem 5.2 Choice between phenotypes
The metabolic network illustrated in Figure 5.1, adapted from [156], was designed to
include four phenotypes that can be reached depending on the ratios of the oxygen
and carbon source (A) uptake, defining zones of single nutrient and dual nutrient
limitation.

(a)

(b)

If the uptake of the carbon source 4 is bounded between o and 10 mmolg-n-t and
no restrictions on the oxygen uptake are imposed, prepare a plot showing the
biomass, ¢, p and & fluxes attained at different uptakes of 4.

Repeat the preceding analysis, but limit the maximum uptake rate of oxygen to
10 mmolg—'h~1,

If substrates uptakes are bounded between o and 10 mmolg-1 1! for 4 and o and 2o
mmolg~1h-! fOr oxygen, calculate the phenotype phase plane. In each region of the
phase plane (defined by a different slope), pick a combination of 4 and oxygen
uptakes and analyze the fluxes of ¢, p and k.






Chapter 6

The enzyme cost of metabolic
fluxes

Wolfram Liebermeister and Elad Noor

Chapter overview

o In this chapter we discuss why certain pathway designs have been selected by
evolution, by hypothesizing that some are more beneficial than others - based
on several possible criteria and optimization goals: minimizing the number of re-
actions, maximizing product yield, increasing reaction turnover rates, and avoid-
ing small thermodynamic driving forces.

o It turns out that all these criteria are related to a single objective: minimizing en-
zyme demand per product production rate or, equivalently, maximizing “enzyme
productivity”.

o We first focus on simple unbranched pathways with predefined flux distribu-
tions. We discuss several feasibility and optimality problems where metabolite
concentrations are independent variables and solve for the minimal enzyme de-
mand. In this setting, we see how enzyme productivity can be assessed or pre-
dicted and how it depends on different system parameters such as kinetics, ther-
modynamics, and concentrations of enzymes and metabolites.

o We discuss the difference between growth rate and yield. We then illustrate it
by comparing between pathway options for glycolysis.



6.1 What guides evolution to select one pathway over
another?

In the previous chapters, we asked what flux distributions are possible in a network,
and which are most profitable for a certain task. Now we shall ask, more specif-
ically, what led to the choice of existing pathways, or what makes a pathway variant
favorable over another one that exists, or may have existed, in evolution. Of course,
the same question plays also an important role in metabolic engineering, when new
pathways are added to an organism, typically with the goal of achieving a maximal
production, while imposing the smallest possible burden on the cell.

The chemical space is vast and many options exist for the same process, even if
we consider only reactions with known enzyme mechanisms and impose thermo-
dynamic constraints. Hence, while evolution had a choice between many pathway
variants, only a tiny fraction of these possible variants is actually realized in nature,
and a core part of central metabolism almost always follows the exact same design.
The few exceptions that exist actually prove the rule, such the two natural variants of
glycolysis discussed later in this chapter. How can we understand why a certain vari-
ant is used in a certain organism or situation? And why are many variants not used
at all? Moreover, some very successful pathways show features that might appear
strange at first glance [161]: in glycolysis, an initial investment of ATP is required, and
only later it is recovered in higher amounts leading to a net gain. Is this just an evolu-
tionary accident, i.e. a case where the pathway that evolved first is the one that stuck
around although it is not necessarily better than all the alternatives? Or, rather, evo-
lution did manage to find the optimal solution and therefore we should try to explain
what the advantages of these “engineered” features are?

In this chapter, we assume that it was a selection for functional features, not chance,
that determined these pathway “choices”, and ask: what guides evolution to select
one pathway over another? What are the criteria that make pathways “efficient” or
“profitable” for a cell or, alternatively, for a metabolic engineer? To compare path-
ways, we assume that each pathway comes with a predefined flux distribution, and
therefore a predefined product yield, and alternative pathways (yielding the same
product) are compared at equal product production rates.

When people talk about natural ecosystems, diversity is usually the first topic dis-
cussed. Indeed, evolution through natural selection is almost guaranteed to create
diversity where species evolve to occupy biological niches while exploring the vast
space of possible phenotypes. Similarly, the world of biochemistry is a vast space
of possible reactions. Metabolic enzymes participate in a network of pathways that



A Philosophical remark 6.A What do we mean by a “"pathway"?

The notion of “pathways” is common in cell biology to describe a set of reactions,
proteins, or processes that form a functional unit. However, there is no general
definition: in practice, a pathway is often just a subregion of interest within a larger
network. In metabolism, “pathways” often lead from some important substrate
to some important product, with a simple and predefined flux distribution that
consumes substrate(s), generates product(s), and may or may not make use of co-
factors. Considering fluxes in specific pathways (instead of flux distributions in the
entire network) is often a practical choice and, importantly, a choice that assumes
that we can model, understand, manipulate, or engineer such a pathway without
strongly affecting the rest of the cell. This has a number of benefits: (i) Instead of
studying a huge network, we can look at pathways separately; (i) there are reasons
to believe that the flux distributions in enzyme-efficient metabolic states must be
elementary flux modes (see Chapter 4). Since EFMs often entail discrete choices
between different pathways, it can make sense to study these pathways separately
(iii) once we understand the costs and benefits of single pathways (with a single,
scalable flux mode), we can apply the same thinking to analysing flux distribution
on the entire metabolic network. Thus, in the rest of this chapter, all results
about “pathways” will also hold generally for entire networks, as long as a (scalable)
flux mode is given. Instead of comparing alternative pathways, we can compare
alternative flux modes. In the following chapter, we use this for optimizing over
the set of all possible flux modes that a given network can support.

supply cells with energy, and building blocks for biomass. Scientists have been study-
ing these biochemical reactions for nearly 300 years [162] - so far tens of thousands
such reactions have been classified; certainly many more exist in nature. Here are
a few online databases where biochemical reaction data are collected or predicted:
MetaNetX, KEGG, MetaCyc, BiGG, ModelSEED, ATLAS of biochemistry.

To study the choice between pathways variants, we consider alternative pathways
leading from A to B (or having a certain net sum formula) and their respective advan-
tages and disadvantages. For simplicity, let us focus on biosynthesis pathways whose
main task is more or less clear: producing a precursor molecule. Thus, the theoretical
question would be: if a cell needs to make B from A, which pathway should it use?
More specifically, how should the metabolic reactions be chosen and in what order?
What should their kinetics and how should they be regulated?

If the pathway variant found in nature is due to selection for “good functioning”, then
what are the features that make existing pathway designs successful? In short, what
are criteria for “good” pathways? One possible criterion seems to be simplicity, that
is, choosing a short route from pathway substrate and pathway product.

In contrast to the huge diversity thatis allowed by the catalytic capabilities of enzymes,
a few metabolic pathways are extremely ubiquitous and exist virtually in every living
cell. For example, glycolysis is a general term for pathways that convert glucose to
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Figure 6.1: Two natural variants of the glycolysis pathway, named after their discov-
erers. Embden-Meyerhof-Parnas (EMP) and Entner-Doudoroff (ED) - The pathways
are part of the core metabolism shown in Figure 3.1.

pyruvate while producing ATP [161]. One variant of glycolysis, named after Gustav
Embden, Otto Fritz Meyerhof, and Karol Parnas (or the EMP pathway for short, see
Figure 6.1), was the first metabolic pathway to be discovered by scientists [162]. Of-
ten, the pyruvate is reduced to lactate or ethanol, which makes the pathway redox
balanced. Therefore, it one of the most common way for producing ATP anaerobi-
cally (i.e. without oxygen to serve as an electron acceptor). Another common variant
was discovered in 1952 by Nathan Entner and Michael Doudoroff [163] (ED for short).
For example, E. coli is capable of metabolizing glucose through both the EMP or the
ED variants, and often does so simultaneously [93].

More generally, the overall reaction describing glycolysis is:
Glucose + 2NAD(P)" + n ADP + n Phosphate — 2 Pyruvate + 2NAD(P)H + n ATP + n H,O (61 )

where the value of » for the EMP pathway is 2. Ng et al. [164] explored the space
of all possible glycolyses (with different values of »), by exhaustively enumerating all
glycolytic pathway variants. In order to generate the variants, they adapted a compu-
tational method first introduced by Bar-Even et al. [165] for finding alternative carbon
fixation cycles - metabolic cycles whose net reaction converts CO, into organic com-
pounds. You start by collecting a database of known biochemical reactions (e.g. from



a database such as KEGG [166]) and then use a linear-programming algorithm to iden-
tify the set of reactions with the minimal sum of fluxes that conform to the predefined
net reaction (e.g. 6.1). The objective is somewhat arbitrary, but since solving the LP
requires setting an objective, we chose the min-flux as a reasonable proxy for the sim-
plicity of the pathway. In any case, we will soon see how one can iterate through all
possible solutions. Ng et al. [164] used this algorithm with the stoichiometry from 6.1
to find all possible glycolysis pathways comprising known enzymatic reactions (see
Box 6.B).

The objective set by the linear problem (6.2) is minimizing the sum of fluxes, which
corresponds to pathways with fewer reactions and low fluxes in each one. As dis-
cussed in 5.2, this objective is only a crude proxy for the efficiency of a pathway, and
its only purpose is to get the pathway solutions in a relatively logical order. Although
we have discussed global enzyme constraints in previous chapters (such as molecular
crowding and proteome allocation), when comparing pathways we will focus only on
the efficiency of the pathway itself. This will allow us to compare pathways without
thinking about the rest of the cell or a specific metabolic context. But how can one
quantify the efficiency of a pathway? The next section will be dedicated to exactly this
guestion.

6.2 Pathway efficiency - some notions and thoughts

For glycolysis alone, Ng et al. [164] found 11,916 alternatives that produce at least
one mole of ATP per mole of glucose. These include, of course, the EMP pathway.
Although evolution can explore these options, natural selection typically converges
on one or a few efficient variants. This does not mean that every single pathway
observed in nature must be optimal, but we generally expect cells hosting highly in-
efficient pathways to eventually become extinct. lacometti et al. [168] tested this ex-
perimentally by knocking out the EMP pathway from E. coli and forcing the cells to
use the alternatives that naturally exist in this bacterium. In all cases, growth rates
were slower than in the wild-type.

Before we discuss other examples for metabolic pathways, we need to define what
we mean by “efficiency”. There are several criteria one should consider:

o Low consumption rate of the substrate

o High generation rate of the product

o High regeneration rate or low consumption rate of the co-factor
o Small number of steps [169]

o Higher thermodynamic forces [170, 171]

o High enzyme turnover numbers

o High enzyme saturation levels



Some of these criteria refer to the cost (or investment) of the pathway, while others
reflect the benefit (or profit) to the cell. By considering two common scenarios - single
nutrient limitation or exponential growth in rich media - we can focus on two simple
criteria which provide good measures of efficiency.

When the availability of a single nutrient is limiting growth, maximizing the molar
yield (i.e. the number of moles of product generated for each mole of the nutrient)
becomes the important feature. Yield is rather straightforward to calculate, as it
is a direct outcome of the stoichiometry of the pathway. For example, anaerobic
fermentation is often compared to respiration and deemed inefficient since it yields
two moles of ATP per glucose, instead of 30 [172].

On the other hand, when conditions are good, such as during exponential growth in
rich media, minimizing the total number of proteins required is often the objective
which determines growth rate. . Here, we will be using the enzyme demand (e.g. in
grams of protein) per unit of flux (typically, in mmol per hour per gram of cell dry
weight). In fact, the enzyme demand per flux, as an objective, takes into consider-
ation both the cost (protein) and the benefit (flux). Importantly, these two criteria
scale linearly with respect to each other: doubling the amount of all enzymes without
changing any of the metabolite concentrations would directly double the flux in the
pathway. Therefore, this measure of efficiency is independent of the magnitude of
the flux in the pathway. But, as we will see shortly, enzyme demand is a non-linear
function, making it trickier to compute compared to other constraint-based problems
such as ones we've seen in previous chapters.

Notably, these two measures of efficiency are not only useful for evolutionary pro-
cesses, but for bioengineering as well. Obviously, the molar yield has economical
implications when, for example, producing ethanol from sugar. However, the rate
of a bioprocess is important as well due to the costs involved, e.g. for maintaining
an operational bioreactor. One can imagine a computational model that accurately
predicts the enzyme demand per flux of a pathway. Choosing the pathways with the
lowest demand would be a good strategy for increasing the overall rate of bioproduc-
tion [173].

We define the enzyme demand per unit flux as the total amount of enzyme (in grams
of protein) that is required to catalyze all of the pathway reactions at their required
rates. We start by deriving a formula for the demand of a single enzymatic reaction.
Consider an enzyme-catalyzed reaction:

S—P (6.4)

where s and » will be the concentrations of the substrate (S) and product (P) respec-



tively, and £ the concentration of the enzyme which catalyzes this reaction (for sim-
plicity, we drop the tot subscript from g,;). Here, we will be using the factorized rate
law (Eq. 3.10), but other kinetic rate laws would produce similar results. The rate of a
reaction is given by:

R s/Ks (1 _ .A.G'/RT
v=-e-kiy 15 p/Kp + /K3 (1 e ) (65)

where iz, is the forward turnover rate, x, and x, are the Michaelis-Menten constants
for the S and product P, and a,¢' is the Gibbs free energy. So, the minimal amount of

enzyme that is required for reaching a given rate v is:

' ki . 1+p/5§<—£ s/Ks (1 _eArc//RT)“’ (6.6)

cat

qg=v-h

where » is a number converting enzyme concentration . into enzyme amount 4 (for
example, the enzyme molecular mass). For an illustration, see Figure 6.2 . Summing
up the demand across all the reactions in the pathway (each with its own rate, kinetic
parameters, and substrate/product concentrations) will produce the total enzyme de-
mand. Looking at this function, we can already make some interesting observations.
First, the kinetic parameters (x,, x,, and k.) can be treated as constants since they
change only in evolutionary timescales, and we often assume that existing enzymes
already have near-optimal kinetics (although that's not always the case). Since we
care about the demand per pathway flux one can, without loss of generality, set » to
1. However, if the pathway requires a non-trivial ratio between some reactions, the
value of » can be different based on the stoichiometry. Finally, the thermodynamic
term, i.e. 1-.2¢/ar (which we will discuss in more detail in the following section, 6.3), is
a function of the metabolite concentrations and the k.., which is another constant. So,
generally speaking, enzyme demand is defined by a set of constants that are unique
to each pathway, and variables that represent the metabolite concentrations. Since
these concentrations are subject to change depending on the growth conditions, we
often treat them as optimization variables and try to find the minimal demand possi-
ble within certain constraints. In Section 6.4, we will see a general method for finding
the minimal value using convex optimization.

Most of the proposed criteria for good pathways have either to do with material in-
vestments (such as substrate, cofactor, or energy demand) or with “machine invest-
ments”, that is, enzyme demands. Enzyme demands, in turn, depend on pathway
length, enzyme masses, and enzyme efficiency, and therefore on rate laws (where
k.. Values, thermodynamic forces, and metabolite concentrations come into play). In
fact, many criteria which we discussed earlier as indicators of efficiency are actually
an approximation of the enzyme demand under certain assumptions. For example,
the number of steps is proportional to the total demand if all enzymes have exactly
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Figure 6.2: Enzyme cost in metabolism - (A) Enzyme-specific flux depends on a num-
ber of physical factors. Under ideal conditions, an enzyme molecule catalyses its re-
action at a maximal rate given by the enzyme’s forward catalytic constant (blue). The
rate is reduced by microscopic reverse fluxes (magenta) and by incomplete saturation
with substrate, causing waiting times between reaction events, or by enzyme inhibi-
tion or incomplete activation (red). (B-C) On a logarithmic scale, catalytic rates and
enzyme demand can be split into sums of efficiency terms. With lower catalytic rates,
larger amounts of enzyme are required for realizing the same metabolic flux.
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the same &7, saturation, and thermodynamics. Therefore, it is quite a useful rule-
of-thumb in case not much else is known about the enzymes themselves. A better
approximation, denoted Pathway Specific Activity, was used by [165] to compare CO,
fixation cycles. If we assume that all enzymes are fully saturated and irreversible, the
demand would be a direct function of the individual enzyme specific activities (specif-
ically, proportional to the sum of all their reciprocal values). But even if we know
nothing about the enzyme kinetic parameters, thermodynamics alone can provide
us with useful information with which to grade pathways. Specifically, the x., of a re-
action is a universal constant that is not affected by enzymes, but rather determined

solely by the chemical structures of the substrates and products.

In the following sections, we will focus on enzyme use efficiency as a main objective
and consider a thermodynamic approximation, relating enzyme demands to ther-
modynamic forces. For linear metabolic pathways, optimal enzyme profiles (and the
associated metabolite profiles and enzyme costs) can be computed with closed for-
mulae. We will also discuss a way to compute optimal enzyme profiles numerically,
for networks of any shape and size, as long as the flux mode is known.



6.3 The role of thermodynamics

In general, when considering larger metabolic networks, thermodynamic feasibility
can play an important or even crucial role in determining which pathways are used.
In this section we will discuss this role more explicitly and see how thermodynamics
can still give us useful insights about pathway efficiency even when no other kinetic
data is available.

Why are thermodynamic driving forces a meaningful criterion for good pathways? In
brief, the driving forces, defined as o = -a,¢’/rr, play a double role: first, they determine
whether or not a pathway flux is feasible at all, given the metabolite concentrations
at the pathway boundary (i.e. the metabolites that form connections to the broader
metabolic network); and second, in case the pathway is feasible, driving forces can
affect enzyme efficiency and, consequently, the enzyme demand for a given desired
pathway flux. In Chapter 3, we learned that a,¢’, and hence the driving force ¢, de-
pends on the equilibrium constant «., of the reaction and on the substrate and prod-
uct concentrations. We also learned that for a flux in forward direction, the driving
force must be positive. Beyond that, the efficiency of an enzyme is proportional to
ner9) = 1-e-%, a function that ranges between 0 (for ¢ = o, reactions in thermodynamic
equilibrium) and 1 (¢ > 1, reactions far from equilibrium). Let us now see how this
non-equilibrium relation affects pathway efficiency.

6.3.1 Enzyme kinetics and driving forces

We should remind ourselves some of the lessons learned in Chapter 3. Specifically,
recall the factorized rate law [82] with a reversibility term that is an explicit function
of the Gibbs energy (Eq. 3.10):

v=e-kl, - 71;[’87/1(5 — (1 — eAG/RTY, (67)
1+ijj JKp + 11, 87/ Ks

The enzyme mechanism behind this formula assumes fast binding and unbinding of
substrate and product, and a slow reversible conversion step (of bound substrate into
bound product). Note that here we generalize the rate law for cases with more than
one substrate and one product, where », and »; are the stoichiometric coefficients of
substrates and products, respectively'. This generalization is one out of many, and
corresponds to the assumption that all reactants bind independently to the enzyme
(and at random order). We focus on this rate law because it is one of the simplest,

TIn general, reaction stoichiometries can be arbitrarily scaled. For example, instead of a reaction 2 A - B,
we may write A - 1 B for convenience, which will only lead to a scaling factor in the reaction rate. However,
this holds only if reaction stoichiometries are used to describe mass-balance. In cases like Eq. (6.7), where
stoichiometries appear in kinetic rate laws or in thermodynamic balances, we do not have this choice.
In these cases, the stoichiometries must reflect the molecularities, that is, the actual number of reactant
molecules involved in the enzymatic reaction.



but the theoretical results in this chapter apply to most other generalizations as well
(e.g. convenience kinetics [174]).

According to the definition of 7, and also by noticing that the middle and rightmost
termsin Eq. (6.7) are each smaller than 1, the rate of an enzymatic reaction is bounded
by v < -7, (See Mathematical Details Box 6.C for a detailed explanation). However,
the additional terms are often much lower than 1, which means that the rate does
not reach its maximum. If we try to measure the apparent catalytic rate by dividing
the rate by the enzyme abundance (.., = v/¢) we would typically get a value that is
lower than &, while only in rare “ideal” cases, &.,, would approach the «,. In fact, this
reasoning was used by Davidi et al. [24] to estimate the i, values of more than 100 en-
zymes in E. coli, where they sampled many growth conditions and took the maximum
k.pp @S the estimate.

As discussed in Section 3.2.3, the factorized rate law has a thermodynamic perspec-
tive based on the flux-force relationship, where we view the reversibility term as a
“penalty” for the fact that by lowering the energy barrier, enzymes must catalyze re-
actions in both directions. When the driving force (v) is low, the reverse reaction flux
can become significant and lower the net flux. On the other hand, if the driving force
is large enough, this term can be ignored and the rate law resembles irreversible ki-
netics .

So far we've seen that increasing the driving force of a single reaction translates to
a better enzyme efficiency and lower demand. If we consider whole pathways, ones
whose overall driving force is larger have more of it to distribute among the reac-
tions and therefore should also have higher efficiencies overall. However, using “too
much” driving force can also have downsides. Using a larger amount of the Gibbs
energy to drive the pathway reactions means that less of that energy would go for
building biomass or currency metabolites such as ATP. An example for this trade-off
between the efficiency of single enzymes (in terms of backward rates) and the overall
pathway efficiency (in terms of ATP yield) was demonstrated by Flamholz et al. [175]
who analyzed two versions of the famous glycolytic pathway (see Figure 6.1 below).

6.3.2 Driving forces should not be too small

With the factorized rate law 6.7, we can approximate the reaction rates by v < e ke (1—¢~?)
(where we assume positive fluxes by convention). The thermodynamic efficiency ye =
1-e-¢ plays a prominent role. As shown in Figure 6.3, this formula yields two important
approximations: for small forces s, that is, close to equilibrium, we obtain ;% ~ ¢, while
for large forces, that s, for strongly forward-driving reactions, we obtain e ~ 1. In fact,
both approximations also serve as upper bounds across all ¢ values. What does this
mean? Far from equilibrium, the thermodynamic term does not play a role and can
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Figure 6.3: The thermodynamic efficiency term o and some approximations - (A) In
a given reaction, the thermodynamic efficiency term y = 1-.-¢ (solid line) can vary be-
tween 0 and 1 depending on the driving force 9. Small driving forces make the enzyme
inefficient, since = - o, while for large forces, thermodynamics does not play a role as
»r — 1. The dashed lines show two linear approximation that hold always as bounds,
but can also be used as good approximations for small or large ¢ values, respectively:
(1-e? <oand a-e* <1. (B) The reciprocal value 1/ is one of the factors determining
enzyme demand. The solid line shows the thermodynamic demand factor 1y, while
the dashed lines show the resulting approximations 1/y% > 1/ and 1/5* > 1, cOrrespond-
ing respectively to the enzyme demand approximations ¢ > >, and ¢ > ;~.

be ignored. Close to equilibrium, in contrast we obtain a simple approximation for
fluxes

v<e- kb, (1—e % <e -k, -0 (68)

and hence for the enzyme demand

” > . (6.9)

> > .
TR (- kK -0

cat cat ’

As ¢ goes to zero, the enzyme demand (for a given desired flux) goes to infinity. We
already know the reason from Chapter 3: the driving force determines the ratio of
forward and reverse one-way fluxes, == = . If ¢ comes close to zero, their relative
difference becomes very small, and in order to obtain a given net flux » =+ - -, both
»+ and »— must grow enormously, which would require an a large amount of enzyme.
This effect concerns only very small ¢ values - for ¥ much larger than 1 (or a.c- much
smaller than -RT), it can be neglected. Therefore, redistributing driving forces be-
tween reactions, to avoid very small forces, can save enzyme costs. The relation
between driving forces, enzyme efficiency enzyme demand is shown in more detail
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Figure 6.4: Thermodynamic forces, enzyme efficiency, and enzyme demand in a lin-
ear chain of reactions - The plot in the center represent two possible profiles of the
thermodynamic driving forces (blue and red). The curves describe the cumulative a.¢’
values: while the total a,¢ is fixed (and determined by external metabolite concentra-
tions), the shape of the profile can vary. In the optimal profile (in red), small driving
forces are avoided. The driving forces determine the ratios of forward and backward
one-way fluxes (red arrows), and at a given net flux (black arrows) the enzyme de-
mands. In the suboptimal blue curve, in contrast, the last three reactions show lower
forces, and therefore relatively high reverse fluxes (blue arrows); to obtain the same
net flux, forward and backward fluxes have to be strongly increased, which increases
the enzyme demand.

in Figure 6.4.

If small driving forces should be avoided to prevent enzyme costs from going infinity,
how can this happen in practice? The driving forces themselves depend on metabolite
levels, which can vary over several orders of magnitude. While the true metabolite
concentrations are usually unknown, we hypothesize that selection favors concen-
tration profiles that prohibit very small driving forces, in order to escape the ensuing
large enzyme demands. Of course, completely avoiding small driving forces may be
impossible, as there is always a trade-off: if a metabolite concentration decreases,
the driving forces of all reactions producing it will increase, but the driving forces of
all reactions consuming it will decrease simultaneously. So, all else being equal, the
optimal metabolite profile is one that distributes its driving forces as evenly as possi-
ble.



6.3.3 Max-Min driving force method

Previously in Chapter 4.4.3, we discussed adding thermodynamic constraints to constr:
based models in order to comply with the second law of thermodynamics. We can
extend that approach in order to implement the idea of avoiding small driving forces.
When we talk about the thermodynamic profile of a metabolic pathway, we usually
try to visualize it by the cumulative Gibbs energy of reaction: we start at 0 and at each
step add the a,e of the next reaction, which, assuming the pathway is feasible, is a
negative number. The profile therefore has a shape of a downhill slope. The end
point represents the total Gibbs energy and depends only on the concentrations of
the metabolites that are part of the net reaction. Intermediate metabolites do not
affect it, but they do determine the shape of the profile itself (see Figure 6.4). Specifi-
cally, each intermediate metabolite typically affects the driving force of two reactions
- the one producing it and the one consuming it - with opposite signs. Therefore,
changing the concentration of an intermediate can help increase the driving force of
one reaction, but always at the expense of another reaction. This strong coupling
between a,¢ is why it is not trivial to find the optimal thermodynamic profile of a
pathway.

The Max-Min driving force method (MDF) [176] is a method for predicting metabolite
concentrations, based on the principle of evenly distributed driving forces. All fluxes
are fixed and given, and assumed to be positive. It assumes that each metabolite
concentration must remain in a predefined range, converts each choice of metabolite
concentrations into the corresponding pattern of driving forces, and determines the
smallest resulting driving force in the network. If this smallest driving force is negative,
the flux distribution cannot be realized thermodynamically. Otherwise, the larger
this smallest driving force, the better the overall metabolite profile. Hence, among
all possible metabolite profiles, MDF predicts the one that maximizes the value of
the minimal driving force across the network. Mathematically, this leads to a linear
optimization problem: in the space of logarithmic metabolite concentrations, a lower
bound on all driving forces (denoted 5) is maximized (Eq. 6.10). Anillustrative example
is shown in Figure 6.5.

Maximize,, B
Subjectto —(A.G°+RT-N"x)> B (6.10)
ln<C

min) < x < In(Cmax)

MDEF is easy to apply: it is based on a simple Linear Programming problem and re-
quires only the following input data: (i) the stoichiometric network; (ii) the flux direc-
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Figure 6.5: Max-Min Driving force method (MDF): an optimality problem in metabolite
space - (A) Example pathway with given equilibrium constants and fixed concentra-

tions of the external metabolites x and y. What are the most favorable concentra-
tions of the internal metabolites 4 and B? Assuming that small driving forces should

be avoided in all reactions, MDF determines the metabolite profile that optimizes a
worst case: it maximizes the worst (that is, smallest) driving force among all three re-
actions. (B) Driving force in reaction 1, as a function of the logarithmic concentrations
of 4 and s, called ma and ms. Higher concentrations of 4 (the reaction product) lead to
smaller driving forces. Above a critical value (where x and 4 are in equilibrium), the
driving force becomes negative, and a forward flux is impossible (gray region). The
concentration of B, which does not participate in the reaction, does not play a role.
(C) Driving force for reaction 2. Here, it is the ratio s/« that counts. The lower the ratio
(lower right), the higher the driving force. If the ratio is higher than the equilibrium
constant, the driving force becomes negative (grey region). (C) Driving force for re-
action 3. (E) By overlaying the contours in (B), (C), and (D) and taking the minimum
value, we obtain the minimal driving force ¢=» among all three reactions. ¢ is a piece-
wise linear function of m« and m» within the feasible range, yielding positive forces in
all three reactions. The maximum point of this function is the optimum metabolite
profile predicted by MDF. In the example shown, the feasible concentration space is
entirely defined by the driving forces themselves, given the external concentrations.
In general, physiological concentration ranges for all metabolites could further de-
crease the solution space and shift the optimum point (not shown).

tions; (iii)) the known equilibrium constants (or equivalently, the standard reaction
Gibbs free energies); (iv) physiological ranges for metabolite concentrations. Based
on these data alone, metabolite concentrations and driving forces (or a.c’ values) are
predicted. An example application can be found in Hadicke et al. [177], where the
potential of CO, fixation in E. coli via endogenous pathways was analyzed using MDF.

A theoretical insight from MDF is the notion of distributed bottlenecks. A simple bot-
tleneck would consist of a single reaction whose driving force cannot be increased
because the substrates are at their upper concentration bounds and the products



are at their lower concentration bounds. Given the fixed equilibrium constant, noth-
ing can be done to increase the driving force in this reaction. A distributed bottleneck
is more complicated: it consists of a series of reactions that all share the same low
driving force, which, because of all the concentration constraints in the system, can-
not be further increased (e.g. as in Figure 6.4). Even though each single reaction looks
“harmless” because its own driving force could still be increased, this increase would
happen at the expense of other driving forces.

6.3.4 The role of thermodynamics for metabolic states

In summary, thermodynamics provides important clues both about the feasibility of
pathways fluxes and about their enzyme demand. To use this knowledge, fluxes need
to be considered together with metabolite concentrations (to obtain the possible driv-
ing forces), but no detailed knowledge of enzyme kinetics is required. Thermodynam-
ics alone yields an upper bound on fluxes (and hence, a lower bound on enzyme de-
mands) that holds for any kinetic rate laws. The only required data (except for the
metabolic network itself) are equilibrium constants (or equivalently, standard Gibbs
free energies of reactions a,¢~), which can be obtained from the eQuilibrator tool
(equilibrator.weizmann.ac.il) [178, 68, 69] as well as physiological bounds on metabo-
lite concentrations. Given this information, and given a feasible choice of metabolite
concentrations, we can compute the driving forces of all reactions, and from the fac-
torized rate law (and assuming positive fluxes by convention) we can then approxi-
mate the reaction rates by v < ek (1 —c).

We also recall from Chapter 3 that driving forces are not independent between re-
actions, but depend on the metabolite concentrations, which creates trade-offs: in a
chain A & B % C, a lower concentration of B will increase the driving force in r,, but
decrease the driving force in r,. For high enzyme efficiency (low enzyme demand), all
driving forces should in principle be high, but this is most important for low ¢ values
(while for s> 1 it does not even matter). Therefore we may conclude that, to save en-
zyme, a cell should rearrange its metabolite levels within physiological bounds such
that small ¢ are avoided. Implementing this as an optimality problem, we obtain MDF.

In conclusion, we described (i) a general rule of thumb that poor thermodynamics
makes reactions costly; (ii) simple approximations of enzyme cost; and (iii) practical
methods (MDF) to obtain metabolite profiles with favorable thermodynamic proper-
ties.


https://equilibrator.weizmann.ac.il

6.4 Enzyme cost minimization

6.4.1 Enzyme cost minimization

The problem of minimizing the total enzyme demand (or cost) for a given pathway can
be solved numerically, thanks to the fact that they are always convex [179]. Finding
the minimum of the convex objective (the total enzyme cost) in a convex set (the set
of admissible metabolite profiles, a convex polytope in log-metabolite space) can be
done efficiently. In contrast to general optimality problems, such problems have a
unique local optimum, which can be found by simple numerical methods. In this
section, we demonstrate it with a simple example, the same three-reaction pathway
that you already saw in Section 6.3 above.

6.4.2 Enzyme cost landscape of a metabolic pathway

Given the fluxes, kinetics, and concentration bounds in a metabolic pathway model|,
one can predict the enzyme demand by assuming that cells minimize the enzyme cost
in that pathway. In the Enzyme Cost Minimization method A reaction rate v = ¢ (s
depends on enzyme level . and metabolite concentrations s, through the enzymatic
rate law, «(s). If the metabolite concentrations were known, we could directly compute
enzyme demands ¢ = v/x(s) from fluxes, and similarly calculate the flux-specific enzyme
demand ¢/» = 1/x(s). However, metabolite concentrations are usually unknown and
vary between experimental conditions. Therefore, there can be many solutions for ¢
and s realizing one flux distribution. To select one of them, we employ an optimality
principle: we define an enzyme cost function (for instance, total enzyme mass) and
choose the enzyme profile with the lowest cost while restricting the metabolite levels
to physiological ranges and imposing some thermodynamic constraints. As we shall
see below, the solution is in many cases unique.

Let us demonstrate this procedure with a simple example (Figure 6.6 (a)). In the path-
way x = 4 = B =v, the external metabolite levels [X] and [Y] are fixed and given, while
the intermediate levels [A] and [B] need to be found. As rate laws for each of the
three reactions, we use reversible Michaelis-Menten (MM) kinetics

_ kb s/Ks — ke p/K
—e 1+S/Ks—|—p/KPP (6.11)

with enzyme level ¢, substrate and product levels s and ,, turnover rates &, and «_,,
and Michaelis constants s and k,. In kinetic modeling, steady-state concentrations
would usually be obtained from given enzyme levels and initial conditions through

numerical integration. Here, instead, we fix a desired pathway flux » and compute



the enzyme demand as a function of metabolite concentrations:

1+5/KS +p/Kp
cut ’S/KS Catp/Kp. (6-1 2)

e(s,p,v) =

Figure 6.6 shows how the enzyme demand in each reaction depends on the logarith-
mic reactant concentrations. To obtain a positive flux, substrate levels s and product
levels » must be restricted: for instance, to allow for a positive flux in reaction 2, the
rate law numerator &, [4)/Ks - ko, [B)/K» MUst be positive. This implies that [B)/[4] < k.,
where the reaction’s equilibrium constant «., is determined by the Haldane relatlon—
ship, k., = (k5 /ko.) - (Kp/Ks). With all model parameters set to 1, we obtain the con-
straint (B)/[4] < 1, i.€. m[B] - m[4] < 0, puUtting a straight boundary on the feasible region
(Figure 6.6 (c)). Close to chemical equilibrium (54 ~ x.,), the enzyme demand ¢, ap-
proaches infinity. Beyond that ratio (54 > x.,) N0 positive flux can be achieved (grey
region). Such a threshold exists for each reaction (see Figure 6.6 (b)-(d)). The remain-
ing feasible metabolite profiles form a triangle in log-concentration space, which we
call metabolite polytope » (Figure 6.6 (e)), and Eq. (6.12) yields the total enzyme de-
Mand e, = e; + > + ¢35, @S @ function on the metabolite polytope. The demand increases
steeply towards the edges and becomes minimal in the center. The minimum point
marks the optimal metabolite profile, and via Eq. (6.12) we obtain the resulting opti-
mal enzyme profile.

The metabolite polytope and the large enzyme demand at its boundaries follow di-
rectly from thermodynamics. To see this, we consider the unitless thermodynamic
driving force o = -a.c’/r7 [81] derived from the reaction Gibbs free energy a,e. The ther-
modynamic force can be written as o = ;5 i.€. the driving force is positive whenever
8)/14] is smaller than k., and it vanishes if 5)/[4) = k... How is this force related to en-
zyme cost? A reaction’s net flux is given by the difference v = ++ — v~ of forward and
backward fluxes, and the ratio ++/»- depends on the driving force as v+~ = <. Thus,
only a fraction v+ =1 -« of the forward flux acts as a net flux, while the remaining
forward flux is partially canceled by the backward flux. Close to chemical equilib-
rium, where the mass-action ratio (s)/4) approaches the equilibrium constant ., the
driving force goes to zero, the reactlons backward flux increases, and the flux per
enzyme level drops. This is what happens at the triangle edges in Figure 6.6: a reac-
tion approaches chemical equilibrium, the driving force » goes to zero, and large en-
zyme amounts are needed for compensation. Exactly on the edge, the driving force
vanishes and no enzyme level, no matter how large, can support a positive flux. The
quantitative cost depends on model parameters: for example, by lowering a ... value,
the increase in enzyme cost at the boundary becomes steeper and the optimum point
is shifted away from the boundary (see Figure 6.6 (f)).
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Figure 6.6: Enzyme demand in a metabolic pathway - (A) Pathway with reversible
Michaelis-Menten kinetics (equilibrium constants, catalytic constants, and x, values
are set to values of 1, (4] and (B denote the variable concentrations of intermediates
4 and B in mM). The external metabollte concentrations [x] and v] are fixed. Plots
(B)-(D) show the enzyme demand of reactions 1, 2, and 3 at given flux v=1according
to Eq. (6.12). Grey regions represent infeasible metabolite profiles. At the edges of
the feasible region (where 4 and B are close to chemical equilibrium), the thermody-
namic driving force goes to zero. Since small forces must be compensated by high
enzyme levels, edges of the feasible region are always dark blue. For example, in re-
action 1 (panel (B)), enzyme demand increases with the level of 4 (x-axis) and goes to
infinity as the mass-action ratio [4)/(x] approaches the equilibrium constant (where the
driving force vanishes). (E) Total enzyme demand, obtained by summing all enzyme
levels. The metabolite polytope - the intersection of feasible regions for all reactions
- is a triangle, and enzyme demand is a cup-shaped function on this triangle. The
minimum point defines the optimal metabolite concentrations and optimal enzyme
levels. (F) As the ... value of the first reaction is lowered by a factor of 5, states close
to the triangle edge of reaction 1 become more expensive and the optimum point is
shifted away from the edge. (G) The same model with a physiological upper bound on
the concentration (4. The bound defines a new triangle edge. Since this edge is not
caused by thermodynamlcs it can contain an optimum point, in which driving forces
are far from zero and enzyme costs are kept low. Please note the resemblance to the
MDF problem for the same pathway, shown in Figure 6.5.

6.4.3 Enzyme cost as a function of metabolite concentrations

The prediction of optimal metabolite and enzyme levels can be extended to models
with general rate laws and complex network structures. In general, enzyme demand
depends not only on driving forces and .., values, but also on the kinetic rate law,
which includes «, values and small-molecule regulation. We can conveniently model
or approximate these factors by using factorized rate laws. Let us write this rate laws
here again in a general form to see the different factors at play. As we learned in



Section 6.2, the rate of a reaction depends on enzyme level ¢, forward catalytic con-
stant 7, (i.e. the maximal possible forward rate per unit of enzyme, in s-), driving
force (i.e. the ratio of forward and backward fluxes), and on kinetic effects such as
substrate saturation or small-molecule regulation. If all active fluxes are positive, re-
versible rate laws like the Michaelis-Menten kinetics in Eq. (6.11) can be factorized as
[82]:

v=-e-kL, -nr. gt gree, (61 3)

Negative fluxes, which would complicate our formulae, can be avoided by orienting
the reactions in the direction of fluxes.

Enzyme demand can be quantified as a concentration (e.g. enzyme molecules per vol-
ume) or mass concentration (where enzyme molecules are weighted by their molec-
ular weights). If rate laws, fluxes, and metabolite concentrations are known, the en-
zyme demand of a single reaction : follows from Eq. (6.13) as

s = o k*l ' n§°f<19<s>> ' nz“‘i(S) | n?e;s)' (6.14)
To determine the enzyme demand of an entire pathway, we sum over all reactions:
e =3, ¢. Based on its enzyme demands ¢, we can associate each metabolic flux with
an enzyme cost ¢ =3, 1., ¢, describing the effort of maintaining the enzymes. The bur-
dens &, of different enzymes represent, e.g. differences in molecular mass, post-
translational modifications, enzyme maintenance, overhead costs for ribosomes, as
well as effects of misfolding and non-specific catalysis. The enzyme burdens &, can
be chosen heuristically, for instance, depending on enzyme sizes, amino acid compo-
sition, and lifetimes. Setting »., =m, (protein mass in grams per mole), ; will be in gram
protein per gram cell dry weight. Considering the specific amino acid composition
of enzymes, we can also assign specific costs to the different amino acids. Alterna-
tively, an empirical cost per protein amount can be established by the level of growth
impairment that an artificial induction of protein would cause [40, 180]. Thus, each
reaction flux +, is associated with an enzyme cost ¢, which can be written as a function
a(u,s) = he e(s,v) Of flux and metabolite concentrations. From now on, we refer to log-
scale metabolite concentrations s, = ms, to obtain simple optimality problems below.
From the factorized rate law Eq. (6.14), we obtain the enzyme cost function

006 = 2 bl ) = ) hes v ) ) ) (6.15)
for a given pathway flux v. If the fluxes are fixed and given, our enzyme cost becomes,
at least formally, a function of the metabolite levels. The cost function is defined on
the metabolite polytope », a convex polytope in log-concentration space containing



the feasible metabolite profiles. Like the triangle in Figure 6.6, the polytope is defined
by physiological and thermodynamic constraints.

Beyond minimizing the total enzyme cost, one can also use Enzyme Cost Minimization
to analyze the individual enzyme demands. When the metabolite levels are known,
the demand can be directly calculated and each efficiency factor (») in Eq. (6.15). By
omitting some factors or replacing them by constant numbers o < 4 <1, simplified
enzyme cost functions with fewer parameters can be obtained. For example, jer =1
would imply an infinite driving force ¢ — ~ and a vanishing backward flux, »= =1 implies
full substrate saturation, and »< = 1 implies full enzyme activation and no enzyme
inhibition (or no small-molecule regulation at all). In these limiting cases, enzyme
activity will not be reduced, and enzyme demand will be given by the capacity-based
estimate /7, a lower estimate of the actual demand. Instead of omitting an efficiency
factor, it can also be set to a constant value between 0 and 1. Such simplifications and
the resulting enzyme cost functions with fewer parameters can be practical if kinetic
constants are unknown.

6.4.4 General lessons from Enzyme Cost Minimization

Enzyme cost minimization not only provides numerical solutions, but also some gen-
eral insights.

1. Convexity Enzyme Cost Minimization shows again the importance of the metabo-
lite polytope. The usage of logarithmic metabolite concentrations not only leads
to a good search space for feasible metabolite profiles (as in MDF), but also fa-
cilitates optimization because enzyme cost is a convex function of the metabolite
log-concentrations [181]. Convexity makes this optimization tractable and scalable
- unlike a direct optimization in enzyme space. Convexity holds for a wide range of
rate laws and for extended versions of the problem, e.g. including bounds on the
sum of (non-logarithmic) metabolite concentrations or bounds on weighted sums
of enzyme fractions.

2. Factorized rate laws disentangle individual enzyme cost effects To see how metab
states are shaped by different physical factors, we considered factorized rate laws.
The different terms in these functions represent specific physical factors and re-
quire different kinetic and thermodynamic data for their calculation. By neglect-
ing some terms, one obtains different approximations of the true enzyme cost. By
comparing the different scores, we can estimate the enzyme cost that cells “pay” for
running reactions at small driving forces (to save Gibbs free energy) or for keeping
enzymes beneath substrate-saturation (e.g., to dampen fluctuations in metabolite
levels).



3. Relationship to other optimality approaches Beyond their practical advantages,
factorized enzyme cost functions also allow us to easily compare our method to
earlier modeling and optimization approaches. These approaches typically focused
on only one or two of the factors that are taken into account in Enzyme Cost Mini-
mization, and many of them can be reformulated as approximations of this method
[176, 182, 170].

4. Enzyme cost is related to thermodynamics In FBA, thermodynamic constraints
and flux costs appear as completely unrelated aspects of metabolism (as is ex-
plained in Chapter 5). Thermodynamics is used to restrict flux directions, and to
relate them to metabolite bounds, while flux costs are used to suppress unneces-
sary fluxes. In Enzyme Cost Minimization, thermodynamics and flux cost appear
as two sides of the same coin. Like in FBA, flux profiles are thermodynamically fea-
sible if they lead to a non-empty metabolite polytope, allowing for positive forces in
all reactions. However, the values of these forces also play a role in shaping the en-
zyme cost function on that polytope. Together, metabolite polytope and enzyme
cost function (as in Figure 6.6) summarize all relevant information about flux cost.

Many pathways are regulated, for instance by feedback inhibition of enzymes via the
end product. While this may stabilise the dynamics and adapt it to current demands,
such enzyme regulation comes at a cost, which we can estimate by following the logic
of Enzyme Cost Minimization. Many enzymes are regulated by small molecules that
act as competitive or allosteric inhibitors [183], an effective way to implement feed-
back control, for example to adapt the flux in biosynthesis pathways to current needs.
In order for such a regulation to work, the enzyme needs to be partially inhibited on
average (because only then, its activity can be increased on demand, by alleviating
the inhibition). Therefore, the enzyme efficiency goes down, and the cell needs to
provide more enzyme to catalyze the same flux than without the inhibition.

How much will this regulation cost the cell as part of the enzyme budget? From the
perspective of Enzyme Cost Minimization, where we start from desired fluxes and
compute the enzyme demand, this question is easy to answer: in the inhibited en-
zyme case, the lower efficiency will be described by a factor = < [0,1] (Mathematical
Details Box 6.C). In the same reaction, the enzyme demand increases by a factor 1y,
so the extra cost is simply 1/, —1 times the “baseline” cost of this enzyme (without
inhibition). Specifically, a non-competitive inhibitor, with efficiency factor ;== 1
yields a cost factor 1+¢/k,. If the metabolite concentrations are fixed, this corresponds
to an extra enzyme demand a¢, = g«. Similarly, an enzyme activation with efficiency
factor y= = <X+ in the rate laws yields a cost factor *«£s — 1 4 g,/c in the formulae

1+C/KA C/KA




for enzyme demands. If the metabolite concentrations are fixed, this corresponds to
an extra enzyme demand a¢, = “%2= (where : and : denote the regulated reaction and
the regulating metabolite, respectively). As usually in Enzyme Cost Minimization, an
optimal rearrangement of enzyme and metabolite concentrations must be taken into
account, which will then slightly reduce the overall cost.

The predictions of optimal states by Enzyme Cost Minimization rely on two main in-
puts: a metabolic model that relates metabolite concentrations, enzyme levels, and
fluxes, and an optimality principle based on the assumption that cells realize their
production fluxes at a minimal total enzyme cost. To test whether this optimality
principle holds at all, Noor et al. [179] compared the predictions from Enzyme Cost
Minimization to predictions from the same metabolic model and the same flux dis-
tribution, but with randomly sampled metabolite profiles (and the corresponding
enzyme profiles). In comparison, metabolite profiles sampled close to the Enzyme
Cost Minimization optimum yielded significantly better enzyme level predictions than
metabolite profiles sampled more broadly. This strongly supports the idea that E. coli
metabolism, in the conditions studied, is at least partially optimized for low enzyme
cost, and thus supports cost-optimality as a principle in living cells.

6.5 Comparison of alternative pathways

Having clarified our main functional criteria for pathways (substrate productivity and
enzyme productivity) and how they depend on pathway details (including outer con-
centrations), we can now compare alternative pathways by their substrate and en-
zyme demand per production flux (an example of “cost per benefit”) and see which
one scores better.

6.5.1 A tale of two glycolyses

One of the canonical examples discussed throughout this book is how cells choose
between respiration and fermentation for making their ATP. However, having a pre-
cise kinetic model for respiration is difficult, since it involves electron transfer and
membrane-bound reactions. Therefore, it is challenging to calculate the enzyme cost
of respiration using models like those discussed in this chapter. Flamholz et al. [175]
analyzed a similar but simpler case by comparing between the EMP and ED variants of
glycolysis, since all the required enzymes are soluble and expressed in the cytoplasm
and/or the periplasm and many of their kinetic parameters are measured. The com-
mon description of glycolysis ends in pyruvate (e.g., as depicted in Figure 6.1). This
means that the pathway is not neutral in terms of redox, since the oxidation state of
pyruvate is higher than glucose. In order to simplify the comparison and focus only
on ATP yield (rather than NADH), the EMP and ED pathways were extended to end in



lactate by including lactate dehydrogenase (/dh) as an extra step, making them redox
neutral. These could be thought of as the more relevant versions of the pathways in
anaerobic conditions.

Although EMP-based fermentation is usually described in textbooks as less efficient
than respiration, since it produces only 2 moles of ATP per mole glucose instead of
~ 30, the ED pathway has an even lower yield - 1 mole of ATP. Nevertheless, the ED
pathway is quite common among the bacteria. For example, Zymomonas mobilis - the
bacterium used in fermenting pulque (a.k.a., agave wine [184]) and a promising plat-
form for bio-production [185] - lacks key enzymes from the EMP pathway and uses
the ED pathway exclusively to metabolize sugars. These bacteria don't seem to be
bothered by the low ATP yield and can achieve high growth rates [186]. This already
suggests to us that the ED pathway is probably superior to EMP in other aspects, such
as the enzyme demand. Another clue was provided by a study which found that the
ED pathway improves E. coli growth during glucose up-shifts and that the flux through
it increases by 130% [187] (see Economic Analogy Box 6.D)

To see if indeed the models provide predictions that are consistent with the experi-
mental evidence, Flamholz et al. [175] first used the MDF method to compare the two
pathways. The ED pathway was found to be substantially more thermodynamically
favorable, with a much higher score than the EMP pathway (8.0 versus 4.8 kJ/mol, see
Figure 6.7).

Although the EMP pathway is clearly more favorable, we can still argue that an MDF
of 4.8 kJ/mol is good enough, as it means ¢ > 1.9 for each one of the pathway reactions.
In this case, = > 085 (See Figure 6.3) and therefore it might be a small price to pay
for double the ATP yield. But, as discussed earlier, the efficiency of a pathway is af-
fected by other factors besides the thermodynamics. Flamholz et al. [175] tried to
see whether ED is superior to EMP also in terms of the enzyme cost using the Enzyme
Cost Minimization method. Indeed, they found that the ED pathway would require ~5
times less protein compared to EMP for catalyzing the same flux (see Figure 6.8). So,
although the ATP yield of the ED pathways is half that of EMP, one can still generate
ATP at a higher rate using the same amount of protein, according to the model.

The comparison of EMP and ED provided some insight as to a trade-off that can exists
between the yield of a pathway and its cost, or enzyme burden. However, one can
expand the question and ask if there are any other theoretically possible glycolysis
pathways that might be able to break this trade-off and be more efficient than EMP
and ED in both aspects. Ng et al. [164] tried to address this question with an algorithm
they called optStoic that generates all biochemically feasible routes between glucose
and pyruvate, with various ATP/glucose yields. They then ran pathway analysis on
all 11,916 options and found that indeed both EMP and ED are both (nearly) Pareto-
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Figure 6.7. Comparing two metabolic pathways using the Max-min Driving Force
(MDF) method. The light blue line represents the cumulative Gibbs free energy along
the pathway if all metabolite concentrations were 1 mM. The MDF solution is pre-
sented as a gray line, where the bottleneck reactions are highlighted in red.

optimal. This suggests that evolution may indeed select for features such as high yield
and low enzyme cost, where one might be more important than the other depending
on the context.

6.5.2 Metabolic engineering

Besides the quest for understanding the evolution of existing biochemical pathways,
pathway analysis methods like MDF and Enzyme Cost Minimization have also been
used by metabolic engineers in order to rank and prioritize different alternative de-
signs. For example, Volpers et al. [188] used the MDF algorithm and the Pathway
Specific Activity measure to compare between designs of photo-electro-autotrophic
strains. Similarly, Lowe and Kremling [189] used the Enzyme Cost Minimization algo-
rithm to predict the enzyme demand of both natural and synthetic carbon fixation
cycles.

6.5.3 Predicting the metabolite concentrations

So far, the examples given in this section focused on analyzing and comparing path-
way alternatives in isolation, outside of the context of actual living organisms. How-
ever, we should not forget that the motivation for optimization goals such as enzyme
demand are derived from physiological and evolutionary principles. Therefore, the
optimal solutions coming from MDF and Enzyme Cost Minimization might be good
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Figure 6.8: Comparing two metabolic pathways using the Enzyme Cost Minimization
(ECM) method. We used the same kinetic parameters for all enzymes in both path-
ways (x5, =200 s-1, ky =200 uM, same as in [175]). However, here we used an updated
version of Enzyme Cost Minimization with the factorized rate law, therefore the re-
sults are not identical. A Jupyter notebook for generating the figure can be found on
the book website.

predictions for the actual metabolic state that exists in naturally evolved organisms.

For example, a few years after the in silico analysis of the ED pathway [175], Jacobson
et al. [190] measured the intracellular concentrations ED intermediates in Z. mobilis,
and used them to calculate the Gibbs energies of the pathway’s reactions. Indeed,
they found that they closely fit the predicted values from the MDF solution. Simi-
larly, measured values of enzyme and metabolite concentrations in E. coli correlate
with predicted values from Enzyme Cost Minimization (when empricial reaction fluxes
were obtained from =C-MFA measurements, Figures 6.9 and 6.10) [179]. In a related
paper, Wortel et al. [191] expanded the idea of this method to explore the entire flux
polytope.

These results suggest that indeed the optimization process that occurs throughout
evolution is somewhat similar to the (much simplified) models presented here. Of
course, improving the accuracy of the inputs and accounting for other effects that
impact fitness could improve the predictions further. On the other hand, it might be
naive to expect natural systems to be optimal, which would mean that using basic
principles to precisely predict phenotypes is an impossible task.
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Figure 6.9: The E. coli model of central metabolism used in Noor et al. [179].

6.6 Concluding remarks

Coming back to our initial question, what have we learned from theory about the
choice between possible pathways? The “choice between pathways” in a larger net-
work is actually a choice between (network-wide) flux distributions that use different
alternative pathways. Here we discussed how to score the usefulness of given flux
distributions, which can also be used to score single pathways.

Importantly, flux distributions are scalable (by scaling all enzyme levels proportion-
ally, and keeping all metabolite levels constant). If we scale the fluxes, this will scale
both the flux benefit (for instance, the production of a desired product or biomass)
and the required resources (substrates consumed, enzyme budget invested, or toxic
byproducts produced). Because of this scaling property, our “quality criteria” mostly
have the form of ratios between an output flux (as the benefit) and some (limited)
resource (the cost). Such ratios are called “productivities”, where in Chapter 4-5 we



focused mostly on substrate productivity (or yield on substrate) and in this chapter
on enzyme productivity (or enzyme-specific rate) as important criteria. Why these
criteria? On the one hand, they are closely related to some big objectives of the en-
tire cell - depending on the type of competition it is facing. On the other hand, they
are easy to link to some concrete criteria about metabolic pathways such as product
yield, pathway length, ... values, thermodynamic forces, etc.

Since yield on substrate depends only on the shape of the flux distribution, it can be
studied by methods like FBA (see chapters 4 and 5). In this chapter, we focused on the
more difficult case, enzyme productivity, where thermodynamics, enzyme kinetics,
and the arrangement of metabolite and enzyme concentrations come into play. The
factorized law in Eq. (6.7) shows us how the enzyme demand of a flux distribution can
be computed if metabolite concentrations are known, and how the demand depends
on forward ..., the thermodynamic force, and enzyme saturation. The only difficulty is
that the thermodynamic forces and metabolite concentrations are usually not known.
Here we considered some best-case scenarios, assuming that the cell will realize the
concentration arrangements that optimize pathway performance. When considering
thermodynamics alone (and making some further simplifications), this led to the MDF
method. For the full problem, the solution is provided by Enzyme Cost Minimization.
This method is directly related to the different pathway criteria we discussed initially
(including pathway length, thermodynamic forces, and &., values) and thus shows
how these different factors determine enzyme demand. As a numerical method, it
is relatively easy to use because it is a convex optimization problem. But if little data
is available, simpler methods such as MDF, with their lower demand for parameters,
may be useful tools to predict pathway usage.

In order to predict optimal metabolic states, we started in the previous chapter with
models that optimize the fluxes in an entire network. Howeve, to keep the mod-
els linear, kinetics and concentrations were largely ignored. In FBA with molecular
crowding, a connection between fluxes and enzyme levels was made via empirical
parameters, the apparent catalytic rates or "enzyme efficiencies”. We now saw that
these parameters are not at all constant parameters, but emerge from kinetics and
given concentration profiles, and we also saw how optimal concentration profiles can
be computed for a given flux distribution. This means: we now know how to predict
optimal fluxes from known enzyme efficiencies, and we know how to predict optimal
concentrations (and therefore enzyme efficiencies) from known fluxes. In the next
chapter we will put these two things together, in order to predict all variables in the
system - fluxes, metabolite concentrations, enzyme efficiencies, and enzyme levels -
from a single principle of maximal overall enzyme efficiency.
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Problems

Computer exercises for this chapter can be found on the book website.

Problem 6.1 Pathway efficiencies

Estimate pathway efficiencies (i.e. product production rates per total enzyme con-
centration) from simple back-of the envelope calculations and plausible numbers
(refer to the BioNumbers database for realistic values). (a) From pathway length
(assuming reasonable apparent .. values); (b) from given apparent &,,, values (or
given ., values and a,q). (¢) Convert the results into growth rates (assuming realistic
estimates of the total protein density; the proteome fraction of metabolic enzymes;
the biomass production rate etc). Assume plausible numbers in all cases.

Problem 6.2 Efficiency - dependence on substrate
Compute the reduction of pathway efficiency in a linear chain when decreasing the
external substrate concentration (no constraints on metabolite levels)

Problem 6.3 ATP yield in glycolysis
Derive the optimal ATP yield in a glycolysis model with a linear flux-force relationship

Problem 6.4 MDF method
Implement the MDF method in a programming language of your choice.

Problem 6.5 MDF and enzyme cost
The optimality principle of MDF (avoiding small thermodynamic driving forces) can
be justified by assuming that low driving forces would entail high enzyme demands.
Do you expect that MDF solutions are also Enzyme Cost Minimization solutions (or
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vice versa)? Otherwise, can you think of an approximation of the Enzyme Cost Min-
imization problem, such that MDF provides the correct solution? Show how the En-
zyme Cost Minimization objective could be approximated step by step, and illustrate
this with an example.

Problem 6.6 Cycle of chemical reactions
Assume a cycle of chemical reactions 4 « B « ¢ « a4 without co-factors or external
inputs/outputs. (a) Show that there is no stationary, thermodynamically feasible
flux distribution except for the (trivial) vanishing flux. (b) Explain why, if there were
a flux, this would be a perpetuum mobile.

Problem 6.7 Optimal enzyme levels in two-reaction chain
Consider a chain of two reactions s« x « p with enzymes ¢, and e,, vy = ei (k15— k_1X), v =
es(kiaX — k,P). Compute the steady state flux given e,,c,. Let e, +e = &2 be fixed. De-
termine ¢, e, such that the flux is maximal. Use Lagrange multipliers. Hint: Assume
forward flux where p/s < (ki1ki0)/(k—_1k_s) = q1g2.

Problem 6.8 Flux maximization in a linear pathway
Prove that the function:

1
f(e)zm (616)

for a fixed A and under the constraint 3. ¢; = e, iS at its maximum when:

A;1/2
€; = €tot ° W
Problem 6.9 Haldane kinetic rate law
Haldane described an enzyme-catalyzed reaction by three steps, each following a
mass-action rate law:

S+ E—— ES —— EP —2— P { E. (6.17)

K2 Kq Ke

The ODE system describing the change in time of each species is:

@ =[E]-[S] k1 +[EP]-kqy — [ES] - (ko + k3)
$=[E}.[P]-k6+[ES]-k3—[EP]~(k4+k5) (©-19)
d[E]

~p = B8]k + [ES] - ko + [EP] - ks — [E] - [P] - ke

Prove that at quasy-steady-state (where the total enzyme concentration is fixed, and
the concentration of each species doesn’t change over time), the rate in which (s is



converted to r) is governed by the following rate law:

k:;t[S]/KS — k;at[P]/KP
1+ [S]/Ks+ [P]/Kp

v = [E()]

where:

Ke— koks + koks + ksks _ koka + koks + ksks k3ks
i (ks + kst ks)

Problem 6.10 The factorized rate law
Use the Haldane relationship:

kit Kp  kiksks

oot Ks  kokskg 1

and the definition of Gibbs free energy:

AG° =—-R-T-InK.

AG = AGP +R-T-In([P)/[8])

ke(ka +ks+ky) ~ ™ kz+ky+ ks

to prove that Eq. (6.19) is equivalent to the following factorized rate law:

v = [Eo]k’+

cat ’

(1 - eArG’/RT> ) [S]/Ks
1+ [S]/Ks+ [P]/Kp

(6.19)
(6.20)
(6.21)
(6.22)



2, Math box 6.B Integer cuts for iterating all possible pathway variants
The linear problem can be described by:
minimize Y o,

subjectto Nu.v=o0 (6.2)
Vi 0<wv; <B
Yglycolysis = ~1
where v is the flux variable, and ~ is comprised of the universal stoichiometric ma-
trix , and in addition one reaction (whose flux is denoted vy ,is) Which has the

stoichiometry of Eq. (6.1). The constraint vy ,<is = -1 €nsures that the sum of all ac-
tive reactions except for vy, ,,sis Will together form a full glycolysis pathway, since
their net reaction has to balance the stoichiometry of vy, s 8iven the mass bal-

ance constraint n,,.v = 0. s given the upper bound on the flux for all reactions. For
simplicity, we assume that all fluxes are positive and that reversible reactions are
split into their two opposing directionalities . s is a tunable parameter that is an
upper bound on all the fluxes in the solution pathways. Setting it too low would
exclude solutions with complex stoichiometries. On the other hand, a very high
value would increase the complexity of the search and lead to very long run-times.
Typically, we choose s = 10 which is a good balance between the two extremes.
Finally, we set the objective function (3,+) to minimize the sum of fluxes. As we
will explain shortly, we can iterate through all possible solutions and therefore the
objective will only determine the order at which we find them.

To find all possible glycolysis pathways comprising known enzymatic reactions, Ng
et al. [164] iteratively introduced constraints in order to exclude all previous solu-
tions and find the next optimal one [167]: to exclude a solution, they add an integer
cut, which is an inequality constraint ensuring that the number of active reactions
is strictly larger than the sum over their indicator variables (boolean variables that
are equal to 1 if the reaction is active, i.e. carries a nonzero flux). Therefore, at
least one of those reactions must be inactive in all future solutions. This is quite
similar to constrained Minimal Cut Sets (cMCS) which were introduced in Chapter
4.5 as a way of exploring the flux space.

Formally, if (r, P ...p,} are the set of solutions already discovered by our algorithm
(where vjp; c {0,...,n}, i.€. each solution is a set of integers which correspond to in-
dices of active reactions) then the added constraints will be:

Vi oz €{0,1}

Vi v; — Bz <0 (6.3)
Vj >z <P

i€ P;

where |7 is the length of pathway ; (i.e. the number of reactions). The : are
boolean reaction indicators, i.e. »; must be equal to 1 if a reaction is active (v > o).
The final set of constrains eliminate », and any pathway which is a superset of p,
from the solution space. Using this extra set of constraints iteratively, each time
generating the next pathway and adding it to the excluded list, will eventually go
through all possible solutions (by increasing order of their sum of fluxes). It is
important to note that using integer cuts requires switching to an MILP (Mixed-
Integer Linear Program) solver, which is computationally much more demanding
and typically requires a commercial license.



2, Math box 6.C Factorized rate laws and enzyme cost function

According to Eq. (6.13), reversible rate laws can be factorized into five terms that
depend on metabolite concentrations in different ways [82]. For a reaction S = P
with reversible Michaelis-Menten kinetics Eq. (6.11), a driving force o = -a.¢’/rr, and
a prefactor for non-competitive inhibition, the rate law can be written as

S/](S 1
1+s/Ks+p/Kp 1+4+z/K;
———

nsat nres

_ +
v =€ ki,

| 7679} .
N—_——

nfor

Rate = enzyme . forward catalytic . thermodynamic . saturation . regulation
level constant factor factor factor

with inhibitor concentration ». The product of the first two terms, £ and &, repre-
sents the maximal velocity, i.e. the rate at full substrate-saturation without back-
ward flux and without enzyme inhibition. The following factors decrease this ve-
locity for different reasons: = describes a decrease due to backward fluxes, =t -
the decrease due to incomplete substrate saturation, and = - the decrease due
to small-molecule regulation (see Figure 6.2 b). While &£, is an enzyme-specific
constant (yet, dependent on conditions such as pH, ionic strength, or molecular
crowding in cells), the efficiency factors are concentration-dependent, unitless,
and can vary between 0 and 1. The thermodynamic factor »= depends on the driv-
ing force (and thus, indirectly, on metabolite concentrations), and the equilibrium
constant is required for its calculation. The saturation factor = depends directly
on metabolite levels and contains the x,, values as parameters. Enzyme regulation
by small molecules yields additive or multiplicative terms in the rate law denom-
inator, which in our example and can be captured by a separate factor <. The

enzyme cost for a flux », with an enzyme burden ., can be written as

1 1 1 5/ Kg K
q=he-e=he v/ 7 +s/ Sirp/XPo[1+:I;/Kﬂ
kcat [1 —e } S/]XS N——
— 1/nres

1/nfor l/nsat

and contains the terms from the rate law in inverse form. The first factors, n.v/kz,,
define a minimum enzyme cost, which is then increased by the following efficiency
factors. By omitting some of these factors, one can construct simplified enzyme
cost functions with higher specific rates, or lower enzyme demands (compare Fig-

ure 6.2b). For a closer approximation, the factors may be substituted with constant
numbers between o and 1.

Economics analogy 6.D The push for fast growth

The ED pathway seems to be useful as a quick response to a sudden increase in
abundance of resources (glucose), but less efficient than EMP when the environ-
ment is steady. This is somewhat analogous to start-up companies, which burn
large amounts of venture capital in order to grow rapidly. However, after reaching
a certain scale, the dynamic nature of start-ups often becomes a burden, where
overhead costs pile up and signal that it is time to join a larger corporation.
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Figure 6.10: Validation of metabolite and enzyme concentrations, predicted by En-
zyme Cost Minimization, in the central carbon metabolism of E. coli (Fig 6.9) - (A)
Comparing predicted and measured metabolic concentrations. The thin diagonal line
marks = =y, i.e. where the predictions match the measurements. Full blue points are
for all metabolites whose allowed concentration range was set to 1uM - 10 mM. Hollow
blue points represent co-factors whose concentration was fixed in the analysis and
therefore are not actually predicted - these were omitted from the statistics. The Root
Mean Squared Error (RMSE, in log,, scale) was 0.62, the 2 (Pearson correlation) was
0.50, and p-value was 22 x 10-4. (B) Comparing predicted and measured enzyme con-
centrations. Here, the RMSE was 0.47, 2 = 0.54, and » =5.3x10-¢. (C) A pie chart showing
the distribution of the predicted absolute mass-concentrations for both enzymes (or-
ange) and metabolites (blue) together. Note that aconitase (catalyzing the reactions
acn1 and acn2) has a lower specific activity than glyceraldehyde-3P dehydrogenase (cat-
alyzing gap), and therefore occupies a higher fraction of the mass-concentration even
though the required concentration of the latter enzyme is higher. Labels of enzymes
and metabolites that occupy the smallest fractions of the biomass are omitted due
to lack of space. Data and model predictions taken from [179].



Economics analogy 6.E Two central assumptions: homogeneity and station-
arity

In the models described in this chapter, we generally assume that our system (for
example, a metabolic pathway in a cell) is spatially and temporally homogeneous,
and that it shows stable stationary states. This is clearly a simplification: in reality,
cellsareinhomogeneous, with compartments, with enzymes unequally distributed
across the cell, and with enzymes forming complexes or dedicated compartments
like the glycosome (an organelle in some organisms that contains the glycolytic
enzymes), which changes (average) enzyme kinetics. Cells are also dynamic on
various time scales (chemical noise, metabolic dynamics, protein expression dy-
namics), which also may change (average) enzyme kinetics. If we ignore this in our
models - assuming a timeless steady state - this will not only cause approxima-
tion errors in our metabolic model, but much more importantly, we ignore the fact
that the cell can exploit spatial inhomogeneity (e.g. compartments or channeling)
and non-steady states (e.g. metabolic oscillations, or adaptation to fluctuations in
the environment) to further improve its fitness (as compared to a steady-state,
constant enzyme model).

Interestingly, classical economic theory makes similar assumptions - e.g. about
markets in equilibrium- which ignore the spatio-temporal, dynamic side of real
economic systems, which - as in the case of metabolic models - is likely to lead to
wrong results.



Chapter 7

Optimization of metabolic states

Andreas Kremling, Wolfram Liebermeister, Elad Noor and Meike T. Wortel

Chapter overview

o Optimal metabolic states in this chapter refer to enzyme-efficient states, which
are metabolic states that realize a given objective flux at a minimal enzyme cost.

o In models without further flux constraints, flux distributions of enzyme-efficient
states are Elementary Flux Modes (EFMs).

o Elementary Flux Modes can be used to find enzyme-efficient states in networks
that would be too large to optimize metabolic states "by brute force”.

o Biomass per enzyme efficiency can be converted to cell growth rate by simple
approximate formulae.

o The Elementary Flux Mode that is realized in an enzyme-efficient state depends
on the external conditions.

o As growth conditions change, either the flux profile changes continuously (to-
gether with metabolite and enzyme concentrations), or fluxes change discontin-
uously, implying jumps also in metabolite and enzyme concentrations.

7.1 Introduction

In a simple economic picture of cells, we assume that cells adjust their metabolic state
in each environment to obtain a maximal fitness advantage. This may be impossible
in reality, but it remains an interesting question what this best metabolic state would
look like, according to our knowledge of cells. So what is the best metabolic state
overall (comprising metabolic fluxes, metabolite concentrations and enzyme levels)?
What pathways should a cell use, which enzymes should be induced or repressed,
and how should this change in a new environment? To answer these questions, we
need to remember that all metabolic variables (fluxes, metabolite levels, enzyme lev-



els, and enzyme efficiencies) depend on each other. Physically, fluxes depend on
metabolite concentrations through kinetics and enzyme regulation (e.g. competitive
inhibition) and metabolites are produced and consumed by the fluxes until a steady
state is reached. Hence, if we think in terms of cellular economics (treating enzymes
as control variables), then all metabolic variables must be optimized together.

In the previous chapters we saw some ways to predict optimal metabolic fluxes, metab
lite concentrations and enzyme levels separately: in Flux Balance Analysis (FBA, Chap-

ter 5), we optimized fluxes by maximizing an objective function (typically biomass)

while in Enzyme Cost Minimization [175, 179] (Chapter 6) metabolite concentrations

were optimized by minimizing cost (or, equivalently, maximizing the enzyme efficien-

cies). Each of these methods is based on a strong assumption: FBA requires mea-

sured flux ranges and/or apparent catalytic rates and assumes enzyme saturation

effects can be neglected, while enzyme cost minimization requires a given flux dis-

tribution. But what if we don't know any of the variables in advance? How can we

predict all of them from first principles?

Before thinking about this, let us briefly step back: what do we actually mean by an
“optimal state”? What quantity should be maximized in metabolism? There could be
very different aims (e.g. production in biotechnology, versus number of offspring and
survival in a wild-type cell). However, in both cases animportant aim s cell growth - or
at least, avoiding strong growth deficits. Below we will see that cell growth depends,
to a good approximation, on biomass/enzyme efficiency, that is, biomass production
per total enzyme invested. Hence, whenever fast growth is important, cells should
maximize this efficiency.

In conclusion, we will consider the following optimality problem: maximize biomass/en
zyme efficiency, defined as the production flux per invested enzyme with respect to
all metabolic variables (metabolites, enzymes and fluxes) and under all constraints
(steady state, enzyme kinetics, etc.). Solutions to this problem are considered opti-
mal states.

7.2 Enzyme-efficient metabolic states use elementary flu
modes

The optimization problem in this chapter is to reach maximal objective flux with min-
imal enzyme investment. The biological interpretation is that this would lead to the
highest growth rate, because it optimizes the ratio between gains (fluxes) and costs
(enzymes). When we solve this optimization problem with mathematical tools, it is
convenient to either find the minimal enzyme investment for a certain flux, or the
maximum flux for a fixed enzyme investment. Although one could think of different



biological explanations for those two ways to state the optimization problem, math-
ematically they are equivalent. For the outline of the proof that optimal states are
elementary flux modes, it is convenient to fix the objective flux to an arbitrary value
(we choose 1) and then minimize the enzyme investment. This leads to the following
optimization problem over the fluxes (v), enzymes levels () and internal metabolite
concentrations (s):

miqigpize Zh e; (7.1)
subject to: N-v=0 steady state

Vi v = e; ki(s) enzyme kinetics

s> 0 positive concentrations

v=1 fixed objective flux

S < Smax metabolite bounds

where 1, are the weights, ~ is the stoichiometry matrix, i is the index of the reactions
(ranging from 1 to ), with the last reaction (with index ») representing the objective.
This optimization problem states that by adjusting the fluxes (v), metabolite concen-
trations (s) and enzyme concentrations (e), the total cost (sum of costs - n., - for every
reaction) is minimized, while keeping the objective flux constant (any arbitrary con-
stant can be chosen, here we chose 1). The weights () can be thought of as the size
or production costs of the enzymes (measured, for example, in molecular weight or
gene length) We require certain constraints: (i) the metabolic network needs to be
in steady state to avoid built-up of intermediates, (ii) enzyme kinetics - the flux of
each reaction (»,) has to be equal to the enzyme concentration (.;) times a metabolite
dependent (e.g., saturation) term (x,(s)), (iii) all enzyme and metabolite concentrations
have to be positive, (iv) the objective flux is equal to 1, and (v) the metabolite concen-
trations are within their given bounds. The latter constraint is optional and is mostly
necessary when dealing with irreversible kinetics. Reversible kinetics usually lead to
bounded metabolite levels because very high concentrations of products inhibit the
reaction that forms the products.

In this section, we will explain why the optimal state is reached at an Elementary
Flux Mode (EFM). One important starting point is that, as we have seen before in
Chapter 4, convex optimization problems with only positivity or equality constraints
(no other inequalities) lead to an optimal solution at an extreme point of the feasible
solution space, and those extreme points are Elementary Flux Modes. However, the
optimization problem (7.1) is not convex, mainly due to the hyperbolic dependence
of reaction rates on the concentrations of metabolites (x.(s) is usually not linear in the



internal metabolite concentrations).

There are several ways to prove that the solution of this optimization problem is an
EFM, of which some are outlined in the papers by Wortel et al. [192] and MUller et al.
[193]. Here we will outline a proof by contradiction: assuming a solution to the opti-
mization problem that is not an EFM and showing that this leads to a contradiction,

Theorem 2. The flux distribution that maximizes an objective flux over the total enzyme
cost in a metabolic network without additional constraints is an Elementary Flux Mode.

Proof. Assume we have some optimal state where the flux distribution is not an EFM.
Any optimal solution is associated with a set of fluxes, enzyme concentrations and
metabolite concentrations. Now we set the metabolite concentrations to the con-
centrations of the assumed optimal state. Then all metabolite-dependent terms (x.(s))
become constants, and we return to a convex problem. As explained in Chapter 10
and Figure 7.1, the optimum of this problem (now in terms of enzyme concentrations
and fluxes) is a flux distribution that is an EFM. But this contradicts our initial assump-
tion that the optimal state from which we took the set of metabolite concentrations
was not an EFM. The proof by contradiction shows that the optimal state must be an
EFM. O

7.3 Enzyme-efficient states in an example network

To illustrate the proof, we study a simple network representing growth on glucose
and pyruvate that we have seen previously in Chapter 5 (Figure 7.2). We use ¢ and r
for glucose and pyruvate in the equations, we use the subscript « when a metabolite
is extracellular and square brackets to denote a concentration. For the use in this
chapter, we add enzyme kinetics to this network. We will use the factorized rate law
as in Chapter 6, but then generalized for », substrates and », products (also compare
Eqg. (3.10) in Chapter 3):

j=1
si/Kgs.; ,
v=e-kt,- — H”s i/ S’szl ) (176ATG /RT) (72)
1+an pk/KP’k—"_H‘ns Sj/KS,j

See Box 7.A for all detailed rate laws of the example network. We can simplify this
equation by combining the forward catalytic constant, the thermodynamic efficiency
factor, the saturation efficiency factor, and the regulation efficiency factor (if that ex-
ists) in a function «(s), which only depends on the metabolites, and not on the enzyme
concentrations. We will below write « for «(s).

Vi = €; " R; (7'4)
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Figure 7.1: Translation from flux to enzyme space retains EFMs as extreme rays - The
top left panel shows the feasible flux space with the steady state constraints, all fluxes
positive (using splitting of fluxes, as explained in the text, if necessary) and a fixed
objective flux. The extreme points here are points where one flux becomes 0 and are
elementary flux modes (see Chapter 5). Here we show that when we have assumed
metabolite concentrations, such as when we keep them at an optimal solution, we get
a linear transformation and the extreme rays are maintained. Different metabolite
levels, for example solutions to different environmental conditions, can lead to dif-
ferent transformations and therefore different optima (minimal total enzyme), but
those are always located at an EFM.

Now we take v = 1 and optimize all fluxes, enzyme concentrations and metabolite
concentrations to minimize the enzyme costs (e.. = ¥ ,¢), While satisfying the con-
straints posed in Equations (7.1), for different levels of external glucose and standard
levels of the other external metabolites. We see that for different concentrations of
external glucose, lead to different optimal fluxes, enzyme levels and metabolite levels
(Table 7.1).

The table shows that the total enzyme needed for a biomass flux of one decreases



Box 7.A Kinetics of the example network

The detailed kinetic equations for the example model (Figure 7.2) using the factor-
ized rate law (see Equation (7.2) and Chapters 3 and 6) are:

[Gexl/KGox ) (lch,G’O/RT)
1+ [G]/Kg + [Gex]/KGey
vy = e - ot ) ([G]/Kg)([ADP]/KAppP) ) (1 _ CArG,I/RT)
cat.l 1 4 ([P)/Kp)([P]/Kp)([ATP]/Karp) + ([G]/Kg)([ADP]/KApp)
et [P/ Kp . (1 _ eArG/2/RT)
©at:2 1 4 [Pex]/Kp,, + [P1/Kp

v0o = €0 kjat.o .

7.
([P]/Kp)([ADP]/KApp)([02]/K0o,) (7:3)

1+ ([CO2]/ Ko, ) (IATP]/ K aTp) + ([P]/Kp)([ADP]/KApp)([02]/Ko,)

’
’u3=e,3~k'imt73~ . (lfeArG 3/RT)
Pex]/ K
vg=eq kI - Foxl/Kpex . (1 - eATGI4/RT)
catd 14 [Pex]/Kp,, + [PI/Kp
I » ([P1/ Kp) [ATP]/ K ATp) (1 ArGls/RT
BM T EBM " Toat BM T T ([BM]/ Kpp) (IADPI/ Kapp) + ([P1/Kp)(ATP/Karp) ( )

Note thatris a product twice in +, as» produces 2r. Note that+, and », are the same
reaction, but defined in the opposite direction. The standard set of parameters we
used for the toy model is all ¥z, = 10 s except kt,, = 01 s, all a,¢e,/rT = —140 and all

cat,?

Ky =1 MM. For the external metabolites [p.,) =1 MM, [G..] =0.05s MM, [0,] =01 MM, BM] =1
mM and [co.] = 10 MM unless mentioned otherwise.

with increasing glucose levels, as we expect. In addition, the optimal level of internal
glucose increases with increasing external glucose. This is because a higher external
glucose allows for a higher internal glucose while still maintaining a steady glucose in-
flux, and a higher internal glucose allows fewer enzymes to drive further metabolism.
Moreover, the fluxes of the solutions follow an EFM (see Figure 7.2Db).

We can now reformulate the problem for only the flux and enzyme levels while keep-
ing the metabolite levels as they are in the table. With the metabolite levels in the first
row of the table, we can linearly relate the enzyme and flux levels (with the factors «,
that have become constants now we have set the internal metabolite concentrations),
and thus the extreme rays of the enzyme and flux space will be equal and EFMs, as
pointed out above (see also Chapter 5 and Figure 7.1). Optimization in this space will
lead to the optimal flux distributions following an EFM (see Box 7.B for the detailed
calculations). As fixing part of the optimal solution should lead to the same optimal
solution, this required the flux distribution of the optimization over all variables to
follow an EFM, as was indeed the case.

We point out two important aspects, using the network (Figure 7.2) as an example.

HGGXH €tot Vo V1 V2 VU3 Vg UM € €1 ea e3 eq epm |G] [P] [ATP] [ADPH
0.01 1156.2 5 5 0 9 0 1 544 44 0 944 0 29 0.08 15.14 0.05 20.09
0.1 191.3 50 50 99 0 O 1 61.3 11.3 142 0 0 44 0.13 4.55 0.11 20.09
1 36.2 50 50 99 0 O 1 13.0 80 125 0 0 2.7 0.60 7.65 0.11 20.09
Table 7.1: Outcomes of the optimization of the example network with standard ki-
netics, parameter values and external concentrations (see Box 7.A) for varying levels

of (G-




First, it is convenient to split reversible reactions such that fluxes are always posi-
tive. In this case, that means that the reversible reaction from r to »., is split into the
forward reaction », and the reverse reaction +,, both of which can have only positive
flux. This splitting makes sure that EFMs are the extreme rays of the flux space (see
Chapter 5). This splitting is purely a mathematical convenience; we still assume this
to be one reaction in the biological sense, and therefore the kinetic equations of both
the forward and the backward reactions will be exactly the same. Depending on in
which direction the flux goes, either one of the reactions will be positive and the other
zero. Any solution with both reactions positive is infeasible, but minimizing enzyme
levels will never lead to such a solution; therefore we do not need to set additional
constrains to avoid this. Second, the feasibility of EFMs can depend on external con-
centrations. In this network, the biomass reaction (vs\) is the objective flux and there
are three EFMs leading to the production of biomass: EFM1 consisting of v, v, v, and
ven, EFM2 consisting of v, v, vs and vz and EFM3 consisting of v, »s and vs. However,
if p.. is absent in the environment, the uptake flux », will always be 0 and therefore
EFM3 will not be feasible.

7.4 Calculation of optimal states

We can now use the result that states of maximal enzyme efficiency are reached at
an elementary flux mode to calculate optimal states in a metabolic network using the
following steps:

1. Enumerate the elementary flux modes that include the objective flux
2. Calculate the minimal enzyme for each EFM scaled to an objective flux of 1
3. Compare the EFMs and select the one with minimal enzyme demands

Step 1 is possible for relatively large networks, although usually not for genome scale
metabolic networks. Step 2 is a convex optimization problem as we have seen in
Chapter 6 and Step 3 is straightforward. These three steps together are called Enzyme
Flux Cost Minimization, because it is similar to Enzyme Cost Minimization, but while
that is focused on fixed fluxes, Enzyme Flux Cost Minimization simultaneously finds
the optimal fluxes, enzyme and metabolite levels. In this section we will show the
method on the example network of Figure 7.2.

First, we describe the network with the stoichiometric matrix (x) and the concentra-



Box 7.B Optimal metabolic states in the example network

We minimize the enzyme investment for vy, =1 with p.,) =0 (and therefore v, =0 and
EFM3 is not feasible) for the network in Figure 7.2 (the optimization problem in
Equation (7.1)). Assuming all », =1, the objective function S, e; = o + 1 + €2 + €5 + enue
The constraints vsy =1 and e,s > 0 in Eq. (7.1) are straightforward. The steady state
of all internal metabolites (G, P, ADP and ATP) leads to the following equalities (the
steady states of ADP and ATP lead to the same equality):

Steady state ATP — 100 vpy = 2 v1 + 10 vs
Steady state P — 2 vy + vy = vs + v5 + vpu
Steady state ¢ — v, = v,

Substituting vs., =1 and v+, = 0 and solving this set of linear equations, we can write all
fluxes as functions of v,: vy =v; =5+ 20, aNd v; =9 - L, (there is only one independent
flux in this system). This means we can draw the feasible flux space on the +, line
and we can express the objective function in terms of v,:

T
E hie; = eg +e1 + ea + e3 + epm
=l

= vo/kKo + v1/K1 + va/K2 + v3/K3 + vBM/KBM
= (5+5/11v3) /Ko + (5 + 5/11v3) /K1 + va /K2 + (9 — 1/11v2) /K3 + 1 /KBy (7.5)
= (5/ko +5/k1+9/ks +1/6pm) + (5/(11ko) +5/(11k1) + 1 /K2 — 1/(11K3)) va

a B

= a+ By

The kinetic functions (»;) depend on several parameters (external metabolite levels
[Gesl, 02, [CO5] @Nd [p], Catalytic constants, Michaelis constants and Gibbs free ener-
gies) and the variables [cj, [p], (arP] and [apr. That means that once we have a set
of internal metabolite concentrations s, the enzyme levels in the objective function
can be written as a constant times the flux: ¢ = v./x;, With «; @ constant. For a set
of parameters, « and g are positive or negative depending on the choice of s. It is
clear that when we minimize this objective function by adjusting v, we will always
have an optimum at +, =0 (when 3 is positive) or » = 99 (When 3 is negative). v, =99 iS
the maximum of +, because then v+, - 9- Lv, =0, and higher values of +, would lead to
negative values for v,.

In conclusion, the optimum cannot be at avalue of o < v, < 9. If there would be an op-
timum with o < v, < 99, we can determine s and calculate whether s> o to find a lower
objective value at v, = 0 Or v, = 99, contradicting that we started with an optimum.
Only if s = 0 there is a range of optima, but this requires very precise parameter
values. v =0 and v = 99 correspond to EFMs of this network (Figure 7.2).

tion vector (s):

1 -1 0 0 0 0 [G]
0 2 -1 -1 1 —1 P
N = R B (7.6)
0 2 0 10 0 =100 [ATP]
0 -2 0 —10 0 100 [ADP]

And with the stoichiometric matrix we can describe the steady state constraints:
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Figure 7.2: States of maximal efficiency in an example model - (A) Example network
from Chapter 5 with added stoichiometry. (B) Three elementary flux modes of this
network. (C) Calculated enzyme investment needed for a biomass flux of 1. At a very
low concentration of extracellular glucose ((c..)), EFM3 has the lowest cost. But as we
move along the x-axis, ataround [c.,] = 0.02 there is a switch to EFM1 and later, at around
[Gex] = 0.07, EFM2 becomes the one with the lowest cost. (D) Specific fluxes (flux divided
by total enzyme) associated with the optimal EFM for different levels of c... Note that
v IS not shown as it is always equal to «. The rates show a discontinuity when there
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Now we find the EFMs (for example with EFMtool [194]). It can easily be checked that
the following EFMs (denoted by vectors ¢®) are in the nullspace of the stoichiometric
matrix:

5 50 0
5 50 0
0 99 0
=11, 2= . f® = (7.8)
9 0 10
0 0 11

1 1 1

The next step is to perform the convex optimization over the metabolite levels for
each one of the three EFMs. Therefore, we express the enzyme levels as a ratio of
the flux and the function (), using Equation 7.4. Summing over all enzymes, we get
a function for the total enzyme cost (level) as a function of fluxes, metabolite concen-
trations and parameters:

D D (7.9)

(3

We use the standard parameters (Box 7.A) and replace «, by the values given by each
EFM. We are then left with a convex optimization over the metabolite levels, an En-
zyme Cost Minimization problem as in Chapter 6. For [c.. = 0.0s we obtain a total en-
zyme of 111.1 for EFM1, of 146.3 for EFM2 and 136.5 for EFM3. That means that for
these conditions we will conclude that EFM1 is optimal. From the optimization we
obtain the metabolite concentrations: [c] = 0.0s, [P] = 3.93, [ATP] = 0.11 @and [aDP] = 20.09 (that the
internal glucose concentration is higher than the external is because we described
the transport with regular enzyme kinetics instead of transporter enzyme kinetics,
which would have been more realistic). We can next use the rate equations to calcu-
late the enzyme levels from the fluxes and metabolite levels, using the values for the
parameters and external concentrations.

We can repeat this procedure for different levels of external concentrations and see
that the optimal EFM can change depending on the external concentration (Figure
7.2¢). When the optimum shifts to using a different EFM, there is a discontinuity in
the fluxes at the external metabolite concentration (Figure 7.2d). Many cells show
shifts in metabolic strategies depending on the external conditions and Enzyme Flux
Cost Minimization is one way of explaining those shifts.

Above, Enzyme Cost Flux Minimization was used to find the metabolic state with the
maximum enzyme efficiency. Although in our calculation we obtain the enzyme con-
centrations last, it is by enzyme concentrations that cells actually control metabolism.
If cells produce enzymes at the concentrations we calculated and reach a steady state,
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this state will realize the fluxes and metabolite levels that lead to our optimal state.

7.5 Translating enzyme efficiency into cell growth rate

In the section above, we learned how to optimize metabolic states for a maximal
overall enzyme efficiency. Why is this quantity relevant? One reason is that overall
enzyme efficiency, according to some simple reasoning, determines the cell's growth
rate. If microbes compete by growing fast, their fitness is largely determined by their
momentary growth rate in their respective environment. In such environments, the
biomass/enzyme efficiency will be under selection, which makes it one of the impor-
tant objective functions in this book. If higher enzyme efficiency means higher growth
rate, and if we have a conversion formula for this, we can plot the “growth rate” of
the different EFMs instead of “overall enzyme efficiency”.

Enzyme-efficient metabolic states allow us to compute specific biomass production
rates, i.e. the rate of biomass production per metabolic enzyme invested. If biomass
consisted only of enzymes, the ratio "enzyme production rate per total enzyme de-
mand” would give us directly the growth rate. However, biomass does not only consist
of metabolic enzymes, but includes ribosomal enzymes, RNA, DNA, lipids, and other
compounds. Therefore we need a formula for converting biomass/enzyme efficiency
into cellular growth rate.

Mathematically, a cell's growth rate is given by u = vsu/ssn, Where vy, is the biomass
production rate (biomass produced per cell volume and time) and s\ is the biomass
amount per cell volume. If a cell contained nothing but metabolic enzymes (more
precisely, the enzymes described in our model), the biomass/enzyme efficiency rpy =
vem/hen, WOUID directly describe the cellular growth rate. Since that is not the case, we
need to convert »,,, t0 ssy. The metabolic protein fraction decreases with the growth
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Figure 7.4: Optimal growth rates of the two EFMs for different levels of the external
metabolite c.., computed using Equation (7.10) from the enzyme demands (at a unit
biomass production rate) shown in Figure 7.2 (C).

rate, leading to a hyperbolic dependency of the growth rate on the biomass produc-
tion rate (Figure 7.3). We may use the empirical approximation he./ssm = spror(a — b 1),
where x,.. = 05 is the fraction of protein mass within the cell dry mass and the pa-
rameters « = 027 and » = 021 were fitted to describe the metabolic enzyme fraction in
proteomics data, assuming a linear dependence on growth rate [19]. This yields the
conversion formula (see also [191]):

i = —brot M (7.10)

henz +b Rprot VBM

This formula has been used to convert the minimal enzyme cost per biomass flux for
different external concentrations in the toy model (Figure 7.2c) to the maximal growth
for each EFM (Figure 7.4).

7.6 Application to central metabolism in E. coli bacteria

In the previous sections, we saw that finding enzyme-efficient metabolic states can
be done by iterating through all possible EFMs and performing the enzyme cost min-
imization on each one. We demonstrated it on a toy model comprising only 3 EFMs.
In Wortel et al. [191], this method was scaled up and applied to a more realistic model
covering the central metabolic network, as shown in Figure 7.5A. For this larger net-
work, there are 1566 biomass-generating EFMs. Each reaction is assigned to a single
enzyme along with its molecular weight, &%, kv, and a,¢~, and follows the generalized

cat’t

factorized rate law as in Equation (7.2). These parameters are listed in Appendix sec-
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Figure 7.5: Model of central metabolism in E. coli bacteria. (A) The metabolic network
of the E. coli model used by Wortel et al. [191]. Note that only for the purpose of
visualization, the network shown here has been condensed by lumping consecutive
reactions that are fully coupled (e.g., the reactions between DHAP and PEP are now
represented by a single arrow). Furthermore, some groups of metabolites have been
merged to a single node: H6P - representing the hexose phosphates G6P, F6P, and
FBP; T3P - representing the triose phosphates G3P and DHAP; P5P - representing the
pentose phosphates R5P, X5P, and Ru5P. The metabolites that are direct substrates
of the biomass reaction are marked in bold. (B) A Venn diagram showing statistics of
biomass-producing EFMs in the model and their reliance on oxygen.

tion B.1, and the full procedure for obtaining them is described in Wortel et al. [191],
along with other model parameters.

First, Wortel et al. [191] wanted to study the effect of environmental conditions on
the growth rate of E. coli, and see whether the model would be able to recapitulate
empirical phenomena. The external glucose concentration was set to 100 mM and
oxygen levels were varied between 1 . and 10 mM. They selected 4 flux modes as



representatives (the EFMs max-gr, ana-lac, and aero-ace, and exp, which is based on
experimentally measured fluxes; the flux distributions are shown in Figure 7.6), and
calculated their predicted growth rates in each condition, using Equation (7.10). The
results are shown in Figure 7.7. When focusing on a single flux mode, one can see
that as the oxgyen level increases so does the growth rate. The increase saturates at
some point, which depends on the flux modes and on the kinetic parameters in the
model. Indeed, it has long been known that growth rate dependence on a limiting
substrate concentration has this specific shape - a relationship generally called the
Monod curve.

In this specific example, itis interesting to see the Monod curves of the different EFMs,
and try to understand the differences. First, the EFM called ana-lac (red curve), is a
flat line. This makes sense because cells that use this EFM do not utilize the oxidative
phosphorylation system and therefore do not require oxygen at all for growth. max-
gr, on the other hand, is very sensitive to the level of oxygen mainly because of the
high flux going through oxidative phosphorylation. Itis also the EFM with the highest
growth rate in standard oxygen levels (0.21 mM), even when taking all the other ~1500
EFMs into account (not shown here).

Instead of screening only external oxygen levels, we can also screen several model
parameters and compute "winning EFMs”, their enzyme demands, and the result-
ing growth rates for our parameter combination. By screening glucose and oxygen
concentrations, we obtain the Monod landscape shown in Figure 7.8 (A). Just like in
Figure 7.7, there are distinct parameter regions in which optimal growth is reached
by specific EFMs. While the max-gr EFM remains best when glucose and oxygen levels
are high, at low oxygen levels we see a large number of different EFMs, one of them
ana-lac (see the EFM phase diagram in Figure 7.8 (B)). More results for this model
(fluxes plotted in the EFM phase diagram and in flux space, as well as ideal and real
enzyme costs for all EFMSs), are shown in Appendix Section B.2.

7.7 Concluding remarks

In this chapter we considered the metabolic network of a cell - and enzyme levels,
metabolite concentrations, and fluxes as the state variables - and studied its maxi-
mally efficient states. Finding such states can be difficult because fluxes, metabolite
concentrations, and enzyme levels are tightly coupled: metabolite concentrations de-
termine enzyme efficiencies, enzyme efficiencies determine optimal enzyme levels,
and enzyme levels determine fluxes and metabolite concentrations, which in turn
determine enzyme efficiencies. To find an optimal state, all variables need to be opti-
mized at the same time, which is a non-linear optimality problem with (possibly) many
local optima. In small toy models, solutions can be found numerically, but for large



detailed models, the computational effort becomes enormous. Instead of simplify-
ing the problem (as in the previous chapters) we here used the insight that (in models
without extra flux bounds) the optimal solutions must be EFMs.
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Problems

Computer exercises for this chapter can be found on the book website.

Problem 7.1 Effect of oxygen concentration
Consider the model in Figure 7.2. What would be the qualitative effect of a change
in oxygen concentration on the enzyme cost of the three EFMs and on the choice of
the optimal strategy?

Problem 7.2 Effect of external metabolites
Consider the modelin Figure 7.2 under standard conditions (Box 7.A and c..] = 1, such
that EFM2 is optimal, and EFM1 second best (remember that the higher the enzyme
cost, the less optimal the EFM). What might happen when we gradually increase the
concentration r.,)? What is the qualitative effect on the enzyme cost of the three
EFMs?

Problem 7.3 States of maximal growth rate
Consider the following small toy network:

S
N

3,7V,

We want to optimize the specific pathway flux for the production of p (which is vs/e..,
where we assume all enzymes to have equal costs: i.e. e = e +e; +¢;) at Steady
state. We assume mass-action kinetics, meaning the rate is the enzyme concentra-



tion times the forward rate constant times the substrate minus the backward rate
constant times the product: » = ¢(x*s - kp). Unless mentioned otherwise, we use the
values s, =10, kf =2, ky =1, kf =3, k; =1, kf = 1, k5 = 0.1, p = 0 (CONcentrations are denoted by
lower case letters).

(a)
(b)

(€)

(d)

(8

(h)

(i)

(k)

Write out the rate equations for all three rates in terms of the parameters and
the concentrations.

Give an expression of the total enzyme concentration in terms of fluxes and the
metabolite concentrations s, and .

Find the concentration of X for which the specific flux vs/e.. is maximal for ¢ =o
and s, = 10, and also give the corresponding value of »,. HINT: Is is easiest to set
e =1 AN Maximize v, replacing ¢, using the equation for the total enzyme cost
and the steady state assumption.

Find the concentration of X for which the specific flux v;/e, is maximal for e, = o
and s, = 10, and also give the corresponding value of v, /e

Find the concentration of X for which the enzyme cost is minimal for ¢, =, and
s1 = s, = 10, and also give the corresponding value of v, /e..

What was the best distribution of enzymes from the three options above for
51 =107

Find the concentration of X for which the enzyme cost is minimal for ¢, =0 and
s1 =50, and also give the corresponding value of v,/e,...

Find the concentration of X for which the enzyme cost is minimal for ¢, =0 and
s1 =50, and also give the corresponding value of v;/c..

Find the concentration of X for which the enzyme cost is minimal for ¢, = ¢, and
s1 =50, and also give the corresponding value of v,/e....

What was the best distribution of enzymes from the three options above for
s1 =507

Interpret the results from this problem in light of the proof shown in this chapter
about the optimal specific flux being attained at an EFM.
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Figure 7.8: Monod landscape - (A) Similar to the 1-dimensional Monod curve (Figure
7.7), the graphics shows the cell growth rate as a function of external glucose and
oxygen concentrations, predicted from the E. coli model in Figure 7.5. The growth
rate of the “winning” EFM - i.e. the one with the highest growth rate under the glucose
and oxygen levels matching the » and y values - determines the height of each point.
Each color represents the region in which a certain EFM is the “winning” one. (B) EFM
phase diagram. The same plot as in (A), seen from above. The “winning EFMs” form
a sort of phase diagram. At the boundary between every two regions, the two EFMs
lead to the same growth rate (similar to the intersections between curves in Figure
7.7). The EFMs from Figure 7.6 are marked by their names. Note that the colors in
this figure do not match the previous colors marking these select EFMs.



Chapter 8

Principles of cell growth

Ohad Golan, Hollie J. Hindley, Hidde de Jong, Markus Kébis, Elena Pascual Garcia, and
Andrea Weil3e

Chapter overview

o A comprehensive description of fundamental growth laws in microbial growth,
elucidating the core principles that govern biological growth patterns.

o A detailed exploration of the contrasts between coarse-grained and fine-grained
modeling is presented, offering insights into the varying levels of detail that each
approach encompasses.

o Athorough breakdown of the key assumptions in the modeling of metabolic sys-
tems is provided, underlining the foundational premises that are crucial for ac-
curately representing these complex systems.

o The process of deriving fundamental growth laws by modeling key assumptions
is meticulously demonstrated, enabling a clear understanding of how theoretical
constructs translate into biological realities.

8.1 Introduction

A key feature of living systems is that they are able to grow and reproduce. The re-
productive success in a given environment defines the fitness of a living system. The
study of the growth of bacteria and other microorganisms is crucial for better under-
standing their capacity to cause diseases in humans or for better exploiting their use
in biotechnological or environmental processes. Beyond their interest for a variety of
applications, bacteria and other microorganisms have shown themselves ideal model
systems for investigating fundamental questions on the relation between growth, fit-
ness and characteristics of the environment.

One of the first to systematically and quantitatively study the growth of bacterial cul-



tures was Jacques Monod in the 1940s. He performed so-called diauxic growth ex-
periments, in which bacteria were cultured in a medium containing two different lim-
iting carbon sources. He showed that the bacteria first deplete one carbon source
before starting to assimilate the second carbon source. The order in which the pri-
mary and secondary carbon source were consumed was determined by the growth
rate they support: the preferred carbon source allows the culture to grow at a higher
rate. Further work on the molecular basis of diauxic growth led to the discovery that
cells inhibit the expression and activity of functions for the use of secondary carbon
sources when a preferred carbon source is present, a global regulatory mechanism
known as carbon catabolite repression [195, 196].

Monod characterized bacterial growth by means of batch culture experiments in a
well-defined growth medium allowing bacteria to reach a state of balanced growth,
where the accumulation of biomass can be described by a single constant, the ex-
ponential growth rate. Together with the chemostat, a device allowing continuous
culture of microorganisms at a predefined growth rate [197], these methods have
become standard in microbial physiology. They notably underlie the discovery of a
number of so-called growth laws, relating the growth rate to a variety of properties of
the physiology of growing bacteria. The growth laws are conserved across different
organisms and a broad range of experimental conditions. Here, we list three well-
known growth laws [198, 199]:

1. Dependency of the growth rate on nutrient availability [200]: In his characterization
of bacterial growth, Monod discovered the first growth law. He observed that the
growth rate of bacteria depends upon the nutrient concentration in the medium
in a hyperbolic fashion (Fig. 8.1A).

2. Correlation between growth rate and nutrient uptake rate [201]: In continuous cul-
tures, the growth rate was shown to vary linearly with the nutrient uptake rate
(Fig. 8.1B). The slope of this linear relation is called the biomass yield and the off-
set the ‘maintenance energy’, as it is assumed to be derived from the energy spent
on processes required to maintain the basic processes of the cell, in the absence
of growth [202].

3. Correlation between growth rate and cellular composition [203, 204]: In 1959, Schaecht
Maalge and Kjeldgaard showed that RNA, DNA and the number of nucleiin Salmonell
typhimurium linearly correlate with the growth rate. Later, it was further shown that
other physiological parameters, such as the mass fraction of ribosomes in growing
populations, also linearly correlate with the growth rate [204] (Fig. 8.1C). Initially,
it was believed that the correlation between ribosomal mass fraction and growth
was strictly positive, however, Scott etal. [205] showed that when growth is inhib-
ited through translation-inhibiting drugs, growth rate and ribosomal mass fraction



(A) (B) (©)

25 T T T T 1

0.8 T T T T
20 .

1.2 0.6 | i

15 |+ .

0.8 04 n 10 .

ot
T

0.4 0.2 | i

05 1 15 2 25 3

Growth rate [1/h]

0
0 01 02 03 04

Growth rate [1/h]

Growth rate [1/h]

0

Glucose uptake [g 4t 1]
Ribosomal protein fraction

Glucose conc. [10-4Mm]

Figure 8.1: Bacterial growth laws - (A) Monod growth law: growth rate dependency
on nutrient availability (data from [200]). (B) Correlation between growth rate and nu-
trient uptake rate (data from [206]). (C) Correlation between growth rate and cellular
composition (data from [204]).

exhibit a negative (near-)linear relation.

The conserved nature of the growth laws has led scientists to ask whether there are
fundamental principles governing bacterial growth. To answer this question, differ-
ent types of mathematical models have been developed. One approach aims at inte-
grating all known molecular constituents of the cell and the reactions involving these
constituents into a big model, an in-silico copy, or ‘digital twin’, of the cell. Such mod-
els, known as fine-grained models, can be useful to predict emergent phenotypes,
but they are difficult to construct and maintain, and their complexity makes it hard
to grasp certain principles that underpin growth. In this chapter, we will focus on
coarse-grained models of bacterial growth. Rather than assembling individual reac-
tions in a bottom-up manner, these models are based on the top-down definition
of a limited number of basic cellular functions or processes involved in growth, de-
scribed by appropriate macro-reactions (Fig. 8.2). Coarse-grained models are smaller
and therefore easier to construct and analyze. The lack of molecular detail can make
their predictions less accurate, but their simplicity allows a focus on how basic cellular
functions and their interactions shape bacterial growth.

How much detail is included in a model depends on the specific scientific question
asked, and similarly, models may vary in their underlying assumptions. Oftentimes,
assumptions are based on biochemical principles governing intracellular reactions,
on physical limitations faced by cells, on optimality principles, or on a combination of
these.

In this chapter, we show how to understand and, ultimately, how to develop coarse-
grained models of cellular growth. We present a number of coarse-grained models
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Figure 8.2: Coarse-grained modeling of cellular growth - Compared to genome-scale
FBA and whole-cell models (Chapters 4, 5, 10, coarse-grained models zoom out of the
molecular detail and focus on key processes.

with increasing levels of granularity. The models have been chosen to also represent
a variety of commonly used assumptions, for example, based on growth rate max-
imization or on phenomenological or mechanistic constraints. Despite these differ-
ences, however, models we discuss generally recover the basic growth laws, and we
show how the latter can be derived from solving two of the simplest coarse-grained
models. The goals of this chapter are:

1. To enable the reader to understand and analyze any model of microbial growth
from the literature.

2. To enable the reader to develop their own coarse-grained model of a metabolic
system that is directed at their specific scientific question.

3. To provide the reader with a new perspective on modeling of complex systems and
specifically the biological cell.

8.2 Fundamental modeling assumptions of microbial gro

The models of microbial growth we consider here are based on fundamental assump-
tions that follow from biochemical and biophysical constraints. In this section, we dis-
cuss and mathematically define assumptions that are found, explicitly or implicitly, in
most coarse-grained models of microbial growth. The assumptions are formulated
in an abstract manner to hold for any self-replicating biological system, irrespective
of the specifics of the underlying molecular mechanisms. In the next section, we use
these assumptions to construct increasingly complex models of microbial growth and
show how the latter can be used to derive the experimentally observed growth laws
presented in the introduction of this chapter.

The growth of microorganisms consists of the uptake of nutrients from the envi-
ronment and the conversion of these nutrients into new microbial cells through a
number of coupled metabolic processes (Fig. 8.2). This description brings out the
self-replicating or autocatalytic nature of microbial growth: cells transform nutrients
from the environment into new cells. In what follows, we consider growth on the pop-
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- (A) A self-replicating system. (B) The simplest description of a metabolic system:
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ulation level, that is, an increase in the total amount of cells or, equivalently in many
situations, an increase of the biomass of the population. This leads to the well-known
model of microbial growth, where the change in biomass over time is proportional to
the amount of biomass (Fig. 8.3A):

dB

7 =B, (8.1)
where ¢ [h] denotes time, 5 in gram dry weight [gDW] the biomass and i [1/h] the
population growth rate.

If the growth rate is constant, the solution to Eq. (8.1) describes exponential growth
of the biomass:
B = By M, (8.2)

where 5, [gDW] is the initial biomass at « =o.

The growth rate is a key parameter that is often used as a proxy for the fitness of mi-
croorganisms. It is dependent on the metabolic processes, that is, how a cell utilizes
the nutrients to synthesize new biomass (self-replication). The simplest description of
metabolism is that it takes up a nutrient, breaks it down into metabolites (catabolism),
and then utilizes these metabolites to produce new biomass (anabolism) (Fig. 8.3B).

Catabolic and anabolic processes comprise a variety of biochemical reactions that are
carried out by different sets of proteins and enzymes. The reaction rates of these pro-
cesses are limited biochemically and biophysically. We formulate these limitations as
modeling assumptions and define them as mathematical constraints, four of which
we briefly review below.

8.2.1 Conservation of mass and quasi-steady-state assumption

Dry biomass is often a more readily measurable quantity than cell volume. The latter
relates absolute abundances of cell components to their intracellular concentrations.



Yet, because bacterial cells have been observed to maintain approximately constant
cell density across various growth conditions [207, 208] (though transient exceptions
have been observed at the single-cell level [209]), biomass can be regarded a proxy for
volume and is therefore assumed to be proportional to cell volume in many growth
models. All models considered in this chapter are based on the assumption of con-
stant cell density and approximate the concentration . of a cellular component x (we
use normal font for cell components and italic font for their concentrations) by its
absolute abundance divided by the cell mass.

According to the law of mass conservation, the change of mass is equal to the inflow
minus the outflow of mass. As a consequence, the change in concentration of a cell
component, for example a metabolite pool, is determined by the sum of the rates
of the reactions consuming and producing this cell component (Fig. 8.4A). The mass
balance for any cell component x is given by the following equation:

®- > v = D (8.3)
where r, ., denotes the rate of the reaction converting cell componenty into cell com-
ponent x (production of x), and -, the rate of the reaction converting cell component
x into cell component k (consumption of x). Typically, cell component concentrations
have units mg/gDW or mmol/gDW, so that rates of metabolic reactions are expressed
in units mg/(gDW h) or mmol/(gDW h).

In the simple system shown in Fig. 8.3B, there are two reactions: one converting the
nutrient source N into a metabolite Xand one utilizing the metabolite for the synthesis
of biomass. According to (8.3), the flux balance of metabolite pool = is given by dz/dat =

Tn—sxz —Tz—B.

A key assumption is that intracellular concentrations are in quasi-steady state. This
means that cell component pools remain constant:

& ~o, for all cell components . (8.4)

The quasi-steady-state assumption simplifies the mathematical analysis of the sys-
tem significantly and holds for balanced growth of the microbial population. In this
chapter, we focus mostly on situations in which the quasi-steady-state assumption
applies, but also give an example of a model with metabolic dynamics. In metabolic
modeling, the rates of reactions at steady state are called fluxes, denoted by the sym-
bol ;. With the quasi-steady-state assumption, Eq. (8.3) becomes

ZJsz = ZJwak (8'5)



that is, for every cell component, the sum of production fluxes equals the sum of
consumption fluxes. In the example system, we have J, ., = J, 5.

8.2.2 Proteome allocation assumption

The biochemical reactions breaking down nutrients into intracellular metabolites, and
the reactions utilizing these metabolites for the synthesis of new biomass, do not oc-
cur spontaneously. The reactions are catalyzed mostly by proteins complexes, in par-
ticular metabolic enzymes and ribosomes. In coarse-grained models, well-defined
sets of biochemical reactions are grouped together into macro-reactions. The cell
components that are necessary to catalyze the individual steps of a macro-reaction
are grouped together into a corresponding so-called proteome sector. A proteome
sector includes mostly proteins that catalyze metabolic reactions but also ribosomes
catalyzing the reaction of protein biosynthesis. Proteins constitute most of the biomas:
of the cell [210]. Therefore, as a first approximation, the sum of the proteome sectors
equals the total biomass of the growing population measured in units of 4 (Fig. 8.4B):

Y P=B, (8.6)
re{z—y}

where p, ,, is the proteome sector catalyzing the macro-reaction that transforms cell
component x into cell componenty. The proteome sectors as defined above are ex-
tensive quantities, summed over the entire growing population, like the total biomass
B. For the models, we are rather interested in intensive quantities, the amount of a
proteome sector relative to the total amount of biomass (protein), corresponding to
protein concentrations or protein fractions. Dividing the left-hand and right-hand
sides of Eq. (8.6) by B, we thus obtain:

Y op=1 (8.7)
re{z—y}
where j, ., is the fraction of the proteome converting x into y, defined by », ., = r..,/B.
Proteome fractions are dimensionless and sum to one.

In the simple example system in Fig. 8.3B, we distinguish two macro-reactions: a
catabolic reaction and an anabolic reaction (biomass synthesis). We therefore define
two proteome sectors, corresponding to enzymes and ribosomes, respectively, with
fractionsp, .. andp, ., respectively. In later examples in the chapter, the catabolic and
anabolic processes are further broken down into smaller macro-reactions and so are
the proteome sectors.



8.2.3 Mathematical description of reaction fluxes

The rate at which a reaction is converting one cell component, e.g., a metabolite, into
another is determined by the proteome fraction, the concentrations of the substrates
of the reaction and possible regulation by other cell components in the system. While
mass-action kinetics provide a principled framework to develop rate equations for
biochemical reactions, in practice, various approximations based on mechanistic as-
sumptions are often used to obtain simplified equations [211]. Below there are a few
examples of rate laws defining the fluxes in coarse-grained models:

1. Excess substrate and no allosteric interactions. The simplest relation of the flux s to
the relevant proteome sector is linear, such that

Jm%y = Pz—y Bmﬁyv (8‘8)

where 3,.,, is @ parameter describing the efficiency of proteome sector »,,, in gen-
erating a flux from = to 4. This expression assumes substrate x is in excess and
disregards any regulation of the flux by allosteric interactions of the enzymes and
other cell components.

2. Limited substrate and allosteric interactions. A more complex relation is obtained
when the substrate is in excess and allosteric interactions involving a cell com-
ponent n play a role in the modulation of the flux. The expression of the flux is
multiplied by two regulatory functions f(z) and ¢») describing the modulation of the
flux by the substrate and the allosteric cell component, respectively:

Jz—>y = Pz—y ﬂr—w f(x)g(n) (8'9)

It is important to note that that both ) and 4») return values between o and 1, and
that the flux remains linear in the proteome fraction. Typically, a Michaelis-Menten
relation is taken for the effect of the concentration of substrate x on the flux, such
that f(@) = 2/(k..,+2) (Fig. 8.4D). When the concentration = is in excess, such thatz > &, .,,
the function fz) becomes approximately 1. Other types of regulatory functions can
be used depending on the macroreactions concerned and the growth conditions.

8.2.4 Volume and surface area assumptions

The intracellular volume as well as the surface area of the cell are limited (Fig. 8.4C).

Obviously, the total volume occupied by the components of the cell, in particular
proteins, cannot be larger than the cell volume. As such, the total volume of the cell
is larger than the sum of the volume of the proteome sectors that are functioning
inside the cell plus some constant volume taken up by other cell components such as



DNA. This gives the following constraint:

Cellvolume> Y po 4w (8.10)
re{z—y}
where «, ,, is the volume of proteome sector .., and v is some constant volume filled
by other cell components. Similarly, the total surface occupied by proteins and lipids
making up the cell membrane has to equal the surface area of the cell. This constraint
gives:
Cell surface area> > s+l (8.11)

re{z—y}

where s, ., is the surface area of proteome sector ..., and i, is the surface area of the
lipids in the cell membrane.

8.3 Growth laws derived from basic modeling assump-
tions

In the following section, we will build upon the fundamental assumptions discussed
earlier to construct models of microbial metabolism with increasing complexity. We
will introduce additional assumptions as necessary to solve each model, and use
them to derive one of the growth laws presented in the introduction of this chapter
that have been experimentally observed in microorganisms.

Example 1 - Basic metabolic system with saturating substrate concentrations

In this example, we will use the basic metabolic model to derive the relationship be-
tween the concentration of ribosomes and the growth rate in microorganisms.The
most basic metabolic model involves the uptake of a single nutrient from the en-
vironment, the catabolism of that nutrient into a metabolite x, and the use of this
metabolite in anabolic processes to synthesize biomass (Fig. 8.3B). This model con-
sists of two reactions and two proteome sectors. According to the proteome allo-
cation constraint, the sum of the proteome sectors must sum to one (according to
Eq. (8.7)):

Pnoz + Pesp = 1. (8.1 2)

For simplicity, we assume that the rate of each reaction is proportional to the alloca-
tion of the proteome to that reaction (according to Eq. (8.8)), so that:

Insz = PnoaPnoa; JosB = Pe—BBz—B- (8"I 3)

The mass conservation constraint, with the assumption of a steady state for metabo-



(A) Conservation of mass and steady state (B) Proteome allocation

membrane

‘b biosynthesis
catabolism oocell
cell m biosynthesis

Component ﬁ tb
pool amino acids
_\ biosynthesis

glucose

d cell component uptake

= incoming flux - outgoing flux =0

dt
pcatabolism + pbiosynthesis + ...+ puptake =1
(C) Volume and surface area (D) Reaction fluxes
memprane A
lipids Z
. membrane
catabolism biosynthesis

Px—y = 0.3

amino acids - |

biosythesis | |
; ( ) l Py =02
X N B —_—

| cell = > —t

‘ biosynthesis S |
£D I Pxwy = 0.1
X : o

electron _~ |

?JlutC;lfee w 5 —,__// transport | o>
P chain non-saturated saturated substrate
PcatabolismVcatabolism T «++ + Vg = cell volume range range concentration
S

pGIucoseUptakeVGIucoseUptake + ...+ So = ceII Surface area Jx_.y = Px_.y S+—k
m

Figure 8.4: Fundamental assumptions in the modeling of microbial growth - (A) Con-
servation of mass and steady-state assumption: The change in concentration of a cell
component is equal to the incoming flux minus the outgoing flux. At steady state, the
concentration of the cell component is constant. (B) Proteome allocation assumption:
the proteome is divided into different proteome sectors. The number of proteome
sectors in a model depends on the model granularity. The sum of all the proteome
sectors always equals 1. (C) Volume and surface area assumption: The volume of the
cell is limited and is filled with intracellular cell components such as proteins. The
sum of the volumes of the intracellular cell components is equal to the cell volume.
Similarly, the surface area of the cell is limited and contains membrane cell compo-
nents such as lipids. The sum of the surface areas of membrane cell components is
equal to the cell surface area. (D) Example of flux assumption according to Michaelis-
Menten kinetics: the reaction » — y is carried out by proteome sector p, .,. The maximal
rate is reached for saturating substrate concentrations and is determined by the size
of the proteome sector.

lite x, gives (according to Eq. (8.5)):

Tnse = Joos- (8.14)

Finally, due to conservation of mass, the biomass synthesis flux equals the growth



rate:
A=Jusp. (8.15)

Solving equations (8.12)-(8.15) gives a prediction for the growth rate:

A\ = ﬂweBﬂn—m (8_1 6)

Solution (8.15) for the growth rate is based solely on mechanistic assumption - that is,
assumptions that are based on the mechanistic properties of the biochemical reac-
tions in the cell. In this case, that is that the fluxes are linear to the relevant proteome
sector. Because we have taken a steady state approximation and the rates of the two
reactions must be equal, the growth rate is determined by the relative values of the
catalytic constants.

Using this model, we can now derive the relationship between the concentration of
ribosomes and the growth rate. Combining Eq. (8.12) and (8.14) gives:

A =DsBBzs>B (8-,I 7)

This shows that the growth rate is linearly proportional to the anabolic sector. Given
that the anabolic sector is composed mostly of ribosomes, this fits well with the ex-
perimentally observed linear relationship between the concentration of ribosomes
and the growth rate, which was first described by Schaechter et al. [203] and later
confirmed by Bremer et al. [204]. It is important to notice that this relation is due to
the assumption that the biomass synthesis flux is linear in the ribosomal proteome
sector.

In summary, we have derived the linear relationship between the concentration of
ribosomes and the growth rate using only basic assumptions about the properties of
the biochemical reactions in the cell and the conservation of mass. This relationship
is one of the experimentally observed growth laws in microbial systems.

Example 2 - Growth on two nutrient sources

In this example, we consider a metabolic system that grows on two different nutrient
sources, », and », Fig. 8.3C. We use the fundamental assumptions outlined in Section
1.2 and an additional assumption of growth-rate maximization to demonstrate how
cells may exhibit catabolite repression - a phenomenon in which cells utilize only one
nutrient even when multiple nutrients are available in the environment [196].

The metabolic system in this example catabolizes both nutrient sources to the same
metabolite x, but at different efficiencies. The anabolic reaction is the same as in
Example 1. There are now three proteome sectors in this model: two for catabolism



of the nutrients and one for anabolism. Thus, according to the proteome allocation
constraint (Eq. 8.7), we have:

Pni—z +pn2—>w +pw~>B =1 (8.1 8)

As before, we assume a linear correlation between reaction rates and proteome sec-
tor fractions (according to Eq. (8.8)). The different efficiencies of the catabolic sectors
is represented as 5., > sn,. Applying the mass conservation assumption for metabolite
X, combined with the steady state assumption, gives

Jnl—m"'Jng—m = Jx—B- (8.1 9)
The growth rate is again equal to biomass synthesis flux, as in Example 1:
A= Jop. (8.20)

Given that there are more variables than constraints in this example, solving Egs.
8.18 - 8.20 reveals that there is no unique solution for the growth rate, but rather a
solution space with one free variable p,, ..:

_ BeoBBnama Prisa = Bnamse
T Bors + B 7 ([)’ngtﬁnm)BHB' (8.21)

The solution shows that the metabolic system has a decision to make regarding how
much of the proteome to invest in sector »,, ... To solve this system, we introduce an
additional assumption of growth rate maximization - that is, to maximize its fitness,
the metabolic system maximizes the growth rate in a given condition. In this example,
to maximize the growth rate, the cell uses only the more efficient catabolic system,
setting p., .. = 0 and the solution for the growth rate is as in example 1. The model
predicts that the cells will only utilize the nutrient source with the higher efficiency,
even if both nutrient sources are available in the environment. This solution fits the
catabolic repression experimental result presented in the introduction in which in
which the metabolic system represses the use of a less efficient nutrient source in
favor of a more efficient one.

Example 3 - Multiple energy generating pathways

In this example, we focus on a classic question in cell physiology known as overflow
metabolism [212, 213]. Within the cell, two primary energy-generating pathways ex-
ist: the oxygen-requiring respiration pathway and the oxygen-independent fermen-
tation pathway. It is established that, in the presence of oxygen, the respiration path-
way fully oxidizes available nutrients, rendering it more nutrient-efficient in contrast
to the fermentation pathway [214]. Utilization of the fermentation pathway is marked



by the secretion of byproducts, such as acetate in E. coli or ethanol in yeast, making
it inherently wasteful. Intriguingly, experimental observations reveal a counterintu-
itive phenomenon: even under oxygen-rich conditions, cells often opt for the less
efficient fermentation pathway. Under growth rates surpassing a critical threshold,
the secretion rate of byproducts, indicating an increased reliance on the fermenta-
tion pathway, exhibits a linear rise [147, 215, 216]. This counterintuitive preference
for fermentation has long presented a profound question in bacterial physiology.

Based on previous studies [147], we present a coarse-grained model to elucidate this
observed phenomenon (Fig. 8.3D). The model postulates steady-state growth on a
single nutrient source, denoted as ». This nutrient is taken up from the environment,
and channeled towards biomass through the proteome sector p,.,. Additionally, it
serves as a precursor for energy generation, either through the respiration pathway
catalyzed by proteome sector »,.. or the fermentation pathway catalyzed by pro-
teome sector ,,.,. Thus, according to the proteome allocation constraint (Eq. 8.7),
we have:

Pn—B + Pnor +pn—>f =1 (8.22)

Diverging from earlier models presented in this chapter, our model necessitates two
precursors for biomass generation: energy and a carbon precursor. Carbon assimila-
tion is coarse-grained into the biomass generation pathway » - 5, while energy is gen-
erated through the energy-producing pathways of respiration » - » and fermentation
n - f. Consequently, two mass balance equations are requisite - one for carbon flux
and another one for energy flux. The carbon mass balance equates the carbon uptake
rate coming from nutrient uptake ¢ to the carbon fluxes utilized for cell biosynthesis
J¢. 5, fermentation s¢, and respiration ¢,

n—BI n—f

JTSL = JE—>B + JS—U‘ + JS—W' (8.23)

Similarly, the energy balance equation asserts that the energy generated by fermen-
tation s, and respiration 2, equals the energy utilized for the biomass synthesis

n—f

reaction J=

n—B*

JE g =JE I (8.24)

n—B T

Consistent with prior examples in this chapter, we maintain a linear correlation be-
tween reaction rates and proteome sector fractions (as per Eq. 8.8).

Both fermentation and respiration reactions utilize a carbon substrate and produce



energy, with a key distinction lying in their nutrient utilization efficiency. The ratio of
carbon utilized in these reactions to energy generated is expressed as:

Jf—w - En—W‘JS—W; Jf—m‘ - e"—>f<]7?—>f' (8‘25)

Given that the respiration pathway exhibits higher nutrient efficiency than the fer-
mentation pathway: .., > e._.;.

Concluding the model description, we incorporate the cellular requirements for growtr
precursors (energy and carbon) and the proteome. Under carbon limitation, the pro-
teome fraction dedicated to cell biosynthesis », ., exhibits a linear growth rate depen-
dence [147, 217, 205, 218]:

PnsB = Po + OnsBA. (8.26)

The growth rate correlates with the flux of growth precursors, adhering to a fixed
stoichiometry of the metabolic network [219, 220]:

JE =g\ JO, L =ocA (8.27)

Another key assumption of the model posits that, while the respiration pathway is
more nutrient-efficient, utilizing less nutrients per energy unit generated, the fermen-
tation pathway is more proteome-efficient, requiring a smaller proteome fraction per
energy unit generated. This assumption is embodied in the efficiency parameters of
the reaction fluxes: g...; > ...

To validate the efficacy of our model in capturing the experimentally observed linear
increase in acetate secretion with high growth rates, we endeavored to predict ac-
etate secretion as a function of growth rate. The acetate secretion rate is governed
by the flux through the fermentation pathway, represented by J.. - s..7¢,,, where s,. is

determined by the involved stoichiometry. Solving Eqs 8.22 - 8.27 for acetate secre-
tion yields an expression that increases linearly with the growth rate:

Joe = Bi(pi — Moo + ). (8.28)
€n—f BZE*)’I"
where s, = == and p, = 1-p. The negative value of s, arising from the higher

proteome efficiency of the fermentation pathway, results in a positive slope and a
negative intercept on the s,.-axis. The model provides a good quantitative fit to the
experimental observation [147]. The critical growth rate x.,, signifying the growth rate
at which the cell activates the fermentation pathway, occurs when .. = o, giving x,. =
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It is crucial to highlight the key assumption underlying this solution, which lies in the
relative efficiencies of the energy-generating pathways. At high growth rates, the cell
encounters inhibition not only in its ability to rapidly extract energy from the nutrient
but, more significantly, it is constrained by the available proteome. Consequently,
the cell shifts to utilize the more efficient fermentation pathway.

It is also noteworthy to identify the assumptions overlooked by the model. For in-
stance, the model excludes the proteome sector for nutrient uptake, coarsely inte-
grating it into the biomass biosynthesis and energy generation pathways. While this
assumption is reasonable for growth on a single nutrient, a model considering multi-
ple nutrients with varying uptake efficiencies necessitates the inclusion of proteome
sectors for nutrient uptake. Further analysis of the model can be found in [147, 221].

8.4 Mechanistic links between cellular trade-offs, gene
expression, and growth

This section presents a coarse-grained cell model that describes the dynamic adap-
tation of global mechanisms driving the growth of bacterial cells. Compared to the
models previously described in this chapter, this model is dynamic, i.e. not based on
steady-state assumptions, and it has a higher level of granularity. It is also based on
explicit mechanisms, which allows extension with additional mechanisms of interest,
for example, the effects of antibiotics or of heterologous gene expression on cellular
growth.

Energy metabolism and protein production are the main pillars of biomass produc-
tion and cell growth, and form the basis of the growth model. A set of ordinary dif-
ferential equations describes the dynamic interplay of (i) nutrient internalization and
catabolism, (ii) transcription, and (iii) and translation (see Fig. 8.5). A key assumption
of the model is that biomass is dominated by proteins, and so the cellular growth
rate corresponds to the total rate of protein synthesis via translation. All processes
are part of a feedback loop in which the final protein products act as catalyzers of the
model reactions, creating a self-replicating system.

In its basic form, the growth model includes 14 intracellular variables: internal nutri-
ent, s; energy molecules, «; and four types of proteins along with their corresponding
free (m,) and ribosome-bound mRNAs (.,). Of the four types of proteins considered,
there are three groups of catalyzing molecules: transporters (c,), metabolic enzymes
(e.) and ribosomes (»), and one group of housekeeping proteins (;). As the model does
not assume steady state, the different reactions are defined in terms of reaction rates
instead of reaction fluxes. A simplified description of the main reaction rates of the
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Figure 8.5: Schematic of the dynamic growth model - The model focuses on key cel-
lular processes: nutrient uptake, transcription and translation. Enzymes (shown in
blue and dark green) import and metabolize extracellular nutrient (shown in orange),
which yields energy (yellow). Availability of energy impacts transcription and trans-
lation, however, it is assumed that energy consumption is dominated by translation.
The different species of mMRNA compete for ribosomes (light green), and their transla-
tion consumes energy. Assuming that biomass is dominated by protein, the total rate
of translation determines the rate of growth (lower right). Four classes of proteins are
modelled: ribosomes, nutrient transporters, enzymes and other house-keeping pro-
teins (red).

model is shown in Table 8.1. For details on all reactions and parameters, readers are
referred to the supplementary information of [222]. In what follows, the focus will
be on the conceptual aspects underlying the prediction of cellular growth rate, and
some examples of model applications.

Building on the assumptions of mass balance and proteome allocation described in
Section 8.2 of this chapter, the model centers around three fundamental constraints,
namely ) a finite pool of cellular energy that fuels protein biosynthesis, (i) a finite pool
of ribosomes for which mRNAs compete for translation, and i) a finite cell mass.
As a result, the model predicts the dynamic allocation of internal resources and its
emergent impact on cellular growth rate without the need to assume growth rate
maximisation.

8.4.1 Model definitions

Growth rate and biomass synthesis Based on the assumption that biomass is dom-
inated by protein, and other contributions are negligible, the biomass s of a cell can



Description Reaction Reaction rate
Nutrient internalisation | s -, et T
Nutrient metabolism si = nsa T
Transcription @ — m, Wo gt
Ribosome binding Mg +7 4 C Ky - mary Ky - o
Translation Cyp+Nga =T +my+7 cr%‘i)

Table 8.1: Summary of main model reactions and their accompanying rates. The four
proteins represented in the model are denoted in the reactions by z, = € r.e;, .4, 7(a) IS
the rate of translational elongation, defined as 3z, and », is the average length of a

protein molecule in amino acids. The parameter », represents nutrient quality and
determines the yield of energy per catabolized nutrient.

be calculated by summing over the coarse-grained proteome,
B:anx—&—nTZcz, T ET, et em,(q, (829)

which sums over all proteins (-) and mRNA-bound ribosomes (c.), with », and », de-
noting the lengths of proteins in terms of amino acids. Equation (8.29) is equiva-
lent to the mass balance assumption described in section 1.2.1 of this chapter. As a
consequence, the proteome allocations, defined by ¢, = 2/ for z € {e,,e1,m,q} SUM tO 1,
.€. 3%, ¢. = 1.

Similar to the previous examples in this chapter (Section 8.3), the model correlates the
growth rate with biomass production, which depends on translating ribosomes and
their translation elongation rate (). Importantly, the rate of elongation depends on
the energy produced in the catabolic processes described in the model, which dynam-
ically couples protein synthesis with metabolism. Defining the number of translating
ribosomes g, -y, ¢, the change in cellular biomass over time becomes

% = y(a)R; — AB. (8.30)
The second term, B, accounts for dilution via redistribution of mass to daughter cells
at division. In homeostatic conditions, that is when g is in steady state and so < —y, it
then follows that - is proportional to the rate of protein synthesis. To define growth
dynamically,

A= JWE gy (8.31)

Setting B, to the typical biomass of a cell in mid-exponential growth ensures that cells
will have a steady-state biomass of s+ = g,

Rate of translation In actively growing bacteria, protein synthesis, and in particular
translation-associated processes, account for a major part of the energy budget. The
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Figure 8.6: Mechanistic derivation of the translational elongation rate - The model
assumes that each elongation step consumes a fixed amount of energy. In a first
step, energy reversibly binds the mRNA-ribosome complex, upon which elongation
takes place. Once the peptide reaches it's final length, the protein is released and
ribosome and mRNA are freed up.

model assumes a simplified mechanism to derive the dependence of the translation
rates on the energy levels of the cell. Itis assumed that each elongation step of trans-
lation consumes a fixed amount of energy (Figure 8.6), and further that intermediate
reactions are in quasi-steady state. It can then be shown that the net rate of transla-
tion elongation takes the form

Y(a) = 2 (8.32)

K, +a

Here, ~... denotes the maximal rate of translation elongation per ribosome and «,
the energy threshold of half-maximal elongation. For any protein ., the rate of its
translation is then given by

Va(Cqra) = O} (8.33)

Ny

where ., denotes ribosomes bound to mRNA of type = and division by », accounts for
the number of elongation steps to take place for the production of one p..

Rate of transcription The model assumes that transcription is energy-dependent,
but that its consumption is negligible compared to that of translation. Analogous to
translation, under the assumption of fixed energy consumption per elongation step,
the rate of transcription takes the same shape and is defined by

wy(a) = Wald , T ET, e, Em. (834)

0, +a

Here, the energy threshold of half-maximal transcription, e, is specific for each pro-
teome sector », which dynamically links the proteome allocations ¢. with different
growth conditions. In particular, 6. > ¢, for = + » ensures that the ribosomal sector
increases in rich growth conditions (cf. growth laws in Fig. 8.1C).

In addition, the model assumes that the transcription of household genes is neg-
atively auto-regulated to maintain near constant levels across different conditions.
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Figure 8.7: Mechanistic cell model - Experimental data (coloured circles) and model
simulations (lines) depicting the relationship between growth rate and cellular com-
position. The data describes the ribosomal fraction of the proteome ¢, in different
growth conditions. Each colour represents a different media composition, with in-
creasing drug-free growth going from red to green. The numbers within the circles
indicate the addition of the antibiotic chloramphenicol to the growth media at a cer-
tain concentration [in ], Although this antibiotic inhibits translation, an increase
in ¢, can be observed through all media compositions. The model fit to the experi-
mental data demonstrates the capacity of this model to describe two of the growth
laws. (Inset) Model simulation. Besides the composition, varying the amount of ex-
ternal nutrient in the growth media increases the steady-state growth rate up to a
saturation point. This reproduces Monod's growth law.

Therefore

we(g,a) = ezuiaa I(q), with  I(q) := H—((J}K(J)hq’ (835)

where z is the auto-inhibition function with threshold x, and Hill-coefficient x,.

8.4.2 Model predictions

The model recovers the bacterial growth laws through the automodulation of finite
cellular resources in response to changing environments. It robustly fits empirical
data (Fig. 8.7), suggesting the growth laws are an emerging property of the constraints
integrated into the modeling approach.

The model predicts a hyperbolic dependence of the growth rate on nutrient avail-
ability as described by Monod's law (Fig. 8.7 inset), derived using the conservation
of mass assumption and when s, < ¢,. Energy is created from the metabolism of in-
ternalized nutrients and determines the rates of transcription (w.(«)) and translation
(v). In the absence of antibiotics, the latter is proportional to the growth rate of
the cell as described in Eqg. (8.31). As the nutrient quality is increased, more energy



will be available and therefore more transcription will occur. Due to the relationship
between transcription thresholds (s, > ¢.), the transcription of ribosomes is increased
comparatively more, leading to an increase in the ribosomal mass fraction as seen in
Fig. 8.7.

In a fixed nutrient condition, inhibiting translation by the addition of an antibiotic
increases intracellular energy levels as fewer ribosomes can translate. Again, with
0. > 0,, this energy increase leads to a proportionally larger increase in transcription of
ribosomal mMRNAs and so to a larger 4. In contrast to the scenario without antibiotics,
fewer ribosomes can actively translate and therefore the growth rate will be lower.
Consequently, a negative dependence of ¢, and growth rate arises.

8.4.3 Applications of the model

Due the coarse-grained modeling of mechanisms and the use of non-steady state dy-
namics, the model lends itself to modular extension for a range of applications. For
example, to reproduce the negative correlation between growth rate and ribosome
content amid translational inhibition (Fig. 8.7), the model was extended to account for
inhibitory actions of the antibiotic chloramphenicol on ribosomes. Similarly, mech-
anisms that account for drugs with other modes of action could also be included.
Further, in [222], it was shown that the model can be extended to study a number of
applications:

Firstly, the model was extended to account for expression of a heterologous gene cir-
cuit and predict constraints between heterologous circuit expression, circuit function,
and the growth of the host. This has applications in areas such as chemical produc-
tion in biotechnology, where host-circuit interactions are not understood and where
synthetic circuits have to operate robustly in different growth conditions. In this con-
text, the model can serve to quantify host-circuit interactions for a more host-aware
design of synthetic gene circuits.

In another application, the model’s ability to dynamically predict growth rate emer-
gently from intracellular mechanisms was used as a proxy for evolutionary ‘fithess’ to
study when gene regulation was evolutionarily stable. This was done by augmenting
the cell model with population growth, assuming that all cells of a population are iden-
tical, and modeling competitive interactions between a resident and mutant strain.

Finally, in [222] it was shown how to use the model to study specific mechanisms
within a wider cellular context. With the example of gene-dosage compensation,
where the effects of a gene deletion can be reduced by increasing the expression
of a paralogous gene, it was shown how and when global regulatory mechanisms
caused compensation. The example showed that the constraints underpinning the



growth laws can also cause global negative feedbacks on proteins affecting growth.

8.5 Concluding remarks

In this chapter, we delved into the intricate world of coarse-grained modeling of mi-
crobial growth. We began by describing key experimental evidence that has led to
what is known as bacterial growth laws. These laws are derived from growth mea-
surements and are deemed to be conserved for various organisms. We then mathe-
matically described the fundamental assumptions necessary to model bacterial growtt
Using basic modeling systems, we showed how to analyze such a system and derive
fundamental conclusions for bacterial growth. These models reproduce the bacterial
growth laws, providing a link between theoretical models and experimental results.
Finally, we introduced a more complex model that includes various cell processes
such as translation, transcription, and the cellular growth process. Overall, this chap-
ter highlights the power of coarse-grained modeling in unraveling the complexities
of microbial growth and offers a framework for exploring a wide range of biological
questions.

While this chapter lays a foundation for research on various topics in biology, many
areas remain to be explored. For example, the effects of changing environmental con-
ditions such as dynamic changes in nutrient availability, acidity, or temperature are
not discussed. Furthermore, various cellular processes such as protein degradation
and membrane assembly are not covered in the chapter. Including these processesin
a coarse-grained model could potentially lead to the discovery of other growth laws.

In the next chapter, you will explore models that further refine the biological cell and
bridge between coarse-grained models and genome-scale models. These models in-
corporate several of the assumptions discussed here but utilize more knowledge of
the metabolic network.
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somes.

o Scott, Gunderson, Mateescu, Zhang, and Hwa. Interdependence of cell growth and
gene expression: origins and consequences, Science, 2010 [205]. Article that re-



newed interest in growth laws for the quantitative study of microbial physiology.

o Jun, Si, Pugatch, and Scott, Fundamental principles in bacterial physiology - history,
recent progress, and the future with focus on cell size control: a review, Reports on
Progress in Physics, 2018 [198]. A very complete review of growth laws in microbiol-

ogy.
Coarse-grained modeling of microbial growth:

o Hinshelwood, On the chemical kinetics of autosynthetic systems, Journal of the Chem-
ical Society, 1952 [223]. Historical reference for coarse-grained modeling of micro-
bial growth.

o Kafri, Metzl-Raz, Jonas and Barkai, Rethinking cell growth models, FEMS Yeast Re-
search, 2016 [224]. Review of coarse-grained models of microbial growth.

o de Jong et al., Mathematical modeling of microbes: metabolism, gene expression
and growth, J. R. Soc. Interface, 2017 [225]. Review comparing coarse-grained mod-
els of microbial growth with other modeling frameworks.

o Bruggeman, Planqué, Molenaar, and Teusink, Searching for principles of microbial
physiology, FEMS Microbiology Reviews, 2020 [226]. Review summarizing biological
insights obtained from coarse-grained models.

Examples of coarse-grained models:

o Molenaar, van Berlo, de Ridder and Teusink, Shifts in growth strategies reflect trade-
offs in cellular economics, Molecular Systems Biology, 2009 [227]. Influential article
illustrating the explanatory capacity of coarse-grained models.

o Weil3e et al., Mechanistic links between cellular trade-offs, gene expression, and
growth, Proceedings of the National Academy of Sciences of the USA, 2015 [222]. Article
describing how growth laws for ribosomes can be recovered from coarse-grained
model of microbial growth.

o Basan et al., Overflow metabolism in Escherichia coli results from efficient proteome
allocation, Nature, 2015 [147]. Article describing how proteome allocation constraints
can account for overflow metabolism in bacteria.

o Zavrel et al., Quantitative insights into the cyanobacterial cell economy, eLife, 2019
[228]. Example of the use of coarse-grained models for explaining physiological
principles underlying growth of less-studied (photosynthetic) microorganisms.

Problems

Computer exercises for this chapter can be found on the book website.

Problem 8.1 Linear chain model
A system is composed of a set of 2 linear reactions: nutrient -> metabolite », ->
metabolite », -> biomass. Using the same approximations as in example 1, solve



for the growth rate. What would be the solution for a system composed of ~ reac-
tions? Show that the least efficient reaction determines the growth rate.

Problem 8.2 Linear chain model with Michaelis-Menten rate laws
Solve example 1 when the nutrients are not available in excess. Use Michaelis-
Menten relations for both reactions. First, derive the concentration of metabolite
» as function of catabolic sector proteome size. What is the minimal size for the
catabolic sector? What happens if the catabolic sector is smaller than that? Next,
determine the proteome allocation that maximizes the growth rate.

Problem 8.3 Linear chain model with Michaelis-Menten rate law for the catabolic
reaction
Solve Example 2 when the nutrients are not available in excess. Use Michaelis-
Menten relations for the catabolic reaction. At what point does the metabolic system
switch to use the other nutrient source?

Problem 8.4 Simple model with allosteric regulation of catabolic reaction [229]
A metabolic system is growing in an environment with one nutrient available. The
system allosterically regulates its catabolic reaction according to the concentration
of metabolite x. Assume Michaelis-Menten kinetics for all reactions. What is the
growth rate as function of catabolic sector proteome size? This is a complex solution,
don'tsolve it analytically and plot a numerical solutions instead. What is the catabolic
sector proteome size that maximizes the growth rate?

Problem 8.5 Growth on a single nutrient that is degraded to both energy and
biomass precursors
Consider the model from section 1.3, example 3. Solve the model for the nutrient
uptake rate as function of growth rate for:

(@) Growth rates above the onset of acetate secretion
(b) Growth rates below the onset of acetate secretion

Problem 8.6 Simulating models numerically
Simple coarse-grained models can generally be solved analytically. However, for
models with a higher level of granularity, like the one presented in this section,
reaching an analytical solution to the model equations is highly complex. Compu-
tational approaches that allow numerically solving high-dimensional systems are of
great value.

(@) With the help of the provided code and following the detailed description of the
ODE system in the SI of [222], implement and solve the system of ODEs. Using
this implementation, reproduce Monod's law, as seen in the inset of Figure 8.1.



(b) The nutrient composition of the growth media is the main driver of increasing
growth rates. Simulate the model to steady state for different values of nutrient
qualities. What model species are most impacted by an increase in nutrient
quality?

(c) AsseeninFigure 8.1, the addition of a drug that inhibits protein synthesis results
in an upregulation of the ribosomal fraction ¢,. Reproduce Figure 8.1. How do
the observed results relate to your answer in question 27



Chapter 9

Universal features of
autocatalytic systems

David Lacoste, Barnabé Ledoux

Chapter overview

o A stoichiometric theory of autocatalysis is outlined, which is based on the no-
tion of productivity (either economical or chemical). The framework is applied to
the von Neumann universal constructor model as an example. New methods of
identifying autocatalytic subnetworks in complex chemical networks follow from
this approach.

o The expanding economic model of the von Neumann model is a linear model of
a circular and productive economy also based on stoichiometric considerations.
As shown in [230], a notion of growth factor introduced in this model has valuable
applications for the characterization of autocatalytic chemical reaction networks.

o A special case of the von Neumann model is the Leontief model, from which the
Leontief production function can be derived. This approach is useful in modeling
certain features of cell metabolism, such as cell growth laws and inhibition of
bacterial growth by various types of antibiotics.

9.1 Stoichiometric versus dynamical autocatalysis

9.1.1 Stoichiometric autocatalysis

According to IUPAC, “an autocatalytic reaction is a chemical reaction in which a prod-
uct (or a reaction intermediate) also functions as a catalyst. In such a reaction, the
observed rate of reaction is often found to increase with time from its initial value”.
While this definition provides a sound kinetic characterization of autocatalysis, it is not



easy to use it to identify autocatalysis in situations in which kinetics is poorly known.
Such situations arise frequently when trying to analyze complex chemical mixtures,
such as astrophysical samples analyzed by researchers studying the origin of life re-
search, or man-made prebiotic systems such as complex interacting RNA networks,
in which most of the species and reactions are unknown.

On the theory side, the concept of autocatalytic sets was introduced by S. Kauffman
in 1971, and played an important role in his early investigations of the Origin of order
in living systems. In 2004, W. Hordijk and M. Steel expanded this original work by
introducing the concept of reflexively autocatalytic food-generated networks (RAFs),
namely self-sustaining networks that collectively catalyze all their reactions using only
compounds from the food sets [231]. This formalism is based on the assumption
that any compound (or a fraction of them) involved in randomly picked reactions has
a certain probability to be catalytic [232]. Although very nice results follow from this
assumption, such as the existence of a phase transition controlled by the connectivity
of the network, this assumption is a bit problematic, because a given species can act
as a catalyst or not depending on the presence of other molecules and depending on
the reactionsitis part of. In other words, the probability for a reaction to be catalyticis
context dependent and strongly constrained by the topology of the network itself. To
address both issues, namely the lack of available data on the kinetics and the short-
comings of the RAF formalism, a better starting point is to define autocatalysis from
stoichiometry rather than from kinetics. While alternate definitions of autocatalysis
are possible [233], we now detail the definition of [234], which encompasses autocat-
alytic sets and RAFs as particular cases.

Given a complete chemical network, autocatalysis is defined at the level of a subnet-
work of stoichiometric matrix n, i.e. for a subset of species and reactions of the full
network. Species which are not part of the autocatalytic subnetwork can still play an
important role, for instance, food species or building blocks. The autocatalysis of this
subnetwork requires two essential properties: autonomy (i) and productivity (ii). The
autonomy condition is there to exclude direct injection or loss of species from the
environment within the set of autocatalysts. More precisely, this condition requires
that each species is produced by at least one reaction (each row of the stoichiometric
matrix has at least one positive entry) and each reaction must at least consume one
species (each column has at least one negative entry). This notion of autonomy is
a close analog of the notion of circular economy in the economic context, provided
that species are replaced by goods, and reactions are replaced by industry sectors
of an economy. Productivity (ii) means the absence of mass-like conservation laws
and is related to the notion of a productive economy. More precisely, this condition



requires the existence of a non-zero reaction vector v, such that
An=N-v >0, (9.1)

element-wise. The existence of the flux vector v guarantees that there is a set of
species and reactions such that all species of the set are produced by the autocat-
alytic subnetwork. The proof that this property is equivalent to the absence of mass-
like conservation law is the content of Gordan’s theorem of linear algebra, which is
explained in the box 9.A.

A third more technical condition introduced in Ref. [234] is that ~ should be non-
ambiguous (iii) which means that a species can not be both a reactant and a product
of the same reaction. This condition (iii) is less essential but is convenient as it en-
sures that catalytic steps can be distinguished at the level of stoichiometric matrix.
Indeed, otherwise the stoichiometric matrix would be ambiguous in the sense that it
would not be possible to separate the contribution of the consumption of reactants
from the production of products. In practice it is always possible to transform an
ambiguous reaction into a non-ambiguous one provided intermediates in the reac-
tion are added. Another way to get around the issue of ambiguity without having
to transform the network, is to define the chemical network from the start by two
stoichiometric matrices instead of one as we will do in section 9.2.

Remarkably, this mathematical definition is enough to guarantee the existence of a
small number of minimal autocatalytic motifs called autocatalytic cores. The mini-
mality of these cores means that they cannot contain smaller cores in them. In [234],
it was found that with the above assumptions, only five minimal motifs could ex-

>, Math box 9.A Gordan’s theorem

Gordan’s theorem is the following result of linear algebra which takes the form of
an alternative:
v st. N-v>0, (92)

or
Ip>0 st. NT.p=0. (93)

The first side of the alternative in 9.2 corresponds to the stoichiometric definition
of autocatalysis, the second side of the alternative in 9.3 corresponds to the exis-
tence of a so called mass-like mass conservation law, i.e. a conservation law with
only strictly positive entries, in which case no autocatalysis is present. Note that
when autocatalysis is present, only mass-like conservation are forbidden but not
general conservation laws in which the entries of , are positive and negative. An
example of an autocatalytic network with non-mass like conservation law is given
in [235], which also provides a nice geometric interpretation of conservation laws
as manifolds. Note also that a stronger condition for autocatalysis is the absence
of any conservation law, which mathematically means keeNT = .
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Figure 9.1: Five minimal autocatalytic motifs (figure taken from [234]). Yellow circles
represent species, black lines connecting them represent reactions and the orange
squares indicate the locations where further reactions could be added while preserv-
ing the motif type.

ist, which are represented in Fig. 9.1. It also follows from that construction that an
orientation of the reactions in a core must exist such that v has only non-negative
components [236].

As a simple illustration of this framework, let us consider the universal construc-
tor which von Neumann introduced in 1940 [237]. This is an idealized machine v,
that would be able to construct any object including itself when given some set of
instructions 7. von Neumann identified a potential recursion issue related to the
self-replication of the machine together with its instructions and he also understood
that for such a machine to evolve without compromising its replication, an additional
player in addition to v and r was needed. This additional player would be a universal
copy machine x that would copy the instructions without translating them [238]. With
this remarkable insight, von Neumann foresaw the essential mechanism of the DNA
based translation-transcription machinery that we know today. We can summarize
the reactions in which the universal constructor v, the universal copy machine x and
the instructions r are involved by the following simple chemical network :

X+ — 5 21+X,
U+l — 52U+, (9.4)

U+l — U+I+X

When written in this way, the sub-network of these three reactions with the set (v, 1, x}
contains several catalytic steps, so that neither conditions (i) nor (iii) are satisfied. To
solve theissue, let us introduce food species r, r, and g, intermediate species xir, vIF,
and vrr, and their corresponding reactions so that the network is no longer explicitly



catalytic :

F,+X+1—— XIF,, XIF; — 21+ X,
Fy+U+1—— UlFy, UIFy —2U+1, (9.5)

F3+U+4+1—— UlF3, UlF3 —— U+1+4+X.

Now the subnetwork of species (v, 1, x} satisfies the conditions (i) (autonomy) and (iii)
(non-ambiguity), and also condition (ii) (productivity) because the reaction vector that
corresponds to summing all the reactions produces all the species of the set, accord-
ing to the overall reaction x+2u+31 —— 2x+3u+41. Therefore this network is autocat-
alytic from the point of view of stoichiometry. Note also that all reactions have been
assumed to beirreversible here, which is allowed within the framework of [234], since
thermodynamic compatibility is not considered.

A significant benefit of the stoichiometric definition of autocatalysis outlined above is
that linear programming algorithms, which are a classic tool of analysis of optimiza-
tion problems, can be used to search effectively for autocatalytic subnetworks within
large chemical networks [239, 230, 236]. In carrying out this program, the authors
of [230] found that the number of autocatalytic subnetworks typically grow exponen-
tially with system size. In practice, a much smaller number of subnetworks is expected
to be relevant dynamically in large networks, an issue which we address now.

9.1.2 Dynamical autocatalysis

Historically, autocatalysis as studied in classic chemistry has been related to a certain
type of kinetic pattern. To distinguish this classic definition from the previous based
on stoichiometry, we will call this form of autocatalysis, dynamical autocatalysis. In
this view, dynamical autocatalysis is defined as a chemical process in which one of
the products catalyzes its own formation according to

dl‘i

= = k(X) -2} + [(X), for k> 0,n> 0, [k > |f], (9.6)

where x is the vector of all the concentrations =, the term «x) . .» describes the con-
tribution from autocatalysis while the function s describes the contribution coming
from the rest of the chemical system [240]. It follows from this definition that diverse
forms of autocatalysis are possible depending on xx) and », and that these forms
could remain concealed if fx) is too large. It also follows from this definition that
when k(x) is constant, autocatalysis can generate exponential growth for » =1, but also
over-exponential » > 1 or sub-exponential » < 1 evolution. In practice, the exponential
growth regime is anyway limited to an intermediate time window either because the
reaction eventually runs out of substrates (at long times) or due to product inhibi-



tion, which can trigger sub-exponential behavior. Further, » and » are not indepen-
dent factors since they arise from shared physical factors (availability and diffusion of
ligands, size and flexibility of the molecules...) resulting in a trade-off between these
two parameters that is relevant for designing catalysts or autocatalysts from bottom
up [241].

From the definition in Eq. (9.6), it follows that dynamical autocatalysis has the poten-
tial to destabilize a dynamical state, which would otherwise have remained stable.
Recently, the connection between the topology of the autocatalytic reaction network
and its dynamical stability has been explored in two separate works that address dif-
ferent sides of that issue. In the first one, it was proven that for fully connected dilute
systems with no degradation, the stoichiometric definition of autocatalysis leads to
dynamical autocatalysis, characterized by a strictly positive Lyapunov exponent [242].
In the second one, for a certain class of parameter-rich kinetics, it was shown that the
stoichiometric definition of autocatalysis implies a choice of reaction rates for which
an unstable fixed point necessarily exists [243]. In a nutshell, the first work provides
explicit results regarding the relation between stoichiometric and dynamical aspects
of autocatalysis but the results are limited to the diluted regime, while the second
work does not have this limitation, but is only a proof of existence: it does not pro-
vide an explicit method to obtain the reaction rate stated in the result.

Several recent studies have explored growing systems from the point of view of non-
equilibrium thermodynamics [244]. In particular, in [235], Kamimura et al. have built
a comprehensive chemical thermodynamic theory of open systems which are also
self-replicating. This approach clarifies the thermodynamic conditions under which
growth is possible in a system in which the volume is also growing [235]. To in-
clude this change of volume, these researchers developed an extension of traditional
chemical thermodynamics theory. The growth of the volume is an important feature
of autocatalysis, which manifests itself in certain experiments such as that of [245].
In this work, small-molecule autocatalytic reactions occur in compartments made of
water in oil droplets. Small molecules, which act as fuel in these reactions, can dif-
fuse between compartments while the large molecules which are produced inside
the compartments cannot diffuse across compartments. This work provides a stun-
ning demonstration that autocatalysis can drive compartment growth, competition
and reproduction.

The question of how to connect stoichiometric, kinetic and thermodynamic features
of autocatalysis is an ongoing active area of research which is pursued by several
groups theoretically [236, 246, 235, 247]. For instance, in [246], a framework has been
proposed to derive structural and thermodynamic bounds for autocatalytic chem-
ical networks assuming mass-action law kinetics. The term structural means that



these bounds depend on the topology of the network but not on the value of the
rate constants. Another important structural property of biochemical networks is for
instance robust perfect adaptation (RPA). This property means that there exist some
subnetworks, with specific topological features, whose parameters are irrelevant to
the steady-state properties of the rest of the network [248].

In [236], the authors proved there always exists a well-defined CRN corresponding to
an autocatalytic core, where by well-defined, we mean that there exists a list of chem-
ical species with finite concentrations and a list of reversible chemical reactions obey-
ing mass action law kinetics that realize this network dynamically. Within these as-
sumptions, they also showed that thermodynamic constraints prevent certain asso-
ciations of autocatalytic cores, which suggests that only a restricted number of cores
is relevant for the dynamics of a given autocatalytic network.

9.2 von Neumann’s model of an expanding economy

Besides his theory of the universal constructor mentioned above, J. von Neumann
made another essential contribution to our topic by proposing in 1945 a model for an
expanding economy. The model assumes the economy to be circular, which means
that products (or goods) are produced from other goods and from building blocks
using a number of processes with a certain intensity », [249]. There are » goods and
processes with » < m, which are characterized by constant ratios of inputs to outputs.
The model is formulated in terms of an output matrix 5 and an input matrix 4. Since
the total amount of good produced must match the internal and external demand,
described by the positive vector 4, we have the equation

B-v=A.-v+d. (97)

This economic model can be directly mapped onto a chemical reaction network, if
goods are interpreted as chemical species, the vector v represent chemical fluxes
[250] and « could represent a dilution or degradation. To formalize this analogy, it
is convenient to split the stoichiometric matrix ~ into the part that concerns the pro-
duction of products denoted ~+ and the part that concerns the consumption of goods
or species N-, so that we can use B = N+,A = N- and ~v = n+ - ~-. We say that an econ-
omy is productive when there exists a non-negative vector v such thats.v > a.v. This
condition maps exactly to the notion of productivity introduced in Eq. (9.1) for stoi-
chiometric autocatalysis, while the condition of circular economy maps to the notion
of autonomy introduced at the same time.

Obviously, we must require the positivity of the vectors v and the condition 5, » > 0. An-
other condition is that the economic system is irreducible, which means that it cannot



be decomposed into isolated independent sub-parts (a sub-part being here a subset
of goods which does not require goods from outside the subset to produce all the
goods of the subset). To show the existence and unicity of the dynamic equilibrium
for such economies, J. von Neumann introduced the function

. ZjN;Uj
alv) = min m, (98)
where the minimum is taken over all goods i, and he proved that the function « is
uniquely defined from the vector v, which is itself part of the solution. The quantity

a =max a(v), (99)

v

represent a growth factor of the economic system and the value of the vector v at the
maximum describes the set of goods that defines a dynamic economic equilibrium.

In [250], Blanco et al. applied this framework to the study of autocatalytic reaction
networks. They underlined the importance of « for chemical reaction networks, which
they call the maximum growth factor (MGF). Note that this maximum growth fac-
tor is different from the dynamical growth rate of species within the network. The
MGF does not have dimensions of a growth rate, instead it is a dimensionless fac-
tor, which can be evaluated based only stoichiometry. Blanco et al. proved that this
MGF is strictly larger than one, if the network is autocatalytic [250]. Conversely, if
an autonomous network (where autonomy is now defined at the level of n- and ~+)
has an MGF strictly larger than one, then it is autocatalytic. As an illustration, the au-
tocatalytic nature of the network of Eq. (9.1.1) can be assessed without the need of
introducing intermediates, because one can show that its MGF is strictly larger than
one and that it is autonomous.

Blanco et al. also developed efficient algorithms to identify the strongest, maximal
and minimal autocatalytic subnetworks, and used them to study the formose and
E. coli reaction networks. The formose network is an important prebiotic network,
which is known to be autocatalytic. Their results are markedly different for the two
networks as shown in Fig. 9.2. From an analysis of MGF of subnetworks, they found
that in the formose network, a single subnetwork dominates all the others but is frag-
ile with respect to perturbations. In contrast, the E. coli network is built from inter-
linked cores, which together forms a robust structure.

9.2.1 Leontief's production function

Wassily W. Leontief won the Nobel prize in economics for his work on input-output
relations in economic systems, which he started in 1936 [254]. He later developed
this mathematical tool to study the American economy, and in particular the interde-
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Figure 9.2: Autonomous subnetworks with highest value of MGF are shown for the
formose network (A) and for the E. coli metabolism (B). The intensity of fluxes in each
subnetwork is shown with the color scale. The figure is reproduced from [230] with
permission from the authors.

pendency between industries.

The Leontief model is the special case of the von Neumann model, in which each pro-
ductive activity has a single output (no joint products) whereas there may be many
activities producing the same output and each good is produced by at least one in-
dustry. As in the von Neumann model, it is also assumed in the Leontief model that
goods are produced with fixed ratios of production factors. This assumption leads to
the Leontief production function discussed in the box 9.B.

We can think of this production function as the outcome of a supply chain where pro-
duction factors have to be assembled in fixed proportions in order to form a product.
For instance, in order to build one bike, you need two wheels, one saddle, two ped-
als, etc. Those ratios are fixed, or equivalently the elasticity of substitution is - -0 as
discussed in the box 9.B. If you want to form a product p, for which you need to as-
semble », units of r,, n, units of r,, ... up to »y units of r,, the production rate will be
limited by the smaller value of r,/»;, that is the number of sets of resource ; required
to produce p. If the minimum time to produce one unit of r is », and the minimum
time to use resource g; in order to produce one p is -, we can write

b _ 1 o <TPR1 i) TPRN>_ (9.13)

ceey



Indeed, r+/7;n; is the number of products which can be simultaneously produced from
one resource j. This result holds true if resources are fully allocated to the production
of r, but if several products r, need to be produced in parallel, one resource may be
used by different production chains simultaneously, meaning that a fraction «,; of
total available resources r, must be used for the specific product », so that :

P 1 (%TPRl 0, PR O,NTPRN), (9.14)

y (bg.2 ) y S,
dt TP 1 N1 T2 N9 T™N NN

Then the prefactor before r, represents the maximal number of copies of the prod-
uct that you can produce simultaneously from one unit of resource i. The fact that
resources may not be substituted with other resources has important consequences
for cell metabolism [255].

In the problem ??, we study a single resource - single product industry or workstation
and we show that a Leontief production function emerges from mass-action law ki-
netics when a certain time scale separation holds. This example is important because
it illustrates that the Leontief production function not only involves fluxes associated
to reactions or industries but can typically also include stocks associated to goods or
metabolites, which are only available in finite amounts.

Further applications of this formalism to describe for instance the ability of a metabolic
network to switch from one behavior to another one (as in the crabtree or Warburg
effects in biology and in the Giffen behavior in economics) is studied in [256] and in
a coming chapter to be written.

9.2.2 Liebig's law

Interestingly, the idea that the production rate could be limited by the scarcest re-
source is present in the field of agronomy under the name of Liebig’s law of minimum
[257, 258, 259, 260]. It was initially used to describe plant growth, which requires var-
ious resources, and where it is observed that varying the amount of fully available re-
sources did not modify the final production. This suggests that only scarce resources
will limit production and translates to the principle that when a population is growing
using various resources, the scarcest will set the growth rate, and the others will be
consumed accordingly. This law can be used to model the growth of an organism in
an environment where resources are constrained. The link between mass action laws
and Liebig's law of minimum has been studied [259]. The interest of this method is to
obtain equations that are easier to solve on domains where one resource is scarcest.
One main difference between the Leontief production function and Liebig's law of
the minimum is that for the latter, the minimum is not necessary taken between the
numbers of each production factor, but between the yields of those production fac-



tors (which can be non-linear functions) [261]. In particular, this means that the rate
of production is set by the minimum of the yields of each production factor :

= Tmin({fiz)), (9.15)
where y, are functions of the production factors »,. To model the requirements of
plants in nutrients, yields given by Michaelis-Menten kinetics can be used [259]. In-
stead of directly comparing the numbers of each production factors, it consists in
comparing the yields. However, the idea that one resource will be limiting remains
the same.

9.2.3 Application to metabolism

The law of minimum was used to build simplified models of metabolism as an ensem-
ble of coupled autocatalytic cycles [255]. Metabolism is seen as a supply chain, where
production factors must first be produced and then assembled in fixed proportions
to form a product. We call »the number of proteins of one type, produced by translat-
ing MRNA (of number ») with ribosomes (of number r) and substrates (of number s).
Using the Leontief production function, we can write (following the method of [255])

dpP 1
— = —min [ apR, aps,
dt |prod 7P

L ) (9.16)

TeSR

Ribosomes and substrates have to be used simultaneously to produce different types
of proteins, «» is the fraction of the total population of ribosomes (and substrates)
used to produce the particular protein . The minimum time to produce one r is
7+, the minimum time to elongate the polymer by one amino acid is -, and s; is the
size of the domain on the mRNA that has to be dedicated to the production of one
polymer p at a given time. As explained in [255], »/r.sx IS then the maximum number
of ribosomes that can translate simultaneously one mRNA, and thus the maximum
number of copies of r you can produce simultaneously from one unit of mRNA. This
is indeed what was predicted from Leontief's model for input-output systems: the
prefactor before every amount of resources is the maximum number of copies of
the protein you can produce simultaneously from this specific resource. This term
is that of production of the protein, now the protein could be consumed to form a
product, or degraded.

To use ribosomes, you first need to form ribosomes by assembling proteins and ribo-
somal RNA. Similarly, to use mRNA you must first polymerize RNA. This suggests thata
minimal autocatalytic network that begins to capture the structure of the transcription-
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Figure 9.3: (A) Scheme of coupled autocatalytic networks interacting with a toxic
agent. The orange box linking two arrows represents the Leontief production func-
tion. B, represents active ribosomes; ¢, active RNA polymerases; similarly B,,... By,
and ¢,,..,cx_, are intermediates, ry, r are building blocks. We suppose that “toxic” in-
hibiting agents in numbers 4 can bind to one of the autocatalysts (chosen here to be
B, for simplicity). (B) Illustration of the growth laws when varying either the amount
of antibiotics or the nutrient quality linked to pre-exposure growth rate », displayed
on the right scale. This figure is reproduced from [263] with permission.

translation machinery is made of two coupled autocatalytic cycles associated respec-
tively to RNA and ribosomes. These two cycles will then be described by coupled
equations with production terms described by Leontief's production function [255].

From such an framework [255], one can derive the various growth laws that charac-
terize the cell metabolism, which have been discussed in detail in various chapters of
this book. Let us mention briefly two recent works that follow this line of research : In
the first one carried out in [262], the authors noticed that RNA polymerase, and mRNA
levels correlate in experiments with growth rates in contrast to the belief that ribo-
somes should be the sole drivers of the growth rate. To explain these observations,
the authors developed a theoretical framework building on [255], which account for
the joint role of all these factors in the observed growth rate.

Another recent application of the above framework concerns a model for the inhi-
bition of bacterial growth by antibiotics [263]. In that work, the cell metabolism is
modeled as two coupled autocatalytic cycles, in which one cycle describes the produc-
tion of ribosomes, while the other describes RNA-polymerase production as shown
in Fig. 9.3. It is assumed that the antibiotic inhibits one of these two essential auto-
catalytic cycles by targeting some essential metabolites in them. Growth laws can be
recovered from the model as shown in Fig. 9.3B. A first law describes the increase
of ribosome fraction as a function of growth rate when nutrient quality is increased
(solid magenta curve) while a second growth law describes the up-regulation of ribo-
somes as a result of the inhibition of translation by ribosome inhibitors (colored solid



lines). In addition, the model successfully describes the experimental dependence of
the growth rate on various types of antibiotics and confirms the existence of growth
bistability, namely a regime in which two possible values of the growth rates are pos-
sible in the same range of physical parameters.

9.3 Concluding remarks

In this chapter, we have established a connection between the universal constructor
model and the expanding economic model, which were both introduced by von Neu-
mann. Interestingly, von Neumann himself did not discuss the relation between these
two works, which we make in this chapter. This expanding economic model of von
Neumann (1945) and the input-output model of Leontief (1936, 1941) laid the foun-
dation of a modern framework for economic analysis. Their framework turned out to
be essential to quantify the relative interdependency of various parts of an economy
and the nature and the structure of economic equilibria. Remarkably, these tools
continue to inspire developments in other fields as recent studies of autocatalytic
chemical networks show. Thanks to linear programming methods, we are now able
to identify autocatalytic subnetworks efficiently and characterize them using notions
such as the maximum growth factor or using thermodynamic bounds. More work
is needed to understand the interactions between autocatalytic networks, and their
role in the emergence of chemical complexity linked to pre-Darwinian evolution.
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Problems

Problem 9.1 Production function of a workstation with a single resource and single
product
We model a workstation with a single resource and a single product [261]. Let » be
the amount of available resource or stock, » the supply rate of this stock, ; the specific
rate with which the stock is being lost or degraded. Further, let « (resp. ») be the
number of idle (resp. busy) machines which can process the stock. The processing



time is 1/, » is the number of output products per machine, « is rate of capture of
stock by machines, « is how many machines get involved per unit resource/stock.

(@) Assuming mass action law for the processing of the stock, show that the equa-
tions of the problem are

r = r—auxr—quw,
“w = pv—aur,

v = —pvt+auc,
y = bu.

(b) Show that the total number of machines is a constant denoted «,. Derive the
steady state number of busy machines s in terms of the steady state amount of
stock z. Comment on the form of the output production that you find.

() Introduce the variables + = ¢/(a u) and p = a r/(a 8 uw). Derive the expression of s in
the limit y « 1 and v <« |p- 11 and show that it has a Leontief form. Interpret this
form in terms of how the stock is handled in the regime ,<1and , > 1.

(d) Show that for small but non-zero -, the input-output function falls below the line
boundary defined by the Leontief function.

Problem 9.2 UPF model
The UPF model is a toy model of metabolism made of two coupled autocatalytic
cycles [255]. In the model, a fraction « of machines of type v catalyze themselves.
The remaining machines synthetize another type of machines r. The p machines
convert an external substrate r to an internal substrate r, which is used by v to make
more copies of itself and new rs. To simplify, we assume that to make one more unit
of v by the first reaction, one unit of r is needed, and one unit to make one unit of r
by the second reaction.

The model is defined by the following set of equations

U+F 2520,
F+U-1%, P,
f+P— > F+P,

Uu——0.

(@) Let », be the number of molecules of type i, where i ¢ (v,r,F,r}. The life type of
a machine of type v is -, the incorporation time of ¢ into r is -~ and the incor-
poration time of one unit 7 is ~.. Show that within the framework of Leontief



production functions, the equations of the model are

dny  amin(nyg,np) ny

dt Ta o

dnp _ (1 — a)min(ny,np) (917)
de Ta

dnp  min(np,ny) min(ny,nr)

dt TF B Ta '

(b) Discuss the four limiting regimes of the model: (i) nr > ny and ny > np, (i) nr > no
and n; < ng, (iii) np < ny @Nd ny > np @aNd (V) np < ny @aNd n; < np. Simplify the equations
for each regime by introducing a common growth rate ,.

() Summarize your results by deriving the growth laws of the various regimes in a
single plot representing a vs. ..

Problem 9.3 MGF of two simple networks
(@) Calculate the MGF introduced in Eq. (9.9) for the following two simple networks

A—B

B—2A (9.18)
and

2A — B

B— A. (9.19)

(b) Comment on the values obtained in the previous question.



Economics analogy 9.B Production functions

In economics, production functions relate the quantities of outputs to that of in-
puts in a system. There are various production functions commonly used in eco-
nomics, one of the most well-known is the Cobb-Douglas production function
[251, 252], which can be written in a general way:

y=cI]= (9.10)

where ., are production factors (which could be labor, capital or other factors), y
is an amount of product and ¢,«, are positive coefficients. Mathematically, this law
bears similarities with the mass action law in chemistry, where the rate of produc-
tion of a species is related to the product of the concentrations of the reactants
to the power of their associated stoichiometric coefficient. A more general pro-
duction function is the constant elasticity of substitution (CES) production function
[253]. This function accounts for the fact that one product may be substituted with
another one and can be written in the form:

P

y:c@aix;) | (9.11)

Here, , is the coefficient of substitution and «, is the weight of the production factor
i in the total production (2, = 1). Instead of ,, one often uses the elasticity of
substitution » which is such that , = ==,

Here it is assumed that the elasticity of substitution is the same for all pairs
of production factors. Note that » could also be defined as an elasticity coef-
ficient that compares the change in the ratio of inputs to changes in the ratio
of marginal products. Indeed, the marginal product with respect to factor ; is
y; = dy/ox; = cpayat (S, ia?) 7 @nd represents the sensitivity of the product to the
amount of production factor ;. Therefore, y,/y. = a;2""'/at~!, and we recover that

oo Oln(z;/xk) (91 2)

~ Oln(yk/y;)

Therefore, - measures precisely how the ratio of two production factors is modified
when the ratio of two corresponding marginal products is modified. Now, three
famous cases can be considered [253]:

o s -+ ~ . In this case, any modification in the ratio of marginal products would
require an infinite modification in the ratio of production factors. This means
that the ratio of marginal products remains constant whatever the modification
in the ratio of production factor. This is the so called perfect factor substitution
limit. Indeed, the CES production function becomes linear (, = 1), y = ¢%, a;2;, and
any production factor can be substituted by another (even if s, 2 = o, it can be
replaced by any other ;).

o o =1 In this case, a modification in the ratio of marginal products translates to
the same modification in the ratio of production factors. If we want the depen-
dency of the production in production factor j, we need to double the amount of
production factor ;. This limit corresponds to , - o, in which case we recover the
Cobb-Douglas production function y = c[1,z. This means that the level of substitu-
tion of a any production factor is null (if one of the «, - o, then y = o). Interestingly,
for all values of - < 0,1, there is no possible substitution between production fac-
tors.



Chapter 10

Resource allocation in complex
cell models

Hugo Dourado, Anne Goelzer, Pranas Grigaitis, Wolfram Liebermeister, and Elad Noor

Chapter overview

o Whole-cell resource allocation models on a genomic scale combine a detailed,
FBA-like description of metabolism with a model of macromolecule synthesis,
formulated as linear constraint-based problems.

o Resource allocation models of cells can be built based on three basic constraints:
stationary fluxes (balancing production and consumption fluxes, uptake and ex-
cretion fluxes, as well as compound dilution by cell growth); catalytic constraints
relating fluxes to the amounts of catalyzing enzymes (or other machines); and
density constraints, limiting molecule amounts in cell compartments, or molecule
concentrations.

o Large resource allocation models build on the same principles, and have been
implemented as different variations (RBA models, ME-models, and pc-models).

o These constraints narrow down the solution space predicted by FBA towards
more physiological solutions

10.1 Detailed resource allocation models of cells

In the previous chapters, we have saw two principal approaches to modeling pro-
duction processes in cells. To keep the number of variables low, but with intention
of well-parametrizing the model, one can construct small, coarse-grained models of
growing cells (Chapter 8). On the contrary, Flux Balance Analysis (FBA) models can ac-
commodate a very large number of variables (Chapter 5), making them an excellent
choice to model metabolic networks at genome-scale.



Small, coarse-grained models are very suitable for investigating base principles of
life. Likely the best example to illustrate this is the work of Douwe Molenaar and
co. [264], where a self-replicator model was used to proposed that the low-yield, or
substrate-inefficient ("wasteful”) metabolic strategies are adopted as a consequence
of these pathways being more efficient in terms of protein use, compared to the high-
yield pathways. In other terms, the growth output of the "wasteful” strategy per unit
protein is higher than the "efficient” one. Thus we now believe that fermentation of
glucose, often called under an umbrella term "overflow metabolism”, will take place
in many organisms if the substrate in their environments is abundant enough.

However, the chemistry of life is extremely diverse, and even such a familiar concept
as fermentation can become complicated. Take three representatives of the tree of
life: a bacterium Escherichia coli, budding yeast Saccharomyces cerevisiae, and mam-
malian, say, human cells. All three exhibit overflow metabolism - even when enough
oxygen is available in the environment - yet the underlying biochemistry tells us that
E. coli ferments glucose into acetic acid, S. cerevisiae - into ethanol, and human cells -
into lactate. Bringing more contrasts on the table, there might be extreme differences
in a single taxon already: some yeasts, for instance, will never produce ethanol when
oxygen is present; some of them have lost the ability to do respiration at all over the
course of evolution. This might sound like playing a trivia game, but in many cases,
meaningful modeling of complex biological systems requires both taking and mak-
ing biochemical insight. Therefore, when we aim not only to uncover the underlying
principles, but also to learn biochemistry, more detailed models such as FBA model
have an upper hand.

Yet we already know from previous chapters that the predictions of canonical FBA
models are limited to substrate-efficient metabolic states. Continuing with the exam-
ple of the overflow metabolism, FBA models would predict E. coli or S. cerevisiae to
respire on minimal medium with glucose as the main carbon source - regardless of
the maximal flux of glucose into the cell. Thus the prediction of substrate-inefficient
metabolism using FBA over the years used to rely on introducing additional, mainly
empirical (e.g. maximal oxygen uptake), constraints onto the system [158]. More-
over, we can impose only linear constraints in FBA models, and this greatly reduces
our options.

Overall, we often seek to take the advantageous points of both “schools of modeling”,
however, this is where we need to start doing compromises. In an ideal world, the
self-replicator models from Chapter 8 would be much more detailed, and would be
extended with explicit kinetics and thermodynamic constraints to obtain a detailed
cell model. However, the number of variables would increase tremendously, and
non-linear optimization is very inefficient already past even small systems. On the



contrary, we could try to advance on existing FBA-type models by introducing the
concepts of protein economy (Chapter 7) at genome-scale, as well as self-replication.
Following our best understanding, these, again, would constitute non-linear relation-
ships (e.g. enzyme kinetics), yet large-scale non-linear programming is not a viable
option either. Thus simplifications are necessary to keep linearity (and convexity) to
solve optimization problems for large-scale models.

So can we make large-scale models tractable? If we linearize all formulae, then in-
stead of a biconvex or convex/concave problem, we obtain a linear problem (a bit
like FBA);, more precisely, a system of linear equalities and inequalities that define a
set of feasible states. This set is a polytope, and linear optimality problems on this
set can be solved easily. More specifically, to model metabolism in a growing cell, we
need to consider dilution of metabolites in the growing cell volume, or simply - the
growth rate ,of the cell.

10.1.1 Replacing enzyme kinetics by linear catalytic constraints

To obtain large, detailed cell model that we can actually solve, all relationships be-
tween models variables have to be linearized. This concerns, most importantly, all
catalyzed processes: we assume a linear dependence between a catalyzed flux and its
catalyst (enzyme or machine) concentration, but ignore the dependence on the con-
centrations of substrates, products, cofactors, or additional regulators. What does
this mean in practice? As we know from Chapter 3, typical enzymatic rate laws have
the form v = ¢ k(s): the rate » is proportional to enzyme level . and enzyme efficiency &,
which is given by a kinetic rate law k(s), @ nonlinear function of the metabolite concen-
trations. Depending on the context, « is also called apparent k... The kinetic rate laws
k(s) have typical shapes, as described in Chapter 3.

To linearize the expression for +, while keeping the dependence on ¢, we need to re-
place the ratio & =/ by a fixed number, and so » becomes a model parameter. If
the metabolite concentrations were known (experimentally, or from kinetic models
under optimality assumptions, see Chapter 6), the value of » could be computed. Oth-
erwise, it can also be determined experimentally, by measuring » and . and setting
k=v/e [24], which is feasible for a limited number of enzymes, however. Obviously, in
reality, neither s nor » will be fixed and given, but for our linearized model, we need to
assume this. This holds both for metabolic reactions (with enzymes as catalysts) and
for macromolecular reactions (with molecular machines as catalysts).

Under this assumption, we can replace all kinetic constraints by two linear constraints
on the enzyme. If we consider coefficients » and ¥ to approximate enzyme kinetics
in the forward and backward direction, respectively, the flux the enzyme . catalyzes
should satisfy - ¥ <v <e . We set «' = o for irreversible reactions, and, for simplicity



reasons, we usually assume « =« for reversible reactions, unless kinetic measure-
ments are available that suggest otherwise. This relationship can be formulated as
enzyme capacity constraints in order to replace the kinetic rate laws in the FBA model.
By writing down such constraints for each enzyme in the model, we can couple the
metabolic fluxes with the demand for enzymes, needed to operate these fluxes.

By linearizing all formulae as described above, it is possible to build very large mod-
els, describing resource allocation on genome scale. What we commonly refer to
as "resource allocation models” therefore formalize the mathematical relationships
defining the interactions and allocation of resources between the cellular processes
to describe optimal resource allocation using constraint-based models. All these rela-
tionships take the form of linear, growth-rate dependent equalities and inequalities,
and, when linearized, form a convex feasibility problem [265, 266, 267].

10.1.2 Overview of existing FBA extensions

By itself, the idea of constraining metabolic models to represent limited metabolic
capacity of cells is not new. There are two ways to approach this budgeting problem.
The first possibility is "protein budgeting”, where a fixed amount of protein needs
to be partitioned in the optimal manner (e.g. to maximize growth). The second,
alternative method is "resource budgeting”, where models include both the protein
budgeting and the descriptions of demands for protein synthesis. However, "pro-
tein budgeting” problems assume that investments in protein production follow the
budget, and not vice versa.

Some enzyme-constrained variants of FBA account for empirical constraints on the
total concentration of metabolic enzymes (FBA with molecular crowding, or FBAWMC
[268]), or on proteome sectors (Constrained-Allocation FBA, or CAFBA [269]). While
these types of models can predict metabolic states more reliably, the empirical con-
straints come as model assumptions and thus cannot be understood by the models
themselves. In these models, the primary assumption is that the cell phenotype is
obtained by genetic regulations, and the main goal and utility of genetic regulation
can be interpreted as ways of saving resources. Thus in many cases when we predict
cell phenotype maximizing growth, we find predictions in good agreement with the
experimental observations. Therefore, resource allocation models extend and em-
bed the ideas of proteome partitioning beyond frameworks like CAFBA and GECKO
[270], or representing metabolic capacity limitations beyond FBAWMC.

Currently, there are three main implementations of large-scale resource allocation
models: Resource Balance Analysis (RBA) [271], Models of Metabolism and Macro-
molecular Expression (ME-models) [272] and proteome-constrained models (pc-model
[39]. All these implementations are formalized as LP feasibility problems at a fixed



growth rate, where the growth rate can then be maximized in an additional optimiza-
tion loop. Originally, ME-models were considered as an extension of M-models, by
including predictions for mRNA, protein, and ribosome levels. Importantly, they do
not consider density constraints that, for instance, RBA does. Therefore, limitations
on the capacity of exchange fluxes (as in FBA) are necessary to obtain a solution.

10.1.3 Why maximize the growth rate?

Under the assumption of the balanced growth, the copy number of each cell compo-
nent is doubled between two consecutive cell divisions. If metabolites are described
by their concentration, we can think of cell growth as dilution by which the concen-
trations of all compounds would go down if their amounts remain the same. For a
given compounds, dilution by growth can be effectively modeled of every metabolite
by a “consuming reaction”, with a flux given by v, = » s, the compound concentration
multiplied by the growth rate. By adding these hypothetical dilution reactions to the
metabolic network, we obtain a new stationarity condition ~ » = » s that connects the
vectors of fluxes and compound concentrations, and in which the growth rate .. ap-
pears as a parameter. For each choice of the parameter ,, we can ask whether a
feasible steady growth state - i.e. a feasible combination of v and s exists. Further-
more, the feasible combinations (,v,s) form a convex set, with possible solutions (v,s)
for low values of , and no solutions above a critical value ..., the maximal possible
growth rate for our model. Finding this critical value as well as the corresponding op-
timal fluxes v and compound concentrations s is relatively easy, and can be done by
bisection: solving a series of Linear Programming problems (checking for potential
solutions (v,s) for different values of ,).

10.2 Thebasic constraintsin resource allocation models

As mentioned above, fine-grained resource allocation models build on genome-scale
metabolic models (GEMs) to encompass all the reactions that can be employed in
a metabolic network. The technical advance, when constructing such models, is
to impose sets of additional constraints onto GEMs to couple the metabolic fluxes
with investment into metabolic pathways (production of enzymes). To the date, dif-
ferent implementations of this concept were proposed to predict optimal resource
allocation in different microorganisms [273].

Although the precise formulations vary, resource allocation models build on three
principal types of constraints (Figure 10.1):

(1) Mass-conservation constraints
(2) Flux coupling constraints
(3) Compartment capacity, or protein density, constraints



The general description of these constraints in fact is the same as for small, coarse-
grained self-replicator models, only the number of individual constraints increases.
Moreover, every of the constraints described can be splitinto a number of constraints,
considering only a subset of fluxes in the model (e.g., fluxes taking place in a certain
cell compartment).

Alongside these three major types of constraints, there is another set of constraints,
which we may call “environment” constraints - these correspond to, e.g. the compo-
sition of growth medium, biomass composition at at given growth rate ,, etc. They
are implemented by setting target values for amounts and/or fluxes defining a viable
cell in a given (or several) environmental conditions, but they are not structural con-
straints. These constraints usually are added ad hoc and do not need to bear any
functional meaning per se. We will now expand on the three types of constraints
used in resource allocation models; note that the description is not exhaustive and
peculiarities may vary among different formulations.

10.2.1 Steady-state and mass-conservation constraints

Mass-conservation constraints define the metabolic network (stoichiometry and rela-
tion between fluxes). The initial building blocks of these extended models are GEMs,
and thus the metabolic network stoichiometry is already there; what remains to be
defined are the protein turnover processes. We consider four types of protein turnovet
reactions in fine-grained resource allocation models: protein synthesis, folding, degra-
dation and dilution-by-growth. So, for every protein present in such a model, we
add these four reactions: two of them, translation and degradation, include the stoi-
chiometry of amino acids needed for its translation and released during degradation
based on the protein sequence. The reactions which represent either protein fold-
ing modeled as the conversion of the "unfolded” protein species into the "folded”
ones, and the dilution-by-growth is modeled as a sink for the "folded” protein species
("folded” - o).

10.2.2 Catalytic constraints

Next, the flux coupling constraints couple the metabolic fluxes with protein usage:
usually, the usage scales with the catalytic turnover value k... of the enzyme. In this
step we have to collect the kinetic information (in most cases, ... values), which are
used as model parameters. We establish the coupling between fluxes and protein
synthesis by setting v = k... ¢ n, Where ¢ is the enzyme concentration and o <, <1 is an
efficiency term summarizing the effects of reaction thermodynamics, enzyme satura-
tion, and possibly small-molecule regulation. The value for , can be either assumed or
fitted from experimental data, and when , =1, the enzyme is considered to operate at
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Figure 10.1: Overview of biological components and mathematical constraints in
large-scale resource allocation models - A Resource Balance Analysis (RBA) model is
shown as an example. (A) Typically, an RBA model describes metabolisms and macro-
molecule production in a growing cell (yellow blocks). Precursors from metabolism
are needed to produce macromolecules, and some macromolecules serve as en-
zymes to catalyze metabolic reactions. In addition, macromolecules are diluted and
are localized in cell compartments. (B) Sets of mathematical constraints. The vari-
ables and processes described by an RBA model must satisfy a number of constraints,
include mass-balance constraints (between production, degradation, and dilution of
compounds); capacity constraints (relating process velocities to the concentrations
of catalysts); density constraints (on the total amount of compounds in a cell com-
partment); and possibly empirical physiological constraints on any types of "target
variables”, to ensure realistic models.

its maximal rate. Coupling constraints are introduced to couple both (i) the metabolic
reactions with enzyme usage (as described above) and (ii) protein turnover reactions
with the respective macromolecular machinery (e.g. sum demand of ribosomes for
protein translation, vimsaie = [RIDOSOME] x ke mesome).  1he Sheer number of the kinetic
parameters needed for formulating the coupling constraints in the fine-grained mod-
els requires the modeler to consider different assumptions and simplifications when
building and parameterizing these models, as briefly discussed below.



The number of processes described in a fine-grained manner directly translates to
the number of reactions and metabolites in the model. For instance, transcription is
modelled explicitly in the ME-models [272]. The modeler’s decision is key here: under
assumption that transcription and translation form a linear pathway with fixed scaling
factors (i.e. there is a fixed ratio of peptides translated per mRNA transcribed), the
flux through mRNA translation reaction can be computed post-optimization based on
the flux through the protein translation reaction. Explicit modelling of transcription
would require describing processes of mMRNA transcription, processing, export from
nucleus, and then cytosolic degradation after the mRNA is translated - for each of the
transcripts, with precise stoichiometry and a new set of coupling constraints.

The next issue is kinetic parametrization of these fine-grained models. We currently
can use only very simplified kinetics in the models (flux coupling v = k... ¢ »), and sim-
plify such factors as enzyme saturation and thermodynamic driving force into a sin-
gle value of factor ,. Two approaches are used to deal with this, as a large fraction
of parameters are not even available. First, condition-dependent kinetic parameters
("apparent catalytic constants”, «,,,) are fitted from experimental (mostly quantitative
proteomics) data (setting ks = k... o, Where o<« <1) with a value o« chosen to match pre-
dicted enzyme abundance and experimental measurements. Otherwise, for the en-
zymes with measured ... values, we can assume that enzymes work at their maximal
rate, i.e. the saturation function , = 1. Then the model computes the minimal protein
requirement to sustain the flux through the metabolic reactions. The comparison of
minimal predicted vs. observed protein abundance can represent the "apparent satu-
ration”, or "overcapacity” of enzymes. For instance, it is common in yeast S. cerevisiae
that the flux and not protein expression varies across conditions, and the relationship
between predicted and measured expression can suggest the nature of the observed
protein expression [274].

10.2.3 Protein density constraints

The final layer of information in our resource allocation models is a set of protein
density constraints in each cell. These constraints put an upper limit on the amounts
machines driving the cellular processes, e.g. a maximal protein capacity of a com-
partment. These constraints are formulated as weighted sums of protein abundance,
usually with weights proportional to the proteins’ molecular weight. Usually, the den-
sity constraints are expressed in terms of (usually maximal) mass, area, and volume
of the compartment (e.g. "what is the maximal mass the mitochondrial proteins can
take up in yow of cells?”). Based on the biological interpretation of the constraints, we
formulate the weighing multipliers to represent either of the metrics (mass/area/vol-
ume) that every protein occupies.



Blox 10.A Protein abundance versus concentration in resource allocation mod-
els

Here we would like to include a relevant note for interpretation of the output of the
fine-grained resource allocation models. Both the classical FBA and these exten-
sions do not consider "metabolite concentration” as a concept: optimization vari-
ables are all fluxes. Frameworks discussed in this chapter model protein synthesis
from amino acids and energy equivalents explicitly, with a typical flux dimension of
mmol gpW-1 h-1 (@S for any other fluxes). To compute the amount of protein that has
to be produced in the steady-state growth, we should consider the flux balance for
the protein e: vommesse = vacemaation. +vaiion s OF, FEWritten with the respective parameters,
Vepnthesise = (aeo + 1) e HEI®, kuwo 1S the degradation rate for the protein ¢, and . is the
specific growth (= dilution-by-growth) rate. The [ in the rewritten equation holds
dimension of mmol gDW-1, which is protein abundance, rather than concentration.
The predicted amount of protein in cells can be compared to experimental mea-
surements in two ways. First option is to convert abundance to concentration us-
ing the relationship between the cell volume and dry weight (e.g. v,ow = 1.7mL gpw-1 iN
Saccharomyces cerevisiae, [17]). Alternatively, proteome mass fractions are a pop-
ular unit in label-free mass spectrometry-based protein quantification, a popular
method in quantitative microbiology. Respectively, predicted proteome mass frac-
tions can be inferred by converting protein abundance in mmo to ¢, and scaling to the
protein contentin dry cell biomass. Here, itisimportant to consider the conversion
factors (protein content in dry biomass). E. coli maintains rather constant protein
content in dry weight across growth rates (ca. 0.55 (4 protein) gpw-1) [275, 276]. On
the contrary, the protein content is known to vary in S. cerevisiae as a function of
growth rate [17].

The capacity constraints can be both equality and inequality constraints: more fre-
quent are the latter (usually defining the "upper limit” of, e.g. amount of protein tar-
geted to mitochondria). However, some cell properties should be described through
equality constraints: one of these is the protein density of biomass, defining the "tar-
get” protein translation per gram dry cell biomass.

10.2.4 Interpreting the consequences of the additional constraints

We have briefly discussed what types of additional constraints need to be imple-
mented to extend FBA models to account for cellular resource allocation, and now
let us recap on what these sets of rules mean in biological terms. The constraints
described above shall couple the metabolic fluxes with the production of enzymes
that operate these functions, so the model has to produce amino acids and generate
ATP in order to use them for protein translation. Moreover, the enzyme demand will
be coupled with the production of the macromolecular machines required to pro-
duce, fold, and degrade these enzymes (ribosomes, chaperones, and proteases, re-
spectively), requiring the same building blocks (see Chapter 2). These constraints
therefore formalize a self-replicating molecular system in balanced growth subject to
different structural constraints:



1. The metabolic network has to produce all metabolic precursors necessary for bioma
production and mass conservation must hold for all intracellular molecule species
- i.e. intracellular metabolites and molecular machines.

2. The capacity of each type of molecular machine must be sufficient to ensure its
function, i.e. to catalyze chemical conversions at a sufficient rate;

3. The intracellular density of compartments and the occupancy of membranes must
not exceed the defined limits.

As highlighted before, the biological interpretation of the additional constraints dis-
cussed above is rather universal for different implementations of resource allocation
models, with minor deviations in terminology and/or formulation. To illustrate how
resource allocation models are built from conventional GEMs, and how the respec-
tive models are formalized in mathematical terms, in the following we will consider
one of the popular formulations of resource allocation models in more depth.

10.3 Resource Balance Analysis: model construction and
simulation

Resource Balance Analysis (RBA) is a flexible and generic modeling framework that
describes the functioning of an organism using linear equality and inequality con-
straints, as described in general terms in Section 10.2. As a consequence, an RBA
model includes all known metabolic reactions coupled to relevant cell processes with
major protein investments (production of biomass precursors; including, but not lim-
ited to protein translation, protein folding, protein transmembrane transport, and
protein degradation). Where applicable, circumstantial information can be included
into the model to establish the dependency of enzyme activity on metal ions, vita-
mins, and/or cofactors. Which metabolic reactions and cell processes are regarded
as relevant may vary between organisms and is a modeler’s choice.

10.3.1 Building a draft RBA model

The software package reapy [277] contains all the routines needed to build and simu-
late RBA models. In order to build a new RBA model, it takes as an input a genome-
scale metabolic network in SBML format [278], together with additional information
to formulate all the constraints described above. Different types of biological data
are needed to build an RBA model for a given type of cell:

o Amino acid sequences for metabolic enzymes and macromolecular machines (e.g. ri-
bosomes and chaperones),

o If applicable, stoichiometry of known cofactors (e.g. metal ions),

o Efficiencies of metabolic enzymes,



o Molecular weights and localization of proteins (for density constraints),
o Any empirical constraints on concentrations or fluxes ("targets”, see previous sec-
tion).

The software first extends the input GEM with a description of protein production and
dilution in the cell. To do so, it extracts information from the input files on (i) protein
sequences and cofactors, (ii) the subunit stoichiometry of protein complexes, and (iii)
protein localization (using information from public databases such as UniProt). Using
this information, reactions corresponding to protein synthesis, folding, degradation,
and dilution by growth are added automatically. Finally, the software maps enzymes
to the reactions they catalyze and to the proteins they consist of. The output of the
routine is a draft (uncalibrated) RBA model.

10.3.2 Mathematical description of a RBA problem

Notation. Below 47 refers to the transpose of the matrix 4. rz, 2 {z e ®" 2, >0 forall i e

{1,---,n}}, Rog 2RL,, R2, 2 {xean >oforallieq, ,n}} and r., 2 RL,.

In a standard RBA model, we consider balanced growth (see Chapter ??), that is, the
average state of a cell in a cell bacterial population growing exponentially at the spe-
cific (constant) growth rate . > o, i.e. the amount of produced biomass per biomass per
cell per unit of time. Our simulated average cell is composed of different molecule
species:

1. n, types of molecular machines, which can be subdivided further into ». enzymes
and transporters involved in the metabolic network k £ (&,,...,E,,) at the concentra-
tions e 2 (e1,...,e,.)” and metabolic fluxes v 2 w.,...,v.)7; and »,, macromolecular ma-
chinesm 2 (v,,...,Mm,,,) involved in non-metabolic cellular processes, such as the trans-
lation apparatus, at the concentrations m 2 (m, I

2. n, proteins r 2 (p,,...,p, } belonging to unspecified cellular processes. p 2 (p,....p.)"
denotes the set of concentrations of p;

3. », intracellular and mass-balanced metabolites s 2 (s,,....s,.). Within the set s, we
distinguish a subsets 2 (8,,...,8,,) of abundant metabolites which have fixed growth-
independent concentrationss 2 (,,...,5,,)” (@nd usually coincide with biomass macro-
components such as DNA, cell wall or plasmic membrane). We also consider a set
of extracellular metabolites s.. 2 (Sei,- -, Sexn.) Of CONCENTIALIONS s0 2 (Sextts - Sextnen)”

that are not mass-balanced.

Finally, let us introduce the vector y7 2 (7, m?) of concentrations of molecular machines
of size »,. Typical units of concentrations ¢, m and p are in millimoles per gram of cell
dry weight, and fluxes v in millimoles per gram of cell dry weight per unit of time.



For a given cell growth rate .. > o, the RBA optimization problem (named »...(»)) can be
formalized mathematically as follows. For a fixed vector of concentrations p < kY and
the given growth rate . > o,

find possible cell states  yerly.ver,

subject to

(€1) —Qv+u(CYy+CEb+Cip) =0
(C2a) u(CYy+CMp)—Kry <0

(Cap) ~Kpy <v<Kgy

(Cs) CYy+Cpp-d<0

where all the inequalities are defined component-wise and:

o ais the stoichiometry matrix of the metabolic network of size », x ., where o, corre-
sponds to the stoichiometry of metabolite s; in the j-th enzymatic reaction;

o c§ (resp. cg)isan a, », (resp. », n,) Matrix where each coefficient ¢ corresponds to the
number of metabolite s, consumed (or produced) for the synthesis of one machine
y; (resp. py); cg, is then positive, negative or null if s; is produced, consumed or not
involved in the the synthesis of one machine v, (resp. r);

o ¢ IS an n, x n, Matrix in which each coefficient c§ corresponds to a metabolite s;
consumed (or produced) for the synthesis of one 5;

o Kr (kr and k;, respectively) are matrices of size n,, xn, (n.xn,, respectively) in which each
coefficient x;, (xs, and x,, respectively) is positive and corresponds to the efficiency
of molecular machine i, , i.e. the rate of the process per amount of the catalyzing
molecular machine, (the efficiency of the enzyme &, in forward and backward sense,
respectively);

o c¥ (resp. c¥) is an n,, xn, (resp. n,, x »,) Matrix in which each coefficient ¢y, typically
corresponds to the length in amino acids of the machine v, (resp. ;). In some cases
(for instance for the constraints on protein chaperoning), the length in amino acids
can be multiplied by a coefficient, such as the fraction of the whole proteome that
necessitates chaperoning;

o dis avector of size »,, where », is the number of compartments (compartment mem-
brane and/or compartment interior for which density constraints are considered. d
is the density of molecular entities within the volume or surface area. Densities are
typically expressed as a number of amino-acid residues by volume or surface area.

o ¢ (resp. cp) is an «. x v, (resp. ». xn,) Matrix in which each coefficient cp, corresponds
to the density of one machine v, (resp. r;) in the compartment . By construction, we
have one unique localization per machine.



For given growth rate and medium composition, all equalities and inequalities in our
RBA problem »,..(s is linear in the decision variables (y,v) and is proven to be convex
[265, 267]. At given ,, P..(u) iS a feasibility optimization problem, where constraints
(c1-c;) define the feasibility domain. The feasibility domain can be empty or non-
empty. If there exists a solution (y,v) t0 P..(u) -i.e. the feasibility domain is non-empty-,
then there exists a feasible resource distribution compatible with the given growth
rate. In other words, the cell can grow at this growth rate value. By construction, the
feasibility domain of »..() corresponds to the set of all possible phenotypes of the
cell at a growth rate . >o.

We conclude this with some remarks:

1. In practice, the vector 5 contains non-zero values only for the concentrations of
macro-components such as DNA, cell wall, and lipid membranes, and for a few set
of metabolites. These values are usually extracted from the biomass formation
reaction used in FBA models (see Chapter 5).

2. To model reversible enzymes, we introduced two diagonal matrices containing the
enzyme efficiencies, i.e. k; and k},, describing the capacity constraints of enzymes
in both directions. If an enzyme & is considered irreversible, k; is set to o.

3. In [266, 279], an RBA model was built for Bacillus subtilis. It integrates two macro-
molecular processes in constraint ¢,,, the translation and chaperoning of proteins,
and two density constraints, the limitation of the cytosolic density and of the mem-
brane occupancy. An RBA model can be refined by integrating for instance other
cellular processes and molecular machines, such as the transcription machinery,
the protein secretion apparatus (see [279, 277]), or molecule turnover [280], as well
as other types of constraints.

10.3.3 Simulation and analysis of RBA models

How to incorporate the medium composition. We represent the medium compo-
sition in two aspects, namely (i) qualitatively, by allowing exchange of the medium
metabolites in the model (vBg,my.. > 0). NOte that some metabolites, although not
explicitly represented by the growth media, should also adhere to this rule (e.g. oxy-
gen, water, and protons). The (ii) quantitative composition of the growth medium is
determined by extracellular concentrations, which, in turn, dictate the efficiencies of
metabolic transporters via Michaelis-Menten-like rate laws (as nonlinear «() functions;
see section 10.1.3). For an extracellular nutrient s...; with concentration s..; > o, the ef-

ficiency of the corresponding metabolic transporter(s) is given bY kg (se ) = g with

Km+sext,i !

parameters k.. and k, for the turnover number and the affinity of the transporter,
respectively.

Obtaining the RBA solution for a given parameter set. For an RBA problem with



given parameters, there exists a maximal growth rate .+ > o, such that for any ,, Pu.(u)
is feasible if and only if . < »~ [265, 267]. For a given medium composition, the maximal
growth rate .+ can computed by using a bisection algorithm, in which a series of LP
problems are solved to narrow down the exact growth rate at which the problem be-
comes infeasible. A real-life example would be simulating growth in glucose-limited
chemostat cultures under different dilution rates n. With increasing b, the glucose
availability increases, and a set of » different glucose uptake rates qu. (4cie1, acicar -
.Gle,n) can be subjected to an RBA model to obtain a set of optimal metabolic states

(/‘LTI My - /’L:L)'

Together with the maximal feasible growth rate one obtains the optimal cell configu-
ration maximizing growth (., y*,v). The principle of optimal performance, in this case,
that a cell phenotype should maximize growth rate, in fact, coincides with the princi-
ple of parsimonious resource allocation between cellular processes.

Exploration of the feasibility domain. Although RBA models inherently reduce the
solution space due to principle of parsimonious resource allocation, the solutions
obtained might still contain considerable flux variability. In the same vein as Flux
Variability Analysis ([281], see Chapter 5), the feasibility domain can be explored at
optimal (x*) or sub-optimal (. < »*) growth rates. For one decision variable 4, (resp. v),
two LP problems are solved, where (i) constraints ¢, ¢, and ¢, remain unchanged,;
(i) the decision variable 4 (resp. ) is maximized (LP 1) and minimized (LP 2). This
operation is repeated for each decision variable to obtain in fine the feasibility domain
of all decision variables.

It was proven that the feasibility domain becomes smaller with increasing growth
rate [265, 267], so it might be worthwhile to probe the solution space at slow-growth
regimes. In practice, at the optimum, the cell configuration (.+,y*,v*) is often unique.
Indeed, non-unique solutions will exist if two alternative metabolic pathways have
exactly the same cost in resources. Since all enzymes have different amino acid se-
qguences, use different cofactors, are differently localization, etc, this is highly unlikely.
A caricatural example of a model with non-unique solutions would be one in which an
enzyme pool is arbitrarily split into two, and the two new "enzyme species” are given
different names, although they are physically exactly the same.

10.3.4 Calibration of model parameters

An RBA model may contain a high number of model parameters. First, the global
parameters to be estimated are related to cell composition: (i) the concentrations of
bulk biomass components 5, which is usually deduced from the biomass reaction of
the genome-scale metabolic network of the organism. Using quantitative proteomics
data [282], one can infer (ii) the protein densities in different compartments (d), and



(iii) the abundance of housekeeping (unspecified) proteins (p).

The next set of parameters we need to collect concerns the efficiencies of molecular
machines (kx, K, Kr). Aswe learned in Chapters 2 and 3, the rate of an enzymatic reac-
tion » depends on the enzyme efficiency or "apparent catalytic rate”, given by v = ek,
WIth k. = s(c) = k5, - ¥ (c) - t(c) < k.. TheE k,, Values are always below the &, value, but
may vary from state to state depending on metabolite concentrations. Since internal
metabolite concentrations s are unknown and difficult to measure at genome-scale,
we cannot estimate &, from the explicit kinetic law «). We need to obtain these &,,,
parameters empirically, for example by measuring the flux » and the protein abun-
dance ¢ in one condition and taking their ratio.

Hence, for a given environmental condition, efficiency parameters can be estimated
using quantitative proteomics in combination with fluxomics [279] or FBA to estimate
the flux distribution [277]. To account for variable enzyme efficiencies, one may make
the simplifying assumption that enzyme efficiencies depend mostly on growth rate.
By estimating the enzyme efficiencies at different growth rates and interpolating be-
tween them, one obtains empirical relationships between efficiency and the growth
rate [279] to be used in »...(x). FOr instance, several estimates of enzymatic efficiencies
obtained in contrasting growth conditions will provide a relationship k() instead of
a constant k; value.

10.3.5 Enzyme efficiencies: use of -omics data-informed «,,, vs. naive
k.. VAlues

The three most popular formalisms of fine-grained resource allocation models, RBA
[271], ME-models [272], and pc-models [39], are variations on the same theme, im-
plementing the four major constraints discussed in Section 10.2. Thus most of the
ideas, concepts, and constraints are equivalent (or at least highly similar) in their bio-
logical interpretation. Most of the differences arise from the approach taken towards
parametrization of these models, and consequently, interpretation of model output.
Here we will discuss an example where implementations differ significantly.

In resource allocation models, two types of constraints define the proteome capacity
at given growth rate ,, the protein density vector 5, and the fraction of housekeep-
ing proteins p in the proteome. The remaining proteome space is to be distributed
among the proteins that are explicitly defined in the model. The RBA formalism re-
quires to formulate the function .., (Or ks(x) in the RBA problem, Section 10.3.2) for
every protein in the model using -omics data (see Section 10.3.3), and the fraction
of the "housekeeping” proteins in the proteome is determined from data for each
simulation.



Conversely, the formulation of pc-models [39] allows more flexibility to the "unspec-
ified” protein vr, represented by a single artificial protein of average size and amino
acid composition. Instead of setting a fixed amount allocated to » which changes
across conditions, one can determine the minimal fraction of this protein in proteome
UP..,, and formulate the demand to produce vr as an inequality constraint ve > vp,....
Interestingly, in Saccharomyces cerevisiae, the proteome mass fraction occupied by
non-metabolic proteins is relatively constant under different glucose-limited condi-
tions, as determined by quantitative proteomics data (see [39], Fig. S1 for a plot).

This inequality constraint can be interpreted as the upper limit of available protein
space, i.e., under fixed protein density y + p = const, the proteome not occupied by
y 2 e+m iS allocated to p. Since now the model can distribute the proteome among
explicitly-defined +s. unspecified protein freely, the procedure of fitting .., values is no
longer a prerequisite. Using k... values, collected from literature/databases/own ex-
perimental measurements, rather than apparent «,,, values, has consequences both
for predictions and the data use: first, the model prediction on the protein use is the
"demand” of the enzyme and is strictly coupled to the flux through the enzyme (equiv-
alent to the ECM1 layer of enzyme costs in the Enzyme Cost Minimization method,
Chapter 6). Second, the condition-dependent quantitative proteomics data can be
used as validation dataset for model predictions instead [283], as the predicted pro-
tein abundance is not dependent on these datasets.

Using less data for parameter fitting and redirecting these data-rich datasets towards
validation of model prediction strengthens the argument for using resource alloca-
tion models for learning new biology, and already has real-life examples. For instance,
the discrepancies in predicted vs. observed levels of glycolytic enzymes at glucose-
scarce conditions in [39] inspired the same team to revisit the question whether the
high levels of glycolytic enzymes represent the optimal expression given very low
thermodynamic driving force and undersaturation of glycolytic enzymes. Compar-
ing predictions of Enzyme Cost Minimization models with the results of the pc-model
and experimental data, [274] proposed that S. cerevisiae expresses genuine excess of
glycolytic enzymes in glucose-limited conditions, meant to amply consume any glu-
cose as soon as it appears in the environment.

10.4 Biomass composition as a constraint or as a pre-
diction
Cell models describe, among other things, what a cell is composed of (see Chapter 2).

In FBA, specifically, “biomass” refers to the proportions of different molecule classes
(e.g. lipids, protein, DNA, RNA, cofactors) in 1 gram dry weight of cells, and biomass



composition needs to be defined prior to optimization. Since, at least for FBA models
of microbes, biomass production usually is the optimization objective, the literature
frequently refers to the mathematical description of cell composition as "biomass
objective function” (BOF). In most cases, itis assumed that the proportions of biomass
constituents are fixed, only the total production (flux through BOF) changes.

For the predictions of FBA models to be reliable, a realistic BOF is a must (see Chap-
ter 5). Therefore, there is a sustained effort to experimentally determine biomass
composition, even for E. coli [284]; for more details on the usual experimental mea-
surement methods, see the box in Chapter 2. In case supporting data are available,
the cell composition in the BOF may be described in a more fine-grained manner
for individual molecule types (e.g., individual lipids, proteins, mRNA species, etc), or
even in terms of atomic composition (which in turn gives clues about the amounts of
molecule classes). So, overall, biomass composition acts as a global, and one of the
most stringent, constraint on the predicted solution space in FBA-based models.

However, cell composition may greatly vary not only between (micro-)organisms, or
different cell types within the same organism, but also for the same organism/cell
type across different conditions. The budding yeast S. cerevisiae, for instance, exhibits
rather linear relationships between the proportions of bulk biomass constituents as
a function of growth rate in glucose-limited cultures [3]. This variable composition
often poses a challenge for models: just like the uptake rates, the varying biomass
composition reflects complex global rearrangements of resources (for instance, dif-
ferent ribosome content at different growth rates [35] leads to changes in RNA-to-
protein ratio in the cells), and choices between metabolic strategies (e.g. depletion of
storage carbohydrates in glucose-fermenting S. cerevisiae [17]).

A main advance of resource allocation models, compared to conventional FBA mod-
els, is that only a part of the biomass composition is given as input information just
like in FBA (5 in RBA). The proteome composition, on the contrary, becomes a genuine
prediction of the optimization procedure. Unlike small self-replicator models (see the
models in Chapter 8), this prediction is very detailed, as the the predicted proteome
composition is represented by the sum of individual protein abundances. Moreover,
if proteins require trace elements or cofactors (e.g. iron in iron-containing proteins)
for function, the demand and contribution to the overall biomass of these metabo-
lites will also be predicted by the model (as it will vary with the expression level of
those proteins).

In theory, the abundance of biomass constituents other than proteome could be for-
mulated in the way they become predictions of the resource allocation models, rather
than hardcoded inputs. Following the idea implemented in the small, coarse-grained
models of [264], one could set relationships between, e.g., protein density in the cells



and production of lipids (in [264], the biological interpretation was to maintain the
surface area-to-volume ratio constant). Currently this is not widely accepted as a
standard practice, and, as we can see from the example above, requires comprehen-
sive experimental evidence, which, by itself, could be interpreted still as “input to the
model”.

10.5 Concluding remarks

In this chapter we considered whole-cell resource allocation models that couple metab
networks with a description of the macromolecular machinery that is required to
operate them. Compared to FBA models, these models contain a large number of
additional reactions, metabolites, constraints, and model parameters, and, overall,
offer a fine-grained representation of cellular economy. Many of the kinetic param-
eters cannot be accurately measured for individual enzymes, and/or are condition-
dependent. The quantitative nature of the predictions of resource allocation models
(and the most cellular decisions/phenotype shifts), however, is largely due to global
constraints: for instance, when the protein density 4 gpw-! in @ compartment reaches
its upper limit (=that compartment is fully packed with protein), the cells switch from
fully-respiratory to respiro-fermentative growth (see [272] for E. coli, or [39] for S. cere-
visiae). Unlike the kinetic parameters in single reactions, which are rather uncertain,
these "global”, cell-wide constraints are based on more trustworthy evidence.

Thus these models still retain a reasonable compromise concerning numerical tractabi
ity and model complexity, and can accurately predict complex adaptations, which can-

not be captured by GEMs in an autonomous way, i.e. without the addition of empir-

ical constraints on fluxes. A successful use case of using resource allocation models

is dissecting iron economy, using RBA models: some proteins require iron for their

function, and the cell growth can become iron-limited in some conditions. The RBA

model was used to predict cell behavior under iron starvation, and the predictions

suggested couple of scenarios, (i) the cell may increase the import of iron, but also

(ii) avoid using proteins that contain iron (and the pathways in which they operate)

[279, 285].

As with the biomass composition, another aspect of resource allocation models (and
FBA-based models in general) with some duality in its interpretation is the objective
function. Although its validity has been always debated since conception, maximiza-
tion of instantaneous growth rate as the optimization objective has shown incredi-
ble success in predicting microbial physiology. The current approach we apply for
resource allocation models still remains the FBA-based assumption that the desired
cell phenotypes are the ones maximizing instantaneous growth rate ... This time, how-
ever, the . is also a model variable, so we have to apply bisection to obtain the optimal



solution for each parameter set we use in resource allocation models.

It is becoming more and more evident that many cell phenotypes (and microbial
species!), which we try to predict, do not actually maximize instantaneous growth
rate. For instance, most experimental research on microbial physiology has been fo-
cused on carbon-limited (C-limited) cultures, especially the yeast work in Delft, the
Netherlands (see [3, 17] for examples). It seems that the principle of growth rate
maximization works very well in C-limited case, and the success of resource alloca-
tion models to quantitatively capture these phenotypes [272, 279, 39] affirms this
assumption. But is C-limitation descriptive of natural environments? Let us continue
the argument with yeasts as an example.

Yeasts in the wild, for instance, are often subjected to feast-famine cycles in terms of
carbon availability, and one could argue that in the famine phase of the cycle, these
yeasts should act as if they were glucose-limited. Yet the current opinion in the yeast
ecology seems to see feast-famine cycles as a continuous, although reduced, supply
of carbon, and steer towards embracing a higher role of nitrogen (N) limitation in nat-
ural environments instead. Currently, our understanding of N-limited growth is not
very comprehensive, and N-limitation is also a case where the instantaneous growth
rate maximization breaks down: the pc-models of S. cerevisiae cannot quantitatively
capture the cell behavior under N-limited conditions.

So the selection of a suitable optimization objective can be a choice followed by huge
success, but also, the optimal solution might end up contradicting the existing knowl-
edge. How can we try to mitigate that? One huge advance of resource allocation
models is that at any condition, the available solution space is greatly reduced, com-
pared to conventional FBA. We can argue that we have introduced a whole new set,
a whole new type of constraints into the model by accepting assumptions stemming
from the metabolism-molecular machinery coupling. In theory, we should be able to
reason further regarding any additional (even empirical/ad hoc) constraints and/or
additional optimization objectives which would bring our model predictions closer
to observed biology. Just remember: fitting models is not a sin; but nontransparen-
t/reckless fitting is! After all, modeling is an art, and there is no one cookbook that
represents the ground truth: we should be free to explore the secrets of biology, as
unrealistic as our assumptions are at times.

Afinal remark on modeling being an art. In this book, we have explored several types
of cell models of different size, detail, and assumptions behind. This whole hierar-
chy and diversity of different implementations and formalisms might seem overcom-
plicated and unnecessary, but it is a mere reflection that "one size does not fit all”.
Hence, and we invite (future) modelers to be creative, mix, match, and tailor different
models (and modeling types) to cover more and more biological knowledge. The com-



promise between fine-grained but linear modeling vs. complex kinetics that materi-
alized into resource allocation models is an inspiring example of how one can push
bounds of different methods to create mathematical representation of our mental
pictures of cells.

Recommended readings

RBA website Website rva.inrae.£r for further details on RBA. Under Tools, you can find
example models and Jupyter notebooks for running them.

Review article on large-scale resource allocation models K. de Becker et al. "Using
resource constraints derived from genomic and proteomic data in metabolic network
models” Curr Opin Syst Biol 2022, 29:100400

Problems

Problem 10.1 The role of metabolite concentrations
The available cell space for proteins depends on the assumed space occupied by
small metabolites.

(@) What if the metabolite content of the cell has been underestimated? Assume
that the amount of small metabolites in cells is currently underestimated. What
problems in model predictions would arise from the fact? In what way would
predictions (by FBA or other methods) be distorted?

(b) In what way would a cell, in reality, profit from a lower small metabolite con-
tent? Can we assume that the ratio between small metabolites and proteins is
optimized? Describe possible aspects of this compromise! For inspiration, see
[286].


rba.inrae.fr
https://rba.inrae.fr/tools.html
https://doi.org/10.1016/j.coisb.2021.100400
https://doi.org/10.1016/j.coisb.2021.100400
https://doi.org/10.1016/j.coisb.2021.100400

Chapter 11

Optimal cell behavior in time

Dafni Giannari, Hidde de Jong,Diego A. Oyarzun, Steffen Waldherr, and Agustin G.
Yabo

Chapter overview

o Microorganisms live in continually changing environments, which require them
to develop adaptation strategies.

o These strategies have been profitably studied under the assumption that mi-
croorganisms have evolved to optimize one or several aspects of their adaptive
response.

o The mathematical formalization of this assumption leads to dynamic optimiza-
tion problems that can be solved by means of techniques from optimal control
theory.

o The chapter discusses three example problems: dynamic optimization of en-
zyme expression in metabolic pathways, dynamic optimization of coarse-grained
models of cellular growth, and dynamic flux balance analysis.

o The results obtained for these problems illustrate the interest of studying adap-
tation strategies from the perspective of dynamic optimization, and the strengths
and weaknesses of this approach.

11.1 Introduction

The study of microorganisms in the laboratory has often focused on the creation of
stable conditions enabling balanced, reproducible growth of the population. Such
conditions are almost never found in nature. Microorganisms live in continually chang-
ing environments in which nutrients are only intermittently available and in which
the cells are submitted to a variety of other temporally varying stresses (acidity, tem-
perature, drought, ...). In order to survive in these conditions, microorganisms have



developed a range of molecular mechanisms to detect changes in the environment,
or signals announcing such changes, and to adapt their functioning accordingly.

A well-studied example of the dynamic response of bacteria to changes in their envi-
ronment is the phenomenon of diauxic growth, discovered by Jacques Monod ([287]
(see also Chapter 8). When Escherichia coli is grown in a medium containing a mixture
of two carbon sources, e.g., glucose and lactose, the cells generally first deplete the
carbon source supporting the highest growth rate (glucose) before starting to assim-
ilate the other carbon source (