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Preface

Wolfram Liebermeister

How can a cell maintain itself as a living being? Living cells, shaped by billions of

years of evolution, have developed many ways to adapt to their environment, for

example, by regulation of gene expression. But the rules of physics and chemistry

enforce certain boundaries on what cells can achieve and how they can allocate their

own resources. Shaped by evolution, cells “do certain things right”, and computa-

tionalmodels of cells often assume that this ”doing something right” can be described

by evoking optimality principles. The goal of this book is to uncover some of these

governing principles. Although biological optimality is often contested for good rea-

sons, theories based on economic principles can explain many observations (about

cell growth or the usage of cellular resources) much better than purely mechanistic

models. Methods such as Flux Balance Analysis are well established, but the idea of

resource allocation is gaining ground, and metaphors like ”currency metabolites” or

”energy budget” are common in cell biology. Optimality principles are often applied

ad hoc, and a coherent picture in which many single observations or models would

have their place is still missing. This book - a free and open textbook to which any-

one is invited to contribute - gives an overview of established approaches to ”cellular

economics”, from descriptions of simple metabolic systems to cell growth, variability,

and dynamic behavior.

Compared to non-living matter, living organisms have some very specific abilities.

How can a tiny cell maintain itself, while a cloud fades away? How can it grow and

divide, how can it make copies of itself? Or in other words, what does it take to be

alive? There is no special “life force”; what makes matter alive is its microscopic struc-

ture ormolecular organization. Livingmatter follows the laws of physics. However, to

understand life, physics alone is not enough! On the one hand, living beings are com-

plex at many levels of organization, from biomolecules to cells, body, population, and

ecosystem. Each of these levels follows its own laws, but in some cases, a change on

the lowest level, a point mutation, may change the fate of a population. On the other

hand, living systems do not just exist as they are, but have been shaped by billions of
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Figure 1: Protein abundances in the yeast Saccharomyces cerevisiae. Measured
amounts of different sorts of proteins are shown as areas, proteins of related func-
tions are arranged into larger regions, shown by colors. Why does the cell invest such
a large fraction of their protein budget into the glycolysis pathway? Such ”economic”
questions are central in this book.

years of evolution. This is also why some of their features look like theywere perfectly

engineered. Since we do not know – and certainly cannot always consider – evolution

in its entirety, we often use ”optimality” as a shortcut. To explain a biological feature,

like the shape of dolphins, we might tell all the story of dolphin evolution and how

changes in shape appeared and some were conserved. But instead, we may simply

say: this is the shape that functions best, and apparently evolution, by mutation and

selection, converged to this shape.

In this book, we mostly focus on microbes, and how they function internally: what

compounds they need to produce, and how, in order to live and self-replicate. We

can describe this at three different levels. Level 1, the ’inventory’ of a cell, from a

molecular point of view, consists of molecules and biochemical reactions, which form

a complex chemical network. Level 2, the dynamics ofmolecule concentrations, is de-

termined by physical laws like the conservation of mass and by specific biochemical

regulation mechanisms, for example molecular recognition. But there is also a third

level, concerning the function (or possibly optimality) of these dynamics, for which

economic metaphors are appropriate. Given a limited ”protein budget”, what bio-

chemical pathways should a cell prioritize to thrive, grow, and survive? In this book,

we focus on the third layer, the ”economy of the cell”, which, in fact, encompasses the

previous two.

What do we mean by the ”economy of the cell”? Economic theory is, of course, vast
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and only a small bit of it has made its way into biology so far. In this book, by ”econ-

omy” we mean primarily resource allocation and scheduling problems: What is the

best allocation of protein resources in a bacterial cell (see the graphic above)? How

should photosynthetic bacteria adjust these investments during the day-night cycle?

Our answers to such questions, also in this book, are often based on an underlying as-

sumption of optimality. But often we simply consider all the constraints under which

a cell needs to act and figure out what cellular behaviors are possible.

As we look at cells from the perspective of resource allocation, we will neglect other

aspects: we will rarely talk about regulation (e.g. the mechanisms for regulation of

gene expression), and even more rarely about gene or protein sequences. Instead,

we assume that certain mechanisms are in place in the cell, and that molecules en-

coded by sequences exist, and either askwhy (that is, for what functional reason) they

are the way the are, or what the cell can do with them to perform certain tasks. This

oftenmeans that we assume amechanistic systemwith possible ’choices’ (among flux

profiles, expression levels, enzyme parameters, etc.) and ask, first, what choices exist

(considering all the constraints) and, second, how profitable these choices are for the

cell (assuming certain objectives). While we are hardly concerned with genetics, we

are certainly interested in how optimality may arise from evolution - to connect the

two, we need to think about fitness (how long-term fitness can be defined and how

it gives rise to “momentary” or “local” optimization objectives in a given part of the

cell).

The source of inspiration for the book and the questions (discussions) that motivated

the investigation of the various mechanisms the cell uses to allocate resources in the

most efficient way possible were a series of events in formal settings such as an an-

nual summer workshop, the monthly online Forum ”Economic principles in cell phys-

iology”, andmore informal hackathons. The development of the book is an endeavor

that is truly global in scope, drawing on the expertise and integrating the contribu-

tions of scientists who were members of a global network (formed a global commu-

nity) representing research institutions located in more than a dozen countries on

three continents. Those who contributed to the creation of the book recognize that

the success they achieved in bringing it to a satisfactory conclusion is due, in no small

part, to the support of the institutions with which they are affiliated and are grateful

to INRAE, the Learning Planet Institute Paris, and the home institutions of all other

authors (as well as the taxpayers who finance these institutions) who encouraged

the creation of the book by providing its authors and contributors with the time and

space necessary to sustain its development and achieve its completion.

Finally, why did we choose to write this textbook as a collaborative, open book? Pub-

lishing with a commercial publisher has several downsides, most of which reflect a



4

clash of interests between publishers, authors, and readers. We wish to write this

book as a community for the community. Many colleagues were and are involved,

and we would be glad to welcome you as part of the team! If you would like to join

for writing, reviewing chapters, designing graphics, or discussing new ideas, please

have a look at our website and get in touch.



Overview

Getting started

What is this book about?

In biology, the ”economy of the cell” has become increasingly central as a way of un-

derstanding cells. In particular, it has been used as a perspective onmetabolic states,

the allocation of protein resources in cells, and the interplay between production pro-

cesses and cell growth. In this book, we focus on diverse biological topics of interest

and, where possible, use economic analogies to show that, much like in human eco-

nomics, balance and resourcemanagement are crucial for cells. The “economy of the

cell” is based on, and is a part of, systems biology, a branch of biology that is typically

concerned with networks, large cell biological data sets, and dynamic models.

Functional thinking – as opposed to describing cells mechanistically, as physical ob-

jects – is fundamental to biology. In biology, the notion of ”function” is justified by

the fact that organisms emerged from evolution – that is, as a result of mutation and

selection – where completely ”nonfunctional” solutions are probably being selected

against. Evolution itself is an open-ended process and does not entail any simple cri-

terion for ”optimality”. Since selection depends on changing environments, and since

environments themselves can be shaped by organisms, there is no simple, general

criterion for Darwinian fitness (except for the fact, post hoc, that a species managed

to survive over a long period of time). However, if we look at the end result – an

evolved species, or an evolved trait in microbes, for example, how cells allocate their

resources – and assume that this species evolved in a constant environment, it is

tempting (and, as we argue here, meaningful) to describe this result by optimality ap-

proaches or economic thinking. Hence, it is not by chance that some cell models

bear strong resemblances with economic models.

Since the integration of systemsbiology and economics is long overdue–andnobooks

currently focus on the intersection of these two fields, despite some addressing sys-

tems biology from an economic perspective–we decided to write a textbook that cov-

ers the fundamentals of cellular production processes, their regulation, and how they

5
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can be described in terms of resource allocation, costs, and benefits.

Who is this book for?

The book focuses on the application of economic principles to cell biology, providing

readers with a quantitative framework to understand how cells allocate resources,

optimize processes, and make trade-offs. The topic of this book has emerged from

the field of systems biology, and accordingly, we address students and researchers in

related fields with a background in biology, physics, engineering, or math who want

to explore this interdisciplinary field. For students, the textbook offers a structured

introduction to the economic principles that govern cellular behavior, starting with

basic concepts and advancing to more complex models. For researchers, it provides

an overview of the current literature, helping those in related fields quickly grasp

key ideas and approaches in this area of study. For readers without a biological

background, we recommend the book “Cell biology by the numbers” (book.bionum-

bers.org), which takes the reader on a journey through various aspects of cell biology.

Our aim is to make this book accessible to as many people as possible by ensuring

that the concepts are accessible to everyone, covering both beginner and advanced

topics, and by offering it as a free resource. The book and its individual chapters can

be downloaded fromour bookwebsite. A new version is released every threemonths

and since the project is still ongoing, the text will be improved edition by edition.

A guide to the book

Chapters overview

A main topic of this book is resource allocation in cells. Focusing on metabolism, we

can ask, more specifically, about (potentially optimal) configurations of fluxes, protein

concentrations, and metabolite concentrations. This question may be given in a sim-

plified form, e.g. as a choice of fluxes under constraints (in Flux Balance Analysismod-

els) or an allocation of a finite protein budget to cellular tasks (as inwhole-cellmodels).

But the overall aim behind this is to describe an entire growing cell. If we simplify this

again by looking at parts of a cell (e.g. considering small-molecule metabolism only)

or looking at ”low resolution” (i.e. considering only a few global variables), this leads

to different modeling approaches which we explore in this book.

The reader will learn how economic principles such as optimization, resource alloca-

tion, and trade-offs can be applied to cellular biology. The chapters are organized to

guide the reader from basic concepts to more advanced applications. The book cov-

ers foundational topics first and then progresses to more specialized areas, including

how to develop and analyzemodels that explain how cells manage resources and op-

http://book.bionumbers.org/
http://book.bionumbers.org/
https://principlescellphysiology.org/book-economic-principles/
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Mathematics Biology/Biochemistry
Differential equations, 
matrices, probabilities

Cell biology, cell structure,
biochemical reactions

Physics
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Abstraction, deterministic modeling, 

stochastic modeling, optimization, control theory
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Figure 2: Background knowledge and modeling in this book – Many topics in this
book are presented via mathematical models. Models can capture and structure
knowledge from biology, chemistry and physics in a mathematical formulation. As
a “simplified replica” of reality, they highlight certain aspects of cells that we would
like to describe and make them amenable to analysis. In the book, most models ei-
ther describe cell metabolism (as a whole, or parts of it) or a growing cell as a whole.
Aside from the basic description of steady states (in metabolism) or steady growth
states (of cells), the book captures some advanced topics related to cell behavior in
time, in cell communities, in uncertain environments, or aspects of spatial structure.

timize their internal processes. By the end of the book, the readers will have a solid

understanding of how economic principles can be used to analyze andmodel cellular

behavior.

The book chapters are related to a number of larger topics, as shown in Figure 3.

1. The functioning of cells - After the introductory chapter 1, “The cell as a factory”,

youwill find two chapterswith background information about cells and theirmetabolism.

Chapter 2, “An inventory of cell components” describes the main components of

a cell, their functions, and their typical abundances in a cell. In a self-replicating

cell, these are the components that need to be reproduced while also acting as

the ”materials” and ”machines” that make reproduction possible. Chapter 3, “Cell

metabolism”, focuses onmetabolic reactions and pathways and shows how chem-

ical conversions depend on enzyme kinetics and reaction thermodynamics. Read-

ers familiar with cell biology and metabolic models may skip these two chapters.

2. Metabolism - The following four chapters concern metabolic models, starting with

models focusing only on metabolic fluxes (chapters 4, “Metabolic flux distribu-

tions”, and 5, “Optimization of metabolic fluxes”) and then continuing with mod-

els that consider enzyme kinetic rate laws to link metabolic production to enzyme

demand. Chapter 6, “The enzyme cost of metabolic fluxes” assumes that (desired)

metabolic fluxes are given and asks howmuch enzyme is needed to support them,
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Figure 3: Topics of the book shown as the branches of a tree, and book chapters
shown as fruit – The first chapters provide background knowledge, represented by
the roots of the tree. In the following chapters we explain different modeling ap-
proaches that focus on different aspects, represented by the tree’s trunk. In the chap-
ters on metabolism and on cell models, we assume steady (growth) states and move
step by step towards more complex models (resource allocation in cells), shown as
the first line of branches of the tree. Finally, we consider more specific aspects such
as time, variability, and space, as higher branches of our tree. The numbers in the
figure indicate chapters (for chapter titles see text).

and howmetabolite concentrations should be chosen tominimize this enzyme de-

mand. Chapter 7, “Optimization of metabolic states”, combines these aspects and

presents a general way to determine optimal metabolic fluxes, metabolite con-

centrations, and enzyme levels at the same time. At the end of these chapters,

you will have learned what arrangements of fluxes and concentrations make cell

metabolism maximally efficient, that is, allowing to produce a maximal amount of

product at a limited enzyme capacity.

3. Cell models - In the following two chapters, we consider the cell as a whole. Chap-

ter 8, “Principles of cell growth”, describes what a system, the cell, needs to do in

order to replicate, and what internal arrangements will lead to a maximal growth

rate. Self-replication can be seen as a form of autocatalysis, which is described in

detail in in Chapter 9. Chapter 10, “Resource allocation in complex cell models”,

shows how these general principles are applied in large cell models that describe

small-molecule and macromolecule metabolism at a great level of detail.

4. Time and uncertainty - While the models in the previous chapters all assumed

steady states, and often a simple choice of the “best state” for a cell, the following

chapters explore somemore possibilities and how one can describe them bymod-

els. Chapter 11, “Optimal cell behavior in time”, extends the question of optimal
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Figure 4: Metabolic models and levels of description – (A) Main elements of metabolic
models. The example shows a linear pathway of 3 enzyme-catalyzed reactions. Fol-
lowing the convention in kinetic models, the “boundaries” of the model are external
metabolites (marked as ”ext”). In flux analysis models, the boundaries are typically
not formed by metabolites, but by exchange reactions. (B) Levels of description of
a metabolic model, from network structure (metabolites and reactions) to a quanti-
tative physical description (comprising for example concentrations and fluxes) and
further to a function-related “economic” description (comprising physiological con-
straints, costs, and benefits).

resource allocation to optimal scheduling processes in time, where the cell needs

to achieve its goal in a certain time horizon and resources can be shifted between

different moments in time. The next two chapters are concerned with variability.

Chapter 12, “Diversity of metabolic fluxes in a cell population”, explores how cells

in a population, instead of realizing the same optimal flux distribution, may realize

different fluxes, creating randomdifferences between individual cells in a given en-

vironment. On the contrary, Chapter 13, “Cells in the face of uncertainty” assumes

that cells live in an unpredictable environment and need to “make bets” on how the

environment will change in the future, and addresses what are the best strategies.

5. Sizes and shapes - The last two chapters of the book are concerned with space in

a broader sense. Chapter 14, “Strategies for cell size control” describes how cells

choose the moment of cell division, which determines the distribution of cell sizes

in cell populations. Chapter 15, on the “Economy of organ form and function”,

goes beyond microbiology and describes more broadly how systems in the body

and their physiological usage – in this case, the lungs in mammals and the speed

and depth of respiration – are shaped by their size, and how general scaling laws

for shapes can give rise to similar laws for biological function and the “economics”

of the system in question.



10

Some words about mathematical models

As shown in Figure 2, in this book, cells and cell behavior will be largely described with

the help of mathematical models, often used in biology to gain insight into biological

systems through simulations and quantitative analysis. As shown in Figure 4, our

models typically describe a set of metabolites and the reactions that convert them,

forming a network; we then attribute concentrations to the metabolites and chem-

ical fluxes to the reactions and describe their dynamics; and finally, based on this

dynamics, we consider ”economic” questions, often in the form of optimality prob-

lems. Although different chapters will focus on different types of models (describ-

ing metabolic fluxes, compound concentrations, cell growth, or all of these aspects

together) and models of different size (from simple instructive 3-variable models to

models covering thousands of different cell components), all thesemodels eventually

describe different aspects of one cell and the same cell. Therefore, the different types

of model are closely related and sometimes one model can be seen as a simplified

form of another one. Figure 5 shows a basic scheme of a cell, where precursors pro-

duced inmetabolism are converted into proteins, which then constitute themachines

that catalyze metabolic reactions (as enzymes) or protein production (as ribosomes).

By “zooming in” and focusing on different aspects of this scheme, we obtain the main

types of models that we will encounter in this book.

Where to find more information

In addition to the main text, the book offers additional material.

Background knowledge and literature. Cellular economics - and systems biology

more generally - builds on knowledge from different disciplines and on a history of

ideas in biology and beyond. In the section ”Reading recommendations” at the end of

the book, you will find a number of books, articles, and online resources that provide

background information.

Reading recommendations for individual chapters. For readings specific to individ-

ual chapters, please see the ”Recommended readings” sections at the end of each

chapter.

Boxes. In the chapters, some specialized topics or thoughts on the side can be found

in separate boxes. Most of these boxes belong to one of these categories: Economic

analogies, Philosophical remarks, Physical thoughts and analogies, Mathematical de-

tails, Experimental methods in biology. The remaining boxes contain ideas that did

not fit into this simple scheme. A list of all the boxes can be found at the end of the

book.

Book website. More information about the book and the economic cell collective be-
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Figure 5: Simple scheme of a cell, and common function-based (“economic”) cell mod-
els – A microbial cell, depicted here by a very simplified scheme (center top), can be
viewed in various ways. Two main views on cells come from quantitative data ob-
tained from experiments (here represented by the proteome, top right) and from
the network of metabolic reactions (left), covering all (or a part) of the production
and conversion processes in the cell. These conceptual pictures can be translated
into mathematical models that describe (and predict) a number of cell variables. The
three remaining boxes refer to three common types of resource allocation models
presented in this book, each covering a different scope - from metabolism to entire
cells. The formulae are explained in later chapters (N: stoichiometric matrix; v: vector
of fluxes; b(v): flux benefit function; a(v): flux cost function; kapp: apparent catalytic rate
of an enzyme; v(e, c): rate law of an enzymatic reaction, giving the rate as a function of
enzyme level e and metabolite concentration vector c).

hind it can be found on our website https://principlescellphysiology.org/book-economic-principles/.

Problems and computer exercises. The problems at the end of each chapter are a

mix of conceptual questions, paper-and-pencil calculation exercises, and computer

exercises. Solutions to some of the problems can be found in the end of the book.

More computer exercises (Jupyter notebooks) can be found on our website.

https://principlescellphysiology.org/book-economic-principles/
https://principlescellphysiology.org/book-economic-principles/problems.html
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Lectures. All book chapters have been presented as lectures at our ”Economic Princi-

ples in Cell Biology” summer schools at LPI Paris. Lecture slides are provided on our

website.

You can participate in writing this book. You can participate in our project in many

ways. If you have direct feedback for us (which may concern anything from typos to

proposing new topics), please let us know via our feedback form on the website. If

you would like to be directly involved (in writing, reviewing, proofreading, graphics

design, or any other smaller or larger tasks), please contact us anytime. For more

information, see the book website.

https://principlescellphysiology.org/book-economic-principles/lectures.html
https://principlescellphysiology.org/book-economic-principles/


Chapter 1

The cell as a factory

Ohad Golan

The term ”metabolism” is usually used to describe the chemical reactions that oc-

cur within biological organisms to produce and transform molecules needed to sus-

tain life. Although this definition is useful, it does not give scientific or mathematical

ground for the analysis of metabolic systems. Here we consider metabolic systems

in a much broader sense, and in order to provide a logical framework for the anal-

ysis of metabolic systems, we begin with a more formal definition that also covers

systems outside biology. Metabolic system: ”A well-defined system that takes up nu-

trients and uses them to sustain itself”. This definition can be represented by a simple

chemical equation:

nutrients −→metabolic system + waste products

The process is carried out by the metabolic system itself - a point we will expand on

later. The waste products are typical leftovers of the reaction in case such products

exist. The most obvious example of a metabolic system is a biological system that

takes up substances from its environment and assimilates them to reproduce its own

components (often summarized as ”biomass”). The chemical equation ofmetabolism

for biological systems is:

c1 sugar+ c2 oxygen+ c3 ammonia −→ biomass + waste products

The equation describes all the nutrients, including sugar, oxygen, and ammonia, that

are necessary to sustain a biological system. Other molecules such as certain metals

and phosphate are also necessary for the reaction to occur, but we neglect them for

the sake of brevity. The typical waste products are water, carbon dioxide, and other

13



14 The cell as a factory

Economics analogy 1.A A cell and a construction firm as black boxes

black box description of microbial growth

economic analogy (construction company)

sugar

oxygen

ammonia

acetate

carbon

biomass

cement

timber

iron

houses

waste

value

Another, less typical, example of a metabolic system in this general sense is an
economic firm supplying a product. In this example we will consider for simplicity
a firm that builds houses, but any kind of product can be equally used. Such a
firm takes in land and different construction materials, these would be equivalent
to the nutrients, and by the use of the labor force, which would be equivalent to
the proteins, uses them to build houses. The houses are then sold to maintain
and increase the value of the firm, just as the biological cell maintains itself. The
chemical equation of metabolism for a construction firm is:

c1 land+ c2 construction materials −→ value+ c3 waste

possible chemicals secreted by the system.

In this book we focus on the analysis of biological metabolic systems. However, given

that economic systems fall under the same definition of a metabolic system, we will

use them as analogies to simplify explanations. Whenever an analogy to economical

systems is presented in this book, it will be displayed in an ”Economic analogy” box

such as the one above.

Many metabolic systems use a strategy of reproduction to sustain itself. That is, nu-

trients are used to make more of the metabolic system and not only to maintain it.

This means that the output of themetabolic process is more of themetabolic system.

This creates a system that, when unlimited resources are available, grows exponen-

tially - themetabolic system takes in nutrients which it uses to replicate, the output of

the process is also themetabolic systemwhich takes inmore nutrients and also repli-

cates. Metabolism includes all the processes that take place in order to carry out the

overall chemical conversion of metabolism - that is, everything that happens inside

the black box described above. The most fundamental model of a metabolic system

is one that takes nutrients from the environment, breaks them down into building

blocks, and uses these building blocks to sustain itself. In biological systems, these

processes are termed catabolism and anabolism. In catabolism, the cell takes up car-

bon and nitrogen sources from the environment and uses them to synthesize the
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Economics analogy 1.B A cell to a construction firm as growing systems

In an analogy to an economic system of a construction firm, the catabolic process
would correspond to the purchase and transfer of the construction materials to
the construction site, and the anabolic processes would correspond to the con-
struction of the house; the catalytic enzymes would correspond to the workers
carrying out the transfer of the materials and construction process. The growth
process in bacteria is analogous to the growth of the firm - when the construction
of the house is complete, the house is then sold to increase the value of the firm.
The increased value enables the company to hire more workers and build more
houses.

construction company

microbial growth

biomassnutrients

necessary building blocks: amino acids, nucleic acids, and fatty acids. In the anabolic

process, the building blocks are used to form biomass which includes the function-

ing systems of the cells, proteins, DNA strands, and the membrane. Each process is

catalyzed by a specific set of enzymes. These enzymes that catalyze the reactions are

actually the metabolic system itself. When the cell grows, it makes more enzymes to

catalyze more reactions - this is the reproduction process that leads to exponential

growth.

The metabolic system controls the allocation of the available resources. When co-

ordinating the process, the metabolic system decides between different strategies

on how to best use the resources. For example, the cell decides how much of the

available enzymes to allocate to the catabolic process and how much to the anabolic

process. When making these decisions, the cell takes into account different physical

constraints. Examples of these physical constraints are: a limited physical volume

to maintain and carry out the metabolic processes, a limited surface area that con-

strains the ability to take up nutrients, or limiting thermodynamic constraints on the
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activity of the enzymes. There is no one best strategy that is always utilized - dif-

ferent organisms decide on different strategies based on the living conditions. This

decision process is carried out bymanymechanisms in the cell, the main information

processing core of the cell being DNA. The decisions carried out by the cell are based

on the evolutionary process the metabolic system has gone through during its exis-

tence. A description of cell information processing and how it is carried out is given

in Appendix A.

So far, we describe the most fundamental metabolic system. This is a coarse-grained

description in which the cell catabolizes nutrients into one type of precursor and does

not take into account all the processes that take place in catabolismand anabolism. In

a biological metabolic system, the cell requires multiple different types of precursors,

such as amino acids, nucleic acids, and fatty acids. To create all the different precur-

sors, the cell takes in nutrients from the environment and, through a set of chemical

reactions, turns the nutrients into the precursors that are necessary for the cell to

sustain itself. Each chemical reaction in the metabolic process is carried out by pro-

teins. The different precursors can be produced through different sets of chemical

reactions known asmetabolic pathways, and the different chemicals in themetabolic

pathways are known asmetabolites. The cell decides whichmetabolic pathway to ac-

tivate by producing the necessary enzymes. In an analogy to the economic systemof a

construction company, each chemical reaction is one process carried out by a worker

– for example, the assembly of the frame of the house requires a carpenter, while

the next step in the construction pathway is to place the foundation in the correct

location, which is done by another worker. The workers are analogous to enzymes,

and the different parts necessary for construction are the metabolites.

Manymetabolic pathways have overlappingmetabolite reactants andproducts. Some

of the key parameters that describe metabolic pathways are the enzyme catalytic

rates. These parameters describe the rate at which the enzymes consume and pro-

duce metabolites and at which concentration of reactants they saturate. In the anal-

ogy to the construction firm, the enzymatic parameters are parameters that describe

Economics analogy 1.C Allocation of workforce

In an analogy to the economic system of a construction company, the company
manager faces the decision of how to allocate his workforce, how many of his
workers to assign to bring inmaterials from the factory and howmany of his work-
ers to assign to the construction process. In a similar way to the biological system,
there are different limiting constraints, such as a difficult topographic construction
site or limited available resources. Unlike the biological cell, though, in which the
decision-making is embedded by the evolutionary processes, here the decision is
made by the manager of the construction site.
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Figure 1.1: A self-replicating cell – In the metabolic process the cell takes in available
nutrients and through a set of biochemical reactions, turns them into precursors nec-
essary for growth. The chemical reactions are carried out by proteins in the cell.

the rate of work of each worker. Given that each metabolic pathway is made up of

a series of chemical reactions, each with different catalytic rates, the different en-

zymes of each pathway must be coordinated perfectly to avoid any excess buildup of

metabolites - just like in a factory assembly line, all the workers must be coordinated

together to avoid buildup of an intermediate.

In order to make sense of the complex network of metabolic reactions, different

mathematical models were developed. The models take into account the known ex-

perimental data for the different reactions and compile them together to predict the

overall response of the system under different growth conditions.

The metabolic models described above describe biological systems that are discon-

nected from the environment except for some artificial supply of nutrients. In natural

ecological systems, different organisms exist together under a limited supply of nu-

trients. They compete or cooperate to best utilize the limited available resources. All

organisms try to improve their chances of survival according to the laws of evolution.

In such a setting, the metabolism of organisms living in an ecological system is di-

rectly dependent on the other organisms that co-exist with them. In an analogy to an

economic system, this would be a competition between different companies for the

same possible clientele. Some companies would compete against each other, while

others would cooperate to improve their profit.
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Chapter 2

An inventory of cell components

Pranas Grigaitis and Diana Széliová

Chapter overview

◦ Themain components of a cell are proteins, RNA, DNA, lipids and carbohydrates.

◦ The quantities of these components vary depending on the cell type and the cell’s

environment.

◦ These components are synthesized by enzymes and molecular machines such

as ribosomes and DNA/RNA polymerases.

◦ There are many parallel processes happening in cells and they have to be coor-

dinated.

◦ Cellular processes are constrained by factors like temperature, diffusion limits,

and density.

2.1 Describing and counting cellular components

Cells contain a diverse spectrum of molecules, needed to create two cells out of one

(as Rudolf Virchow proposed, omnis cellula e cellula, all cells come from cells). These

molecules come in different sizes and properties and therefore create a demand for

a cell to keep these components in different places (spatial organization) with dif-

ferent patterns of use (temporal organization), and book-keep their quantities. Cell

composition directly influences cell function: thuswe observe different cellularmake-

up in different organisms or even in different cells of the same organism.

Historical research and the latest advances in instrumentation allow us to character-

ize the constituents of cells in increasing depth. Today, collections of such biological

numbers, like BioNumbers [1], store thousands of values available at your finger-

tips, a long way from scouting the numbers in original publications. Specialized open

databases, e.g. Human Serum Metabolome Database [2], bring increasing amounts
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of measurement data available to the community.

Being able to operate basic biological numbers has multiple benefits when thinking

of the cellular economy. To name a couple, first, it allows “back-of-envelope” calcula-

tions, where we aim to estimate the plausible order of magnitude of a derived value,

rather than the exact value. This sort of thinking boosts interpretation of results con-

siderably, as it allows us to rule out unrealistic outcomes. Second, computational

models of cell growth (Chapter 8) usually use numbers like average cell size or protein

mass as parameters. Consequently, the choice of parameters has a direct influence

on the quantitative predictions. Last but not least, these simple calculations allow us

to establish relationships between different components of the cells - and cells are

nothing but heavily intertwined networks of molecules.

Counting molecules in a cell is as important to the cellular economy as counting dif-

ferent sorts of fruits and vegetables in a warehouse – and is a key ingredient in the

journey towards understanding of the principles behind the cellular economy. As we

unveil throughout the book, it seems that cells can be treated as “little bookkeepers

under the microscope”. Thus in this chapter, we will do a census of cellular compo-

nents: we will discuss what molecules make up a cell, what they are derived from,

how to measure these components in the lab, and we will briefly consider allocation

of resources, directed to synthesize individual cellular components.

2.2 The components of a cell

2.2.1 Elemental composition of the cell

Although living matter comes in different shapes and sizes, over 99% of the cellular

mass can be described by only a handful of chemical elements. 6 most abundant

elements form the famous CHNOPS notation: carbon (C), hydrogen (H), nitrogen (N),

oxygen (O), phosphorus (P), and sulfur (S). Taken together, these 6 elements encom-

pass the vast majority of themass, namely, ca. 97.5% in budding yeast Saccharomyces

cerevisiae [3]. Living cells also contain minute amounts of different metal ions, such

as sodium (Na), potassium (K), iron (Fe), molybdenum (Mo) and others – usually facil-

itating signal transduction or supporting enzymatic catalysis.

2.2.2 Biological molecules

Although cells contain many different molecular species (“molecular identities”), we

can crudely categorize them into small molecules and macromolecules based on their

molecular weight and complexity. Small molecules, as the name suggests, are small

chemical compounds, up to 1000 Daltons in mass (1 Dalton = 1 atomic mass unit,

1 amu), and are usually composed of a non-repeating single chemical unit (called
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monomer). Macromolecules, on the contrary, are up to several megadaltons (MDa = 106

Da) in weight, and are frequently composed of multiple monomers (forming so-called

polymers). Compounds in the cells, both macro- and small molecules, based on their

chemical nature, fall into 5 big groups: proteins, nucleic acids (bothmacromolecules),

carbohydrates (exist as both small molecules and polymers), lipids (small molecules),

and cofactors/other small molecules.

Proteins are polymers, composed of amino acids. Proteins are an exceptionally di-

verse class of molecules: in Nature, 20 amino acids can be incorporated into pro-

teins (so-called proteogenic amino acids), which, combinatorially provides 20 options

for each position in the protein chain. Therefore, there is an enormous amount of

possible combinations to make a protein of a length of 100 amino acids (20100, to be

precise), even for a amino acid chain way shorter than the average in E. coli, around

325 amino acids (BioNumbers ID (BNID) 108986). This diversity gives rise to the spec-

trum of functions proteins can do, for instance, catalysis (catalytic proteins are also

called enzymes), transport of molecules, keeping structural integrity of membranes,

and others. Also two notable properties of proteins are that they (1) need to acquire a

specific three-dimensional structure (“to fold”) in order to become functionally active,

and (2) sometimes, they also need to form complexes of the same or other proteins

(calledmultimers). Protein production is amajor consumer of energy and biosynthetic

intermediates in the cell, therefore, in this book we will frequently consider proteins

as central players in implementing economic principles in cell physiology.

Nucleic acids are another category of macromolecules; their monomers are called

nucleotides. There are two major classes of nucleic acids, RNA (ribonucleic acid) and

DNA (deoxyribonucleic acid). RNA and DNA chemically have a slight, yet critical dif-

ference: the sugar, which is a part of the nucleotides, differs between RNA (ribose)

and DNA (deoxyribose). The two sugars are almost the same but for one chemical

group: one of the carbon atoms in ribose is connected to two another carbon atoms,

a hydrogen atom, and a chemical group, called hydroxy- (−OH). In deoxyribose, the

hydroxy-group is substituted with another hydrogen atom, hence the prefix “deoxy-”

(“minus oxygen”). RNA and DNA have different functions in the cell: the primary func-

tion of DNA is to store genetic information, while RNA can work both as an intermedi-

ate agent to transfer that genetic information to protein production (messenger RNA,

mRNA) or to participate in catalysis and protein production in general (e.g. transfer

and ribosomal RNA, tRNA and rRNA, respectively). Outside the polymers, nucleotides

can also act as energy-accumulating compounds (e.g. ATP, adenosine triphosphate)

or signaling molecules (e.g. cyclic adenosine monophosphate, cAMP). In this text, we

will mostly refer to the energy-storing function of the nucleotides, although other

functions, such as signaling, also are essential aspects of describing cell physiology.

https://bionumbers.hms.harvard.edu/search.aspx
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Carbohydrates are another major class of biological molecules, and are important

both as monomers and high molecular-weight polymers. Monomeric carbohydrates

(sometimes also referred to as simple sugars) are mainly used as carbon and energy

sources for organisms, e.g. glucose or fructose. Oligosaccharides made up of two

or three linked monomers can also used as energy source and many of them are

specific to certain groups of organisms (e.g. melezitose, a trisaccharide found in in-

sect honeydew). In oligomeric form (up to 10 monomers), carbohydrate chains are

essential for cellular sensing systems: proteins can be “decorated” with chains of car-

bohydrate monomers to be recognized by receptor molecules on the surface of the

cell. Finally, polymers of carbohydrates usually serve as structural components (part

of peptidoglycan, major part of bacterial cell walls) or energy/carbon storage (glyco-

gen in, e.g. yeasts and animal cells, or starch in plants).

Lipids are a vaguely-described class of compounds, which have an overarching sim-

ilarity, being water-insoluble. The major function of lipids in biological cells is struc-

tural: a very abundant subclass of lipids, phospholipids, is an essential constitutent

of biological membranes. As discussed in Section 2.2.1, membranes themselves have

a variety of functions, which are mostly carried out by lipids (structural) or proteins

(transport, sensing, signaling etc.). Some lipids can also undertake other functions,

such as signaling (various sterols), or energy storage (tryglycerides, or fats).

As we see, themetabolism of biological molecules is tightly interlinked, although they

exhibit major differences in their abundance, size and chemical properties. Macro-

molecules are present in very low concentrations, and their biosynthesis usually takes

minutes. Meanwhile, the time scale of small molecule reactions is usually seconds (or

fraction of), and the concentrations of smallmolecules are usually severalmagnitudes

higher than these of macromolecules. Yet, despite acting at different rates and con-

centrations, these two types of biological molecules work in an orchestratedmanner.

To begin with, a number of different small molecules are required to produce both

other small molecules and the macromolecules. In return, the macromolecules en-

sure cell integrity and growth by, among other functions, operating the reaction net-

works of small molecule interconversions (which we usually refer to as metabolism).

Additionally, presence of some small molecules can influence the function of macro-

molecules, both directly (e.g. essential cofactors, needed for enzymatic reactions; en-

zyme activation or inhibition), and indirectly (e.g. modulation of gene expression, sig-

naling). Therefore, a lot of different processes have to happen in parallel to ensure

the operation of the cells. Having defined the major types of molecules we find in

living cells, next we will discuss how abundant are different components of the cells.
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Box 2.A Macromolecular machines

An important consideration about both proteins and nucleic acids is that they
are polymerized by very specialized protein- and protein-nucleic acid complexes.
Thesemolecular machines use energy (in terms of ATP equivalents) to form chains
of the respective monomers.

RNA polymerase

ribosome

precursors
and energy

transcription

translation

NT

AA

ATP

ATP

RNA

DNA

For proteins, amino acids (AA) are combined into a so-called peptide chain in a pro-
cess called translation, which is catalyzed by ribosomes – large complexes made
from proteins and RNA. Nucleic acids (RNA and DNA) are synthesized from nu-
cleotides (NT) though a process called transcription by enzyme complexes known
as nucleic acid polymerases. There are two major classes of them, RNA and DNA
polymerases, each specific to their respective nucleic acid.

2.3 Cell organization and size

In an extremely simplified way, cells can be looked at as bags of fluid-like material,

kept together by a membrane. These “bags of things” can also contain other mem-

brane structures inside them, forming so-called organelles. In cell biology, we call

cells prokaryotic if they do not possess these membrane structures, and eukaryotic if

they do. The divide between prokaryotes and eukaryotes can be illustrated by com-

paring two organisms: the prokaryotic bacterium Escherichia coli and the eukaryotic

yeast Saccharomyces cerevisiae. They both are organisms, composed of a single cell

(thus called unicellular), and they both are very small, compared to a typical human

cell. However, E. coli does not contain any additional membrane structures except

from the plasma membrane (which encompasses the cellular contents). Meanwhile,

a handful of different organelles can be observed in S. cerevisiae. The cellular organi-

zation of these cells is shown in Figure 2.2.



24 An inventory of cell components

2.3.1 Membrane-bound structures of the cell

Most biological membranes and membrane-based structures, including the plasma

membrane itself, have multiple functions (not only separating space), and are highly

dynamic. Some membranes can fold into very compact structures with extremely

high surface area (endoplasmic reticulum, Golgi apparatus), occupy different volumes

- from small vesicles to large vacuoles, occupying a major fraction of the cell volume.

Moreover, some molecules can form very large structures, which might be transient

(short-lived), thus capturing and defining them remains a major challenge. For these

reasons, the fine structure of cells is unclear - some findings (e.g. organelle contact

sites, see [4] for a recent review) hint into some functional organization of organelles,

yet the canonical way to look at the cellular structure remains as to a “bag of things”.

A notable example of a highly specialized organelle is the mitochondrion. The mito-

chondrion is separated from the rest of the cell by two (outer and inner) membranes;

this feature is essential for their function. In eukaryotes, mitochondria are a major

hub of metabolism: they house essential biochemical pathways, such as tricarboxylic

acid cycle (also known as citric acid-, or Krebs cycle), as well as the so-called respira-

tory chain, themachinery for generating energy with the use of oxygen (see Chapter 3

for more details). While the most biochemical interconversions happen inside the

mitochondria (in mitochondrial matrix), the respiratory chain proteins are located in

the innermitochondrial membrane: these proteins create an electrochemical gradient

across this membrane, and use it to drive the conversion of energy, stored in nutri-

ents, into the energy the cell can use (in a form of ATP). What makes mitochondria

evenmore interesting is that they also containmitochondria-specific genetic informa-

tion (mitochondrial DNA), which is essential for mitochondria to function inside the

cell. In many organisms, the loss of mitochondrial DNA results in impaired growth

(in yeasts, that is called the petite phenotype) [5], and some organisms cannot grow

unless mitochondrial DNA is present (petite-negative yeasts).

2.3.2 Cell size

There is a remarkable variability of cell sizes in nature (Figure 2.1). Figure 2.2 shows

the typical sizes of bacterial, yeast and mammalian cells, which range from 1 to 15 µm.

However, we can easily find more extreme values. For example, one of the largest

cells in the human body, the egg cell, is 100 µm in diameter (BNID 111184). Bacteria

are usually considered very small, in fact, the diameter of the smallest known bac-

terium Mycoplasma is only 0.2 µm (BNID 104717). Meanwhile, on the other side of the

spectrum, the largest bacteria Thiomargarita magnifica can reach up to 2 cm [6] which is

evenmore thanmostmammalian cells. However, this giant bacteria looks very differ-

ent from typical bacteria like E. coli – it has hundreds of thousands of genome copies
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in organelle-like structures. There are exceptional cases where cells can reach even

bigger sizes. The largest known single-celled organism is the alga Caulerpa taxifolia. It

has many nuclei that are not separated by amembrane and reaches up to onemeter

[7]. Another special case is a neuron – its body has a small diameter (100 µm), but its

axons can extend to more than a meter (BNID 109548).

For many organisms, cell size changes with environmental conditions. As already

mentioned in Section 2.4.1, the size of the cell varies with the growth rate, and de-

pends onhowaparticular growth rate is reached. More than 60 years ago, Schaechter

et al. discovered the nutrient growth law – cell volume increases exponentially with

growth rate (as a result of the nutrient availability in the medium) [8]. Since then, the

correlation between cell size and growth rate was also observed for other organisms

[9, 10, 11] (BNID 107948, 110191, 105103). However, when the growth rate is changed

by othermeans, for example by temperature, this relationship is not observed [8, 12].

2.3.3 Variation of single-cell sizes and shapes

The relationships above refer to an average cell volume in the population. However,

at the single-cell level, size changes throughout the cell cycle. Before cells divide, they

essentially need to double their size. Otherwise, they would get smaller and smaller

with each division. However, they also cannot grow toomuch, or the average cell size

would get bigger and bigger. There are various mechanisms of how cells maintain a

cell size homeostasis, and they are discussed in detail in Chapter 14.

Aside from cell size, we need to consider the importance of cell shape. Different cell

types come in different shapes, such as spheres, ovals, rods, or spirals. Differently

shaped cells may have the same volume but very different surface area and surface

area to volume ratio (SA/V). Spheres have the lowest possible SA/V while more com-

plicated shapes have higher SA/V. What happens to the shape when a cell changes

its volume (for example, in response to environmental conditions)? For many cells,

the shape remains roughly the same – for example E. coli always looks like a rod. As

a result, SA/V decreases as cells get larger. On the other hand, some cells vary their

size and shape but maintain a constant condition-specific SA/V [13].

The changing SA/V ratio can impact cell biology in various ways. For example, it can
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Figure 2.1: Variability of cell size across organisms



26 An inventory of cell components

change cell composition – a larger membrane area increases the lipid fraction of the

cell. The SA/V ratio also affects nutrient uptake. A bigger surface area allows faster nu-

trient uptake per unit volume because more transporters can fit into the membrane.

Additionally, cell shape influences the rate at which molecules diffuse from one end

of the cell to another. Understanding these effects is relevant for some modeling

approaches, especially those that consider membrane synthesis or diffusion.

2.4 Cell composition in numbers

Throughout this book, we will explore various ways to model cells mathematically.

For that, we need to know not only what the main components are but also what are

their quantities. For example, proteins are usually the most abundant constituent

of the biomass, and many simplified mathematical models focus solely on proteins.

However, some models include a much more detailed description of the biomass

composition. Additionally, we need to knowhowbiomass composition changes in dif-

ferent environments. For instance, the observation that RNA/protein ratio increases

with growth rate hinted how cells reallocate resources to grow faster, inspiring the

development of mathematical models that capture this behavior.

Cells are composed of around 70% water and 30% dry mass. As mentioned pre-

viously in the chapter, we can describe the composition of the dry mass with the

most abundant chemical elements. For example, the elemental formula for E. coli

is CH1.77O0.49N0.24 (BNID 101800) and for S. cerevisiae CH1.61O0.56N0.16 (BNID 101801).

However, this kind of description is not particularly useful for understanding cells

because it does not capture the variety of molecules that exist in a cell.

Therefore, we are more interested in biomass composition in terms of the main

macromolecules (proteins, nucleic acids, lipids, and carbohydrates) and smallmolecules

(metabolites, cofactors, and ions). Table 2.1 summarizes an average composition of

E. coli and S. cerevisiae during exponential growth, the typical molecular masses and

copy numbers of the components. The most abundant component is protein, which

forms around half of the drymass of the cell. Whenwe divide the proteome into func-

tional groups, we find that the biggest fractions belong to translation, central carbon

metabolism, folding, sorting and degradation, and biosynthesis. A substantial frac-

tion belongs to proteins that are not mapped (especially in mammalian cells), illus-

trating that we still lack knowledge about the function of many proteins (Figure 2.2).

RNA forms 20% of dry cell mass in E. coli, but this number is lower in eukaryotes, such

as yeast (11%) or mammalian cells (4%). While the total amount of RNA is variable

1The icons bacterium-interior, golgi-3d-1, mitochondrium-3, endoplasmatic-reticulum-3d-medium,
endoplasmatic-reticulum-rough-3d-2, endoplasmatic-reticulum-rough-3d, and nucleus by Servier are li-
censed under CC-BY 3.0 Unported.

https://smart.servier.com/
https://creativecommons.org/licenses/by/3.0/
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Figure 2.2: Biomass composition and cell structure of a typical bacterial, yeast, and a
mammalian cell – The area of each polygon corresponds to a mass fraction of a com-
ponent per cell. While the average composition is quite similar in the three groups,
there are major differences in size and internal organization (especially when com-
paring prokaryotes with eukaryotes). Data for proteome groups (length-weighted
protein abundances) was obtained from Proteomaps. Sources of composition data:
bacteria [14], yeast (BNID 108200, 108196, 107234, 100261, [15]), mammalian cells
(BNID 107131, 107235, 107234). Pictures of cells were created using Bioicons1.

in different organisms, its relative composition is similar – most of the RNA mass is

formed by rRNA (80%), followed by tRNA (15%) andmRNA (5%) (BNID 100258, 100261,

106154). Lipid content is the highest in mammalian cells (13%) compared to yeast

and bacteria (4-10%, BNID 111209, Table 2.1). Remarkably, there are cases where

engineered yeast cells accumulated up to 80 % of lipids per cell dry mass [16]. The

content of storage carbohydrates varies from around 30% in yeast to 3% in bacteria

(Table 2.1). In bacteria, carbohydrates are stored as the polysaccharide glycogen,

while yeast cells use glycogen and the disaccharide trehalose. Yeast cells also contain

structural polysaccharides, such as mannan and glucan [15]. Bacteria contain the

structural molecule peptidoglycan (3% of dry mass) – a polymer of sugars and amino

acids, which forms bacterial cell walls. In addition, some bacteria (e.g. E. coli) also

https://www.proteomaps.net/download.html
https://bioicons.com/
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have lipopolysaccharides on their cell wall (3% of dry mass).

A small fraction of the cell mass (2- 3%) is formed by small molecules (< 1000 Da) such

as metabolites and ions. This group contains thousands of different molecules with

vastly different functions and concentrations. For illustration, the concentrations of

the most abundant metabolites in E. coli range from 10−1 to 10−7 moles per cell, corre-

sponding to a range of 108 to only 100 copies per cell [14]. Possibly, there are metabo-

lites with even lower concentrations, but these are much more difficult to quantify.

Similarly, the concentrations of the most common inorganic ions (K
+
, Na

+
, Mg

2+
, Ca

2+
,

Cl
–
) span several orders of magnitude [14].

% of dry mass Mass per cell [fg] Molecular mass [Da] Copy number
E. c. S. c. E. c. S. c. E.c. S. c. E. c. S. c.

Proteins 55 51 165 7650 40000 55000 3 × 106 108

RNA 20 11 60 1650 104-106 104-106 3 × 105 4 × 106

DNA (chromosomal) 3 0.5 9 75 3 × 109 2.5 × 108 2 16
Lipids 9 6 27 900 800 800 2 × 107 109

Storage carbohydrates 3 0.5 9 75 106 variable 4000 –
Structural polymers 6 23 18 3450 variable variable – –
Metabolites/cofactors 3 2 9 300 < 1000 < 1000 – –
Other 1 6 3 900 – – – –

Table 2.1: Amounts, characteristic molecular masses and copy numbers of the main
biomass components for Escherichia coli (E. c.) and Saccharomyces cerevisiae (S. c.).
The composition data is shown for E. c. with a doubling time of 40 minutes (BNID
104954) and for S. c. with a doubling time of 110 minutes ([17], BNID 111755). The
storage carbohydrates include glycogen for E. c. / glycogen and trehalose for S. c..
The structural carbohydrates include peptidoglycan and lipopolysaccharides for E. c.
/ mannan and glucan for S. c.. Sources for molecular masses (BNID 105861, 115091,
101838, 104886, 107678, 109645, 102502, 100459); molecule copy numbers (BNID
108248, 108197, 114950).

2.4.1 Variability of biomass composition

Table 2.1 shows biomass composition of a typical E. coli and S. cerevisiae cell – these

are average values in certain environmental conditions. However, cell size, mass, and

composition vary with growth rate and environmental conditions. One of the most

extensively studied relationships in the literature is the correlation of growth ratewith

cell size. The increase of cell mass and volume with growth rate has been observed in

bacteria (Figure 2.3), yeast, and mammalian cells [8, 9, 10, 11] (BNID 107948, 110191,

105103). For example, the cell mass of E. coli can vary fivefold – 150 to 870 fg per

cell for generation times between 100 and 24 minutes [14]. Larger cell mass goes

hand in hand with larger amounts of individual biomass components. The absolute

amounts of protein, RNA, and DNA increase with cell size. However, the ratios of the

components do not stay the same and the relative composition changes with growth

rate [8, 12].
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Box 2.B Orders of magnitude

The quantities of biomass components are usually expressed in relation to other
quantities. The most common units are copy numbers, moles, grams, or fractions
which can be expressed per cell, per gramdrymass, or per cell volume. Membrane
components can also be expressed per surface area. Often, experimental data for
these quantities is not readily available, so we need to extract it from literature.
Useful sources for average or “rule of thumb” values include BioNumbers database
[1] and the book Cell Biology by the numbers [14]. Some useful quantities are
summarized in the table below.They are organized in increasing order with respect
to the dimensions (1 – mass, size, thickness; 2 – area; 3 – volume, density). Notice
how the dimensions influence the numerical values. For example, while the cell
size differs only about 3-fold between bacteria and yeast, the surface area differs
by more than tenfold and the volume by about 60-fold. Because volume grows
faster than area, the ratio of cell surface area to volume (SA/V) gets smaller and
smaller as cells get bigger (see more in Section 2.3.2). Note that these are just
“rule of thumb” values. In reality, these values typically cover a broad range and
depend on environmental conditions.

Name Unit E. coli S. cerevisiae BNID/Reference
Surface area/volume (SA/V) µm−1 6 1.2 calculated here
Dry cell mass pg 0.3 15 104954, 108315
Total cell mass (with water) pg 1 60 104954, 108315
Bilayer membrane thickness nm 4 4 [14]
Cell size µm 1-2 5 [14], 101796
Cell surface area µm2 6 70 101792, 113854
Cell volume µm3 1 60 101788, 101794
Cell density g mL−1 1.1 1.1 103875, 103876

One of the most consistent observations is that the relative amount of RNA per cell

increases with a higher growth rate [8, 12, 18], (BNID 111460, 111755, 108200). On

the other hand, the data for relative protein content is more variable. For example,

in bacteria, protein content decreases with growth rate in some studies [12, 18] but

goes up and down in another (BNID 111460); in yeast, it increases (BNID 108200,

111755). Nevertheless, when looking at RNA/protein ratio we consistently find a pos-

itive correlation with growth rate across various species of bacteria (see Figure 2.3)

and yeast [19, 20]. RNA/protein ratio is a measure of protein production capacity

since most RNA is dedicated to protein synthesis. 80% is rRNA, which forms 2/3 of

the mass of a bacterial ribosome – the molecular machine that makes proteins, and

15% is tRNA which brings new amino acids to the ribosome (for more details about ri-

bosomes, see Section 2.5). Indeed, we also observe a correlation between ribosome

content and growth rate. The increase of RNA/protein ratio and ribosome content

with increasing growth rate reflect higher biosynthetic needs of faster-growing cells.

To support higher growth rate, cells need to reallocate resources according to the

growth demands (for example, make more ribosomes which can then make more

proteins) [19].For more details about resource allocation and how it is modeled see

https://bionumbers.hms.harvard.edu/search.aspx
http://book.bionumbers.org/
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Chapters 8 and 10.

Similarly to protein content, there is no clear correlation between the relative DNA

and lipid content with growth rate across studies [12] (BNID 111460, 111755, 108196).

The content of storage carbohydrates decreases at higher growth rates in yeast and

bacteria [18] (BNID 111755, 111460).

As we have seen, the composition of the biomass changes with the growth rate, and

for some components, we can describe this relationship with simple mathematical

equations [18, 12]. However, the growth rate is the result of environmental condi-

tions such as the amount or quality of a carbon source, temperature, oxygen con-

centration, or presence of inhibitors, among others. Different conditions may lead to

the same growth rate but may not result in the same changes in cell physiology [9].

For example, modulation of growth rate by temperature rather than medium com-

position does not significantly affect cell size and composition [8, 12]. Inhibition of

ribosomes with an antibiotic decreases the growth rate but increases the ribosome

content, contrasting to the nutrient law shown in Figure 2.3 [19].

In contrast, environmental factors can influence cell composition without affecting

growth rate. This shows that cell metabolism is flexible – cells can reach the same

growth rate in different ways, depending on the conditions. For example, in yeast,

changes in O2 concentration lead to changes in biomass composition while keeping

growth constant using a chemostat [22]. In mammalian cells, a change in a culture

medium leads to significant changes in lipid composition without having a consider-

able effect on the growth rate [11].

(A) (B)

Figure 2.3: Growth laws in E. coli – (A) Cell volume grows exponentially with growth
rate (data from [21]). (B) RNA/protein ratio grows linearly with growth rate (data from
[19]). In both cases, growth rate was varied by changing medium composition.
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2.4.2 Biomass composition varies within and between cells

In the previous paragraphs, we considered average cells with a homogeneous com-

position across the cell. However, we must keep in mind that cells have an internal

structure and that biomass components are not uniformly distributed throughout

the cell (as illustrated in Figure 2.4). Although prokaryotic cells do not have compart-

ments separated bymembranes, they have some internal organization. For example,

DNA is not spread across the cytoplasm, but wrapped around proteins and packed in

a compact structure called a nucleoid. Another example is that certain proteins are

preferentially localized on the poles in rod-shaped bacteria. Eukaryotes have com-

partments with different compositions, pH, and membrane potential. DNA is local-

ized only in the nucleus and mitochondria, and many proteins localize only in a par-

ticular compartment. Small molecules and ions also have different concentrations in

the different compartments. Often they cannot freely diffuse through membranes,

but transport is regulated and requires energy.

These differences in concentrations have implications for cellular functions. Some

processes are restricted only to a particular compartment/area. For example, tran-

scription only occurs in the nucleus andmitochondria (nucleoid), and somemetabolic

pathways occur only in a specific compartment (e.g. tricarboxylic acid cycle in the mi-

tochondria). Even if the same enzyme is present in several compartments, it might

work at a different rate or in the opposite direction because of the different con-

centrations of substrates or products. In eukaryotes, certain digestive enzymes only

work at low pH present in lysosomes (thus preventing a cell from digesting itself).

Sometimes, consecutive enzymes in a metabolic pathway do not freely float in a cell

but form an assembly or bind to a scaffold, allowing intermediates to be channeled

directly from one enzyme to another. This accelerates metabolic reactions because

intermediates do not diffuse away into the bulk solution and are not consumed by

competing reactions.

Finally, we need to zoom out from a single-cell (or average) view of a cell and consider

Figure 2.4: Two cells with the same numbers of molecules, but different spatial dis-
tributions. Although the average concentration is the same in both cells, the second
cell has varying concentrations in different compartments.
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Figure 2.5: Number of molecules per cell in a population (for example protein or
mRNA) – The red line is the population mean, which is often the value we use (for
modeling). However, the values at a single-cell level can differ several fold.

the heterogeneity at the population level. This heterogeneity is often neglected, and

we use a single number to describe a concentration of a molecule in a cell/compart-

ment – an average value of the population. However, biological processes are stochas-

tic (noisy), and the actual molecule numbers follow a certain distribution (Figure 2.5),

which can be characterized by mean and variance. The effect of the heterogeneity

becomes especially important at low copy numbers.

The heterogeneity in molecule copy numbers leads to a heterogeneity in cell phe-

notypes such as generation time, cell size, stress tolerance, and others. The hetero-

geneity of the population can affect fitness in a positive or negative way, depending

on the conditions. For example, when a cell population encounters an unexpected

environment, a certain subpopulation might be better suited to survive. In a differ-

ent environment, another subpopulationmight thrive. We can view this as amicrobial

“bet-hedging” which increases the chances that at least some part of a population will

survive the new conditions. However, when cells try to maximize the growth rate, the

variability in the population can decrease fitness because it decreases the average

population growth rate [23]. This topic is discussed in detail in Chapter 13.

2.5 Macromolecule synthesis and the resources needed

In the previous sections, we have explored the diversity of nature and the abundance

of biological molecules. The combination of smaller building blocks into functional

units, let it be proteins, membranes, or DNA that conserves information about the

organism, is the major stepping stone from an unorganized pack of molecules into

what we could call a living system. Therefore, in this section, we will consider the

coordination of how cell components are produced, focusing on the biosynthesis of

macromolecules.

The overall cell growth can be called self-replication: a cell makes a copy of itself by
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Experimental methods 2.C Quantification of biomass composition

We can measure biomass composition at different levels of detail – from a coarse
elemental or macromolecular composition of an average cell to the quantities of
individual molecules in each cellular compartment.
To quantify the main chemical elements (CHNOPS), we can use devices called ele-
mental analyzers. Themainmacromolecular components – the total protein, lipid,
carbohydrate, DNA, and RNA content – can be quantified with simple assays such
as detection with fluorescent dyes, chemical reactions that lead to color change,
or extraction and weighing of a component. Going into more detail typically re-
quiresmore sophisticatedmethods such as liquid or gas chromatography (LC, GC),
mass spectrometry (MS) or nuclear magnetic resonance (NMR). For example, for
proteins, we can measure an average amino acid composition, and for lipids, the
main lipid classes (glycerophospholipids, sphingolipids, sterols, etc.).
If we go down to the level of individual molecules, we enter fields of study col-
lectively termed as omics, which aim to characterize and quantify certain pools of
biomolecules. Omicsmethods typically involve high-throughputmeasurements of
hundreds or thousands of different molecules and require a lot of resources (spe-
cialized equipment, computational resources) and expertise. The classic omics
fields include genomics, transcriptomics, and proteomics which study DNA, RNA
and proteins, respectively. Other examples include metabolomics which focuses
on small metabolites or fluxomics which measures metabolic fluxes (for example
13C metabolic flux analysis).
Combinations of different omics can help us obtain other parameters that are
difficult to measure. For example, turnover numbers of enzymes (kcat) are no-
toriously difficult to quantify because the measurements are error-prone and
low-throughput. With proteomics and fluxomics data we can calculate apparent
turnover numbers (kapp) at various conditions (see Figure 2.9) and use themaximum
value (kmax

app ) as an estimate of in vivo kcat [24].

synthesizing macromolecules by using molecules it either produces or takes up from

the environment, all in the right amounts and proportions. How, how fast and how

big two cells rise from a single parent cell is the question we explore in our field, and

often try to complement the experimental observations (what and in what amounts

produced) with computational models of growth (how and why like that).

In general, three essential types of resources are needed for the synthesizing ofmacro-

molecules: (1) small molecule precursors, (2) catalysts, and (3) physical space/volume

for the process to happen (Figure 2.6). We will thus discuss how these resources are

primed andused formacromolecule synthesis, togetherwith different considerations

surrounding each type of these resources. We will first start with discussing the “de-

mand” side of the balance, requirement for the small molecule precursors of the cells,

and will continue to zoom out towards the whole-cell economy of volume.
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Experimental methods 2.D Examples of biomass quantification methods

Component/-
parameter Examples of quantification methods

Cell size microscopically

Dry cell mass weighing of a defined amount of dry
cells

Buoyant den-
sity Percoll gradient

Protein colorimetric (Bradford assay; Lowry as-
say)

Lipid weighing of extracted and dried lipids

Carbohydrates
colorimetric (anthrone assay; phenol-
sulphuric acid assay)

RNA fluorimetric (RiboGreen), spectrophoto-
metric

DNA fluorimetric (PicoGreen, Hoechst), spec-
trophotometric

Amino acid-
s/lipid classes

LC/MS, GC/MS

Genomics next-generation sequencing (NGS) - Illu-
mina, PacBio, Nanopore

Transcrip-
tomics

NGS (RNA-seq), DNA microarrays

Proteomic-
s/metabolomics

LC/MS, GC/MS, NMR

To visualize composition data, consider using Voronoi diagrams instead of the tra-
ditional pie charts or bar plots. An online tool is available at bionic-vis.biologie.uni-
greifswald.de for proteomics data, but there is also a tool that works with any type
of input data (GitLab repository on the book website).

precursors

enzymes
that make
precursors

"machines" that make
enzymes + themselves

Limited space

Coordination

Figure 2.6: The basic building blocks of cells are small molecule precursors – The pre-
cursors are needed to make catalysts such as enzymes and machines. In turn, these
catalysts synthesize both the precursors and themselves, forming a self-replicating
system. These processes need to be coordinated while being constrained by space.

http://bionic-vis.biologie.uni-greifswald.de/
http://bionic-vis.biologie.uni-greifswald.de/
https://gitlab.com/principlescellphysiology/principles-cell-physiology/-/tree/master/open-code?ref_type=heads
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Economics analogy 2.E Comparing the cell to a bakery

Thediversity ofmetabolic intermediates/endproducts, stemming fromsmall num-
ber of nutrients (e.g. minimal mineral media for yeast growth, containing glucose,
ammonium, phosphate and sulphate salts), can be imagined as a bakery. Every
pastry starts with a small array of ingredients (flour, water, salt, sugar, ...) and
using some machinery (e.g. ovens), one ends up baking bread, pretzels, cookies,
muffins etc., which are way diverse in their features, compared to the startingmix-
ture. Likewise, by taking only a handful of compounds, cells, especially microor-
ganisms, can synthesize most of the molecules they need to eventually replicate.

2.5.1 Precursors of macromolecules

Biosynthesis ofmacromolecule precursors (e.g. amino acids, nucleotides, energy equiv-

alents) is an important part of every metabolic network. Many microorganisms can

grow on a very limited number of nutrients (in the laboratory context, the so-called

minimal media), which usually consist of a single source of carbon, nitrogen, phos-

phorus, and sulfur. For instance, a minimal growth medium with glucose as the sole

carbon source can fully support growth: glucose enters glycolysis as themain energy-

harvesting route; however, some of the glycolytic intermediates serve as substrates

for, e.g. amino acid, lipid, or nucleotide biosynthesis.

A particularly interesting fact is that metabolic networks can be described as bow-

tie structures [25]: a large variety of nutrients can be converted into a very small

number (usually counted up to 12) essential metabolic intermediates, which give rise

to, again, a diverse set of molecules (for a detailed discussion, see Chapter 3). This

provides two important insights into metabolic networks. First, this plasticity of the

metabolic networks allows organisms to grow in various environments, where differ-

ent nutrients are available. Second, because of this organization, the biosynthesis of

macromolecule precursors competes for the same starting molecules independently

of the initial nutrients.

2.5.2 Catalysts needed for macromolecule synthesis

Many steps of the biosynthesis of macromolecules, as discussed previously, need

catalysis to proceed. Therefore, another kind of investment into macromolecule syn-

thesis is expression of necessary proteins and RNAs (in the latter case - ribosomal

RNA). Expression of proteins, starting from transcription of messenger RNAs, their

translation into proteins, folding, and degradation, involve many steps with energy

investment (ATP hydrolysis) and consume large amounts of precursors (nucleotides,

amino acids). Talking in energetic terms alone, protein expression accounts for about

40% of energy investments in yeast S. cerevisiae [26], and the energy investments for
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every stage of protein expression are illustrated in Table 2.2 for typical bacterial and

eukaryotic cells. This concerted action of several systems, as described above, with

substantial investments at every intermediate step, means that these investments

thus happen on two levels: investments in the metabolic machinery and in the ma-

chinery, producing proteins themselves. We will consider these two levels in the fol-

lowing.

Metabolic enzymes. First, metabolic enzymes need to be expressed to convert nu-

trients into biosynthesis precursors. Some enzymes are active only in a form of com-

plexes, which also creates a demand to express proteins at defined ratios. Enzymes

and their complexes come in different sizes and flavors, and their activity can be de-

scribed (in very coarse-grained way, for more details see Chapter 3) by two kinetic

aspects: the efficacy (represented by the turnover number kcat) and substrate speci-

ficity (Michaelis constant KM) of an enzyme. Importantly, these two parameters are

intertwined: high substrate specificity usually comes at the cost of efficacy and vice

versa. Therefore, although some enzymes tend towards extremes in terms of their

specificity or efficacy, most of the enzymes land close to the average/median values of

these parameters, when considering the distribution of enzyme parameters among

different organisms [28] (Figure 2.7).

The metabolic networks need to work in a concerted manner, even though different

enzymes need to perform different amounts of “work” (described as metabolite flux

through these enzymes, v). Thus, even given the similarities in “average” (or “mod-

erate”) enzyme properties, the expression of proteins and the abundance of their

substrates span several orders of magnitude. Based on the kinetic interpretation of

enzyme kinetic parameters, we can link them to either expression level of the enzyme

e (e ∝ v
kcat
) or substrate concentration s (usually, 0.1KM ≤ s ≤ 10KM). Note that for substrate

concentrations, the suggested range (order-of-magnitude difference from the KM to

each side) is arbitrary, yet supported by empirical observations. On the higher end,

the benefit from high substrate concentration becomes negligible (saturation kinet-

ics) as the concentration moves from the order of magnitude of KM (see Exercises for

Expression stage Bacteria Eukaryotes
DNA synthesis 101 Lg 263 Lg (×2 for diploids)
RNA transcription 2 Nr Lg(23 + δrt) Nr(46 × Lr,mat + 2.17 × δrtLr,pre)
Protein synthesis NpLp[(c̄AA − 1) + 5δpt]

Table 2.2: The estimated energetic costs (units of ATP hydrolysis) of biosynthesis of
a gene, as computed by [27]. The estimates are represented as functions of the fol-
lowing parameters: Lg, gene length; Nr, the steady-state number of mRNAs; Lr,pre and
Lr,mat, the length of precursor and mature mRNA, respectively; δr, the degradation rate
of mRNA; t, division time of a cell; Np, the steady-state number of protein molecules;
Lp, length of the protein chain; c̄AA, average cost of an amino acid; δp, the degradation
rate of proteins.
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Figure 2.7: Distributions of the kcat and KM values (in s−1 and mM, respectively), collected
for E. coli, yeast and human enzymes – The vertical solid line depicts the median of
each distribution. Values were collected from the BRENDA database, release 2022.1
[29].

an example). The lower bound of concentrations is defined through high demand of

enzymes: in order to sustain flux, a lot of enzyme would have to be produced. As

cells have a finite volume to accommodate proteins, such a strategy works only for a

very small number of enzymes. Taken together the limitations on the both sides of

the spectrum, enzyme kinetics set the bounds for the concentrations of metabolites

in the cells.

To illustrate the diversity of enzyme turnover values kcat and the condition-dependent

expression of enzymes (dictated by the flux v these enzymes have to sustain), we can

consider the proteome composition of E. coli under two conditions: growth medium

with the complete supplement of amino acids (all 20 proteogenic amino acids present

in medium), in contrast to the supplement with a single amino acid not present in the

mix (a “dropout” medium) (Figure 2.8). The growth of E. coli in a nutrient-rich medium

(glucose + amino acid supplement) is indeed a very fast one (with doubling time of

τd,rich = 21.5 ± 0.4 vs. τd,minimal = 56.3 ± 0.5 minutes). The omission of methionine from the amino

acid supplement does increase the doubling time (τd,−Met = 26.5 ± 1.1 minutes), yet the

growth rate remains high, and so is the methionine biosynthesis demand in these

conditions.

Methionine is an amino acid that is energetically the most expensive to make [31],

and the final enzymatic reaction in themethionine synthesis pathway is so-called rate-
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(A) Methionine dropout (B) Complete medium

Figure 2.8: Proteome composition of E. coli, grown on the growth medium with full
amino acid supplement (B) or its version without amino acid methionine (A). Pro-
teome composition data from [30]. Each polygon represents a protein, and its size
indicates the amount. Proteins are grouped into sections based on their functions.
You can create Proteomaps like this using https://www.proteomaps.net/.

limiting, or the reactionwhich dictates the flux through thewhole pathway. Moreover,

the enzymemethionine synthase (MetE) is a very slow enzyme (Figure 2.8, table on the

bottom), thus required at large quantities to provide enough methionine for protein

synthesis at high growth. Consequently, it was observed thatMetE alone could occupy

up to ca. 7.5% of the total proteome (by mass) in medium lacking methionine, and

growth on amedium, containingmethionine, would reduce the proteome fraction by

ca. 800-fold, to 0.009% [30]. To contrast this highly condition-dependent expression

ofMetE, we considered a protein in the lower glycolysis, enolase (Eno) (Table 2.3). The

expression of glycolytic proteins, including Eno, was determined to be similar, as both

the complete- and the methionine-free media contained glucose as the main carbon

source. A noticeable contrast of Eno vs. MetE is also a ca. 3 orders-of-magnitude

higher kcat value compared to the one of MetE: having to invest less (per mass) into

this enzyme contributes to the ability to sustain a very high flux through enolasewhen

cells grow fast on glucose [30] (see Chapter 6 for a more detailed discussion).

The variable concentrations of metabolic substrates, and their relation to the enzyme

parameters (KM in this case), also bring additional kinetic considerations. The above-

introduced turnover value kcat represents the highest possible efficacy of the enzyme,

where all substrates are accessible in concentration needed to sustain this efficacy

https://www.proteomaps.net/
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low kapp higher kapp kapp   kcat

Figure 2.9: The relation between the apparent and measured turnover value (kapp

and kcat, respectively) – Factors, leading to low net rate of reaction per unit of pro-
tein (e.g. low substrate concentration) lead to kapp being significantly lower than the
measured kcat value, latter of which corresponds to the maximal rate of the reaction.

(also called saturating concentrations). Turnover values are usually measured in vitro,

with all the substrates highly in excess, thus deliberately minimizing many kinetic ef-

fects (enzyme saturation, reversibility of reactions, etc.) that are prevalent in more

physiological conditions (see Chapter 3 for details). Therefore, what we usually ob-

serve in living cells is not the enzyme efficacy in terms of kcat, but rather their apparent

turnover value kapp (Figure 2.9). The ratio of these values (kapp
kcat
) is then called the enzyme

efficiency and can be used to infer how far the enzyme is from its optimal working

conditions. The kapp value of an enzyme in vivo can be computed as follows: knowing

the kcat value, the flux through the reaction, one can calculate the minimal demand (in

moles) of the enzyme to maintain that flux. Then, the kapp value can be computed by

taking the ratio between the predicted minimal enzyme demand and the abundance

of enzymes in the cells.

Macromolecule polymerization. Moving from metabolic enzymes to macromolec-

ular synthesis machinery, the polymerization of macromolecules (DNA replication,

RNA transcription, and protein translation) is catalyzed by large enzyme complexes

(and RNA, in the case of ribosomes). DNA and RNA polymerases (DNAP, RNAP) and

ribosomes. The resources needed for their expression also contribute significantly

to the total costs of macromolecule biosynthesis. For example, the molecular weight

of an intact ribosome in E. coli is ca. 2.3 MDa (BNID 111560), and the E. coli ribosome

consists of 62% RNA and 38% protein (in mass %, BNID 109047). Meanwhile, eukaryal

Pathway Enzyme Proteome mass fraction (%) kcat (s−1)
Met dropout Complete

Glycolysis Enolase (Eno) 0.53 0.53 192.95
Amino acid biosynthesis Methionine synthase (MetE) 7.45 0.009 0.12

Table 2.3: Abundance and kcat values of two selected proteins from Figure 2.8: enolase
(independent on amino acid supplementation) andmethionine synthase (dependent
on amino acid supplementation).
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ribosomes are even larger, ca. 3.3 MDa for S. cerevisiae and ca. 4.3 MDa for human H.

sapiens (BNID 111560), and have higher protein content [32]. For a comparison, the

average length of a protein in E. coli is ca. 300 amino acids (BNID 100017) and aver-

age amino acid weight is ca. 109 Da (BNID 104877). By multiplying these numbers,

the molecular mass of an average protein is ca. 32.7 kDa, roughly 70× lower than the

ribosome that synthesizes this protein.

Thenature of these large complexes requires an exceptional coordination of resources.

The first consideration is the number of individual proteins that form these com-

plexes: the RNA polymerases of S. cerevisiae contain up to 17 subunits (BNID 111568),

and 79 ribosomal proteins form a fully functional ribosome [33]. Therefore, the as-

sembly of these complexes must be fast and robust: Thus, cells contain a number of

assembly factors to facilitate these processes. Next, the coordination also has to be

temporal, especially for prokaryotes, where both messenger RNA transcription and

protein translation can happen simultaneously. In E. coli, this is well illustrated by

the 3-fold difference between elongation rates of mRNAs and proteins, ca. 62 nt s−1 and

21 aa s−1, respectively (BNID 103021, 107868). This coordination is essential for coordi-

nated transcription and translation happening at the same time [34], as translation

happens in steps, 3 nt each (so-called triplets). Even in eukaryote S. cerevisiae we ob-

serve a similar pattern: mRNA elongation rate of ca. 30 nt s−1 (BNID 103016) and protein

chain elongation rate of ca. 10.5 aa s−1 [35], nearly a 3× difference. Also, the polymeriza-

tion ofmacromolecules is very tightly connected to themetabolism: different kinds of

growth limitations (limiting amounts of nutrients) were shown to create bottlenecks

at different stages of protein expression [36], and the optimal regulation of these

processes were selected for by the evolution [37, 38].

2.5.3 Physical proteome space

A final type of asset required for macromolecule synthesis is the physical volume in

the cell. As the cells are, again, “bags of things”, they possess a finite volume, thus

different processes compete for available proteome volume (also called “proteome

space” interchangeably). A general trend across microorganisms is that ribosomes

occupy larger proteome mass fraction (in the range of 10-40% total proteome) with

increasing growth rate [19, 39], with an estimated maximum in E. coli of ca. 55% of

total proteomemass [19]. Alongside ribosomes, biosynthetic pathways also occupy a

substantial share of total proteome (e.g. enzymes, required for amino acid biosynthe-

sis occupy up to 15% of the proteome space in S. cerevisiae [39]). Experimentally, the

optimal allocation of proteome space can be challenged by, e.g. varying expression of

an unneeded (gratuitous) protein. Both for E. coli and S. cerevisiae it was shown that

increasing gratuitous protein expression directly affects the maximal growth rate on
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both minimal and rich media [40, 36], suggesting that the decrease in growth rate is

not dependent on the nutrient status of the cell.

Numbers provided above were measured for cells, grown in minimal medium, and

some of the costs we discussed – not only proteome space, but also precursors and

enzymes – could be alleviated by growth in rich medium. Uptake of biosynthetic pre-

cursors usually is less costly than biosynthesis, as expression of a single type of trans-

porter can substitute the need of expressing a biosynthetic pathway with tens of en-

zymes associated. Indeed, transfer of S. cerevisiae cells to a amino acid-rich growth

medium resulted in an increase of growth rate, caused by increased proteome allo-

cation to ribosomes, in place of the proteins of de novo amino acid biosynthesis [41].

In conclusion, the physical space that proteins can occupy is also an asset that the

proteins are competing for, and thus the optimal allocation of the available space is

key for the cells to grow in the most favorable way under specific conditions.

2.6 Physicochemical considerations about cells

2.6.1 Cell density

Most cellular parameters we discussed so far – cell size, mass, and composition –

vary greatly with the cell type, growth rate, or conditions. However, one quantity

does not show such variability – buoyant cell density. Buoyant density is the ratio

of cell mass to volume, usually expressed as g mL−1. For most organisms, prokaryotic

or eukaryotic, the buoyant cell density is around 1.05-1.15 g mL−1 [42, 14]. This range

results from the fact that cells are 70% water which has a density of 1 g mL−1 and that

most dry mass is formed by proteins, which have a density of 1.2-1.4 relative to water

(BNID 111208, 104272, 101502). Other components range from 1 for lipids (BNID

108142) to 1.4-2 for nucleic acids (BNID 111208). To try the calculation of bacterial

density, see Problem 2.4.

For many organisms (E. coli, the yeast Schizosaccharomyces pombe, Chinese hamster

ovary cells, mouse cells), cell density is constant throughout the cell cycle and at differ-

ent growth rates when growing exponentially. However, it was observed to increase

in stationary phase for E. coli and S. pombe [42, 43]. On the other hand, the density

of S. cerevisiae fluctuates during the cell cycle, which might be related to a different

division mode. The organisms mentioned earlier divide by binary fission – cells di-

vide in the middle and produce two (roughly) identical daughter cells. In contrast,

S.cerevisiae divides asymmetrically – it grows a bud that breaks away and becomes a

smaller daughter cell.

Nevertheless, despite the variability, the range of the observed values is relatively

small and similar for most organisms, from bacteria to mammalian cells. There are
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special cases where cell density deviates from the characteristic values – for example,

cells with very high fat content or gas bubbles have lower densities. However, assum-

ing the density of 1.1 g mL−1 is probably a good guess unless you work with a particularly

fatty or gassy cell type.

The invariability of cell density suggests that this property is highly regulated and

brings us to the next question – is there an optimal density? And what are the con-

straints that (possibly) determine this optimum? These questions (among others) are

discussed in the next section.

2.6.2 Physical constraints of cell growth

The living cells are constantly subject to a handful of so-called physical constraints,

which are directly linked to the physics and the chemistry of life. Cells cannot override

(evolve to bypass) these limits – only try to cope with them. Thus, sometimes these

constraints are also called “hard” constraints. Notice that we consider the “hardness”

of these constraints only in the space where conditions can still sustain life: some of

these limitations could be relaxed by changing abiotic conditions, but would result in

breakdown of biological systems.

One of the abiotic factors would be temperature; however, increased temperatures

cause proteins to denature (lose their 3D-folded structure, thus functionality) and

destabilize biological membranes. Although there are organisms, which live in ex-

tremely high temperatures (so-called thermophiles), as a rule of thumb, we usually

consider the temperature above 393 K (120 ◦C) to be close to the limit of life. There is an

organism known as Strain 121 (Geogemma barossii) which can grow at 121 ◦C (hence the

name), currently the highest temperature known [44]. Next, the suboptimal concen-

tration of inorganic salts (osmolarity) or pH could also drive similar changes, disfa-

voring life. Here we will consider two prominent physical limits in life: the diffusion

and density limits. These two limits describe two aspects of how molecules move in

aqueous environments, in our case – living cells.

The diffusion limit describes the state where enzymatic catalysis is so specific and so

fast that the reaction speed is determinedonly by the collisions of substratemolecules

to the enzymes, which all result in conversions (i.e. no futile collisions) [45]. Usually,

the number of futile collisions vary between 1 and 104 per successful conversion, and

thus having as little futile collisions as possible greatly enhances the overall rate of the

reaction. Enzymes approaching (operating at) the diffusion limit are also called perfect

enzymes. Currently there are no enzymes reported which are considerably “above”

diffusion limit (see [45] for an in-depth discussion), suggesting the universality of the

underlying constraint. Nonetheless, cells do have a strategy to counter the diffusion

limit. Consecutive enzymes from a pathway can be placed on a scaffold, which allows
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the product of one reaction to be channeled directly into the next reaction without

diffusing away.

Another aspect to consider is the density, or sum concentration of molecules, of the

fluid. As described in previous sections, cell cytosol contains a spectrum of different

molecules at different sizes and concentrations. We normally assume that some sort

of optimal cell density that maximizes fitness exists, however, the density is known to

fluctuate substantially in time and across conditions [46]. One of the most prevalent

properties, linked to cytosolic density, is macromolecular crowding. As the name sug-

gests, it describes the concentration of biologicalmacromolecules, mainly proteins, in

cytosol (thus in bacteria, the genomic DNA also contributes to molecular crowding).

For example, the macromolecular crowding is suggested to impose a limit on the

protein translation [47], therefore, increased crowding would result in a growth rate

decrease. The state of macromolecular crowding is relevant for the cellular function,

and is proposed to be in homeostasis (reviewed in [48]): optimal macromolecular

crowding corresponds to a state where crowding reduces the path proteins have to

diffuse, yet does not substantially decrease the speed of diffusion. In such a way,

maintaining high macromolecular crowding is suggested to maximize reaction rates

in the cytosol [49].

2.7 Concluding remarks

In this chapter, we discussed the properties and the quantities of the main cellular

components, how the composition changes in different environmental conditions,

and what resources are needed for a cell to replicate itself. It may seem that we

already have a vast amount of data, but a lot is still missing. Most available data

comes frommodel organisms such as E. coli, S. cerevisiae, or humans, but the data for

other organisms is still limited. Single-cell data (ideally with subcellular resolution)

is also not widely available. Even though we can sequence a genome within a few

hours or days, we still do not know the functions of many genes. Many experiments

still need to be done, and new high-throughput experimental methods developed to

fill the gaps in our knowledge.

Nevertheless, with the basic knowledge from this chapter, we can dive deeper into

studying cellular economics and resource allocation with mathematical modeling.

How is biomass represented in mathematical models? Often, models only focus on

proteome as it is a cell’s most abundant and expensive component. However, some

models also include other major components (RNA, DNA, lipids, carbohydrates, co-

factors, etc.). The components can be modeled at different levels of detail. For ex-

ample, the cell proteome can be represented simply as a total proteome, divided

into protein subgroups (e.g. metabolic, ribosomal, other), or modeled as individual
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proteins. Finally, there are two contrasting ways to include biomass in mathemati-

cal models. On the one hand, some models consider a fixed biomass composition

based on measurements or literature (see Chapters 4 and 5). On the other hand,

some models predict the biomass composition (i.e. they calculate optimal resource

allocation or enumerate all possible compositions, see Chapter 10).

Apart from biomass composition, we can include other cellular properties as con-

straints or parameters in the models, depending on the type of a model and how

detailed it is. For example, we can constrain the transcription/translation rates, en-

zyme turnover rates, cell surface area or volume.

In conclusion, this chapter introduced the basic building blocks of a cell, processes

that make them, how they are coordinated and how they depend on environmental

conditions. In the next chapters you will learn how to translate this information into

mathematical models and how to use them to gain deeper knowledge of cell biology.
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141(7), 1262-1262.

◦ Milo, R., & Phillips, R. (2015). Cell biology by the numbers. Garland Science.

Problems

Problem 2.1 Intuition for biological numbers

Try to answer the following questions, and only then look up the results:

◦ What is the volume of a cell?

◦ What is the size of a protein?

◦ What is bigger, a protein or the mRNA that encoded it?

◦ How many protein molecules are there in a cell?

◦ What is the number of genes in a genome?

◦ How long does it take to transcribe a gene?

◦ How long does it take to produce a protein molecule?

◦ What is the minimal doubling time of a cell?

◦ What other questions come to your mind?

Precise values do not matter here – think about orders of magnitude.

Problem 2.2 Proteins per cell - estimate one
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How many proteins are there in a bacterial/yeast/mammalian cell [14]? Use data

from the following table:

Protein mass per volume 0.2 g mL−1

Molecular mass of a protein 40000 g mol−1

Avogadro’s number 6 · 1023 1/mol

E. coli volume 1 µm3

S. cerevisiae volume 60 µm3

Mammalian cell volume 3000 µm3

Problem 2.3 Proteins/ribosomes per cell - estimate two

A typical protein has a volume of 25 nm3 (BNID 101828) and a ribosome 3400 nm3 (BNID

104919). Given that 70% of a cell volume is water, what is the maximum number of

protein/ribosomemolecules that fit into a typical E. coli cell (see Table 2.2)? Compare

your answers with the previous problem/values in BioNumbers database.

Problem 2.4 Buoyant cell density

Calculate the buoyant density of a typical bacteria using the following data:

Component Density (g mL−1) Mass fraction per cell

Water 1 0.7

Proteins 1.3 0.18

Nucleic acids 1.7 0.08

Lipids 1 0.03

Carbohydrates 1.5 0.01

Problem 2.5 Concentrations enzymes and substrates

Dourado et al. [50] suggested that there is a relationship between the concentrations

of enzymes and their substrates in E. coli, which is a result of a constraint on the

biomass density. They showed that the reaction flux is maximal when the dry mass

of each substrate is equal to the dry mass of the unsaturated (free) enzyme. What

is the concentration of one enzyme per cell for E. coli (in mol L−1)? What would be

the optimal concentration of its substrate? Use protein mass and cell volume from

Problem 2.2 and the mass of glucose as substrate.

Problem 2.6 Cell size in different dimensions

Imagine a spherical cell that increases its diameter from 1 to 2µm. How much do the

surface area, volume, and SA/V change? Think about how this could influence the

import of nutrients and the diffusion across the cell.

Problem 2.7 Alien lifeforms

Imagine alien lifeforms. Would they be composed of cells? Why? What features of
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cells could be completely different? What features are so much dictated by physics

that they could not be different in any type of alien cell?

Problem 2.8 Substrate demand to saturate an enzyme

Take the following rate law: v = νmax S
KM+S (also known as irreversible Michaelis-Menten

rate law, see Chapter 3), where νmax is the maximal reaction velocity. Plug in the

values for v and compare the substrate concentration needed for the reaction rate

to increase from (i) 10% to (ii) 90% of the maximal rate νmax. Hint: express the S in

terms of KM and take the ratio.



Chapter 3

Cell metabolism

HadrienDelattre,WolframLiebermeister, EladNoor, HerbertM. Sauro, Orkun S. Soyer,

and Robert West

Chapter overview

This chapter introduces cellmetabolismas a dynamical system. While the previous

chapter gave an overview of the constituents of this system, i.e. enzymes, metabo-

lites, etc., this chapter focuses on conceptual abstraction of the metabolic system

as a whole and how to model its dynamics over time. The key areas introduced

are:

◦ Conceptualizing cell metabolism as a dynamical system

◦ Dynamics and regulation of metabolism

◦ Toolbox for modeling dynamics of metabolism - biochemical reaction rate laws

and their derivations

◦ Dynamics of metabolism: Examples of experimental evidence and model-based

explanations

◦ Mathematical derivations and example models

3.1 Conceptualizing cell metabolism as a dynamical sys-

tem

Cell metabolism is a dynamical process that converts available metabolites from the

environment into biomass and other products. The metabolism of a typical cell in-

volves thousands of biochemical reactions and metabolites. What would be a useful

way to think about such a complex, dynamical system? We need a conceptual picture

of metabolism to help us formulate more specific ideas about how it functions, how

it can be manipulated, or even how it has evolved. Here, we first highlight a few such

47
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Figure 3.1: A map of central metabolism in Escherichia coli bacteria – The diagram
shows the reactions, metabolites, co-factors, and enzymes, as well as a few selected
carbon sources and their catabolic pathways.

‘pictures’, or ways of thinking about metabolism.
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Below we will switch back-and-forth between a high-level view on metabolism, con-

sidering all of it, and a more focused, low-level view focusing on modeling individual

reactions or small sets of reaction systems (e.g. pathways or motifs). These two view-

points constitute two ends of awide spectrum, and our aim in jumping back-and-forth

between them is to allow the reader to obtain the skills to model dynamics of reac-

tion systems that make upmetabolism, while at the same time to invite them to think

about the overall function of the metabolic system.

3.1.1 Metabolism as a collection of pathways

The common and historical view of a ‘metabolic system’ stems from pioneering bio-

chemical studies from the 1930s onwards, which identified collections of reactions

as so-called ‘pathways’ [51]. Known mostly through the names of their discover-

ers, these include the Entner–Doudoroff (ED), Embden–Meyerhof–Parnas (EMP) and

pentose-phosphate (PP) pathways involved in glucose uptake and conversion into

pyruvate, and the Krebs pathway (a.k.a. tricarboxylic acid cycle, TCA) involved in the

conversion of pyruvate into amino acid, nucleotides, and biomass precursors [52].

This ‘pathway-centric’ view of cell metabolism lends itself readily to an assembly line

analogy and the notion of (linearly) connected pathways (see Economic analogy 3.A).

Pathways, yes, but not so linear! The identification of well-established pathways

and the subsequent focus upon them gives the false impression that cell metabolism

consists of a series of neatly organized and serially connected pathways. This impres-

sion is facilitated by pictures of isolated linear pathways, common in textbooks and

even research papers. In reality, these pathways are highly interconnectedwith other

pathways.

Part of these interconnections within metabolism arise from co-substrates and spe-

cific metabolite pairs that participate in many reactions. For example, co-substrates

such as ATP and NADH link many parts of metabolism through reactions in which

they are generated or consumed (Fig. 3.2), while the glutamate - α-ketoglutarate pair

is involved in the TCA cycle as well as acting as a group donor in all amino acid biosyn-

thesis pathways.

The pathway view provides a useful starting point to think about metabolism, but

a complete understanding of metabolism dynamics and metabolic phenotypes re-

quires us to come to terms with the highly connected nature of these pathways (see

below, Box 3.C).

3.1.2 Coarse grained views of metabolism

The highly connected nature of metabolism makes it difficult to understand its over-

all dynamics just from individual pathways. It also makes it hard to conceptualize
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Economics analogy 3.A Metabolism as an assembly line

We can make an analogy that presents metabolism as an assembly line in a fac-
tory. Metabolites enter the line from outside the cell and are processed – i.e. acted
upon by enzymes – to create newmetabolites that are ultimately incorporated into
cellular biomass. This picture is reinforced by the common textbook illustration
of metabolism as a set of isolated pathways that are placed ‘upstream’ or ‘down-
stream’ of each other, and that ‘produce’ or ‘consume’ outputs for each other. A key
shortcoming of this analogy is that it conveys a picture in which events are strictly
linear and progressive in their nature, ignoring the cyclic and inter-connected na-
ture of metabolism. Despite this shortcoming, this analogy captures the point
that the flux of materials through the system can attain a ‘steady-state’ of equal in-
and out-flux across individual reactions (see further discussion of the steady-state
concept in the main text). One important difference however between an assem-
bly line and metabolism is that the rate at a given assembly stage in a factory is
not a function of howmany units are waiting to be processed because factory ma-
chines tend run at fixed rates. In metabolism, the rate of a reaction is a function of
the substrate concentration until saturated. This leads to distinctive behavior not
found in factory assembly lines. Another important difference with a factory as-
sembly line is that unlike an assembly line, metabolism in some cases is able to in
both directions along the line. The most well known of these is the bidirectionality
of the glycolytic and gluconeogenic pathways.

metabolism as a single, linear process, or as serially connected pathways. Here, a

coarse-grained viewpoint, focusing on the overall function of cell metabolism, might

prove helpful. There have been several such views developed, with two highlighted

here.

NADH

NADH

NADPH

Glycolysis

PP-pathway Fermentation

N ass. AA synthesis

TCA cycle

To respiration via
mitochondrial shuttles

To GSH and
other
antioxidants

Ethanol

Acetaldehyde

Pyruvate

Acetyl-CoA

Glutamate aKg

Glycerol

Respiration

Figure 3.2: A simplified map of central metabolism, particularly highlighting intercon-
nections among different processes (i.e. pathways) through the NAD(P)+ / NAD(P)H
co-substrate pair.
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Metabolismasbiomass generator. Awidely applied coarse-grained viewofmetabolism

considers it as a vehicle to biomass production. In this view, metabolism is con-

sidered as two coupled processes, one producing energy and compounds that can

act as building blocks (e.g. amino acids), and one that uses these to create larger

macro molecules (e.g. proteins and lipids) needed to make a new cell. These two

processes are called catabolic and anabolic metabolism respectively, and their cou-

pling presents the whole cell metabolism (Fig. 3.3 A). This coarse-grained model is

widely used (e.g. [52, 53]. However, it is not always clear how to partition various

pathways and reactions as anabolic and catabolic, and the notion of metabolism or-

ganized solely to satisfy for biomass production does not capture certain metabolic

phenotypes, such as no-growth states or excretion of high-energy metabolites (i.e.

metabolic overflow).

Metabolism as electron flow. An alternative coarse-grained view of metabolism is

obtained from a more chemical standpoint. When one writes down an overall reac-

tion for cellular metabolism, considering compounds taken up from the environment

and created at the end of various metabolic processes, one realizes that this is a re-

dox reaction, a type of reaction where electrons are exchanged between participat-

ing reactants (see Fig. 3.3B and Box 3.B). This means that the actual reactions within

metabolism that enable this overall reaction must compose also of some redox re-

actions. In other words, we can argue that metabolism consists of (besides other re-

actions) a series of redox reactions that enable flow of electrons. Metabolism is thus

an inter-connected system of reactions that allows flow of electrons from readily ox-

idized compounds (electron rich compounds with low or negative reduction poten-

tials) towards readily reduced compounds (electron poor compounds with positive

reduction potentials) [54, 55]. (Fig. 3.3B). As the Nobel laureate Albert Szent-Györgyi

(1893 – 1986), who studied the TCA cycle and discovered vitamin C biosynthesis path-

ways, once said, “Life is an electron looking for a place to rest.”.

Emphasizing its redox reactions, the metabolic system can be visualized on a reduc-

tion potential chart, which is sometimes called a ‘redox ladder’ (Fig. 3.4 and box 3.B).

This potential chart shows reduction potential of redox half reactions (usually in re-

duction direction) and allows us to readily visualize the thermodynamic feasibility of

redox reaction pairs. The chart is ordered in such a way that any reduction half reac-

tion can be paired with any other placed below it, resulting in a thermodynamically

feasible redox reaction, but not with those above it. We notice that cell metabolism, in

order to maintain electron flows, needs to maintain thermodynamic feasibility of the

overall and all intermediate reactions. The key requirement for this is to have access

to electron donors (e.g. carbohydrates) and terminal electron acceptors (e.g. oxygen).

One must also note that the redox ladder depicted in Fig. 3.4 is derived for standard
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'Energy' Oxidation

By-products Electron
acceptor

'Energy'
& Precursors
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& Waste

e- given:
oxidation
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Electron flow!

Glucose + O2

Catabolism

Anabolism

Carbon

e-  taken:
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CO2 + H2O

Figure 3.3: Coarse-grained models of cell metabolism – (A) A conceptual drawing
of cell metabolism as provider of precursors (catabolism) and generator of biomass
from those (anabolism). (B) A conceptual drawing of cell metabolism as enabling an
abstract redox reaction between a pair of electron donors and acceptors. The elec-
tron donor can at the same time be the carbon source for biomass generation, or
there can be a separate ‘carbon-donor’. This overall redox reaction is an abstrac-
tion, in the sense that in real metabolism electrons are not directly transferred from
the original donor to biomass precursors but rather there are many intermediary
redox reactions such as those involving key carrier co-substrate metabolite pairs
NAD(P)+/NAD(P)H.

concentrations of metabolites, whereas the reduction potentials would depend on

actual concentrations in the cell.

3.1.3 Keeping flows in a system of interconnected fluxes

It is noticeable that both coarse-grained views presented above involve intercon-

nected fluxes that ultimately enable an overall flux. In the biomass-based view, the

flux between catabolism and anabolism is connected to enable flux into biomass. In

the electron-flow based view, there is again a set of interconnected flows to enable

the overall electron flow from initial donors (e.g. glucose) to final acceptors (e.g. oxy-

gen).

The interconnection of fluxes in metabolism is most clearly visible in reactions involv-

ing co-substrates, such as NAD(P)+ / NAD(P)H and ADP/ATP pairs (see below, Box 3.C).

The NAD(P)+ / NAD(P)H pairs form either the oxidation or reduction half-reaction in

various redox reactions thereby enabling the aforementioned electron flows within

the metabolic system. The ATP+/ADP pair forms an energy carrier, providing driving

energy to reactions that would be thermodynamically infeasible (see section 3.2.1

below on what we mean by this). This pair is seen as forming the flux connection
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redox process
metabolites with low

energy electrons

building blocks

carbon

e-

metabolites with high
energy electrons

Figure 3.4: Metabolism on a redox ladder – Cartoon representation highlighting the
role of electron flows through redox reactions for a functioning metabolism, and a
reduction potential chart listing key redox reactions found in cellular metabolism.
Notice that the reduction potential chart shows reduction potentials of half-reactions
in the reduction direction and usingmetabolite concentrations under standard condi-
tions, hence the actual potentials would be different and dynamically changing within
the cells. A thermodynamically feasible reaction would need to combine one half re-
action (run in reverse, oxidation direction) with another one lying below it (i.e. at a
higher reduction potential). Two example feasible redox pairs are shown with the
blue and red data points.

between catabolism and anabolism, where the former is considered to result in ATP

production, and the latter is considered to consume this.

Co-substrates are thus essential in connecting different fluxes, and therefore pro-

cesses, within metabolism and their dynamics must be important to keep overall

metabolic flow. It is tempting to speculate that key co-substrates might be an evolu-

tionary outcome that ensures stable electron flows in the face of changing conditions.

While this possibility is difficult to prove or disprove, it is interesting to note that the

NAD(P)H/NAD(P)+ pairs can attain a broad range of reduction potentials that could

enable their redox partnering with many of the different reaction types found in cell

metabolism [57] - in other words, these two redox pairs seem to be a versatile tool to

connect a wide range of redox reactions to each other and ensure electron flows.

3.1.4 Metabolic system and recurring motifs

Within the highly inter-connected system that is metabolism, specific reaction ar-

rangements seem to recur frequently, so-called “reaction motifs”. We have already

mentioned the cyclic reaction systems, involving co-substrates as one such motif.

Other reactionmotifs that have been highlighted include autocatalytic cycles [58] and
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branch points [59]. Aswewill discuss below, these reactionmotifs can give rise to spe-

cific nonlinear dynamics and act in auto-regulatory capacity or create constraints on

the metabolic system. In general, however, it is difficult to ascertain the evolutionary

significance of reaction motifs. While automated approaches, involving graph the-

oretical analysis of metabolic systems represented as networks, highlighted certain

metabolic motifs as significant compared to random networks, it was subsequently

shown that this result is dependent both on the original network representation used

and the randomized networks used for comparison [60].

3.2 Reaction thermodynamics and enzyme kinetics

Independent of our conceptual views onmetabolism, the fact remains that themetabolic

system involves flux of matter. A myriad of metabolites are combined, converted,

broken apart, and re-assembled. These biochemical reactions are catalyzed by en-

zymes so to improve kinetic rates, and the entire system must obey the laws of ther-

modynamics (more on these later in section 3.2.1). In summary, metabolism consti-

tutes a ‘system’ ofmetabolites and their reactions, together with enzymes. Its dynam-

ics over time ensures fluxes of matter.

3.2.1 Biochemical reactions and thermodynamics

Metabolism consists of individual biochemical reactions of the form:

naA + nbB −−−−⇀↽−−−− ncC + ndD (3.1)

where ni are the so-called stoichiometric coefficients, determining the number of

molecules of the i’th chemical species taking part in the reaction (Box 3.D).While these

reactions are catalyzed by enzymes, they still need to obey thermodynamic laws. We

will not provide a full treatise of the thermodynamics of chemical reactions here - we

refer the reader to excellent books on physical chemistry for this (e.g. [66]) and also

to books for a conceptual introduction to thermodynamics (e.g. [67]). Here, it suffices

for us to define the key thermodynamic equation, the Gibbs free energy of reaction,

involving the chemical potential of substrates and products. Chemical potentials are

related to concentrations, where the relation depends on the ionic strength of the so-

lution. Assuming an ideal solution, wewill write here theGibbs free energy of reaction

directly in terms of concentrations:

∆rG
′ = ∆rG

′◦ +R · T · ln c
nc · dnd

ana · bnb︸ ︷︷ ︸
Γ

, (3.2)

where the small letters indicate the concentrations of the substrates and products

as given in the above reaction. Notice that specifying ‘products’ and ‘substrates’ au-
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tomatically specifies a ‘forward’ direction to the reaction (Box 3.D). In the above ex-

pression, the term in the natural logarithm is the ratio of the concentration of the

products to the concentration of the substrates (considering the forward direction of

the reaction) and is commonly denoted as the mass action ratio, Γ. The term ∆rG
′◦ is

the difference between the standard Gibbs free energy of formation of products and

substrates.

The Gibbs free energy of a reaction is the key thermodynamic equation we introduce

here, as it is this equation that determines whether a reaction would run in the for-

ward direction or not. If the Gibbs free energy of reaction, for a given set of substrates

and products concentration, is negative (∆rG
′ < 0), the reaction will be spontaneous in

the forward direction as it is written (i.e. in the way the ‘substrates’ and ‘products’ are

defined). In other words, chemical reactions proceed in the direction of lower energy

- they minimize the internal energy of the system. We will see later (in section 3.2.3)

that Gibbs free energy will also feature in rate laws for biochemical reactions.

It is important to introduce here the concept of thermodynamic equilibrium, which is

attained when ∆rG
′ = 0. Re-arranging equation 3.2 under this condition, we can obtain:

∆rG
′◦ = −R · T · ln

cnc
eq · dnd

eq

anaeq · bnbeq
, (3.3)

where the subscript “eq” denotes the concentrations of each species at the thermody-

namic equilibrium. The ensuing ratio is known as the equilibrium constant, Keq = cnc
eq ·dnd

eq

ana
eq ·bnb

eq
.

Re-arranging equation 3.3, we can derive an expression for Keq as follows:

Keq = e
−∆rG′◦

R·T (3.4)

Notice that Keq depends only on ∆rG
′◦, which is the difference between the standard

Gibbs free energy of formation of products and substrates involved in a reaction,

and which can be calculated from tabulated values (where available). A good source

of Keq values of many biochemical reactions is the eQuilibrator tool (equilibrator.weiz-

mann.ac.il) [68, 69].

This thermodynamic treatment, showing that the equilibrium state of a reaction is

captured by a constant relating to the ratios of product and substrate concentrations

at that state, is fully supported by seminal experimental works from the second half

of 1800s conducted on chemical reactions by Peter Waage (1833 - 1900) and Cato

Guldberg (1836 - 1902), and their contemporaries. These works were concerned with

the equilibrium, or steady-state, of chemical reactions attained under different condi-

tions and when initiated from various starting concentrations of substrates. The key

contribution of these studies was the finding that the equilibrium state in a reaction,

https://equilibrator.weizmann.ac.il
https://equilibrator.weizmann.ac.il
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that is the ratio of the concentration of substrates and products at steady-state, is

characterized by a constant [70].

This finding, referred to as the “mass action law”, later gave rise to the notion (rather

erroneously) that reaction rate of a chemical reaction at constant temperature is ‘pro-

portional to the product of the concentrations of the reacting substances’ [71]. This

derived statement actually is not a law but presents a possible rate model that would

be compatible with the experimentally observed equilibrium state (i.e. with the mass

action law of equilibrium) [70, 71] (see Box 3.D and the Appendix A.2).

3.2.2 Enzymes as catalysts of biochemical reactions

We mentioned many biochemical reactions to be catalyzed by enzymes. It is there-

fore worth briefly explaining enzymes. Enzymes are proteins, chains of amino acids,

that fold in the cell in various 3D structures. For our purposes, we do not need to

understand all the intricacies of how enzymes are made or how they fold into their

structures (the reader is directed to excellent books on these subjects [72, 73]). Suf-

fice to say that in their folded-state, enzymes can bind a set of target metabolites in

such away that puts thesemetabolites in a specific physio-chemical environment and

physical orientation, where their specific biochemical reaction is facilitated. Thus, en-

zymes are catalysts that facilitate a chemical reaction among metabolites. As we will

discuss further below, modeling of biochemical reactions catalyzed by enzymes re-

quires developing a ‘mechanistic’ picture of how enzymes function. Such models can

be developed based on numerous studies on enzyme structure and function. Here,

we will only state that a generally accepted model involves enzymes binding their

substrates - thereby forming a enzyme-substrate complex - and then transitioning to

a state enabling catalysis. We can expand this model by also considering so-called

allosteric binding sites, where specific molecules (including sometimes the enzyme’s

own substrate or product) can bind and alter the kinetics of either enzyme-substrate

binding or catalytic activity. These allosteric sites, thus, provide a mechanism for reg-

ulation of enzymatic reactions (Fig. 3.5).

3.2.3 Modeling reaction fluxes - reaction rate models

Metabolic reactions can involve diverse biophysicalmechanisms (uncatalyzed, enzyme-

catalyzed, etc.) and can take place under diverse biophysical conditions inside a

cell (membrane-bound, cytosolic, extracellular, coupled across membranes, etc.). As

such, mechanistically complete, biophysical representation of all metabolic reactions

in dynamic, mathematical models might never be possible [74]. Dynamical models

of metabolic systems, as with all mathematical models, must therefore balance ab-

straction of real mechanistic features of a system with achieving a still useful and
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Figure 3.5: Enzymes and flux regulation – (A) Schematic representation of a biochem-
ical reaction, highlighting the involvement of a catalyzing enzyme. For such enzyme-
catalyzed reactions, the flux has an upper limit relating to total enzyme concentra-
tion and kinetic parameters of the enzyme (see section 3.2.3 and Appendix A.3 for
enzyme catalyzed reaction ratemodels). (B) Cartoon representation of enzyme struc-
ture and possiblemechanisms of allosteric or competitive regulation. Such regulation
can emerge either by the substrate of the enzyme or other metabolites binding the
enzyme (left), and altering its overall reaction rate (either through competition with
the substrate or by altering the enzyme structure and affecting its kinetic parameters,
right).

insight-providing model. At the core of all dynamical metabolic models are rate laws

that aim to capture the kinetics of biochemical reactions.

Non-enzymatic reactions - the reversible and irreversible mass action rate models

All rate models used in metabolic modeling are based on the so-called ‘mass action

law’ described in Box 3.D above. As discussed in that section, the “mass action law”,

which is derived from thermodynamic principles, is compatible with a ratemodel that

assumes reaction rate of a chemical reaction at constant temperature to be ‘propor-

tional to the product of the concentrations of the reacting substances’ [71, 70] (see

Box 3.D). This ‘mass action rate model’ is commonly used, especially in the context of

elementary reactions (i.e. reactions involving one single step), and has been shown

empirically to apply in the case of some non-elementary reactions [70]. According to

the mass action model, the net rate of any reaction of the form given in Eq. (3.1) is

given by;

v = k+ · ana · bnb − k− · cnc · dnd , (3.5)

where small letters denote concentration of the relevant species of the same letter,

ni denote the stoichiometric coefficient for species i (as introduced above), and k+ and

k− denote kinetic rate constants relating substrate concentrations to reaction rate.

The mass action rate expression is such that if the first term is larger than the second

then v > 0, and more reactant will convert to product than product converting to reac-

tant (Box 3.D). This situation will continue until some point, where the second term

will be larger than the first, and the opposite will occur. Consequently, this expression

makes the system converge towards an equilibriumpoint, or steady-state, where v = 0.

As long as the reagents are free to move, they will collide and interconvert (in both
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directions) at the microscopic level, even when the equilibrium is reached. However,

at equilibrium, the amount of reactant converting to product equals the amount of

product converting to reactant per unit of time, therefore there is no net consumption

and production of metabolites (Box 3.D). When we have the concentrations that lead

to the thermodynamic equilibrium of the reaction, i.e. equilibrium concentrations, we

will have;

v = 0 = k+ · ana · bnb − k− · cnc · dnd

k+

k−
= cnc · dnd

ana · bnb

This ratio is known as the reaction’s equilibrium constant Keq and hence the ‘mass ac-

tion ratemodel’ is consistent with the empirical observations ofWaage and Guldberg.

As we have shown in Eq. (3.4) above, the equilibrium constant is equivalent to the re-

action’s Gibbs free energy under standard conditions. Note that when considering a

biochemical system (rather than a chemical one), it is customary to report Gibbs free

energies for standard conditions adjusted for a pH of 7, and denoted with superscript

◦′. Thus, we can write;
k+

k−
= Keq = e− ∆rG′◦

R·T (3.6)

where ∆rG
′◦ is the Gibbs free energy under biological standard conditions, and R and T

denote themolar gas constant1 and temperature (in Kelvin) respectively (see Box 3.D).

It is important to note here that, given Keq is a constant determined by thermodynam-

ics, the parameters k+ and k− cannot be chosen independently, i..e k− = Keq/k+.

Following on from this last point, it is important to consider a reaction with large

Keq, i.e. a reaction for which ∆rG
′◦ is highly negative. In this case, the value of k− can

become small to the extent that the reverse reaction can be negligible. In this case

the reaction could be considered as effectively irreversible and the rate model can be

approximated by;

v = k+ · ana · bnb (3.7)

Enzymatic reactions The mass action rate discussed above forms also the basis of

modeling enzymatic reactions. This approach is justified by considering each enzy-

matic reaction as a series of ‘elementary steps’, each obeying the mass action rate

model. To this end, many alternative elementary steps, or ‘enzymemechanisms’, can

be considered to ‘capture’ an enzymatic reaction and subsequently many alternative

assumptions can be made to simplify the resulting system of steps. It is also possible

to include allosteric regulation or other types of inhibition or activation steps within

1Themolar gas constant (also known simply as the gas constant) is themolar equivalent to the Boltzmann
constant, expressed in units of energy per temperature increment per amount of substance (quantified in
moles rather than single particles). Its value is about 8.31 J ·K

−1
·mol

−1
.
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these elementary steps, allowing generation of a rich variety of enzymatic models

and rate laws. Here, we will cover some of the most common of such models, notic-

ing that the construction of these models follows the same general principles of (i)

drawing up elementary reactions, (ii) writing down mass action based kinetic rates

for the system, and (iii) simplifying the system with assumptions on kinetic parame-

ters (see Appendix A.2). The reader can consult additional books (e.g. [75]) for more

specific, elaborate enzymatic reaction schemes, or can attempt them as an exercise.

Single substrate, irreversible enzymatic rate model (Michaelis-Menten model) A

possible representation of an enzymemediated reaction consisting in the conversion

of a reactant S to a product P could be the following reaction scheme:

S + E
k1−−−−⇀↽−−−−k2

ES kcat−−−−→ P + E.

This reaction scheme is rather specific, for example, it ignores the possibility that sub-

strate bound enzyme can be converted into product, while remaining bound on the

enzyme. Thus, the above reaction scheme is derived from amore complete andmore

complex reaction scheme through application of several assumptions relating to in-

dividual reactions. The resulting rate model from the above scheme is usually known

as the Michaelis-Menten model, named after the biochemists Leonor Michaelis and

Maud Menten who studied enzyme kinetics in the early 1900’s, but several studies of

that time and afterwards arrived at a similar model using different assumptions. Im-

plementation of the specific assumptions, as we detailed in Appendix A.3, allows one

to arrive at the above reaction system, which can be represented by a reduced ODE

system, compared to the full system. In this reduced ODE system, the ODE describing

the rate of formation of the product, which is equivalent to reaction rate, becomes:

v = s · etot · kcat

KM + s
(3.8)

where etot represents the total enzyme concentration, kcat is known as the catalytic rate

of an enzyme, and KM is known as the Michaelis-Menten coefficient of the enzyme

and is equal to (k2 + kcat)/k1 (we note that depending on the assumptions used, the ex-

pression for KM can vary). Plotting the above rate of formation of product against in-

creasing substrate concentration (see Figure 3.6) shows that the rate is a ‘saturating

function’ of substrate, i.e. the rate approaches a threshold point - given by νmax = etot ·kcat

as substrate concentration increases. Thus, we can see that the enzymatic nature

of the reaction introduces a limiting factor on the reaction rate that depends on νmax,

i.e. total enzyme concentration and enzyme’s catalytic rate. This fact underpins the

regulation ofmetabolic flux through regulation of enzyme levels or enzyme’s catalytic

rate, and is a key conceptual point for the constraint-based methods discussed later



60 Cell metabolism

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

s/KM

v
/
ν

m
ax

Figure 3.6: Michaelis-Menten rate law – The x- and y-axis show the substrate con-
centration (normalized by KM) and reaction flux (normalized by νmax) respectively. The
dashed horizontal line corresponds to νmax, i.e. etot · kcat.

in this book.

Single substrate, reversible enzymatic rate model (Haldane model) Considering

that all chemical reactions are — at least, in theory — reversible, it is also possible to

express the rate of an enzyme-mediated reaction as a function of the concentration

of both substrate and product. A method to do so has been introduced by Haldane

[76]. It considers the following reaction scheme:

S + E
k1−−−−⇀↽−−−−k2

ES
k3−−−−⇀↽−−−−k4

EP
k5−−−−⇀↽−−−−k6

P + E.

Deriving the rate law for this reaction scheme is slightly more involved, but it follows

the same strategy as explained above, of creating elementary steps, treating them as

obeying mass action rate, and making additional simplifying assumptions. As shown

in Appendix A.2, we can follow this strategy to derive the reversible rate law as follows:

v = etot · k
+
cat
KS

·
s− p · k

−
cat/KP

k+
cat/KS

1 + p

KP
+ s

KS

(3.9)

where KS and KP are composite constants relating to the substrate and product bind-

ing to the enzyme, and k+
cat and k−

cat are Haldane coefficients (again, composite parame-

ters of other kinetic constants) describing catalytic rate of the enzyme (see Appendix

A.2 for further details of these parameters).

As done in the above section on kinetics of the non-enzymatic reversible reaction, we

can consider the equilibrium condition for this enzymatic reversible reaction. This

would allow us to derive the corresponding relation between Keq and reaction Gibbs

free energy. Recognizing the relation between the Haldane composite parameters

and Keq (see Appendix A.2) and the flux-force relation (see below), we can then re-
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formulate the reversible rate law as:

v = etot · k+
cat · s/KS

1 + p/KP + s/KS
·
(

1 − e
∆rG′
R·T

)
(3.10)

where ∆rG
′ is the Gibbs free energy of reaction for a given substrate and product lev-

els under biological conditions and considering the forward direction of the reaction.

This rate law shows that forward reaction rate will be independent of thermodynam-

ics, when the reaction free energy is highly negative (i.e. when the reaction is far from

thermodynamic equilibrium, ∆rG
′ � 0). However, as the reaction Gibbs free energy gets

close to zero, the reaction rate will decrease, and as such, there will be a dependence

of reaction rate on reaction free energy.

Another way of writing equation 3.10 is this one:

v = etot · k+
cat ·

s/KS ·
(

1 − e
∆rG′
R·T

)
1 + s/KS ·

(
1 + k+

cat
k−

cat
· e ∆rG′

R·T

) (3.11)

where we replace p/KP with an expression that depends on s and ∆rG
′. This alternative

expression, developed in the context of modeling microbial metabolism [77, 78], can

be useful because it shows us that when the reaction is far from equilibrium (∆rG
′ � 0),

the term e∆rG′/(R·T ) will approach zero and the above formula can be approximated by

the irreversible Michaelis-Menten rate law (Equation 3.8). In this case, we further

notice that the Haldane coefficient KS becomes equivalent to KM introduced above in

the irreversible reaction scheme (see section 3.2.3).

It is important to note that many reactions within cell metabolism are experimentally

shown to be reversible, indicating that they operate close to thermodynamic equilib-

rium [17, 79, 68].

Rate models for representing allosteric effects Rate models for representing al-

losteric effects, i.e. binding of additional molecules - or their own substrates - on

the enzyme and affecting the enzyme-mediated reaction rate, can be created either

by adjusting the rate laws given above empirically, or by considering the additional

binding events at ‘allosteric sites’ of the enzyme and deriving a new ‘mechanistic’

rate model. To give an example of the former strategy, we can consider a Michaelis-

Menten ratemodel adjusted for an inhibitory effect of the substrate on the enzymatic

reaction rate. This adjusted rate model can be expressed as:

v = νmax · s
KM + s+ s2/KI

(3.12)

where KI represents the saturation coefficient for the binding of the substrate at an
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allosteric site on the enzyme. Notice that we used such a model in the small multi-

stable system example introduced above (section 3.3.3) and discussed in Appendix

A.3.

For the same example, the alternative approach (the latter case mentioned above)

would be to develop a mechanistic model involving multiple binding reaction on an

enzyme. The resulting elementary reactions and their mass action implementation

can be then carried out. This process would result in a set of ODEs, which can then

be further simplified to draw a rate model for the proposed allosteric regulation. An

example of this type model is developed in the context of multi-substrate binding

enzymes, and shown to lead to multi-stability under certain parameter conditions

[80].

Flux-force relationship All chemical reactions, including biochemical reactions, must

obey thermodynamic laws. This fact manifests itself in several ways in dynamical

modeling. Firstly, reaction direction (or, rather, feasibility) is determined by the sign

of the reaction Gibbs free energy. Second, the kinetic constants associated with the

elemental reaction steps are constrained by thermodynamics (section 3.2.3). To see

the third relation arising from thermodynamics, we consider again the simple non-

enzymatic mass action model we used above – reaction schematic given in Eq. (3.1)

and the reaction Gibbs free energy given by Eq. (3.2).

We now re-consider the net rate of reaction as given above in Eq. (3.5), and break this

into its components of forward reaction rate (or flux) and reverse reaction rate (or

flux), which are given by;

v+ = k+ · ana · bnb

v− = k− · cnc · dnd

and then, we can express the net forward flux (J) as:

J = v+ − v− = v+ ·
(

1 − v−

v+

)
= v+ ·

(
1 − k− · cnc · dnd

k+ · ana · bnb

)
= v+ ·

(
1 − k−

k+
· Γ
)

In this re-organized form of the net forward flux, we notice that the expression in

parentheses on the right hand side can be re-expressed in terms of reaction free

energy (using Eq. (3.6)) as follows:

J = v+ ·
(

1 − k−

k+
· Γ
)

= v+ ·
(

1 − Γ
Keq

)
= v+ ·

(
1 − e

∆rG′
R·T

)

Thus, we find that the net forward flux of the reaction is given by the forward reac-

tion rate multiplied by a thermodynamic factor. When the reaction is energetically

favored, i.e. has large negative Gibbs free energy, the thermodynamic factor dimin-
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Figure 3.7: The ratio of net forward flux (J) to forward reaction rate (v+) as a function
of the negative reaction Gibbs free energy

ishes and the net forward flux is fully determined by forward reaction rate alone (see

Figure 3.7). When the reaction is closer to equilibrium, i.e. small negative or near-zero

Gibbs free energy, then the net forward flux will be determined by a combination of

forward and reverse flux rates. This relation between net forward flux and thermody-

namics is referred to as the flux-force relation [81, 82] andholds also for the enzymatic

reversible reaction model described above (see section 3.2.3).

A note on choosing a reaction ratemodel In the above sections, we have introduced

several biochemical reaction ratemodels. Thesemodels fall into twomain categories,

namely those thatmodel enzyme action (i.e. enzymaticmodels) and those that ignore

the enzyme action (i.e. non-enzymatic models). Notice that derivation of both cate-

gories of models rely on the mass action law. In the non-enzymatic case, we model

reactions as single-step forward and backward reactions using mass action, while in

the enzymatic case, we consider multi-step reaction mechanisms, but still use the

mass action for each individual step. For each category, we can consider the reaction

thermodynamics andmodel reactions as reversible, but – as we discussed above – we

can also choose to approximate reactions as ‘irreversible’ when the overall reaction’s

Gibbs free energy is very negative (i.e. when Keq is large).

In a given modeling context and metabolic system, it would be a valid question to

ask – which model should one use? This question can be answered in parts. In the

first instance, we can make a decision about the use of reversible or irreversible rate

models. As already mentioned, this decision should be based on the value of Keq – a

reaction with a very large Keq can be modeled as irreversible, as long as the product

concentrations are known not to reach very high levels (in a cell). However, to rep-

resent a metabolic reaction as irreversible is not without consequences even if the

reaction always runs in the same direction (notice that the assumption of irreversible

reaction means that the reaction rate cannot go negative). Reversible kinetics can

capture the negative feedback of reaction products on reaction rate, and irreversible

reactionmodels would lose this feature [83]. A recent study by Shen et al [84] showed
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how important it can be to include product inhibition to create a predictive metabolic

model.

In the case of lower Keq value – in combinationwith a consideration of possible product

concentration – themodeler should opt for the reversible ratemodels, which are ther-

modynamically consistent. The decision about use of enzymatic or non-enzymatic re-

action models can be made in a practical manner. If the enzyme associated with the

modeled reaction has measured kinetic rates, it would be sensible to opt for a enzy-

matic model (noting that in vivo enzyme kinetics might differ from those measured in

vitro and that many enzyme kinetics studies use parameter derivations assuming an

irreversible Michaelis-Menten model). Consequently, it may not be possible to find

all the required parameters in the literature, so to model a reaction using reversible

rate model. In the absence of measured enzyme parameters, the modeler can use

‘guesstimated’ parameters, based – for example – on the distribution of known en-

zyme kinetic parameters, or alternatively, use the non-enzymatic model.

Given the discussion in the preceding paragraph, it is a useful exercise to consider

when the non-enzymatic and enzymatic models might behave in the same way. We

have introduced above the concept of flux-force relationship, where we have shown

that the net flux in a reversible reaction would be given by the forward fluxmultiplied

by a thermodynamic factor:

J = v+ ·
(

1 − Γ
Keq

)

If we consider this equation for the reversible non-enzymatic and enzymatic models,

we would notice that the thermodynamic factor would show the same behavior for

both models, depending only on reaction Keq value and substrate and product con-

centrations. Where the models would differ, would be in the behavior of the v+ term,

which takes the form:

For the reversible enzymatic case:

v+ = etot · k+
cat · (s/KS)/(1 + s/KS + p/KP)

And, for the reversible non-enzymatic case:

v+ = s · k+

Where kcat, KS, and KP are the enzyme kinetic parameters for the enzymatic model

and k+ is the forward reaction rate coefficient for the non-enzymatic model. Thus,

the two models would behave in a similar way, when there is correspondence be-

tween these two terms, which are sometimes referred to as “saturation terms” [82].
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By re-arranging the above terms, we can show that correspondence between the two

models can be expressed as:

etot · k+
cat · (1/KS)/(1 + s/KS + p/KP) ≈ k+

We can see that in the regime, where s � KS and p � KP, both models would behave

in a linear fashion and their behavior would correspond exactly with the right choice

of parameters (i.e. assuming (etot · k+
cat/KS) = k+). Outside of this regime, correspondence

would be dependent on both parameters and concentration of S and P . One interest-

ing case to consider is when total amount of S and P would be conserved, for example,

with cycling reaction schemes. In this case, we can introduce a new parameter C to

describe the total pool of the cycled metabolite (e.g. C = S+P ) and the correspondence

would be expressed as:

(etot · k+
cat/KS)/(1 + (s ·KS − s ·KP)/(KS ·KP) + C/KP) ≈ k+

Thus, in this case of the sum of substrate and product concentrations being con-

served, we canhave correspondencebetween thenon-enzymatic and enzymaticmod-

els when S is small or when KS = KP.

3.3 Dynamics and regulation of metabolism

As explained so far in this chapter, cell metabolism involves biochemical reactions in-

volvingmetabolites (andoften catalyzedby enzymes). Thus, understandingmetabolism

involves studying the dynamics of this system, trying to predict howmetabolite levels

will go up or down, or settle to a steady state as cell physiology changes in response

to external or internal processes (e.g. cells encountering glucose or undergoing divi-

sion). Obtaining such understanding requires us to develop models of biochemical

reaction systems and predict the ‘dynamics’ of those systems. In the previous section,

we learned how to model one biochemical reaction. Now we will see how we can

readily expand these models to capture multi-reaction systems. The ‘art’ of develop-

ing and analyzing dynamical models falls under the branch of mathematics known

as calculus and nonlinear dynamics. Many introductory books to these subjects are

available, but we find that two particularly useful ones are those by Silvanus Thomp-

son on calculus [85] and by Steven Strogatz on nonlinear dynamics [86]. Here, we

will not re-introduce these topics but focus solely on various reaction rate models for

metabolic systems that have been developed based on ODEs. We will highlight re-

lations between these models and reaction thermodynamics and explore their pos-

sible limitations and applications in different cases. There are also books that are

solely dedicated tomodels of biochemical reaction kinetics and enzyme kineticsmore
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broadly - the reader is advised to further explore the topicwith the help of such books,

particularly [72, 75, 87]

3.3.1 Stoichiometric matrix and ordinary differential equations

As mentioned above, metabolic systems consists of many reactions. When describ-

ing multiple reactions in a biochemical ‘system’, it is convenient to represent the stoi-

chiometries of individual reactions in a compact form called the stoichiometricmatrix,

N. The rows and columns of thismatrix corresponds to m species (i.e. themetabolites),

and to n reactions, found in the system respectively:

N is a m× n matrix

The intersection of a row and column in the matrix indicates whether the species

represented by that row takes part in the particular reaction represented by that col-

umn, or not. The sign of the element determines whether there is a net loss or gain

of substance, and the magnitude describes the relative quantity of substance taking

part in the reaction. It is important to appreciate that the elements of the stoichiom-

etry matrix do not concern themselves with the rate of reaction, and just indicate the

quantities taking part in the reaction.

A full description of a biochemical network, including the time-varying, dynamical be-

havior of metabolite concentrations, will augment the stoichiometry matrix with a

rate vector, v, forming a so-called system equation:

ds
dt = N v(s) (3.13)

This equation represents a system of ordinary differential equations (ODEs) that de-

scribe the time evolution of the species, s. In other words, the ODE for species s de-

scribes the rate of change in the concentration of swith a given (infinitesimal) change

in time. The ODEs can be solved numerically (i.e. simulated) by computer or studied

analytically.

Notice that in mathematics, the time varying entities in a dynamical systems - in our

context, the concentrations of chemical species - are known as ‘variables’, while any

elements of the system that stay constant over time are known as ‘parameters’. For

an insightful and accessiblemathematical treatment of differential equations and sys-

tem dynamics, the reader is referred to these two excellent books [85, 86], while for

a metabolic view of variables and parameters, the article on the Control of Flux, by

Kacser and Burns, offers a valuable perspective [88].
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M0 M1

kin kout

ATP ADP

Figure 3.8: Illustration of thermodynamic equilibrium and dynamical steady state –
(A) Thermodynamic steady state. (B) Dynamic steady states – non-equilibrium ther-
modynamics. While the former happens only at chemical equilibrium, the latter can
arise in systems that are far from chemical equilibrium. A cartoon of a flowing water
through a tank and a reaction involving co-substrate cycling are shown as examples
of systems that can attain dynamical steady states.

3.3.2 Dynamic steady state

As stated above, the ODEs describe the time evolution of all variables s in the system.

An informative approach to any dynamical system is to consider its steady state, a

state where consuming and generating processes on each variable would have the

same rate, i.e. the ODEs are equal to zero, and there would be no change in the vari-

able amounts. For example, a water tank filling at a constant rate but emptying at a

rate proportional to the height of water in the tankwill eventually reach a steady-state

where the output flow equals the inflow of water (Fig. 3.8). Under these conditions

the height of water remains constant, or at a steady state.

It is important to note that the thermodynamic equilibrium mentioned above is also

a type of steady-state, but this does not mean that steady-state is only attained at

thermodynamic equilibrium. In other words, there can be a steady-state where the

system is out of thermodynamic equilibrium but the concentrations of metabolites

are not changing. An example of this would be a linear metabolic pathway of con-

nected reactions, with influx and outflux of an initial and endpoint metabolite (as

seen in Fig. 3.8). In such a system, we can readily consider a scenario where there is

influx of the first metabolite, outflux of the last metabolite, and forward flux through
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each of the reactions in the pathway. Thus, we would have a situation where all re-

actions are out of thermodynamic equilibrium, but all metabolite concentrations in

the pathway attain a dynamic steady-state, where their influx and outflux are equal

(Fig. 3.8). The distinction between systems that are both at steady-state and thermo-

dynamic equilibrium, and those that are at steady-state but out of thermodynamic

equilibrium, is an important one. It has been shown that complex dynamics, such

as bistability and oscillations (as discussed below) are only possible in the latter case

[89, 81, 90].

Mathematically speaking, the steady-state is defined when the ODE system, i.e. the

system equation, is set to zero:
ds
dt = N v(s) = 0 (3.14)

For simple systems, such as a tank of water filling and emptying, there is only one

unique steady-state. This is perhaps better illustrated with a simple biochemical ex-

ample. Consider a two step pathway where the first step has a constant rate k1 and

the second step a variable rate determined by a first-order reaction rate, k2.

v0 = k1−−−−−→ S v1 = k2 ·s−−−−−−−→ (3.15)

The differential equation describing the concentration of metabolite S is given by:

ds
dt = k1 − k2 · s (3.16)

Setting this equation to zero and solving for s yields the steady-state level of S:

s = k1

k2
(3.17)

This solution indicates there is only a single steady-state for this system dependent

on the parameters k1 and k2.

3.3.3 Multiple steady-states and oscillations

In the previous section it was shown that a simple two step pathway admitted a sin-

gle steady-state. There can be, however, metabolic systems that can show multi-

ple steady states. As a simple example, consider the system shown in Figure 3.9.

This shows a linear pathway of two reactions, with the first reaction activated by the

species x.

Under certain parameter and model choices, such a system can admit three steady-

states. Details of a model that can be simulated can be found in Appendix A.3). Other

examples of metabolic systems withmultiple steady-states will be given below. In bi-,

ormulti-stable systems, there can bemultiple sets of steady state concentrations and
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x
v1 v2

Figure 3.9: Cartoon of a simple pathway that features allosteric enzyme regulation
and that can showmultiple steady-state solutions (see Appendix A.2). Themetabolite
‘x’ positively regulates the first step, v1. The resulting positive feedback can result in a
bistable system under a certain parameter regime.

flux rates that the system can settle at. Which set of steady-states is realized is usu-

ally determined by initial concentrations or can be caused by a change in one of the

concentrations or parameters. Thus, the system can change its steady-state value

abruptly at a threshold value of a specific parameter of the system. For a metabolic

system displaying bistability, we can expect a rapid switch in multiple fluxes with

changes in the concentration of one or few metabolites [86]. Furthermore, when

bistability is combined with noise in some parameters (e.g. enzyme expression level)

there can be a multi-modal distribution of flux states across genetically identical cells

(e.g. see [91, 92] and section A.1).

3.4 Concluding remarks

In this chapter, we set out to introduce cellular metabolism as a dynamical system.

We have seen that metabolism comprises many biochemical reactions, that are his-

torically cataloged and described into pathways. These pathways are usually not lin-

ear, composing of serial conversions of metabolites, but rather display branching

points and inter-connections through metabolites participating in many reactions.

This inter-connected nature of metabolic systems, together with the large numbers

of participating metabolites and reactions, makes them a complex system to study

and conceptualize.

Wehave introducedboth simplified, coarse-grained viewpoints for describingmetabolism,

and mechanistic approaches for detailed dynamical modeling of it at the level of

single reactions. The former can be used to guide specific ideas on how to study

metabolism, or to develop analogies to other disciplines, while the latter can provide

a toolbox for constructing dynamical models of small or large metabolic systems. We

have provided specific examples of such dynamical models and shown how they can

allow us to relate system behavior - steady state or temporal behavior - to specific re-

action mechanisms or parameters (e.g. allosteric interactions between metabolites

and enzymes, cyclic reaction schemes, branching points).

There aremany challenges remaining in the analysis andunderstanding ofmetabolism

as a dynamical system. Recent studies found for example that many fluxes, where

measured, are lower thanpredicted fromaenzymatic irreversible reaction ratemodel

(introduced in Eq. (3.8)) [24], and changes in flux patterns with changing conditions
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cannot be explained by enzyme levels alone [93]. These findings lead to the ques-

tion on what determines/limits reaction fluxes and how reaction fluxes are regulated

besides regulation of enzyme levels. There are several possible answers, including

effects relating to allosteric interactions between metabolites and enzymes, reaction

thermodynamics, and substrate-related effects. The experimental study and model

incorporation of these possibilities is ongoing in systems biology, with increasing in-

terest to include also more of the physico-chemical aspects of the cellular environ-

ment into the study of metabolism - such as diffusion of molecules, involvement of

radical chemistry (especially generation of oxygen radicals in respiration) and mem-

brane potential [94, 74]. As such, we are increasingly hoping to move frommetabolic

reactions studied in isolation, to cell-scalemodels and physico-chemical concepts that

unite cell metabolism and physiology. Some of this emerging movement is captured

in subsequent chapters of this book.

Recommended readings

Enzyme kinetics and reaction models

◦ “Enzymes” by J. B. S. Haldane [76]. Historically important book on enzyme kinetics

and enzymatic reaction models.

◦ “Fundamentals of Enzyme Kinetics” by A. Cornish-Bowden [75]. General introduc-

tory book on enzymes and enzyme catalysis.

◦ “Enzyme Kinetics for Systems Biology” (2012) by H. M Sauro [87]. In addition to cov-

ering enzyme kinetics, this book also discusses stochastic kinetics and the kinetics

of gene regulatory systems with an emphasis on systems biology models.

◦ “Structure and Mechanism in Protein Science: Guide to Enzyme Catalysis and Pro-

tein Folding” by A. Fersht [72]. General introductory book on enzymes and enzyme

catalysis.

Thermodynamics and physical chemistry

◦ “Understanding thermodynamics” by H. C. van Ness [67]. An excellent book that

de-mystifies thermodynamics. It provides a conceptual treatise, leaving the math-

ematics to the side and focusing on what actually the thermodynamic laws mean.

◦ “Principles and Problems in Physical Chemistry for Biochemists” by N. C. Price [66].

An introductory book on thermodynamics, physical chemistry, and biochemistry.

Metabolic system dynamics

◦ “Energymetabolismof the cell : a theoretical treatise” by J. G. Reich and E. E. Sel’kov [61].

Provides an early view of the importance of reaction dynamics as a ’self-regulatory’

element in metabolism. Emphasizes the importance of cyclic reaction schemes and

interconnections among metabolic processes.
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◦ “Chemical Biophysics: Quantitative Analysis of Cellular Systems” by D. A. Beard and

H. Qian [94]. Provides a rare approach of attempting to combine - co-study the

more physical aspects of cell physiology, including membrane potential and com-

partmentalization, with metabolism dynamics.

◦ “Systems Biology: An Introduction to Metabolic Control Analysis” (2018) by H. M

Sauro [95]. Discusses biochemical network dynamics from theperspective ofmetabolic

control analysis.

Problems

Computer exercises for this chapter can be found on the book website.

Problem 3.1 An irreversible reaction with simultaneous binding

(a) Write the reaction scheme for an irreversible enzymatic reaction with two sub-

strates. Assume both substrates bind the enzyme simultaneously (forming one

complex ES1S2), and both products are released simultaneously from this com-

plex (i.e. without intermediary EP1P2 stage).

(b) Find the rate of product production for this system.

Problem 3.2 A reversible reaction

(a) Write the reaction scheme for a reversible enzymatic reaction with two sub-

strates. Assume both substrates bind the enzyme simultaneously (forming one

complex ES1S2), andbothproducts are released/absorbed simultaneously from/into

this complex (i.e. without intermediary EP1P2 stage).

(b) Find the rate of product production for this system.

Problem 3.3 An irreversible reaction with sequential binding

(a) Write the reaction scheme for an irreversible enzymatic reaction with two sub-

strates. Assume the substrates bind sequentially (forming complexes ES1 and

ES1S2), and both products are released simultaneously from ES1S2 (i.e. without

intermediary EP1P2 stage).

(b) Find the rate of product production for this system.

Problem 3.4 An irreversible reaction with random-order binding

(a) Write the reaction scheme for an irreversible enzymatic reaction with two sub-

strates. Assume the substrates bind the enzyme in any order (forming com-

plexes ES1, ES2 and ES1S2), and both products are released simultaneously from

this ES1S2 (i.e. without intermediary EP1P2 stage).

(b) Find the rate of product production for this system. Note that symbolic math

tools such as Mathematica, Maple or the SymPy Python library will be helpful

for this question (though not essential).
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Physics box 3.B The redox ladder in metabolism

We can highlight the overall re-
dox reaction implemented by the
cellular metabolism further, by
writing it as two separate reactions
consisting of an oxidation reaction
(involving a molecule releasing
electrons) and a reduction reaction
(involving a molecule accepting
electrons) (see Fig. 3.3). The feasi-
bility of the paired, overall redox
reaction can be measured by the
Gibbs’ free energy, or the closely
related reduction potential, where
a positive reduction potential (or a
negative Gibbs’ free energy) indi-
cates a thermodynamically feasible
reaction. Thus, a redox reaction
with a positive reduction potential
implies electrons ‘flowing’ from
a molecule with high reduction
potential towards that with a low
reduction potential – a point that
can be visualized using a “reduc-
tion ladder”, a chart of reduction
potentials (Fig. 3.4). Notice that
considering redox reactions as
composed of individual reduction
and oxidation reactions is merely
a conceptualization, however,
this provides a useful analogy in
which we can view a metabolic
system as enabling the flux of
electrons across many reactions,
and between an initial electron
donor and a final electron acceptor
[51]. While glucose and oxygen
are possibly the most well-known
electron donor and acceptor pairs,
cells, especially microbial cells,
can use a wide-range of donors
and acceptors, including nitrogen
and sulfur containing compounds,
thereby contributing significantly
to biogeochemical cycles of these
compounds [56].
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Physics box 3.C Cyclic reaction motifs

The involvement of co-substrate and key metabolites results in the coupling of
many different parts of the metabolism and in the emergence of cyclic reac-
tion systems - for example, by connecting different parts of the metabolism, the
NAD(P)H/NAD(P)+ pairs result in cycling between their different forms. This means
that in order to capture the concentration of all the other molecules involved in
these reactions, we need to consider dynamics of a series of intertwined cyclic
reaction systems, rather than linear pathways akin to an assembly line. Indeed,
it has been argued that cyclic reaction motifs should form the basis of develop-
ing a dynamic understanding of cell metabolism [61]. It must also be noted that
co-substrates, and possibly other keymetabolites, can have ‘conserved’ concentra-
tions in the time scales of metabolic flux dynamics. In other words, these metabo-
lites form ‘conserved moieties’ within the system, similar to enzymes, such that
altering of the total pool size of these co-substrates or the ratio of their different
forms (e.g. the NAD+/NADH ratio) can possibly affect the flux distribution across
different pathways that they are connected to [62, 63, 58, 64, 61, 65].
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Physics box 3.D Mass action law for chemical reactions

na A + nb B︸ ︷︷ ︸
substrates

k+−−−−⇀↽−−−−k−
nc C + nd D︸ ︷︷ ︸

products

ξ∗

∆rG
′ < 0 ∆rG

′ = 0 ∆rG
′ > 0

ξ (Reaction adv.)
In
te
rn
a
l
e
n
e
rg
y

Thermodynamic interpretation

Gibbs free energy of reaction:

∆rG
′ = ∆rG

′◦ +R · T · ln c
nc · dnd

ana · bnb

At equilibrium:

∆rG
′◦ = −R · T · ln

cnc
eq · dnd

eq

anaeq · bnbeq

e
−∆rG′◦

R·T =
cnc

eq · dnd
eq

anaeq · bnbeq
= Keq

Kinetic interpretation

Backward reaction rate:

k− · cnc · dnd

Forward reaction rate:

k+ · ana · bnb

At equilibrium:

k+ · ana
eq · bnb

eq = k− · cnc
eq · dnd

eq

k+

k−
=
cnc

eq · dnd
eq

anaeq · bnbeq
= Keq

Cartoon representation of Gibbs free energy of reaction and the thermodynamic
equilibrium – As a chemical reaction proceeds, the concentrations of substrates
and products change, which in turn affects the ‘energy in the chemical system’.
We can, thus, capture the reaction advancement in a graph, where the x-axis rep-
resents the reaction advancement (i.e. the concentrations of substrates and prod-
ucts at different times in the reaction course) and the y-axis the internal energy of
the system. The Gibbs free energy of reaction, in a way, indicates the position of
the system in this graphical representation, where the thermodynamic equilibrium
would be the energy minima. At equilibrium, reaction Gibbs free energy would be
zero, allowing us to derive the relation between substrate and product concen-
trations at that point and their free energy of formation. This relation is known
as the equilibrium constant of the reaction. The same relation can be derived us-
ing a rate model to describe the forward and backward reactions that make up
the overall reaction. The thermodynamic result (or derivation) shows that a given
reaction (under a given temperature) would always have the same substrate and
product concentrations at equilibrium, a point that is empirically verified by exper-
iments and that is known as the “mass action law”. The rate-based interpretation
of this thermodynamic result (or law) is known as the “mass action rate model”
and assumes that rate of a given reaction is proportional to the concentrations of
substrates and products to the power of their stoichiometry, and adjusted by a
rate constant (shown as k+ and k− above).
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Metabolic flux distributions

DaandeGroot,WolframLiebermeister, MaximeMahout, StefanMüller, David Rucker-

bauer, Felipe Scott, and David Tourigny

Chapter overview

◦ The metabolic capabilities of an organism can be related to the individual chem-

ical reactions it can catalyze

◦ Elementary flux modes are minimal metabolic strategies that together span all

metabolic capabilities.

◦ When the analysis of elementary flux modes is prohibited by computational lim-

its, alternatives could be used, such as elementary conversion modes, flux sam-

pling and minimal cut sets.

4.1 Modeling metabolic fluxes in cells

In the previous chapters we have seen that cells can convert substances from their

environment into building blocks for cell components: their metabolism allows cells

to grow, reproduce, repair themselves, and produce compounds needed to resist

environmental stresses. But how does a cell manage this in detail, and does it have

alternative metabolic strategies in case one does not function properly?

The overall metabolic conversion, for example from nutrients and oxygen to all nec-

essary cell components and carbon dioxide, that a cell can use to grow and reproduce

is in fact the consequence of many smaller chemical reactions working in concert. All

chemical reactions that a cell can catalyze by expressing its enzymes form a very ver-

satile ‘metabolic network’, which enables a cell to survive and grow, even when the

availability of nutrients in its environment changes. There are various (semi-)automa-

tized methods available that can be used to reconstruct this metabolic network from

an organism’s genome sequence (for a review of the various methods, see [96]). In

75
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this chapter we will zoom in on this metabolic network and study the fluxes (reaction

rates) through all individual reactions.

We call the combination of all reaction rates in a cell a ‘metabolic flux distribution’,

and this flux distribution determines if and how a cell succeeds in taking up and con-

verting the right nutrients to sustain itself. For a growing cell, we may ask: what will

its flux distribution be, and how does this distribution change when its environment

changes? Modeling metabolic fluxes allows us to answer specific questions, for in-

stance about the change of a cell’s metabolism after a gene is deleted: will it survive,

and if so, will it take up different nutrients or produce different products? In contrast

to the previous chapters, in the current and following chapters we are not satisfied

with verbal descriptions, but seek predictive models that allow us to compute the

state of a cell.

So how can we model metabolism in detail? Our main task is to describe and predict

the uptake, conversion, and production ofmetabolites, as described by themetabolic

fluxes. The rate at which a chemical reaction runs depends (through kinetics and ther-

modynamics) onmetabolite concentrations and enzyme activities. Since enzymes are

synthesized by the cell itself, the reaction rates are not only controlled by external nu-

trient supply, but also by gene expression. These dependencies make this a compli-

cated field of study: themetabolic fluxes dependon the enzyme levels andmetabolite

concentrations, while themetabolite concentrations are again determined by the bal-

ance of fluxes through reactions that produce and consume the metabolites. In turn,

enzyme levels are determined by gene expression, which is dependent on both ex-

ternal conditions and internal needs (e.g. the enzyme expression may change when

different macromolecules need to be made in different phases of the cell cycle). To

make matters even less transparent, most of the parameters (e.g. enzyme kinetic

constants and details of enzyme regulation) are unknown.

For themoment, we thereforemake some simplifying assumptions in order to obtain

tractable models:

1. Focus on small moleculesWe focus on a subsystem of the cell, the metabolism of

small molecules, which generatesmacromolecular precursors and energy carriers.

All other processes (such as macromolecule synthesis) that happen “outside” our

metabolic network are ignored.

2. Ignore spatial structure We largely ignore the spatial structure of cells: metabo-

lite concentrations and reaction rates are assumed to be homogeneous across the

cell. The exception to this rule occurs when there are cell compartments, in which

case we describe the metabolites in both compartments as if they were separate

compounds (e.g. cytosolic ATP vs mitochondrial ATP), which can be converted in
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each other through transport “reactions”.

3. Focus on fluxes as the only variables Instead of consideringmetabolite concentra-

tions, enzyme levels andmetabolic fluxes together, we will only focus onmetabolic

fluxes. This has important consequences for the mathematical models that we will

construct: many variables, and the corresponding equations, will be ignored. Ad-

ditionally, fluxes cannot be computed through enzyme kinetics, so that we need to

find other, non-mechanistic ways to compute the fluxes!

4. Focus on steady-state metabolism In a simplified picture of balanced growth (see

the chapter on Balanced Growth), all metabolic processes are balanced: the rate

at which material flows into the cell matches the rate at which it is converted,

which again matches the production rate of macromolecule precursors. In ad-

dition, we assume that these fluxes are constant, such that the whole metabolic

network is in a ‘steady-state’. Taken together, we thus assume that the metabolic

network can take up and produce external metabolites (e.g. extracellular metabo-

lites andmacromolecular precursors), but that all internal metabolites (“inside” the

metabolic network) are mass-balanced, that is, for each of these metabolites, pro-

duction and consumption cancel out.

5. Describe precursor demand by a “biomass reaction”We assume that cell growth

(or: biomass production) requires a fixed set of macromolecule precursors in fixed

proportions, corresponding to the average mixture of cell components that are

necessary to make a cell. For metabolism, this means that the production of more

macromolecule precursors only leads to more biomass production when the pro-

duction of all precursors is scaled up proportionally. We formally express this by

a hypothetical “biomass reaction” that consumes a mix of precursors and energy

carriers in the predefined proportions. Hence, in the metabolic models we will

describe the term “biomass” has a special meaning: while it usually means “the to-

tality of compounds in a cell”, here we use it for “the totality of compounds outside

our metabolic model, which metabolism needs to produce”.

6. Ignore dilution of small moleculesWhen a cell doubles its size but does not pro-

duce a certainmetabolite, the concentration of thismetabolitewill halve. This basic

principle is called ‘dilution by growth’, and in principle affects all compounds in the

cell. During balanced growth, the production ofmacromolecules that are produced

but not degraded should balance dilution, i.e. the number of each macromolecule

should double when the cell doubles its size. This requires the rate of precursor

supply to match the dilution rate, and hence the cell’s growth rate. Similarly, small
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molecules are diluted, but since these are also degraded by consuming reactions,

the rate of dilution is usually negligible compared to the production and consump-

tion by metabolic reactions. Therefore, the models below will usually ignore the

dilution of such metabolites.

7. Constrain solutions bymodeling limited resources Since each enzyme has amax-

imal catalytic rate (the kcat value), a reaction flux will require a certain (minimal)

amount of enzyme, which takes up cellular space; since cellular space is limited,

fluxes cannot increase infinitely since there is always anupper boundonaweighted

sum of reaction fluxes. This constraint implies compromises between different re-

action fluxes: one flux can only be increased at the expense of others.

With these assumptions, we are converging on a mathematical model: we know

which variables to describe (the metabolic fluxes in steady-state metabolism), which

constraints to apply (the balance of production and consumptionof all internalmetabo-

lites) and what main input information we need (themetabolic network, described by

a list of chemical reaction equations). Importantly, the model will be able to describe

compromise: for example, with a given carbon influx and assuming mass balance,

the carbon atoms can either be used to generate energy or biomass; if one func-

tion increases, the other one goes down. To obtain realistic predictions, we may in-

troduce additional constraints, for example known flux directions or experimentally

measured uptake rates. All this informationwill not suffice to predictmetabolic fluxes

precisely, but it allows us to narrow down the possible flux distributions. Importantly,

all formulae in these models are linear, which makes them tractable even for very

large model sizes (with thousands or even hundreds of thousands of variables).

Notably, all these assumptions depend only on the list of chemical reaction equations

(the stoichiometry of the metabolic network), and nothing needs to be known about

enzyme kinetics. So if the networks are already known, what dowe gain from this kind

ofmodeling? Even if ametabolic network structure is known reaction by reaction, this

does not mean that we understand the network-wide behavior, i.e. which overall flux

distributions are possible, and what overall flux distributions are useful for the cell.

Our aim here is to make the step from structural information (about the network) to

physiological insights about how the network can be used. We can learn, for example,

how much biomass can be made from a certain amount of glucose, and whether an

enzyme deletion is lethal because a certain precursor cannot be produced anymore.

Metabolic network structures (in the form of stoichiometric matrices) are approxi-

mately known for many microbial species, and to some extent for higher organisms.

Together with the constraints outlined above, this network determines a range (or

“space”) of possible flux distributions. In this chapter we will characterize this space
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of possible flux distributions according to our assumptions, and since we character-

ize fluxes entirely by constraints the models will be called “constraint-based models”.

We will get to knowmathematical tools to characterize this space in a simple way: for

instance, to describe all possibilities that a metabolic network provides we can use

Elementary Flux Modes (EFMs).

In the next chapter, we will combine such constraint-based models with optimality

principles: out of the space of possible flux distributions, specific “optimal” flux dis-

tributions will be selected because these are supposedly “most profitable”, either for

the cell or for metabolic engineering purposes. Some of the flux prediction methods

that we will describe refer also to concentrations; for instance, metabolite concentra-

tions play a role in thermodynamic constraints that exclude certain flux directions,

and enzyme concentrations come into play in models that associate fluxes with an

enzyme demand. However, in all cases, the connection between fluxes and concen-

trations is very simple, and real enzyme kinetics are ignored. In later chapters, we

will then see how the models change when more and more of the complex details

are added about metabolite concentrations, enzyme kinetics, and thermodynamics.

4.2 The flux cone

4.2.1 Mass-balance constraints

As described in the introduction, our models will be built on the metabolic network

of all chemical reactions that an organism can catalyze. We can conveniently sum-

marize all these chemical reactions as an (m × n)-dimensional stoichiometric matrix N

where each of the m rows corresponds to a metabolite and each of the n columns

corresponds to a reaction. The entry Nij is the coefficient of the i-th metabolite in the

j-th chemical reaction. Then, we can gather all n net reaction rates in an n-dimensional

flux vector: v = (v1, . . . , vn)T . This is convenient because themultiplication N v now captures

the net production and consumption of all mmetabolites at this flux distribution, and

is therefore equal to the time derivative of the metabolite concentrations: ds/dt = N v.

Therefore, the steady-state assumption, combined with the assumption that dilution

of metabolites due to growth is negligible, can be mathematically captured in a set of

linear equations that we call themass-balance constraints for v,

N v = 0. (4.1)

Since in a typical metabolic reaction network the number of metabolites is smaller

than the number of reactions (m < n), the equations for v are under-determined. This

means that there are infinitely many solutions, v, that satisfy the mass-balance con-
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straints. The space of all such v is called the nullspace of N.

4.2.2 Irreversibility constraints

In principle, all reactions in a metabolic reaction network are able to run in both di-

rections, but in many practical examples certain thermodynamic arguments can be

used to justify treating a subset of reactions as irreversible, meaning that in a given

model they can run in only one direction. The choice of which reactions to assume

irreversible depends on the experimental conditions and affects the results of the

downstream constraint-based analysis.

Due to microscopic reversibility, the net reaction rate vi (of reaction i) is the difference

of the forward and backward reaction rates, that is, vi = v⇀
i − v↼

i (with both v⇀
i > 0 and

v↼
i > 0 if all reactants are present), and vi can be either positive, zero, or negative. As

stated above, thermodynamicsmay determine the direction of certain reactions, that

is, the sign of the net reaction rate. In this sense, if a reaction proceeds in the forward

reaction, one adds the nonnegativity constraint vi ≥ 0. (Conversely, if a reaction pro-

ceeds in the backward reaction, one redefines the reaction by exchanging forward

and backward and again adds vi ≥ 0.) For a compact notation, let R→ ⊆ {1, . . . , n} be the

index set of the irreversible reactions (and R
 ⊆ {1, . . . , n} be the reversible reactions).

We require v→ := vR→ ≥ 0, that is, vi ≥ 0 if i ∈ R→.

4.2.3 The flux cone

Mass balance and irreversibility constraints together define the flux cone

C = {v | Nv = 0, v→ ≥ 0} . (4.2)

Elements of the flux cone are called flux modes. The flux cone C is called an s-cone

(subspace cone) in Müller and Regensburger (2016) [97], since it arises from a linear

subspace and nonnegativity constraints.

To provide a concrete example, we consider the simple representation of central car-

bon metabolism presented in Figure 4.1. In this example there are four external

metabolites, Gex, O, P1, P2 and two internal metabolites: G and P . In our model we only

require mass-balance for internal metabolites, such that the steady-state constraint

can be written as

Nv =

1 −1 0 0

0 2 −1 −1




v1

v2

v3

v4


= 0, (4.3)

where each column thus corresponds to one of the four (reversible or irreversible)
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Math box 4.A Generators of a polyhedral cone

For every polyhedral cone, and hence for every subspace cone such as the flux
cone C, there exists a finite, minimal set of generators (minimal in the sense that
no proper subset forms a generating set). In particular, for the flux cone C, there
exists a finite set {f (1), . . . ,f (`)} of n-dimensional vectors such that

C =
{

v | v =
∑̀
k=1

λk f
(k) with λk ≥ 0

}
,

that is, any flux vector v in the flux cone C can be expressed as a conical (non-
negative) linear combination of generators {f (1), . . . ,f (`)}.
Remark. The generators f (k) can be multiplied with scalars, that is, any λf (k) with λ > 0
could replace f (k) in the set of generators.
Remark. For a general polyhedral cone, there is no unique minimal generating
set. However, there is a unique minimal set of conformal generators; see [97,
Section 3.4]. For subspace cones (such as the flux cone), these are the support-
minimal vectors (EFMs); see Theorem 1 below.

reactions, and where the rows correspond to G and P respectively. The entry 1 in the

first row of the first column thus corresponds to the import of one glucose molecule

G. The mass-balance equations

v1 − v2 = 0, 2 v2 − v3 − v4 = 0, (4.4a)

and the non-negativity conditions

v1, v2, v3 ≥ 0, (4.4b)

induced by the irreversible reactions 1, 2, 3, define the flux cone C as the space of all

flux vectors v that satisfy all of these constraints simultaneously.

4.3 Elementary flux modes

Equation (4.2) gives a mathematical definition of the flux cone (via equations and

inequalities). Here, we will provide an equivalent characterization of this space (via

generators, see Math box 4.A). Note that definition (4.2) makes it easy to check if a

given steady-state flux distribution v lies in C. However, it is not clear how to generate

the flux cone. As a set of generators, we will introduce “minimal” flux distributions,

called elementary flux modes (EFMs), that can be combined to generate all possible

flux distributions in C. These EFMs generate the flux cone, similar to how basis vectors

generate a linear subspace (but with non-negative coefficients).

In order to define EFMs formally, we introduce the support of a vector v as the index

set supp(v) = {i | vi 6= 0}, that is, the support of a flux vector is the set of reactions that have
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Figure 4.1: A simple representation of central carbonmetabolism as a metabolic net-
work. (A) Extracellular glucose, Gex, is imported into the cell via reaction 1, and intra-
cellular glucose, G, is converted to pyruvate, P , via reaction 2, having stochiometric co-
efficients of two pyruvatemolecules for one glucosemolecule. Pyruvate is then either
converted to a fermentation product, P1, via reaction 4 or, in the presence of oxygen,
O, converted to an oxidative phosphorylation (OXPHOS) terminal product P2 via reac-
tion 3. The fermentation product P1 can also be converted back to pyruvate via the
backward reaction of 4. (B) EFMs f (1),f (2),f (3). From our understanding of central car-
bon metabolism, f (1) represents glycolytic fermentation, f (2) the oxidative metabolism
of glucose, and f (3) the oxidative metabolism of the fermentation product.

a nonzero rate.

Definition 1. A nonzero vector v ∈ C is an EFM if it is support-minimal, that is, if supp(v′) ⊆ supp(v)

for any nonzero vector v′ ∈ C implies supp(v′) = supp(v).

Remark. If v is an EFM and supp(v′) = supp(v), then further v′ = λv for some scalar λ.

Definition 1 states that v is an EFM if there is no nonzero flux vector in the flux cone

that uses only a strict subset of the reactions that are active in v. This alsomeans that if

any of the flux-carrying reactions in an EFM is deleted, the flux through the remaining

reactions must violate the mass-balance constraints and can therefore not occur in

steady-state metabolism; the EFMs are thus minimal in the sense that they cannot be

reduced further.

To illustrate the concept of EFMs, we return to the simple representation of central

carbon metabolism presented in Figure 4.1 with the stoichiometric matrix

N =

1 −1 0 0

0 2 −1 −1

 (4.5)

and the flux vector v = (v1, v2, v3, v4)>, where v1, v2, v3 ≥ 0. As it turns out, the set of EFMs is
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given by

f (1) =



1

1

0

2


, f (2) =



1

1

2

0


, f (3) =



0

0

1

−1


, (4.6)

and these are depicted in Figure 4.1 (B). From our understanding of central carbon

metabolism, we see that these three EFMs represent the “minimal” metabolic path-

ways of (f (1)) glycolytic fermentation, (f (2)) oxidative metabolism of glucose, and (f (3))

oxidative metabolism of the fermentation product.

In Math box 4.A, we have characterized a polyhedral cone (the flux cone C) in terms of

its generators (the EFMs). In our toy carbonmetabolism network, this means that any

flux vector v can be viewed as a conical combination of these threeminimal metabolic

pathways. This interpretation remains true for any metabolic reaction network: el-

ementary flux modes represent the minimal metabolic pathways through the metabolic

reaction network at steady state.

InMath box 4.A, we have alsomentioned that EFMs need not form the uniqueminimal

set of generators, but they form the unique minimal set of conformal generators. We

first motivate conformality by thermodynamic arguments and then provide a formal

definition. For every reaction, Gibbs free energy determines its direction, and hence

for every flux, it determines its sign (−, 0,+). Now, since any flux vector is the conical

combination of EFMs, the signs of the flux vector determine the signs of the EFMs. In

particular, if a certain flux component is zero, then this flux component is zero in all

EFMs. (Zero flux cannot arise from a cancellation of positive and negative fluxes.) If

a certain flux component is nonzero, then this flux component has the same sign or

is zero in all EFMs. (Zero flux can arise from a zero enzyme concentration and hence

is thermodynamically sound.)

The above argument can be formalized as follows: For a vector v ∈ Rn, we obtain

the sign vector sign(v) ∈ {−, 0,+}n by applying the sign function componentwise, that is,

sign(v)i = sign(vi). In order to capture “conformal signs”, we define the partial order 0 < −

and 0 < + on {−, 0,+}, which implies the inequalities 0 ≤ 0 (zero flux conforms to zero flux),

+, 0 ≤ + (positive or zero flux conforms to positive flux), and −, 0 ≤ − (negative or zero

flux conforms to negative flux). The partial order on {−, 0,+} induces a partial order on

{−, 0,+}n: for two sign vectors σ, τ ∈ {−, 0,+}n, we write σ ≤ τ if the inequality holds compo-

nentwise, and we say that σ conforms to τ. If σ ≤ τ (and τi is given), then σi = τi or σi = 0.

To summarize, if σ conforms to τ , then it has the same entries or some more zeros.

Now, we can refine the characterization of a flux cone in terms of generators, as given

in Math Box 4.A. Indeed, we have the following conformal sum theorem, see [97,
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Theorem 3].

Theorem 1. Let C be the flux cone and {f (1), . . . ,f (`)} be the set of EFMs. Then,

C =
{

v | v =
∑̀
k=1

λk f
(k) with λk ≥ 0 and sign(f (k)) ≤ sign(v)

}
.

That is, any flux vector v in the flux cone C can be expressed as a conformal sum of

EFMs {f (1), . . . ,f (`)}.

Again, we illustrate the theoretical concepts in the simple representation of central

carbon metabolism. The flux distribution v = (1, 1, 1, 1)T lies in the flux cone, cf. (4.4), and

hence can be written as a conical linear combination of EFMs (in a non-unique way):

v =



1

1

1

1


= f (1) + f (3) =



1

1

0

2


+



0

0

1

−1



= 1
2 f

(1) + 1
2 f

(2) =



1
2

1
2

0

1


+



1
2

1
2

1

0


.

(4.7)

Note that the first sum is not conformal: The fourth component of v is positive, whereas

the corresponding component of f (3) is negative. That is, the contributing EFMs have

different signs in the net reaction rates of the fourth reaction, which leads to can-

cellation and is not meaningful thermodynamically. (Gibbs free energy determines

reaction directions, see Section 4.4.3.) Still, the second sum is conformal: no cancel-

lation occurs, and the decomposition is thermodynamically meaningful. Theorem 1

states that a decomposition as a conformal sum is always possible.

On the one hand, we introduced EFMs as the support-minimal vectors of the flux

cone, corresponding to minimal metabolic subnetworks. On the other hand, EFMs

form the (unique minimal) set of (conformal) generators of the flux cone. Indeed, the

beautiful thing about EFMs is that they have several equivalent (but complementary)

definitions, see Math box 4.B for examples and proofs.

Viewing EFMs as minimal metabolic subnetworks enables us to interpret an EFM in

terms of its biological function; an EFM can be seen as a metabolic strategy that a

cell can use to obtain steady-state metabolism, and which it can combine with other

strategies to reach its purpose. The interpretation as conformal generators allows us

to write an arbitrary flux vector v ∈ C as a combination of EFMs in a thermodynamically

meaningful way, see Theorem 1. This also means that we can learn something about
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all flux vectors v by learning something about all EFMs. For example, if we know that

there is no EFM that produces compound Y without using reaction r, this immediately

implies that there is no flux vector at all that can do this, and that reaction r is thus

essential for the production of Y .

Finally, after reaction splitting, as described in Section 4.3.2, the flux cone is contained

in the non-negative orthant and hence is pointed. Then, EFMs agree with the ex-

treme vectors and can be computed via algorithms based on the double-description

method, as discussed in Section 4.4.4.

So far, we did not consider a limit on the amount of flux that a particular EFM may

carry, since λf (k) is an EFM for any λ > 0 and any EFM f (k), and consequently the absolute

value of any flux vector v in C is unbounded. In Section 4.4, we will see that this is not

necessarily true when additional constraints are introduced.

4.3.1 Practical relevance of EFMs

EFMs represent the full set of possible metabolic capacities of an organism, which

can therefore make EFM analysis a useful tool for biology. To this end, application

of EFM analysis to bioengineering has been proposed to guide the genetic manipu-

lation of microorganisms to perform desirable properties such as synthesis of a bio-

compound or efficient production of a recombinant protein (e.g. [98, 99]). From a

more theoretical point of view, EFMs have also been used in attempts to quantify

cellular robustness [100], in particular regarding robustness under genetic perturba-

tions [101]. The relevance of elementary flux mode analysis to cellular robustness

stems from the fact that there is rarely a unique conical combination of elementary

fluxmodes for any given flux vector, which implies there aremultiple combinations of

minimalmetabolic pathways to achieve the samedesired effect. This redundancy can

be interpreted as a measure for the metabolic robustness of an organism, in terms

of preserving essential metabolic functionalities under loss of a gene, for example.

There have also been several ways that EFM analysis has been incorporated into anal-

ysis of multi-omics data. For example, on the basis of transcriptomic profiling of

microorganisms, metabolic pathways associated with elementary flux modes have

been scored according to their probability of carrying flux [102]. The principle here

is that, although levels of RNA often serve as a poor proxy for flux through the reac-

tion associated with that particular enzyme’s gene, by creating a gene set associated

with an entire EFM there might be a better chance of concretely assessing whether

the metabolic pathway as a whole is likely to carry flux. The study [102] suggested

that the integration of EFM analysis with gene expression data enabled the identifi-

cation of certain metabolic pathways activated during stress conditions, and that the

organization of elementary flux mode utilization in Saccharomyces cerevisiae involves
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Math box 4.B Equivalent Definitions of Elementary Flux Modes (EFMs)

In the main text, we have introduced EFMs as the support minimal vectors of the
flux cone, see Definition 1. In fact, EFMs can be defined as the support-minimal,
support-wise non-decomposable, sign-minimal, sign-wise non-decomposable,
and conformally non-decomposable vectors of the flux cone; cf. [97]. Here, we
consider the latter definition for three reasons: (i) it matches Theorem 1 on the
decomposition of flux distribtions into conformal sums of EFMs, (ii) it also applies
to general polyhedral cones (not just s-cones such as the flux cone) and even to
polyhedra and polytopes, and (iii) it establishes a link to the case when the flux
cone is contained in the negative orthant. (In the latter case, the cone is pointed
and generated by the extreme vectors.)

Definition 2. A nonzero vector v ∈ C is conformally non-decomposable if v = v1 + v2 for
any nonzero vectors v1, v2 ∈ C with sign(v1), sign(v2) ≤ sign(v) implies v1 ∼ v2 (that is, v1 = λv2).

As stated above, EFMs can be defined as the conformally non-decomposable vec-
tors of the flux cone. Indeed, we have the following equivalence.

Proposition 1. A nonzero vector v ∈ C is conformally non-decomposable if and only if it
is support-minimal.

Proof. Assume that v ∈ C is conformally decomposable, that is, v = v1 + v2 for nonzero
v1, v2 ∈ C with sign(v1), sign(v2) ≤ sign(v) and v1 6∼ v2. Then also v1 6∼ v, and there exists a largest
λ > 0 such that the nonzero vector v′ = v − λv1 fulfills sign(v′) ≤ sign(v). For this λ, v′ ∈ C (that
is, N v′ = 0 and v′→ ≥ 0) and sign(v′) < sign(v) (in particular, v′

i = 0 and vi 6= 0 for some i). Hence,
supp(v′) ⊂ supp(v), that is, v is not support-minimal.

Conversely, assume that v ∈ C is not support-minimal, that is, supp(v′) ⊂ supp(v) for a
nonzero v′ ∈ C. Then, there exists a largest λ > 0 such that the nonzero vectors v1 =
1
2 v + λv′ and v2 = 1

2 v − λv′ fulfill sign(v1), sign(v2) ≤ sign(v). For this λ, either sign(v1) < sign(v) or
sign(v2) < sign(v); in any case, v1,v2 ∈ C and v1 6∼ v2. Clearly, v = v1 + v2, that is, v is conformally
decomposable.

Conformally non-decomposable vectors are closely related to extreme (or non-
decomposable) vectors.

Definition 3. A nonzero vector v ∈ C is extreme if v = v1 +v2 for any nonzero vectors v1, v2 ∈ C
implies v1 ∼ v2.

If the flux cone is contained in the non-negative orthant (in particular, after reaction
splitting, as described in Section 4.3.2) and hence is pointed, EFMs can be defined
as the extreme vectors.

Proposition 2. Let C ⊆ Rn
≥. A nonzero vector v ∈ C is extreme if and only if it is conformally

non-decomposable.

Proof. If v,v1,v2 ∈ C ⊆ Rn
≥, then v = v1 + v2 implies sign(v1), sign(v2) ≤ sign(v), and Definitions 2

and 3 agree.

a disparate combination of highly specialized and multi-tasking roles. Beyond tran-

scriptomic profiling, isotope tracing experiments in principle provide a much more

direct insight into quantifying metabolic flux. To interpret isotope tracing data, an

extension of the concept of an EFM was introduced in [103].
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4.3.2 Reaction splitting for EFM computation

The computation of EFMs via the double description (DD) method as well as the so-

lution of linear programs (LPs) via the simplex algorithm assume that the flux cone

is given in certain standard forms. (Note, however, that the computation of EFMs via

lexicographic reverse search (lrs) does not involve such an assumption.)

Recall that the flux cone is given by the mass-balance constraints N v = 0 and the irre-

versibility constraints v→ ≥ 0, whereas standard forms are given by A v = 0 (for DD) or

A v ≥ 0 and v ≥ 0 (for LP) with a matrix A of appropriate dimensions. To bring the flux

cone into standard form, we will split reversible reactions into irreversible forward

and backward reactions. First, we order reactions such that

N v =
(

N→ N


)v→

v


 , (4.8)

where the superscripts → and 
 refer to the irreversible and reversible reactions, R→

and R
, respectively. Next, for every reversible reaction i ∈ R
 with net reaction rate vi,

we define a forward reaction with “rate” w⇀
i ≥ 0 and a backward reaction with “rate” w↼

i ≥

0 such that vi = w⇀
i − w↼

i . (In vector form, v
 = w⇀ − w↼.) Note that the “rates” w⇀
i , w

↼
i do not

denote the (microscopic) forward and backward reaction rates v⇀
i , v

↼
i that determine

the net reaction rate vi = v⇀
i −v↼

i . They are auxiliary quantities, and only their difference

w⇀
i −w↼

i = vi has a biochemicalmeaning (and is the subject of constraint-basedmetabolic

modeling). Further, for every irreversible reaction i ∈ R→, we write vi = w→
i to obtain a

uniform notation. (In vector form, v→ = w→.) Now,

N v =
(

N→ N
 −N


)
w→

w⇀

w↼

 . (4.9)

By introducing the augmented stoichiometric matrix N and the corresponding non-

negative flux vector w, we can write

N v = N w with N =
(

N→ N
 −N


)
, w =


w→

w⇀

w↼

 . (4.10)

As a consequence, the augmented flux cone is given by

C̄ =
{

w | N w = 0, w ≥ 0
}

(4.11)
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(A) (B)

Figure 4.2: Pointed polyhedral cones. (A) A pointed polyhedral cone that is not a flux
cone; all its generators lie in the interior of the non-negative orthant. (B) A pointed
polyhedral cone that is a flux cone; its generators arise from the intersection of a
subspace with the boundaries of the non-negative orthant.

or, in LP standard form, by

C̄ = {w | A w ≥ 0, w ≥ 0} with A =

 N

−N

 , (4.12)

after writing equations as non-strict inequalities.

Obviously, C̄ is contained in the non-negative orthant and hence pointed. As an im-

portant consequence, EFMs can be defined as the extreme vectors of the flux cone,

see the ’Math box’, and be computed by algorithms based on the DD method.

For examples of pointedpolyhedral cones (in the non-negative orthant), see Figure 4.2.

Note that the cone in Figure 4.2 (A) is not an s-cone and hence not a flux cone. In par-

ticular, its generators/extreme vectors lie in the interior of the non-negative orthant.

On the other hand, the cone in Figure 4.2 (B) is an s-cone. Its generators/support-

minimal vectors/EFMs arise from the intersection of a subspace (the nullspace of the

stoichiometric matrix) with the boundaries of the non-negative orthant.

Again, we return to the simple representation of central carbon metabolism pre-

sented in Figure 4.1. After reaction splitting, the mass-balance constraint can be writ-

ten as

N w =

1 −1 0 0 0

0 2 −1 −1 1





w→
1

w→
2

w→
3

w⇀
4

w↼
4


= 0. (4.13)

In particular, the reversible fourth reaction has been split into irreversible forward

and backward reactions with reaction vectors
( 0

−1
)
,
(0

1
)
and “rates” w⇀

4 , w↼
4 , see Equa-

tion (4.5). Now, algorithms based on the DD method can be applied to the mass-
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balance and irreversibility constraints in standard form, N w = 0 and w ≥ 0. As it turns

out, the set of EFMs (support-minimal vectors) is given by

g(1) =



1

1

0

2

0


, g(2) =



1

1

2

0

0


, g(3) =



0

0

1

0

1


, and g(4) =



0

0

0

1

1


. (4.14)

EFMs g(1), g(2), g(3) correspond to EFMs f (1),f (2),f (3) before reaction splitting, see Equation (4.6).

Just recall v4 = w⇀
4 − w↼

4 . However, EFM g(4) corresponds to zero flux. More specifically, it

represents the fourth reaction having equal forward and backward “rates” and hence

zero net reaction rate. Such EFMs are artifacts of reaction splitting and need to be

discarded when translating the EFMs of the augmented flux cone back to the EFMs

of the original flux cone.

4.4 Extra constraints and flux polyhedra

4.4.1 Inhomogeneous linear flux constraints

We have so far been working exclusively with mass-conservation and irreversiblity

constraints, which are captured entirely by the stochiometric matrix where each row

is associated with a metabolite concentration at steady state. We also saw that these

considerations alone result in a flux cone that is by definition unbounded, meaning

that a flux vector in this space is allowed to take on any absolute value (i.e. multi-

plying a flux vector in the flux cone by an arbitrarily large positive number again re-

turns a flux vector in the flux cone). However, there are physical constraints limiting

the magnitude of flux vectors, especially on the values of flux through exchange re-

actions that may depend on concentrations of extracellular substrates, numbers of

transporter molecules in the membrane, or for which we might have direct experi-

mental measurements. Typically, such bounds on flux values are imposed using in-

equality constraints of the form vlbi ≤ vi ≤ vubi where vlbi and vubi are lower and upper

bounds, respectively, for the flux through the ith reaction. When reactions have been

decomposed into forward and reverse directions, both upper and lower bounds are

non-negative where the latter is usually zero.

In the example from Figure 4.1, one may impose an upper bound on the flux value

v1, suggesting that there is a maximal rate at which the cell or organism can import

glucose from the extracellular environment. In this case the total set of constraints
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on the flux vector v take the form

N v = 0, v→ ≥ 0, v1 ≤ vub1 , (4.15)

where vub1 is the maximal glucose uptake rate. It is important to note that the new

constraint is of a different kind than the mass-balance and irreversibility constraints:

the right-hand side of the constraint is nonzero. Constraints that involve a nonzero

are called inhomogeneous constraints. We can write these constraints in matrix form

as

G v ≥ h, (4.16)

where in this particular case

G =
(

−1 0 0 0
)
, h =

(
−vub1

)
. (4.17)

In general, the matrix G will have ` rows corresponding to ` inhomogeneous linear

constraints of the form ∑
i

Gji vi ≤ hj , j = 1, . . . `. (4.18)

That is, for constraint j, there are n entries Gji (i = 1, . . . , n) of the matrix G and the compo-

nent hj of the `-dimensional vector h. Many constraints can be written in this general

form. For example, after reaction splitting, one may impose a bound on the total flux

that a cell can catalyze, by setting all entries (in the corresponding row of G) to 1.

Altogether, the constraints on v define a flux polyhedron that is necessarily contained

within the flux cone given by the homogeneous constraints N v = 0 and v→ ≥ 0. The

additional inhomogeneous constraints serve to further restrict the cone such that

various (if not all) dimensions become bounded, thus bounding the total magnitude

of the flux vector v.

4.4.2 From the flux polyhedron to the EFM weight polyhedron

Via the conical sum v =
∑`

k=1 λk f
(k), constraints on the fluxes v define constraints on the

EFM weights λ and hence a corresponding EFM weight polyhedron. Whereas elements

v of the flux polyhedron have entries vi for every reaction i ∈ R
, elements λ of the EFM

weight polyhedron have entries λk for every EFM f (k), k = 1, . . . , ` (and hence can be very

high-dimensional).

In the example from Figure 4.1, let λ1, λ2, λ3 ≥ 0 be the weights of the corresponding

EFMs in the (conformal) sum v =
∑3

i=1 λi f
(i). Bounding the extracellular glucose uptake

rate puts an upper bound on the weights of EFMs f (1),f (2) (involving the glucose uptake

reaction),

λ1 + λ2 ≤ vub1 , (4.19)
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see also Figure 4.1 (B). However, the weight of EFM f (3) (associated with uptake and

oxidation of the fermentation product) can remain unbounded.

For this simple example, it is quite straightforward to interpret the geometric conse-

quences of the maximal glucose uptake rate. Any flux vector v in the resulting flux

polyhedron now corresponds to a point (λ1, λ2) in the (projected) EFM weight polyhe-

dron depicted in Figure 4.3 (A). However, the weight λ3 remains free, and the (full)

EFM weight polyhedron is depicted in Figure 4.3 (B). In terms of the flux polyhedron,

the maximal glucose uptake has restricted the flux cone along v1, v2 while leaving v3, v4

unbounded.

In order to obtain a bounded flux polyhedron (a flux polytope), we impose an upper

bound on the uptake rate of the fermentation product, that is, −v4 ≤ vub4 . In terms of

the EFM weights, we obtain the bound −2λ1 + λ3 ≤ vub4 . Since conformal sums are suf-

ficient to generate the flux cone, this simplifies to λ3 ≤ vub4 . Altogether, the EFM weight

polyhedron is given by

λ1, λ2, λ3 ≥ 0, λ1 + λ2 ≤ vub1 , λ3 ≤ vub4 . (4.20)

Indeed, all EFM weights and hence all fluxes are bounded.

More general constraints, for largermetabolic reaction networks will bemore difficult

to interpret and visualize in such simple geometric terms. Quite quickly the combi-

natorial complexity associated with combinations of multiple constraints and EFMs

will become unmanageable. The intuitive treatment of inhomogeneous linear con-

straints is partially assisted using the concept of elementary flux vectors on which we

will add a section in a later version of this book, but both geometrically andbiologically

these objects are nowhere near as easy to interpret as their EFM counterparts. We

shall see that alternative computational methods for exploring flux space therefore

become imperative.

As a final remark, we clarify once more that the general form of constraints (4.16) is

by nomeans restricted to sums on the left hand side that involve just a single reaction

and can of course include constraints on weighted sums of flux values for different

reactions. These weighted sums are often associated with particular biological inter-

pretations: in the example from Figure 4.1, we might want to restrict our search of

flux space to those flux vectors v that produce adenosine triphosphate (ATP) at a rate

of at least vATP. Although a more elaborate model would of course include ATP as

one of the metabolites, in this example we can use our biological understanding of

central carbon metabolism to see that ATP is produced in reactions v2 and v3. A lower

bound on ATP production would thus be a lower bound on a combination of v2 and

v3 with coefficients determined by stoichiometry (depending on the organism under
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Figure 4.3: Feasible regions in the space of EFMweights - (A) Possible combinations of
EFM weights λ1 and λ2, given by the inequality λ1 + λ2 ≤ vub1 (and λ1, λ2 ≥ 0). (B) Geometry of
the EFMweight polyhedron (blue) representing any flux vector that satisfies themass-
balance, irreversibility, and maximal glucose uptake rate constraints. While bounded
in λ1, λ2, it is unbounded in λ3.

investigation). We could write such a constraint as

α1v1 + α3v3 ≥ vATP (4.21)

with appropriate coefficients α1, α3. Such a constraint forms an additional row of the

matrix G and we leave it as an exercise for the reader to explore how this affects the

geometry of the flux polytope for various values of the coefficients, minimal ATP pro-

duction rate and maximal glucose and fermentation product uptake rates. Particular

combinations of constraints will be impossible to satisfy simultaneously (i.e. when the

minimal rate of ATP production is impossible to achieve under the given bounds on

glucose and fermentation product uptake rates), resulting in a flux polytope that is

empty. In such cases the set of constraints on v are called infeasible.

4.4.3 Thermodynamic constraints

In Chapter 3 the basic concepts of chemical thermodynamics were introduced, in

particular, the Gibbs free energy of a metabolic reaction was defined in terms of the

concentrations of its products and substrates. For a metabolic reaction network with

stochiometric matrix N, the vector of Gibbs free energies (one for each reaction in the

network) ∆rG′ can be written in matrix form as

∆rG′ = ∆rG′◦ +RT · N> ln(s) (4.22)

where R is the gas constant, T the temperature and s the vector of metabolite con-

centrations at steady state. The components of the vector ∆rG′◦ are the changes in
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standard Gibbs free energy for each corresponding reaction. Typically, these values

are not known precisely for reactions in the network, but can be estimated or ap-

proximated from experimental data using methods beyond the scope of this chap-

ter. Similarly, although it is often difficult to accurately measure all metabolite con-

centrations, in principle the vector s can be obtained experimentally. However, in

practice experimental data on s and ∆rG′◦ are almost never available. Various meth-

ods have therefore been developed to combine estimation of ∆rG′◦ (sometimes with

partial measurements of s) with advanced computational techniques that allow si-

multaneous optimization (see next chapter) or sampling (see below) of v and s (or

equivalently: ∆rG′).

The second law of thermodynamics applied to chemical reaction networks can be

summarized by saying that every component of the metabolic flux vector v must sat-

isfy the condition

sign(vi) = −sign(∆rG
′
i) (4.23)

where vi and ∆rG
′
i are the ith components of v and ∆rG′, respectively, and sign(x) denotes

the sign of a variable x, and sign(0) = 0. It is important to point out that this notation is dif-

ferent to that used previously, where we had assumed all vi to be non-negative by de-

composing each reaction into irreversible forward and backward reactions. Return-

ing to this reversible notation simplifies the inclusion of thermodynamic constraints

into constraint-based models and also their interpretation. According to the second

law, a reaction can only proceed in a direction where the change in Gibbs free energy

is negative. Thus, to be consistent with mass-balance and the second law of thermo-

dynamics, a flux vector v must simultaneously satisfy both (4.1) and (4.23), with ∆rG′

defined in (4.22). The consequence of these additional constraints on the geome-

try of the space of metabolic flux distributions is to exclude quadrants incompatible

with the signs of ∆rG′. Equivalently, imposing the second law of thermodynamics on

metabolic flux distributions removes regions of the space that are associated with

combinations of thermodynamically-infeasible reaction directionalities.

The resulting space of feasible flux vectors is almost always non-convex, whichmeans

more advanced computational methods are required to explore it efficiently. The

intuitive reason for this is that imposing thermodynamic constraints on top of the

mass-balance constraint is usually done in terms of Boolean variables, which breaks

the linearity of the problem that we had and exploited so far. Relating this to the

EFMs that were discussed previously, it for example becomes clear that any EFM

representing an internal cycle –not including any exchange reactions– will never be

thermodynamically feasible. Thus, thermodynamic constraints also reduce the set

of EFMs that are possible in a metabolic network. Interestingly, it turns out that any

thermodynamically-feasible metabolic flux vector can be expressed solely in terms
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of thermodynamically-feasible EFMs [104], but the converse statement is not true:

a linear combination of thermodynamically-feasible elementary flux mode does not

necessarily satisfy the thermodynamic constraints. This shows how the workable

properties of convex spaces break down as the mathematical models become more

complex, in this case by accounting for thermodynamics.

4.4.4 Computational challenges for EFM analysis

Enumerating EFMs for large networks can be computationally challenging if not im-

possible. In principle, EFMs can be found by removing one reaction at a time and solv-

ing the resulting mass-balance constraint problem until it is no longer possible to re-

move a reaction and still obtain a flux vector that satisfies the steady state conditions.

However, the equivalence of EFMs and extreme vectors of the flux cone (after reaction

splitting) described in Section 4.3.2 enables the use of algorithms that are specialized

in the efficient enumeration of extreme rays of polyhedral cones, such as the double

description method [105]. Various tools have been developed for elementary flux

mode enumeration based on this algorithm (e.g. EFMTOOL [106] or MetaTool [107]).

However, when the size of themetabolic reaction network grows, the number of EFMs

scales disproportionately, leading to a combinatorial explosion that effectively makes

enumeration impossible for genome-scale networks containing several thousands of

reactions [108]. Currently, EFM analysis is therefore restricted to medium-scale re-

constructions containing on the order of several hundreds of reactions, and results

in the identification of several hundred million EFMs (e.g. enumeration based on the

Escherichia coli core model results in approximately 272 million EFMs).

Approaches to reduce the complexity of dealingwith somany EFMseven formetabolic

reaction networks of modest size have also been proposed. These include invoking

transcriptional regulatory constraints to eliminate most of the EFMs to be considered

in downstream analysis. Imposing additional constraints based on thermodynamic

conditions similarly reduces the set of EFMs considerably. A problem with these ap-

proaches is evidently that they do still depend on an initial calculation of all EFMs,

and so do not solve the problem of enumeration complexity. A rigorous study of

the complexity of EFM mode enumeration was performed by Acuña and colleagues

[109]. They showed that the decision problem if there exists an EFM containing two

specific reactions is NP-complete whilst the complexity of enumerating all EFMs re-

mains open.

Later in this chapter we will explore some alternatives to EFM enumeration that re-

duce the difficulty of enumeration, cf. Section 4.5.
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4.4.5 Reducing combinatorics of EFMs computation

In order to reduce the combinatorics of EFM computation to a feasible order, the

search space may be limited to the biologically relevant EFMs only. This can be done

by considering additional biological constraints before, during, or after the computa-

tion of EFMs. Oneway to restrict the search space is to remove all ‘irrelevant’ reactions

in a metabolic network, that is,

◦ reactions that are not essential for the cell (not part of the core metabolism),

◦ reactions that are not performed for chemo-physical, kinetic, or thermodynamic rea-

sons,

◦ reactions that are too expensive in terms of enzymatic resource allocation,

◦ reactions that transport metabolites which are not present in the growth medium

(‘environmental regulation’),

◦ reactions that are catalyzed by enzymes whose expression is inhibited by transcrip-

tional regulation.

The purpose of incorporating biological constraints, from the perspective of a mod-

eler, is to reduce the number of pathways the biologist needs to analyze. Additionally,

the computation of EFMsbecomesmuchmore efficient because fewer solutions need

to be computed.

Below we are going to illustrate the last two types of constraints: environmental and

transcriptional regulation. Both types can be expressed using Boolean constraints.

A Boolean constraint is a Boolean function f : Bk → B, where B = {0, 1}, which takes in k

Boolean inputs z ∈ Bk and produces a Boolean output b ∈ B such that b = f(z). In our case,

Boolean functions determine whether reactions are allowed or not in EFMs based

on biological conditions. To this end, reactions are associated with a Boolean indi-

cator. The value of this indicator (either 0 or 1) determines whether that reaction can

participate in an EFM.

The following relationship, for a set of reactions R with corresponding fluxes v and

indicators z, determines how Boolean regulation affects the presence of reactions in

EFMs:

∀r ∈ R : (zr = 0) =⇒ (vr = 0)

As an example, we consider the following small metabolic model from [111, 110],

which involves transcriptional and environmental regulation. The network contains

18 reactions and 18 metabolites (10 internal and 8 external) and has 80 EFMs. For an

illustration, see Figure 4.4. The formulae describing reaction stoichiometries and reg-

ulation rules are shown in Figure 4.5. This model makes for a good basis for studying

the effect of Boolean constraints on a small scale: out of 80 EFMs, only 26 are consis-
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Figure 4.4: Metabolic model from [110]. Transcriptional regulation shown in Figure
4.5.

tent with the regulation in the most permissive growth medium – and even fewer are

found when the growth medium gets restricted [110].

As mentioned above, we distinguish two types of Boolean functions. First, environ-

mental regulation applies to uptake transporters and is automatically constructed from

the defined growth medium. For example, the oxygen transport reaction can only

be active if external oxygen is present in the growth medium (¬moxygen =⇒ ¬ztox). Second,

transcriptional regulation is reconstructed from a literature review and curated by the

modeler. For instance, r7 is regulated by the level of metabolite B in the cell, its en-

zyme cannot be expressed at the same time as B is being produced by r2 (zr2b =⇒ ¬zr7).

Some individual constraints mimic the behavior of E. coli: the activation of respira-

tion reaction r5a, r5b, rres depends on the presence of oxygen (motivated by the transcrip-

tional factors ArcA and FNR); tc2 is deactivated when faced with carbon1, mimicking the

behavior of glucose catabolite repression by CRP. Ultimately, these transcriptional

and environmental constraints serve to filter out EFMs. For instance, the elementary

mode {r2b, r3, r4, r5b, r8b, rres, th, tox, growth} is not consistent with regulation. Indeed, we have:

zr5b =⇒ ¬moxygen and ztox =⇒ moxygen, a contradiction.

Regulation Boolean constraints could be incorporated into the EFM computation by

the method regEFMTool, as well as in the tools SMTTool and aspefm [112, 113, 114].

These constraints lend themselves naturally to logical encoding, making logic pro-
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gramming such as Answer Set Programming (ASP) well suited to this type of problem.

Unlike traditional double descriptionmethods, which struggle with the combinatorial

explosion of EFMs by the number of reactions and do not inherently handle regula-

tory constraints, ASP allows for an intuitive representation of Boolean constraints

and efficient pruning of infeasible solutions early in the computation. In the simplest

cases reactions that cannot respect the regulation constraints are directly deactivated

in pre-processing.

Adding environmental regulation and restricting the analysis to a limited growthmedium

is crucial for reducing the computational load of the analysis. The software regEFM-

Tool from Jungreuthmayer et al. was tested on Orth, Fleming and Palsson’s E. coli core

model [112, 115], a central carbonmetabolic model of 95 reactions containing a com-

plete transcriptional regulation network. The analysis was performed with all uptake

reactions allowed. The total number of EFMs was reduced from 226.3 million to 2

million EFMs after post-processing.

Using aspefm, Mahout et al applied environmental regulation, transcriptional regulation,

as well as thermodynamic constraints in order to further reduce that set to a subset of

only 103 EFMs for post-processing analysis of optimal uptake rates [114, 116]. In gen-

eral, we therefore recommend to routinely incorporate basic regulation constraints

checking in order to drastically reduce the complexity of search of EFMs onmetabolic

models. This is particularly true for genome-scalemodels, which number of reactions

reach thousands and number of EFMs reach billions. Ideally the procedure should be

done in pre-processing, coupled with network compression.

Instead of inactivating reactions, one might be interested by computing all EFMs con-

taining a specific reaction, such as the biomass, or several reactions, e.g. biomass

synthesis and ATP maintenance. This is not a good idea to try to incorporate these

constraints directly into the computation as such a constraint adds an hyperplane on

the solution space, changing the resulting solutions [117, 118]. As a result, these kind

of candidate constraints are best left for post-processing.

4.5 Alternative methods for flux space exploration

As we described above, exploration of all possible flux distributions using EFMs can

become very complex for larger models. A genome-scale model, which comprises

all metabolic reactions that an organism can catalyze, typically contains thousands

of reactions, which prohibits the enumeration of EFMs. At the moment, it is unclear

whether, even if we would have an enormously fast computer that could compute

all EFMs, the number of EFMs would not be so large that we cannot store the EFMs

anywhere, nor analyze it in any meaningful way. Here we discuss several alternatives

for exploring the metabolic capabilities of a cell that try to avoid the combinatorial
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complexity that hinders EFM analysis.

4.5.1 Elementary conversion modes

If we are interested in themetabolic capabilities of an organism, is it always necessary

to know all possible flux vectors? For example, what if we want to lab-culture an

organism of which we have a reconstructed metabolic network, but no idea what

nutrients it needs to grow. Then we only need to know from what combinations of

nutrients it canmake all its cell components. Or, what if wewant tomodel the possible

cross-feeding interactions between several microbial species? Then we are mostly

interested in what each of them can consume and produce, and not really in how

they do that. Elementary conversion modes (ECMs), introduced in 2005 by Urbanczik

andWagner [119], capture all possible overall conversions fromnutrients to products

that an organism can catalyze, while ignoring which individual reactions are used for

this.

ECMs focus on the net results of metabolism, i.e. on the uptake and production of

compounds external to the metabolic network, such as sugars, nitrogen sources, fer-

mentation products but also ‘biomass’. To get information about these compounds

we need to extend our metabolic network by including the external compounds as

rows in the stoichiometrymatrix; this is in general easy to do since we already had ex-

change reactions (reactions where an external compound was imported or exported)

so we only have to find the stoichiometric coefficient in which the external compound

was involved in these reactions. Let us denote the original stoichiometry matrix by

Nint and the submatrix that we add by Next; together they form Ntot. We can then define

the conversion cone:

C =
{

ds
dt = Nextv | Nintv = 0,v ≥ 0

}
. (4.24)

If we look carefully at this definition we can see that the flux vectors v need to satisfy

exactly the same constraints as in the flux cone (Eq. (4.2)). The only difference be-

tween flux and conversion cones is that we are either interested in the fluxes them-

selves, or rather in the conversions that they induce: ds/dt = Nextv.

Definition 4. The set of ECMs is the minimal set of conversions {ecm1
, . . .ecm`} (where ecmi

k

is the amount of metabolite k produced in the ith elementary conversion mode), such that

1. all conversions ds/dt ∈ C can be written as a positive sum of these elementary conversion

modes: ds/dt =
∑

i λiecmi, with λi ≥ 0,

2. without the production of anymetabolite being canceled in that sum, i.e. for all metabo-

lites k we either have for all λi > 0 that ecmi
k ≥ 0 or for all λi > 0 that ecmi

k ≤ 0.

Wewill explain both parts of this definition below, but let us first remark that the def-

inition is in fact perfectly analogous to the definition of EFMs: EFMs are the elementary
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vectors (or precisely: conformally non-decomposable vectors) of the flux cone, and

ECMsof the conversion cone. The reason that the definition of ECMshas an additional

requirement (2.) is just that the analogous requirement was automatically satisfied

for EFMs because we assumed all reactions to be irreversible.

In Figure 4.6A we show a small metabolic network with external metabolites A, B and

BM, and internal metabolites C, D and E. We can find 9 EFMs in this network: one that

goes from A to B, four that produce BM starting from A and four that produce BM from

B. We get four EFMs to go from A to BM because there are two ways of going from

C to D and again two for converting D into E. This makes clear that having a number

of modules of alternative reactions can quickly give rise to large numbers of EFMs,

even though the overall conversion from nutrients to products remains the same. In

contrast, we will explain that we only get three ECMs.

In Figure 4.6B we see the conversion cone in gray. Note that this cone does not live

in flux space, but rather in the space of external metabolite changes, or conversions.

We recognize that the cone can be spanned by two extreme rays, which correspond

to converting A into B (blue) and to using 2B to produce BM (yellow), so these rays

correspond to elementary conversion modes following the first part of Definition 4.

Now why do we have a third ECM, when the blue and yellow one already span the

whole conversion cone? Indeed, the third vector in Figure 4.6B can be obtained by

summing the yellow vector and two times the blue vector: 2(−1, 1, 0) + (0,−2, 1) = (−2, 0, 1).

However, note that the production of metabolite B would cancel in this sum, which

is not allowed according to the second part of Definition 4. The reason that this sec-

ond part of the definition is important, is that the elementary conversion modes are

intended to capture all metabolic capabilities of an organism, so taking only the first

two modes would not be enough: we also want to account for the possibility of mak-

ing BM from A even if we decide that the elementary conversion mode from B to BM

is not possible in the current environment, for example because B is not present as a

nutrient in the medium.

Becausemany EFMs result in the sameoverall conversion, the exploration ofmetabolic

capabilities can now be done in larger networks, at the cost of ignoring information

about which reactions are used [120]. This way of thinking can be pushed even fur-

ther: what if one is not interested in the conversions between all nutrients and prod-

ucts, but only between a subset of these? In that case, one would want to compute

the ECMs only between the external metabolites of the most interest. This can be

done with a small trick. Say that we are not interested in the production of external

metabolite X. Before we start the enumeration algorithm we add a virtual reaction to

the network that consumes and produces X from nothing, i.e. we add X � ∅, and then

we change X from an external metabolite to an internal metabolite. Consequently, it
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now has to satisfy themass-balance constraint (which can always be done trivially us-

ing the added virtual reaction), and will thus never show up in the computed elemen-

tary conversions. In this way it was possible to compute all ECMs between glucose,

oxygen and biomass for a real genome-scale network of E. coli.

4.5.2 Flux sampling

In addition to the computational complexity of EFM enumeration for large metabolic

networks, these objects are not necessarily related to experimentally-derived flux

measurements. This is because when a vector of experimentally-measured flux val-

ues v would be decomposed into EFMs, this generally does not give a unique solutions

because it can be done in many ways. Flux sampling methods can be employed to

solve both the computational and interpretability problems simultaneously, explor-

ing the set of flux vectors (i.e. directly measurable in principle) by computationally

sampling from the flux space. The goal of flux sampling in general terms is to produce

a sequence of flux vectors that satisfy the steady state constraints until enough sam-

ples have been generated to provide an approximate representation of the entire flux

space. The flux polyhedra defined bymass-balance and additional inhomogenous lin-

ear constraints are convex, and therefore uniform sampling of these flux spaces can

be achieved using variants of an algorithm developed for convex analysis called the

coordinate hit-and-run (CHR) algorithm [121]. Briefly, themost basic implementation

of the CHR algorithm generates aMarkov chain of flux vectors by starting in a random

positionwithin the flux polytope, picking a direction at random (uniform), andmoving

a random distance (uniform) in that direction from the current point. The resulting

point is returned as a flux vector instance and the process repeats from there. It

has been proven that the CHR algorithm converges to a stationary distribution of the

Markov chain that is a uniform distribution in the flux space. Alternatives to uniform

sampling (i.e. alternative distributions across the flux polytope) can also be achieved

using variants of the CHR algorithm.

As highlighted previously in Section 4.4.3, mass-balance and inhomogeneous linear

constraints alone often do not contain enough information to sufficiently reduce the

space of biologically-feasible flux vectors. For example, thermodynamic constraints

on flux vectors are important for ruling out a large proportion of the sampled flux vec-

tors as infeasible, but this may disproportionately dominate the resulting sampling

distributions. Unfortunately, for mathematical reasons too deep to go into here, sim-

ply removing these infeasible flux distributions post-sampling will not result in a uni-

form distribution over the thermodynamically-feasible portion of flux space. In fact,

this relevant subset of flux space cannot be defined explicitly, and is usually neither

convex nor connected meaning that no Markov chain methods exist for sampling.
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As an alternative, a recent method [122] has been developed to combine thermody-

namic constraints, physiological observations and estimated thermodynamic param-

eters, with mass-balance and inhomogeneous linear constraints to provide a prob-

abilistic thermodynamic analysis of metabolic reaction networks. Advances such as

these will almost certainly aid a more complete characterization of flux space as data

and methods become available.

4.5.3 Minimal cut sets

A minimal cut set (MCS) is a set of reactions that, when disabled, disables a set of

modes, which in turn can represent a biological function, such as the secretion of

a side product. This enables the prediction of gene deletion targets, given that the

genes coding for the involved reactions are known. A cut set is minimal if the removal

of one or more reactions from the set leads to at least one of the targeted modes not

being disabled.

In order to avoid also disabling desired functionalities, such as product secretion and

growth, the concept of constrained minimal cut sets (cMCSs) has been developed.

cMCSs enable targeting a set of modes while at the same timemaking sure that some

elements of another set of modes will remain active.

Motivation for (constrained) Minimal Cut Sets The concept of MCSs was introduced

by Klamt and Gilles in 2004 [123] and subsequently generalized and improved [124,

125, 126]. As briefly outlined above, the idea is to define a set of EFMswhich should be

disabled, for example because they generate an unwanted side product or because

they don’t generate the product of interest with a sufficiently high yield. Since EFMs

are minimal, removing a single reaction will disable it. A cut set is a set of reactions of

which at least one is active in each of the EFMs in the targeted group. Thus, disabling

the reactions contained in the cut set will disable all of the targeted EFMs, and each

cut set therefore represents the prediction of a set of gene deletions. Since it would

be pointless to remove reactions which only target EFMs that were already targeted

by other reactions, cut sets are required to be minimal. This means that removing a

single reaction from the cut set would lead to one or more of the targeted EFMs to

survive the intervention and also that adding a single reaction to the cut set would

have no additional effect on the set of target EFMs.

The pitfall when using MCSs is that while they guarantee the elimination of the tar-

geted EFMs, all other EFMs may be affected as well. This means that modes with

desired phenotypes, such as high growth and/or high product yield, may become im-

possible. Therefore, cMCSs were developed [127]. In this extension of the concept

of MCSs it is now possible to additionally define a set of EFMs which are desired, i.e.

which can not be disabled by the cMCSs. This is usually implemented by the require-
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ment that at least a specified minimum number of EFMs of the desired set need to

remain active. Summarizing, cMCSs are sets of reactions which guarantee that (i) the

full set of target EFMs is disabled and (ii) a certain minimum of desired EFMs has to

remain unaffected. The drawback, with both MCSs and cMCSs, is that the target (and

desired) EFMs need to be defined. This is generally achieved by defining cut-offs in

terms of product yield and growth, which is, however, ultimately arbitrary.

Calculation of (constrained) Minimal Cut Sets Since minimal cut sets in a metabolic

network are EFMs in a dual network [128], methods used for calculating EFMs can be

used to calculate MCSs. Among other approaches [129] one based on binary integer

programming has been developed [130, 131]. While it requires that the EFMs are cal-

culated before it can be applied, the advantage is that the algorithm is very intuitive.

After having calculated the modes, each is represented as a binary vector which is

zero for reactions with zero flux and one otherwise. The EFMs are then divided into

either targeted or desired. A binary vector, corresponding to the cMCSs being calcu-

lated is introduced. It will have a one if the corresponding reaction remains active

and zero if the reaction is disabled. The first requirement is that cMCS needs to dis-

able all target modes and thus the vector must have zero elements such that each

target EFM must have at least one corresponding non-zero element. The second re-

quirement is that at least a defined minimum of desired modes must remain active.

This is achieved by introducing a second binary vector. This vector has an element

for each EFM and is calculated so that it has a zero when the mode is disabled by the

cMCS and one otherwise. By adding the constraint that the number of ones in this

vector must at least equal the previously defined minimum, the second requirement

ismet. Maximizing the vector corresponding to the cMCS yields the first solution. The

next solution can be found by adding constraints to make sure that the current one

is excluded.

4.6 Concluding remarks

In this chapter we studied how the individual reactions that an organism can catalyze

together give rise to the overall conversion of nutrients into cell components and

secretion products. For that, we studied the cell’s metabolism under a number of

simplifying assumptions, most notably, we model metabolism in steady-state. Given

this steady-state constraint, we explained how all feasible flux distributions form a

space of a specific type: a pointed polyhedral cone. By exploring this ‘flux cone’ we

can chart the metabolic capabilities of an organism.

We have seen that an exhaustive charting of these metabolic capabilities is the com-

putation of all elementary flux modes: minimal subnetworks that can individually give

rise to steady-state fluxdistributions, and thatmaybe interpreted asminimalmetabolic
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strategies. An especially important use of EFM analysis can be found in the prediction

of the effect of gene knockouts: when all EFMs that produce compound Y use reaction

r, then the organism cannot make this compound when the gene is knocked out that

codes for the enzyme that catalyzes r. And conversely, sometimes gene knockouts

can be found such that the cell cannot grow anymore without producing a certain

compound of interest. Clearly, these analyses can be very useful for the design of

organisms in bio-industry.

On the other hand, we also saw that for large models the computation of all EFMs

becomes impossible. There are simply too many of these minimal subnetworks. We

presented several alternatives. One could use elementary conversion modes if one still

desires an exhaustive list of the metabolic capabilities of the cell. The ECMs are eas-

ier to enumerate because one can choose to focus only on all possible conversions

between (a subset of) the nutrients and products, instead of requiring all informa-

tion about which reactions are used to get these conversions. For the design of gene

knockouts specifically, minimal cut sets may be used. Finally, we discussed that the

flux cone can be sampled randomly to characterize the flux cone, if this characteriza-

tion does not need to be exhaustive.

In many cases we have additional information that determines that part of the flux

cone is infeasible. For example, some metabolic fluxes may have been measured

so that these reaction rates can be fixed to their observed value. In other cases,

one may want to use thermodynamic properties to prohibit reactions from occurring

that would violate the second law of thermodynamics. These additional constraints

can be imposed on top of the mass-balance constraint to further bound the space

of feasible flux distributions; each correctly-imposed constraint narrows down the

space of feasible fluxes, and thus increases our knowledge of the metabolic state of

the cell.

All explorations of the space of feasible flux distributions show one unavoidable con-

clusion: the metabolic network is incredibly flexible. Even when several constraints

are imposed, a genome-scale metabolic model will allow for an almost incomprehen-

sible number of modes in which the metabolic network can function. Consequently,

to predict the metabolic state of a cell in more detail we need to make an additional

assumption. In the following chapter, we will study what predictions we can make

when we assume that the metabolic state is optimized to perform a certain function.

Recommended readings

Elementary flux modes and their applications are introduced in an intuitive way in:

J. Zanghellini, D. E. Ruckerbauer, M. Hanscho, C. Jungreuthmayer (2013). Elementary

fluxmodes in a nutshell: Properties, calculation and applications. Biotechnology Jour-
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nal 8 (9), 1009. doi: 10.1002/biot.201200269

Elementary Flux Vectors were introduced as an analog of Elementary Flux Modes in

the case that the flux mode is further bound by at least one inhomogeneous con-

straint. A nice review of these EFVs is can be found in: S. Klamt, G. Regensburger,

M. P. Gerstl, C. Jungreuthmayer, S. Schuster, R.Mahadevan, J. Zanghellini, and S.Müller

(2017). From elementary flux modes to elementary flux vectors: Metabolic pathway

analysiswith arbitrary linear flux constraints. PLoSComputational Biology, 13(4):e1005409,

doi: 10.1371/journal.pcbi.1005409.

Problems

Computer exercises for this chapter can be found on the book website.

Problem 4.1 A small metabolic network (1)

Spirallus insilicus, a completely fictional organism [133], is characterizedby themetabolic

network depicted in Figure 4.7 X, S and P represent the biomass, one substrate and

one product, while metabolites A to E denote intracellular metabolites. One direc-

tional arrows indicate irreversible reactions (all but v4)

(a) How many intracellular metabolites, intracellular reactions and transport reac-

tions are involved in the model?

(b) Obtain the stoichiometric matrix (N) and the vector of fluxes. How many ele-

ments are in the product N v and what do they represent?

(c) Is the matrix N of full rank? How many fluxes should be specified to have a

unique solution?

(d) Transform the set of constraints so that they define a pointed cone. Determine

the number of variables (fluxes) and constraints.

Problem 4.2 A small metabolic network (2)

Consider the following small metabolic network:

Se
v0−−−−→ Sc

Sc
v1−−−−→ Pc

Pc
v2−−−−→ Cc

Pc
v3−−−−→ Dc

Pc + 2 Cc
v4−−−−→ X

Metabolites with a c subscript are located in the cytosol (intracellular) while e stands

for extracellular and X represent biomass. All fluxes are positive.

(a) Represent the model as a reaction network (a sketch with metabolites and re-

actions)

https://doi.org/10.1002/biot.201200269
https://doi.org/10.1371/journal.pcbi.1005409
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(b) Obtain the stoichiometricmatrix (N) and list the variables of themetabolicmodel

(v)

(c) Show that there is no solution to the mass balance equation N v = 0 producing

metabolite D. Identify why this is so and modify the model so the production of

D is allowed (v3 > 0)

Problem 4.3 Elementary Flux Modes (1)

Assume reaction v4 is irreversible from A to D in Spirallus insilicus (Problem 4.1). Cal-

culate all the Elementary Flux Modes.

(a) By hand.

(b) Using a software of your choice (e.g. pypi.org/project/efmtool/)

Problem 4.4 Elementary Flux Modes (2)

Consider the following metabolic network

A B

C

D
N =



1 −2 0 0 0 0 −2

0 1 −2 1 0 0 0

0 2 0 −1 −2 0 0

0 0 1 0 1 −1 1



Please note that some stoichiometric coefficients inN are different from1 (not shown

in the graphics).

(a) In the network drawing, gray dots denote carbon atoms. Check that carbon

atoms are conserved in all reactions. What’s the carbon content of the byprod-

uct (not shown) of the reaction from A to D?

(b) All metabolites are treated as internal, that is, they need to be mass-balanced.

Find all EFMs (by pure reasoning or by using a software). Determine all EFMs in

which all fluxes are in forward direction, i.e. along the “conventional directions”

indicated by arrows.

(c) Which of the EFMs are thermodynamically realizable? Explain why.

https://pypi.org/project/efmtool/
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(A) Variables
Internal metabolites: M = {A,B,C,D,E,F,G,H,O2,ATP,NADH}

External metabolites: E = {carbon1, carbon2,Dext,Eext,Fext,Hext, oxygen, biomass}

Boolean indicators for growth medium: G = {mcarbon1,mcarbon2,mH,mF,moxygen}

Reactions: R = {r1, r2a, r2b, r3, r4, r5a, r5b, r6, r7, r8a, r8b, rres, tc1, tc2, td, te, tf, th, tox, growth}

Flux vector: v = {vr1, vr2a, vr2b, . . .}

Boolean indicators for reactions: z = {zr1, zr2a, zr2b, . . .}

(B) Stoichiometry

Internal reactions
r1 : A + ATP → B

r2a, r2b : B ↔ 2 ATP + 2 NADH + C
r3 : B → F
r4 : C → G

r5a : G → 0.8 C + 2 NADH
r5b : G → 0.8 C + 2 NADH
r6 : C → 2 ATP + 3 D
r7 : C + 4 NADH → 3 E

r8a, r8b : G + ATP + 2 NADH ↔ H
rres : NADH + O2 → ATP

Transport reactions
tc1 : carbon1 → A
tc2 : carbon2 → A
td : D → Dext

te : E → Eext

tf : Fext → F
th : Hext → H

tox : oxygen → O2

growth : C + F + H + 10 ATP → biomass

(C) Regulation

Transcriptional
zr2b =⇒ ¬zr2a

¬moxygen =⇒ ¬zr5a

moxygen =⇒ ¬zr5b

zr2b =⇒ ¬zr7

mH =⇒ ¬zr8a

¬moxygen =⇒ ¬zrres

mcarbon1 =⇒ ¬ztc2

Environmental
¬mcarbon2 =⇒ ¬ztc2

¬mcarbon1 =⇒ ¬ztc1

¬mH =⇒ ¬zth

¬mF =⇒ ¬ztf

¬moxygen =⇒ ¬ztox

Figure 4.5: Formulae for the metabolic model from Figure 4.4. Stoichiometry is given
for reactions and metabolites; simple arrow or double arrow represent reversibility,
for instance reaction r1 consumes one A and one ATP to produce one B. The names
r2a, r2b and r8a, r8b denote the forward and backward directions of the respective reac-
tions, while r5a, r5b represent isozymes. Boolean inputs for the Boolean functions can
be either growth medium metabolites or reactions.
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Figure 4.6: Elementary conversion modes – (A) Small toy network with three ECMs
shown in blue, yellow and red. Note that the red mode can be decomposed as a
positive combination of the blue and yellow elementary conversion modes, but that
would cancel the production of B so this is not allowed. (B) The conversion cone is
shown in gray, and the blue and yellow arrow correspond to the blue and yellow ECMs
are the extreme rays. The red ECMneeds to be added because it is on the intersection
with the dB/dt = 0-plane.
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Figure 4.7: Spirallus insilicus network, adapted from [132]
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Chapter 5

Optimization of metabolic fluxes

Hester Chapman, Jan Pilipp Dapprich, Daan de Groot, StefanMüller, Felipe Scott, and

David Tourigny

Chapter overview

◦ An optimization objective can be added to constraint-based models to make

more specific predictions.

◦ Different purposes can be served by choosing different optimization objectives

and constraints

◦ The optimal solutions can be understood in terms of elementary flux modes

5.1 Can optimality principles help us predict metabolic

behavior?

In the previous chapter, we characterized an organism’s metabolism by listing all the

biochemical reactions that can be catalyzed by the enzymes encoded within the or-

ganism’s genome. To understand how the genome constrains patterns of metabolic

fluxweneeded tomake several simplifying assumptions. The first important assump-

tion was that intracellular metabolism is at steady-state, i.e., that the production and

consumption of all metabolites is balanced such that their concentrations are con-

stant in time. These resulted in the mass-balance constraints on the flux vector v.

The flux cone of all flux vectors satisfying the mass-balance constraints could be fur-

ther reduced by additional constraints on v, based on extra physical and biological

assumptions about the magnitude and directionality of certain reactions within the

network. We introduced several ways in which the entire flux space could be ex-

plored.

When applied to very large metabolic networks, the flux space will often contain an

109
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infinite number of flux vectors v that simultaneously satisfy all constraints. From a

mathematical perspective, this implies that the constraints do not include enough

information to uniquely specify a flux vector v. This makes sense biologically, since

if we imagine constraints are related to experimental observations it is very unlikely

that we will ever be able to make enough to fully account for every reaction encoded

within the entire genome of an organism (no matter how simple it might be). Often,

however, researchers dowant to further narrowdown the set of flux vectors that they

think biologically relevant to the organism and conditions they are studying, perhaps

even to a unique v imagined to describe themetabolic state of an organism at a given

moment in time. One popular approach for doing so is to provide an additional as-

sumption (or set thereof) in the form of an objective function: it is assumed that the

metabolic state of an organism is such that some function of v (e.g. growth rate) is

maximized to satisfy some criteria (e.g. evolutionary selective advantage). The com-

putational problem then becomes one of constrained-optimization: find a flux vector

v that is optimal in terms of the objective function(s) that simultaneously satisfies all

constraints. The resulting space of optimal flux vectors (sometimes containing just

one unique vector) is often considerably smaller than the space of those that satisfy

only the constraints.

In this chapter, we will study metabolic models based on constrained-optimization.

Wewill introduce a selection of commonly used objective functions and the computa-

tional methods used to solve the associated constrained-optimization problem. We

will also characterize optimal solutions that we get in terms of the minimal metabolic

strategies that we identified in the previous chapter: elementary flux modes. Finally,

we will explain how we can handle the cases where the solutions are, even after op-

timization, not unique.

5.2 Metabolic modeling based on linear optimization

We begin by introducing linear programs and transforming them into standard form.

(For the history of linear programming, see Box 5.A.) Then, we discuss two types of

inhomogeneous constraints in Flux Balance Analysis (FBA), the application of linear

programming to metabolic modeling. Finally, we illustrate FBA in an example.

5.2.1 Linear programming problems

Linear programs (LPs) are specified for a vector x (of real variables) and involve a

vector c (defining the objective function) as well as a matrix A and a corresponding
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vector b (defining the linear inequalities),

max
x

c>x

s.t. A x ≤ b.
(5.1)

In general, an individual inequality a>x ≤ b (where the vector a denotes a row of the

matrix A and b denotes the corresponding component of b) constrains a weighted

sum of the variables. However, if a has only one nonzero component, e.g. ai = 1 and

aj = 0 for all j 6= i, then it restricts a single variable, xj ≤ b.

Towards LP standard form. Somevariablesmayhavenonnegativity constraints. Hence,

we order the variables such that

x =

x◦

x∗

 ,

where the superscripts ◦ and ∗ refer to the index sets of nonnegative and “free” vari-

ables, I◦ and I∗, respectively. Now, we can formulate the nonnegativity constraints

as x◦ ≥ 0. To obtain nonnegativity constraints for all variables, we will consider free

variables as differences of nonnegative variables. Given the order on the variables,

we first write

A x =
(

A◦ A∗

)x◦

x∗

 .

Next, for every i ∈ I∗ (for every free variable xi), we introduce y+
i , y

−
i ≥ 0 such that y+

i −y−
i = xi.

In vector notation, we have

y+ − y− = x∗.

Note that this transformation is not one-to-one. There are infinitely many pairs y+,y−

that have the same difference x∗. Analogously, for every i ∈ I◦ (for every nonnegative

variable xi), we introduce y◦
i = xi ≥ 0 to obtain a uniform notation. That is,

y◦ = x◦.

Now, we can write

A x =
(

A◦ A∗ −A∗

)
y◦

y+

y−

 .

In short,

A x = Ā y with Ā :=
(

A◦ A∗ −A∗

)
and y :=


y◦

y+

y−

 ,
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involving the augmented matrix Ā and the non-negative vector y. Correspondingly,

we have to transform the vector

c =

c◦

c∗

 .

Indeed,

c>x = c̄>y with c̄ :=


c◦

c∗

−c∗

 .

As a result, we obtain an LP in standard form,

max
y

c̄>y

s.t. Ā y ≤ b

and y ≥ 0,

(5.2)

which is equivalent to the original LP (5.1) in the following sense:

• On the one hand, if x is a feasible solution of (5.1), that is, A x ≤ b, with objective value

c>x, then every y with y◦ = x◦ and y+ − y− = x∗ is a feasible solution of (5.2), that is, Ā y ≤ b

and y ≥ 0, with the same objective value c̄>y = c>x.

In particular, we can choose y+ and y− as follows: for every free variable xi, if xi ≥ 0, then

we set y+
i = xi and y−

i = 0, and if xi ≤ 0, then we set y+
i = 0 and y−

i = −xi. Equivalently, we can

choose y+ and y− such that y+ − y− = x∗ and y+
i · y−

i = 0 for all indices i ∈ I∗.

Note. The latter choice involves if–then statements or nonlinear equations. Hence,

it cannot be written in terms of linear inequalities, that is, it cannot be directly in-

corporated into an LP. Still, the choice can be used to obtain equivalent (but simpler)

formulations of LPs. See the next subsection, in particular, the formulation of enzyme

constraints in FBA.

• On the other hand, if y is a feasible solution of (5.2), then x with x◦ = y◦ and x∗ = y+ − y−

is a feasible solution of (5.1) and y and x have the same objective value.

5.2.2 Metabolicmodeling via linear programsaka Fluxbalance anal-

ysis

Flux balance analysis (FBA) studies metabolic models via linear programs. The feasi-

ble solutions (fluxes) are specified by

– homogeneous equations arising from mass-balance constraints,

– homogeneous inequalities (nonnegativity conditions) arising from irreversible re-

actions,

– and extra inhomogeneous (in-)equalities encoding lower/upper bounds for individ-
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ual fluxes or enzyme constraints involving weighted sums of fluxes.

(See also the previous chapter.)

The objective function can be an individual flux or a weighted sum. Hence, a general

FBA problem can be written as

max
v

c>v

s.t. N v = 0, v→ ≥ 0,

and G v ≥ h.

(5.3)

Two types of extra constraints. As already mentioned, the inhomogeneous inequalities

may involve lower/upper bounds for (all) individual fluxes,

` ≤ v ≤ u, (5.4)

so-called box constraints. Componentwise, `i ≤ vi ≤ ui for reaction i. (If there is no

lower or upper bound, one may set `i = −∞ or ui = ∞.) Of course, the bounds must be

consistent with the irreversibility constraints.

Additionally/alternatively, one may consider enzyme constraints. First, for every re-

action i ∈ R→ ∪ R, one introduces the concentration ei of the corresponding enzyme.

Then, for every irreversible reaction i ∈ R→, enzyme kinetics implies the inequality

0 ≤ vi ≤ kcat,→i ei. Similarly, for every reversible reaction i ∈ R
, one obtains


vi ≤ kcat,⇀i ei if vi ≥ 0,

−vi ≤ kcat,↼i ei if vi ≤ 0.
(5.5a)

Finally, using nonnegative weights ωi, one formulates a capacity constraint

∑
i∈R→∪R


ωi ei = ω>e ≤ Ω (5.5b)

(or several such constraints). Clearly, the inequalities (5.5a) involve if–then state-

ments. Hence, they cannot be directly incorporated into an LP. To resolve this prob-

lem, we perform reaction splitting, which ultimately leads to an LP in standard form.

In the following, we describe this transformation in detail.

Reaction splitting. As described in the previous chapter, for every reversible reaction

i ∈ R
 with net reaction rate vi, we define a forward reaction “rate” w⇀
i ≥ 0 and a backward

reaction “rate” w↼
i ≥ 0 such that vi = w⇀

i −w↼
i . In vector notation, v
 = w⇀ − w↼ with w⇀,w↼ ≥ 0.

Again, we note that the “rates” w⇀
i , w

↼
i do not denote the (microscopic) forward and

backward reaction rates v⇀
i , v

↼
i that determine the net reaction rate vi = v⇀

i −v↼
i . They are
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auxiliary quantities, and only their difference w⇀
i − w↼

i = vi has a biochemical meaning.

Further, for every irreversible reaction i ∈ R→, we write vi = w→
i ≥ 0 to obtain a uniform

notation. That is, v→ = w→ ≥ 0. We introduce the augmented stoichiometric matrix N

and the corresponding non-negative flux vector w,

N :=
(

N→ N
 −N


)
and w :=


w→

w⇀

w↼

 ,

and find

N v = N w.

Analogously, we introduce the augmented matrix G and the (objective) vector c̄,

G :=
(

G→ G
 −G


)
and c̄ :=


c→

c


−c


 ,

and obtain the LP
max

w
c̄>w

s.t. N w = 0, w ≥ 0,

and G w ≥ h,

(5.6)

which is equivalent to the original LP (5.3).

Choice of w. To incorporate the enzyme constraints (5.5a), we choose w⇀ and w↼ as

follows: for every reversible reaction i ∈ R
, if vi ≥ 0, then we set w⇀
i = vi and w↼

i = 0, and if

vi ≤ 0, then we set w⇀
i = 0 and w↼

i = −vi. We find


w⇀

i = w↼
i + vi ≤ vi ≤ kcat,⇀i ei (and w↼

i = 0) if vi ≥ 0,

w↼
i = w⇀

i − vi ≤ −vi ≤ kcat,↼i ei (and w⇀
i = 0) if vi ≤ 0

and hence

w⇀
i /k

cat,⇀
i + w↼

i /k
cat,↼
i ≤ ei, (
)

independently of the sign of vi (that is, not involving an if–then statement). To summa-

rize, the if–then statement (5.5a) for v together with our choice for w (another if–then

statement) imply the inequality (
) which can be incorporated into the LP (5.6). In

fact, we further rewrite (
) as

w⇀
i /k

cat,⇀
i ≤ e⇀

i , w↼
i /k

cat,↼
i ≤ e↼

i , and e⇀
i + e↼

i ≤ ei,
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where we introduce the forward and backward enzyme “concentrations”, e⇀
i and e↼

i ,

respectively.

The treatment of the other extra constraints is simple. First, for every irreversible

reaction i ∈ R→, we get w→
i = vi ≤ kcat,→i ei or, equivalently, w→

i /k
cat,→
i ≤ ei. Altogether,

wi ≤ kcati ēi, for i ∈ R→ ∪ R⇀ ∪ R↼, (5.7a)

where we use the vectors

kcat :=


kcat,→

kcat,⇀

kcat,↼

 and ē :=


e→

e⇀

e↼



to streamline the notation. Second, we adapt the capacity constraint (5.5b). Using

the augmented vector

ω̄ :=


ω→

ω


ω


 ,

we obtain

∑
i∈R→∪R⇀∪R↼

ω̄i ēi =
∑

i∈R→

ωi ei +
∑

i∈R


ωi (e⇀
i + e↼

i )︸ ︷︷ ︸
≤ei

≤
∑

i∈R→∪R


ωi ei

≤ Ω,

in short, ∑
i∈R→∪R⇀∪R↼

ω̄i ēi = ω̄>ē ≤ Ω. (5.7b)

Of course, box constraints (5.4) for v can also be written in terms of w: for the ir-

reversible reactions, we get `→ ≤ w→ ≤ u→ (with `→ ≥ 0), and for the reversible reactions,

we get `
 ≤ w⇀ − w↼ ≤ u
 (with `
 < 0 and u
 > 0). The latter inequalities can be further

simplified using our choice of w.

Summary. We have shown that an FBA problem (5.3) involving box constraints (5.4)

and enzyme constraints (5.5) can be transformed into an equivalent LP problem (5.6)

in standard form. In particular, for every feasible v (and e) in N v = 0, v→ ≥ 0, and (5.5),

there is a feasible w (and ē) in N w = 0, w ≥ 0, and (5.7), namely, our choice of w. Conversely,

for every feasible w (not necessarily in the form of our choice) in the standard LP

problem, there is a feasible v in the original FBA problem.
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Economics analogy 5.A Optimization and economic planning in the Soviet
Union

Linear programming as an algorithmic approach to solving constrained linear op-
timization problems was first developed by soviet mathematician and economist
Leonid Kantorovich in the 1930s [134, 135]. Kantorovichwas taskedwith helping to
optimize production in the soviet plywood industry, but soon discovered that the
underlying problems could not be solved using analytical methods. He instead
developed a method for solving linear optimization problems using an iterative
process through which a solution is continuously improved until an optimum is
reached. Kantorovich argued that this could be used to make soviet economic
planning more efficient.
Soviet planning was primarily based on material balancing, which aimed to cre-
ate a consistent plan with regards to the inputs and outputs of various industries.
For example, the input requirement of steel consuming industries ought not to
exceed steel production targets. In a balanced plan the input requirements for
steel would match the production of steel. But a balanced plan is not necessarily
an optimal one. There can well be several consistent plans of which some lead to
higher overall production output than others. Kantorovich observed that produc-
tive resources were often not used where they could yield the greatest benefit. By
using linear programming, planners could in principle calculate a plan that made
the best use of economic resources and maximized production output.
One of the problems that needed to be overcome by Kantorovich was that op-
timization always aims to optimize a singular objective function. However, there
was no obvious way of measuring the output of qualitatively distinct products on a
single scale. Without prior valuation of the products (for example through market
prices) it is not clear whether 3 tanks and 10 trucks should be counted as more
than 4 tanks and 8 trucks. Kantorovich circumvented this problem by assuming
that outputs ought to be produced at given proportions. For example, it might be
specified that 2 trucks ought to be produced for every tank. Linear programming
can then be used to calculate the plan that maximizes output at these propor-
tions. Unlike most contemporary economic applications of linear programming,
this does not depend on a monetary objective function. So, what’s being max-
imized is not monetary value. Instead, the objective function measures purely
physical quantities (such as number of trucks or tons of steel).
In the context of economic planning, constraints are used to represent limits to
available economic resources (such as fertile land). A plan that uses more re-
sources than are available will not be feasible and must thus be excluded. Con-
straints can also be used to fix the proportions at which distinct outputs ought to
be produced [136]. While it was first developed for economic planning, the fun-
damental principles of linear programming can also be applied to other problems
(for example in biology).

5.2.3 Optimization problems for metabolic fluxes

In the previous chapter, we described how linear homogeneous and inhomogeneous

constraints arising from biological and physical knowledge can be combined intoma-

trix and vector notation and written in the general form presented in Equations (4.1)

and (4.16). The resulting space of all flux vectors v satisfying these constraints is called

the flux polyhedron. The flux polyhedron can remain high-dimensional and, as ex-
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plained above, an objective function f can be used to narrow down the set of flux vec-

tors to only those that are optimal (i.e., maximize the objective function). The general

form in which we can write the resulting constraint-based optimization problem is

therefore:

max
v

f(v), such that A v ≥ b, (5.8)

with

A =



Nint

−Nint

I

G


, b =



0

0

0

h


. (5.9)

Recall that Nintv = 0 models the steady-state assumption, while the multiplication with

the identity matrix (In×nv ≥ 0) captures the fact that we forced all reactions to be ir-

reversible by splitting reversible reactions into a forward and a backward reaction.

Finally, Gv ≥ h can be used to impose additional ‘inhomogeneous’ constraints that can

be used to input additional biological knowledge such as an experimentallymeasured

upper bound on the uptake rate of a certain nutrient.

In many cases, the objective function is chosen to be a linear function of the fluxes,

i.e.,

f(v) =
∑

i

civi, (5.10)

where coefficients ci weigh the relevance of the different reaction rates in the objec-

tive function. Problems of the form (5.8), (5.9), and (5.10) in general are called linear

programming problems and as the name suggests can be solved using linear program-

ming. Applied tometabolic models, linear programming is called Flux Balance Analysis

(FBA). Linear programming problems are well studied, such that FBA is perhaps the

most popular approach to genome-scale metabolic models [137, 138]. FBA problems

are relatively easy to solve using specialized optimization software, which have been

highly developed due to the general applicability of linear programming in economics,

logistics, and many other fields also. In the following subsections we will briefly de-

scribe various choices that can be made for the linear objective function f(v) in FBA.

As an example FBA problem, in Figure 5.1 we have extended the minimal example

from the previous chapter to include ATP and biomass (X) production, assuming the

latter is produced from pyruvate using a single reaction that consumes nX molecules

of ATP with flux value vX. We also introduce as a linear objective function the total

rate of ATP production, vATP . Since in this example, reactions v1 and v3 produce ATP

with stoichiometric coefficients n1 and n3, respectively, the total rate of ATP production

is given by vAT P = n1v1 + n3v3 − nXvX. The FBA problem is then given by simply maximizing

vAT P subject to v0, vO2 , v1, v2, v3, v4, vX satisfying the mass-balance constraints but, as we will
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XG
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P

P1

P2

n1 ADP n1 ATP nx ATP nx ADP

n3 ATP

n3 ADP

v0

vO2

v3

v1 vx

v4v2

Figure 5.1: A simple representation of the metabolic reaction network for central car-
bon metabolism – Extracellular glucose is imported into the cell via a reaction with
flux v0 and converted via intracellular glucose, G, to pyruvate, P , via the reaction with
flux v1 that has a stoichiometric coefficient of two pyruvate molecules to each glucose
molecule. Pyruvate can then either be converted to a fermentation product, P1, via
the reaction with flux v2 or, in the presence of oxygen, O2 imported via vO2, converted to
an oxidative phosphorylation (OXPHOS) terminal product P2 via the reaction with flux
v3. It can also be converted to biomass X with rate vX. The reactions with flux values v1

and v3 produce ATP from ADP (in red) with stoichiometry n1 and n3, respectively, which
can vary between species. The production of 1.0 grams of new cells, in a dry weight
basis, requires one molecule of pyruvate and nX molecules of ATP.

see in the next subsection, this would result in a problem that is unbounded: the flux

vectors and resulting optimal value of vAT P could be indefinitely large. Biologically, this

is because there are no bounds on the uptake rates of glucose vub
0 and the fermenta-

tion product vub
4 . Thus, if we re-impose these bounds as in the last chapter, the result

is an FBA problem that is bounded and therefore has a finite objective value:

max
v

vAT P = n1v1 + n3v3 − nXvX , such that :

0 = v0 − v1,

0 = vO2 − v3,

0 = 2 v1 − v2 − v3 + v4 − vX ,

vub
0 ≥ v0,

vub
4 ≥ v4,

v0, v1, v2, v3, v4 ≥ 0.

(5.11)

To illustrate a particular instance of this FBA problem, we consider the very simple

case where vub
4 = 0, vub

0 > 0 and n3 = n1 = 1. It can be checked by hand that an optimal

solution is given by v0 = v1 = v2/2 = vub
0 , with v2 = v4 = vX = 0. The optimal objective value is

given by vAT P = 3vub
0 .
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5.3 Choice of objective functions in Flux Balance Analy-

sis

Solving the constraint-based optimization problem of (5.8) will reduce the set of flux

vectors to those that are optimal (maximize the objective function), but the biological

validity of this prediction is critically dependent on the particular choice of f. Conse-

quently, there has been a lot of consideration and debate among researchersworking

on FBA about the appropriate objective functions to use in different contexts and how

best interpret the results. Below, we will provide some popular examples, but for a

more systematic comparison of different objective functions we refer the reader to

[139, 140, 141].

Evolutionary justifications for objective functions: the rate of biomass production

Objective functions are often based on evolutionary arguments: the objective is cho-

sen to capture some proxy for the evolutionary fitness of an organism. The motiva-

tion behind this is that cells with a metabolic state that scores well on this fitness-

proxy would come to dominate the cell-population because they outgrow their com-

petitors. Proxies for fitness are in principle very hard to choose since evolutionary

fitness is mostly related to the average net reproduction rate of a cell over a very

long time[142]. Therefore, to know the metabolic objective that aligns with the max-

imization of fitness would require us to know what the cell has been selected for in

its evolutionary history. This is a non-trivial question, for example, is an E. coli cell

growing in the human gut selected for the same metabolic objective as a muscle cell

in your body?

An objective that is used very often is the maximization of a biomass production rate,

because this is used as a proxy for maximizing growth rate. It is indeed arguable

that unicellular organisms with high growth rates are selected, since in stationary

conditions these cells will come to dominate the population. Indeed, FBA models

in which the biomass production rate is optimized seem to predict metabolic states

reasonably well [143, 144, 145].

But what exactly do wemean by “biomass”? This is extensively discussed in the Chap-

ter 2, but for our purposes it is sufficient to say that it is the entirety of all components

that constitute a new cell. In metabolic models, however, “biomass” refers to all pre-

cursors that are outputs of the model and that are needed to produce a new cell.

This has two consequences. First, biomass in our model does not only consist of the

components of which the cell is built, but also of components needed to do the build-

ing itself, such as a certain amount of ATP. Second, what is contained in biomass will

depend on where we draw a line around the metabolic network - all necessary cell
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components that are not inside are regarded as biomass. In practice, biomass ap-

pears in metabolic networks in the form of a virtual biomass reaction that consumes

all necessary precursor molecules in the right proportions and produces one unit

of “standard biomass”. Maximizing the biomass production rate thus takes the very

simple form of just maximizing the rate through the biomass reaction.

The use of such a fixed biomass reaction represents an important assumption, be-

cause in reality the biomass composition will be condition dependent. For example,

if a cell grows faster and contains more ribosomes, this increases the cellular fraction

of proteins and polynucleotides, and hence the need for the respective precursors

(amino acids and nucleotides). Moreover, biomass composition can even depend on

the choice of metabolic strategy. If a pathway includes enzymes that contain a lot of

iron, then depending on the flux solution (which uses this pathway or not), more or

less iron will be contained in the biomass. So, the flux solution must be known to

know the biomass composition, but the biomass composition must also be known

to get to a flux solution. To resolve this, we would need a model of the entire cell,

including the synthesis reactions of all enzymes. Such models will be discussed later,

in the Chapter 10 on large cell models.

Evolutionary justifications for objective functions: alternative fitness-proxies In

some cases, modeling the maximization of the instantaneous growth rate through

the biomass reaction is an unrealistic proxy of the evolutionary fitness. For example,

in multicellular organisms each cell performs a task that contributes to the fitness of

the whole organism, but this is not related to the reproduction rate of the individual

cells. In those cases, we may still try to capture an evolutionary objective when we

know the main task of the cell-type. For example, beta-cells in the pancreas have

as their main task to produce insulin, and we may thus model their metabolism by

maximizing the production of insulin.

In other cases, our metabolic model is focused only on a very small part of the true

metabolic network, and therefore does not model the production of all biomass pre-

cursors. In such cases, energy production rate in the form of ATP production rate is

often maximized. Yet other objective functions that are sometimes used and have a

(somewhat vague) evolutionary motivation are the minimization of overall ATP usage

and the minimization of overall fluxes.

Synthetic design-oriented objective functionsMetabolic modeling can also be used

to identify metabolic states that lead to a certain desired behavior of a microorgan-

ism. For example, wemay seek to genetically perturb amicrobe such that it produces

a certain compound of industrial or medicinal interest, while it also retains a certain

minimal growth rate [146]. Indeed, it is often desired to retain a certain minimal abil-

ity to grow such that the genetically engineered organisms can be lab-grown after
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which the produced compound of interest can be harvested. In that case, we can

combine maximizing the production rate of the compound while imposing an inho-

mogeneous constraint that sets a lower bound on the biomass production rate. This

can even be combined with a calculation in which we solely maximize the biomass

production rate: maximizing the biomass production rate is amodel for the wild-type

cell, whereas maximizing the generation of the compound models the desired phe-

notype. By comparing the flux distributions between these ‘strains’, we can search

for target genes that should be up- or downregulated.

5.4 Enzyme-constrained FBA

In its most simple form, flux balance analysis requires a stoichiometric matrix, an

objective function, and at least one flux constraint to ensure that the problem is

bounded. Solving an FBA problem allows for the prediction of intracellular fluxes

and essential gene knockouts, given measured uptake and secretion rates.

However, whilst classical FBA can capture the effects of essential gene knockouts well,

it falls down when it comes to non-lethal knockdowns, and the prediction of growth

phenotypes. For example, overflow metabolism in E. coli, and similarly the Crabtree

and Warburg effects in S. cerevisiae and cancer cells respectively, cannot be captured

in FBA models without ad-hoc flux constraints being imposed. These names refer to

the seemingly wasteful strategy of cells at high growth rates using a combination of

respiration and fermentation, despite the higher ATP-yield of respiration.

It has been proposed that overflow metabolism results from optimal protein alloca-

tion in the cell [147, 148]. In FBA models, we capture this by imposing total proteome

constraints to perform enzyme-constrained flux balance analysis (ecFBA). The usual

formulation for ecFBA can be written as follows [149]:

max
v,e

vr

s.t. (C1) N v = 0,

(C2) vi ≥ 0∀i,

(C3) vi ≤ kcati · ei ∀i ∈ R

(C4)
∑

i∈Rk

ei ≤ Ek ∀k ∈ [1, . . . ,K]

(5.12)

Here, we wish to maximise flux through the objective reaction vr, subject to four con-

ditions. The matrix N is our stoichiometric matrix, with all reversible reactions split

into a forward and a reverse reaction, and the condition C2 ensures that all fluxes are

positive. In this formulation, we give all metabolic reactions an associated catalysing

enzyme, and stipulate that the flux through a reaction is equal to the concentration
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of this enzyme multiplied by the apparent turnover number (kcat) value (C3). Finally,

we constrain total proteome constraints, in the form of enzyme pools. The total con-

centration of enzymes in the k-th enzyme pool must not exceed the constraint Ek (C4).

Predictions using ecFBA do not rely on the input of flux constraints, but rather good

estimates for the total protein in different cellular compartments (for example the

membrane and the cytosol), as well as the kcat-values (for details, see Chapter 10).

The ecFBA formulation ensures that all metabolic enzymes have an associated cost,

relative to the gene product molar mass and turnover number. A simplified tech-

nique to provide a proxy for these costs is parsimonious flux balance analysis (pFBA).

Central to pFBA is the assumption that cells minimize their total enzyme usage. Here,

an optimal objective value is calculated via standard FBA, and the sum of the gene-

associated reaction fluxes is then minimized. pFBA significantly reduces flux variabil-

ity compared to standard FBA, but still does not typically capture overflowmetabolism

[150].

5.4.1 Optimal metabolism in terms of elementary flux modes

In the previous chapter we introduced elementary flux modes (EFMs) and identified

them as the fundamental metabolic pathways that carry flux through the metabolic

reaction network. Here, we will show how elementary flux modes also can be very

useful for describing optimal metabolic states. We briefly recapitulate the notion of

elementary fluxmodes. All metabolic flux vectors v that satisfy both themass-balance

and irreversibility constraints form a pointed polyhedral cone, called the flux cone.

The EFMs are the extreme rays of this cone, so that they can be used to decompose

all steady-state flux vectors

v =
∑

i

λi ei,

where ei is the i-th EFM and λi ≥ 0 its coefficient in v. Moreover, the EFMs turn out

to be the minimal metabolic subnetworks that a cell can use in steady-state without

needing any other reaction, so thatwe can viewEFMs asminimalmetabolic strategies.

In Figure 5.2 we depict the EFMs as black lines, and the region in-between these lines

is the steady-state solution space that is spanned by the EFMs. Note that this illus-

tration is great simplification, usually the flux cone is a high-dimensional object that

can only be visualized in trivial toy examples. In fact, the flux cone is a subspace of

Rn where n (the number of reactions) can be in the thousands for a typical genome-

scale metabolic network. Moreover, the number of extreme rays of the cone would

be overwhelming, due to the complexity issues associated with EFM enumeration as

described in the previous chapter.

Figure 5.2a also shows that there is a direction inwhich the objective increases fastest.
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direction of maximal fitness direction of maximal fitness
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direction of maximal fitness

second
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Figure 5.2: We show a cartoon of the solution space of a metabolic network, the so-
called flux cone, with respectively (A) zero, (B) one and (C) two constraints. With one
constraint, the optimal solution for any linear objective can be attained in a vertex of
the space, which means that it can be attained in a single EFM. With two constraints,
we need to combine at most two EFMs to describe the optimal solution.

This direction is determined by the choice of objective function, to be specific: the

direction of maximal increase of the objective is given by the vector of coefficients,

[c1 · · · cn]>, appearing in the linear objective function (5.10). However, as long as we do

not impose an inhomogeneous constraint, the flux cone is unbounded, so that we can

usually reach infinite values. This makes sense when we think of the metabolic states

in terms of elementary fluxmodes: whenwe have an EFM that reaches some nonzero

objective value, we can always multiply it by any positive scalar. This multiplication

will increase the objective value, while the steady-state and irreversibility constraints

will not be affected.

Metabolism, however, is never unconstrained, so we will always have at least one

inhomogeneous constraint. In the previous chapter, inhomogeneous constraint were

written in the general form ∑
i

ωp
i vi ≤ hp, p = 1, . . . P (5.13)

where each hp corresponds to a component of the P-dimensional vector h and nweights

wp
i (i = 1, . . . , n) are supplied for each of the P constraints. The second panel of Figure 5.2

shows how a single inhomogeneous constraint (i.e. the case P = 1) can constrain the

flux cone and theory dictates an optimal flux vector is found at a vertex of the result-

ing flux polyhedron, which geometrically corresponds to the intersection of the flux

cone and the hyperplane of the inhomogeneous constraint. One particular biological

argument for such a constraint is related to resource allocation[151, 152]: only a lim-

ited number ofmacromolecules (proteins, ribosomes, etc) fit inside a cell. Since these

molecules catalyze reactions, reaction rates are proportional to their concentrations:

vi = ei ki(s), (5.14)
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where ei is the concentration of the enzyme that catalyzes reaction i, and ki(s) is a func-

tion that describes enzyme kinetics in a non-linear way that is for most reactions un-

known. The resource-allocation constraint then takes the form

∑
i

ωi ei ≤ 1, (5.15)

where ωi are weights that determine how much of the resources are taken up by one

unit of the ith enzyme; these weights can for example be proportional to the volume,

the mass, or the number of amino acids of the enzyme. Making a change of variables

to express the constraint in terms of fluxes gives:

∑
i

ωi

ki
vi ≤ 1, (5.16)

such that these resource-allocation constraints again fit the form presented in Equa-

tion (5.13). A well-known example of a modeling framework that uses such a con-

straint is FBA with macromolecular crowding (FBAwMC, [153]) where such a constraint

arises due to a physical limitation on the number of enzymes contained within the

cell.

It is not necessarily always the case that an inhomogenous constraint applies to all

EFMs. For example, in a metabolic model of an organism able to grow on multiple

carbon sources, many EFMs may remain unbounded. For treatment of these cases,

the reader is referred to [154]. Moreover, we may have multiple inhomogenous con-

straints on flux values as Equation (5.13) suggests. The third panel of Figure 5.2 il-

lustrates how a second inhomogenous constraint can further constrain the solution

space where theory implies an optimal flux vector is found on a vertex lying on the

edge between two EFMs (as shown in the example in the figure). Imposing additional

inhomogenous constraints can therefore lead to the superposition of additional EFMs

in the solution. In general, if we consider a constraint-based model with K inhomo-

geneous constraints it can be proved that an optimal flux vector will be built out of at

most K EFMs [154]. We therefore see another important property of EFMs: not only

do they form the minimal building blocks that span all metabolic capabilities of the

cell, they are also optimal building blocks. Whenmetabolism is optimized, only few of

these EFMs are used. As a result, solutions to linear constraint-based optimizations

can usually be rationalized in terms of the properties of the available EFMs [155], for

example, a flux balance analysis with only one constraint on a nutrient uptakewill just

return the EFM with the highest ‘yield’, i.e. the highest efficiency of making biomass

per nutrient.
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5.5 Multi-objective flux analysis and flux variability

5.5.1 Phenotypic phase plane analysis

The analysis of the metabolic response to environmental changes is often sought

assuming that there is only one substrate limiting growth (or other metabolic reac-

tion). For example, we could be interested in the growth and ethanol production by

S. cerevisiae under oxygen limitation in a chemostat. In this experimental setup, ev-

ery other substrate should be provided in excess, including the carbon and energy

source. If no oxygen is supplied, ATP must be produced only using oxidative phos-

phorylation reactions and a fermentation product, such as ethanol, will be produced.

On the other extreme, if enough oxygen is available, a fraction of the carbon source

will be completely oxidized, producing ATP via respiration. In both cases, the frac-

tion of the carbon and energy source not used for energy generation will be used for

the production of biomass at an specific growth rate equal to the dilution rate of the

chemostat.

This behavior canbe analyzedusing the phenotypic phase plane analysis. To calculate

a phenotypic phase plane (PPhP), the uptake fluxes values under analysis, typically the

uptakes of oxygen and the carbon source are discretized between their upper and

lower values and used to construct a meshgrid containing the 2-D grid coordinates

based on the coordinates contained in the discretized vectors of oxygen and carbon

uptake fluxes. At each tuple in the 2-D grid, an FBA problem is solved after fixing the

lower and upper bounds of the corresponding fluxes to the values in the tuple. Figure

5.3. A shows the PPhP of the metabolic network presented in Figure 5.1 with nX = 10,

n1 = 1, n3 = 4, v4 = 0, vub
0 = 10, and vub

O2
= 15 mmol g−1 h−1 (cell dry mass).

At zero oxygen uptake, Figure 5.3.A shows that growth is possible reaching a specific

growth rate of 1 1/h at the maximum glucose uptake. Notice that the slope of the line

connecting the origin of coordinates and the point of the highest growth rate at a

glucose uptake of 10 mmol g−1 h−1 (cell dry mass) is 0.1 g mmol−1 (cell dry mass). Biologically,

this slope corresponds to the biomass yield on glucose under anaerobic conditions,

and in terms of linear programming to the negative of the shadow price defined as:

γi = −dz
dbv

i

, (5.17)

where z is the objective function optimal value (specific growth rate in this case) and bv
i

corresponds to the violation of a mass balance constraint and is equivalent to the up-

take reaction of the i-th metabolite (glucose in this example)[156]. Figure 5.3.C shows

that the glucose shadow price is equal to -0.1 at every point in the feasible region of

the problem. Figure 5.3.D shows the shadow price values for oxygen uptake. For ev-
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Figure 5.3: Phenotypic phase plane of the metabolic model shown in Figure 5.1, cal-
culated as a function of the uptake rates of oxygen and glucose.

ery unit increase in the oxygen uptake flux, the biomass specific growth rate increases

by 0.4 1/h. Thus, the plane of increasing growth rate values in Figure 5.3.A can be de-

scribed by the equation 0.1vG + 0.4vO2. Concomitantly, as the oxygen uptake increases,

the flux of product P1 decreases as more ATP is generated in reaction v3. For every

constant glucose uptake flux, the specific growth rate increases and the production of

P1 decreases until the optimally line (red line) is reached in Figure 5.3.A. This line rep-

resents the optimal relation between the two metabolic fluxes in the PhPP [156]. In

this example, the optimally line represents the combinations of glucose and oxygen

uptake fluxes leading to a complete oxidation of the substrate, and thus supporting

the maximal biomass yield. Finally, increasing the oxygen consumption beyond the

optimally line, at a constant glucose uptake, leads to an infeasible problem since there

is no further glucose to be oxidized.

5.5.2 Non-uniqueness of optimalmetabolic states: possible reasons

Although the optimization of some objective function strongly reduces the number

of solutions, it is still possible that many different metabolic states satisfy the con-

straints and reach the same maximal value for the objective. In that case, we are

again undecided on which of the solutions gives the most useful information about
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the biological problem. This non-uniqueness of the optimum can be explained in

terms of the elementary flux modes. In the second panel of Figure 5.2 we saw that

the optimal solution was located on the vertex that was as far as possible in the op-

timization direction. One can imagine, however, that the flux cone can be located in

the space such that there are two vertices that both reach out equally far into that di-

rection. In that case, the two corresponding elementary flux modes perform equally

well, and consequently, all convex combinations of these elementary fluxmodes also

reach the same objective value. In metabolic modeling we often work in a high-

dimensional space with constraints that concern only few of those dimensions (for

example a bound only on a nutrient uptake rate). In such cases it is very likely that

many elementary flux modes perform equally well, so that there is a whole subspace

of equivalent solutions.

5.5.3 Flux Variability Analysis

The equality and inequality constraints of the FBA problem form a polytope where

the problem is feasible, a cone if the problem is written in canonical form. The opti-

mal solutions of the LP problem can lay on a vertex of the polytope, and be unique, or

be non-unique solutions if the objective function hyperplane is parallel to a facet of

the constraint polytope at the solution. This means that one or several variables can

change their values without affecting the value of the objective function. These vari-

ables can be identified using flux variability analysis (FVA), where each flux of the reac-

tions in the metabolic network (the set of J reactions with N elements and I metabo-

lites) maximized and minimized, one at a time, while fixing the value of the objective

function to a fraction of the optimal value obtained in the original FBA problem.

max
v

vj(ormin
v
vj), such that :∑

j∈J

Ni,jvj = 0, ∀i ∈ I,

vlb
j ≤ vj ≤ vub

j ,

vbiomass = f · v∗
biomass,

vj ∈ R, ∀j ∈ J.

(5.18)

Hence, 2N optimizationproblemsneed to be solved if there are N unconstrainedfluxes.

The results of the FVA analysis should be carefully interpreted. Since the maximum

and minimum fluxes are calculated one at a time, and although changes in this flux

might not affect the objective function, this typically requires changes in the remain-

ing fluxes. Therefore, the polytope that describes all alternate optimal solutions is not

captured by FVA. Instead, FVA inscribes this polytope in the smallest possible “box”
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Philosophical remark 5.B Qualities of a model

When have we made a good model? Is the quality of a model determined by
whether it fits all experimental observations? What is the ideal size of a model?
Is the purpose of a model that it predicts, or rather that it provides insight into the
biological processes?
The answers to these questions are as common as it is unsatisfying: ‘it depends’.
Sometimes a model can be very useful if it just predicts, and does not explain, as
witnessed by the undebatable success that machine learning models have across
the sciences. However, only true understanding of the studied process can lead to
hypotheses and predictions on phenomena that are far away from the currently
available data. Themore amodel is fitted to a specific dataset, the less we are able
to extrapolate it beyond this dataset.
These questions are very relevant in the context of metabolic modeling. Metabolic
models have many unknown parameters, stemming from our ignorance of the
biological process: What is the true objective? What constraints are relevant for
determining metabolism? It is a deceptive trap to view the success of the model in
reproducing the observed data as a validation that the right parameters, objective
and constraints were chosen. A successful model only indicates that the modeled
mechanism can be similar to the true biological mechanism, but it does not show
it actually is. The problem is that, since we have many different parameters to
choose from, many different models can explain the samemetabolic observations
[158].
An especially important question is whether metabolism is truly optimized for
some evolutionary function. It is now an attractive option to view the success of
optimization-based models as proof that the cells are indeed optimized, but this
would be wrong because we can also explain the data with models that do not re-
quire optimization. To really quantify whether metabolism is optimized we should
therefore devise quantitative tests that distinguish between randomly chosen and
optimized metabolic states. An interesting approach for describing the metabolic
outcome of cells, relying on statistical mechanics rather than on a selected objec-
tive function, has already been introduced [159].

[157]. Besides being useful for the identification of alternative solutions, FVA can be

utilized to identify blocked reactions under a given growth condition. These reactions

are characterized byminimum andmaximum flux values (as calculated by FVA) equal

to zero and arise due to regulatory constraints imposed to the FBA or due to network

gaps, for example, metabolites lacking a consumption or production pathways for

whom a steady-state mass balance is impossible. Thus FVA, could help in the identi-

fication of dead-end metabolites, and in the long run, in model improvement.

5.6 Concluding remarks

In this and the previous chapter, we have introduced constraint-based analysis of

genome-scale metabolic models. We started by pointing out many of the simplifying

assumptions that are associated with the study of large metabolic reaction networks.

For example, we only considered systems in chemical steady state with their envi-
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ronment, we ignored the effects of metabolite dilution, and we made semi-informed

choices for which intracellular molecules are contained in our model or summarized

in a biomass reaction. All these assumptions can be relaxed, at the cost of making

models more complex. Although it is tempting to think that the more complex a

model the more realistic it will be, there is not much use to adding additional com-

plexity if we don’t have the data to support it. Constraint-based analysis therefore

provides one way to studymetabolism at genome-scale when data are limited. In the

following chapters we will study the consequences of lifting one or more of these

simplifying assumptions.

In constraint-based analysis, one considers reaction rates (fluxes) as the variables

in the model, giving the illusion that these are directly set by the cell to regulate

its metabolic state. In reality, however, the reaction fluxes are the combined con-

sequences of enzyme expression, regulation and metabolite concentrations. If we

wish to model metabolism in more detail, we we should build models that incorpo-

rate gene expression andmetabolite concentrations systematically. Some of the next

chapters attempt this, but we have described that FBA is useful when experimental

data are limited. Certain extensions of FBA discussed in later chapters also move

beyond the steady state assumption, allowing the environment to change with time.

One example is themethod dynamic FBA, which will also be discussed in a later chap-

ter.

In this chapter we built upon the exploration of flux spaces derived from constraints

by imposing optimality criteria in terms of an objective function. The choice of the

objective function(s) and the constraints depend on the modeling purpose. We will

summarize some of the possible choices by listing three purposes that this type of

models can have.

First, constraint-based optimization can be used to collect, integrate and extrapolate

data on the metabolism of a specific organism. In this case, as much experimen-

tal information as possible can be used to refine the model. For example, measured

fluxes canbe fixedwith constraints, measuredmetabolite concentrations canbeused

to determine the thermodynamically feasible direction of reactions, and transcrip-

tome information can be used to exclude some reactions because the corresponding

genes are not expressed. One of the applications is then that unknown variables can

be inferred such that they are in accordance with the metabolic network and all the

measured variables.

Second, hypotheses can be tested on why the studied organism attains its metabolic

state. By choosing an objective function we can propose what drives the metabolic

behavior and by choosing the constraints we propose what limits the metabolic be-

havior. If the model is then in accordance with the experimental observations, we
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know that at least the hypotheses were not proven wrong. On the other hand, we

must be careful not to conclude from this that the hypotheses must be right, as we

discussed in the box with philosophical remarks.

Third, wemay use thesemodels to search for ametabolic state that results in a certain

desired behavior, for example in the secretion of a product that is useful for industrial

or medicinal reasons. In this case, the objective function is picked such that exactly

the desired behavior is maximized, often while requiring that some biomass produc-

tion is still possible because the cells need to be able to grow before the harvesting

of the product can start.

Despite these useful purposes, we have also identified several limitations of the FBA-

type models that we described here, such as ignoring metabolite concentrations, en-

zyme kinetics, and the assumption of a stationary metabolic state. The reason that

these models are still very popular is their computational simplicity: as long as the

objective function and constraints are linear in the reaction rates, the optimal solu-

tion is relatively easy to find using linear programming. Thismakes it feasible tomake

and run thesemodels on genome-scale metabolic networks, which are networks that

comprise all the metabolic enzymes for which the genome encodes, and can include

thousands of reactions.

Understanding the solutions of such large models can also be very difficult due to

their dimensionality. This is made easier when one uses elementary flux modes: we

have seen that a solution is always a combination of a relatively small number of

EFMs. More precisely, the number of EFMs that are active in the optimal solution

cannot exceed the number of imposed constraints. This means that to understand

the solution, we only need to understand which EFMs are selected and why. As such,

we can interpret optimal solutions in terms of the EFMs, i.e. the minimal metabolic

strategies, that are used.

Recommended readings and tools

Escher FBA Escher FBA (sbrg.github.io/escher-fba/) is a nicely illustrative tool for FBA

on an E. coli core model. Bounds on all reactions can be changed and different ob-

jectives can be explored. The resulting flux distribution is shown graphically.

Problems

Computer exercises for this chapter can be found on the book website.

Problem 5.1 Flux distribution with constraint

Augment the metabolic network of Spirallus insilicus (Problem 4.1) by adding the

in-homogeneous constraint vupt ≤ 10mmol g−1 h−1 (cell dry mass) and calculate the flux dis-

https://sbrg.github.io/escher-fba/


Concluding remarks 131

qA−−−−→ A ATP Rft−−−−→
A + ATP R1−−−−→ B C + 10 ATP Rz−−−−→ Biomass
B R2−−−−→ 2 ATP + 3 NADH + C

qO2−−−−→ O2

0.2 C R3−−−−→ 2 NADH C Cout−−−−→
C R4−−−−→ ATP + 3 D D Dout−−−−→
C + 2 NADH R5−−−−→ 3 E E Eout−−−−→
NADH + O2

RRes−−−−→ 2 ATP

Table 5.1: Stoichiometry of the metabolic network for problem 5.2. Adapted from
[160] after [156].

tribution if biomass is the objective function (maximize v5).

(a) Using a spreadsheet and its associated linear programming optimizer.

(b) Using an LP solver in Python such as linprog available in scipy.optimize.

(c) Is the flux distribution unique? Calculate the maximum and minimum values of

each flux (except for the uptake of substrate andbiomass production) if v5 should

be equal to its optimal value (v∗
5) and if this constraint is relaxed to v5 ≥ 0.9 v∗

5.

Problem 5.2 Choice between phenotypes

Themetabolic network illustrated in Figure 5.1, adapted from [156], was designed to

include four phenotypes that can be reached depending on the ratios of the oxygen

and carbon source (A) uptake, defining zones of single nutrient and dual nutrient

limitation.

(a) If the uptake of the carbon source A is bounded between 0 and 10 mmol g−1 h−1 and

no restrictions on the oxygen uptake are imposed, prepare a plot showing the

biomass, C, D and E fluxes attained at different uptakes of A.

(b) Repeat the preceding analysis, but limit the maximum uptake rate of oxygen to

10 mmol g−1 h−1.

(c) If substrates uptakes are bounded between 0 and 10 mmol g−1 h−1 for A and 0 and 20

mmol g−1 h−1 for oxygen, calculate the phenotype phase plane. In each region of the

phase plane (defined by a different slope), pick a combination of A and oxygen

uptakes and analyze the fluxes of C, D and E.
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Chapter 6

The enzyme cost of metabolic

fluxes

Wolfram Liebermeister and Elad Noor

Chapter overview

◦ In this chapter we discuss why certain pathway designs have been selected by

evolution, by hypothesizing that some are more beneficial than others – based

on several possible criteria and optimization goals: minimizing the number of re-

actions, maximizing product yield, increasing reaction turnover rates, and avoid-

ing small thermodynamic driving forces.

◦ It turns out that all these criteria are related to a single objective: minimizing en-

zyme demand per product production rate or, equivalently, maximizing “enzyme

productivity”.

◦ We first focus on simple unbranched pathways with predefined flux distribu-

tions. We discuss several feasibility and optimality problems where metabolite

concentrations are independent variables and solve for the minimal enzyme de-

mand. In this setting, we see how enzyme productivity can be assessed or pre-

dicted and how it depends on different systemparameters such as kinetics, ther-

modynamics, and concentrations of enzymes and metabolites.

◦ We discuss the difference between growth rate and yield. We then illustrate it

by comparing between pathway options for glycolysis.

133
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6.1 What guides evolution to select one pathway over

another?

In the previous chapters, we asked what flux distributions are possible in a network,

and which are most profitable for a certain task. Now we shall ask, more specif-

ically, what led to the choice of existing pathways, or what makes a pathway variant

favorable over another one that exists, or may have existed, in evolution. Of course,

the same question plays also an important role in metabolic engineering, when new

pathways are added to an organism, typically with the goal of achieving a maximal

production, while imposing the smallest possible burden on the cell.

The chemical space is vast and many options exist for the same process, even if

we consider only reactions with known enzyme mechanisms and impose thermo-

dynamic constraints. Hence, while evolution had a choice between many pathway

variants, only a tiny fraction of these possible variants is actually realized in nature,

and a core part of central metabolism almost always follows the exact same design.

The few exceptions that exist actually prove the rule, such the two natural variants of

glycolysis discussed later in this chapter. How can we understand why a certain vari-

ant is used in a certain organism or situation? And why are many variants not used

at all? Moreover, some very successful pathways show features that might appear

strange at first glance [161]: in glycolysis, an initial investment of ATP is required, and

only later it is recovered in higher amounts leading to a net gain. Is this just an evolu-

tionary accident, i.e. a case where the pathway that evolved first is the one that stuck

around although it is not necessarily better than all the alternatives? Or, rather, evo-

lution did manage to find the optimal solution and therefore we should try to explain

what the advantages of these “engineered” features are?

In this chapter, we assume that it was a selection for functional features, not chance,

that determined these pathway “choices”, and ask: what guides evolution to select

one pathway over another? What are the criteria that make pathways “efficient” or

“profitable” for a cell or, alternatively, for a metabolic engineer? To compare path-

ways, we assume that each pathway comes with a predefined flux distribution, and

therefore a predefined product yield, and alternative pathways (yielding the same

product) are compared at equal product production rates.

When people talk about natural ecosystems, diversity is usually the first topic dis-

cussed. Indeed, evolution through natural selection is almost guaranteed to create

diversity where species evolve to occupy biological niches while exploring the vast

space of possible phenotypes. Similarly, the world of biochemistry is a vast space

of possible reactions. Metabolic enzymes participate in a network of pathways that
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Philosophical remark 6.A What do we mean by a ”pathway”?

The notion of “pathways” is common in cell biology to describe a set of reactions,
proteins, or processes that form a functional unit. However, there is no general
definition: in practice, a pathway is often just a subregion of interest within a larger
network. In metabolism, “pathways” often lead from some important substrate
to some important product, with a simple and predefined flux distribution that
consumes substrate(s), generates product(s), and may or may not make use of co-
factors. Considering fluxes in specific pathways (instead of flux distributions in the
entire network) is often a practical choice and, importantly, a choice that assumes
that we can model, understand, manipulate, or engineer such a pathway without
strongly affecting the rest of the cell. This has a number of benefits: (i) Instead of
studying a hugenetwork, we can look at pathways separately; (ii) there are reasons
to believe that the flux distributions in enzyme-efficient metabolic states must be
elementary flux modes (see Chapter 4). Since EFMs often entail discrete choices
between different pathways, it canmake sense to study these pathways separately
(iii) once we understand the costs and benefits of single pathways (with a single,
scalable flux mode), we can apply the same thinking to analysing flux distribution
on the entire metabolic network. Thus, in the rest of this chapter, all results
about “pathways” will also hold generally for entire networks, as long as a (scalable)
flux mode is given. Instead of comparing alternative pathways, we can compare
alternative flux modes. In the following chapter, we use this for optimizing over
the set of all possible flux modes that a given network can support.

supply cells with energy, and building blocks for biomass. Scientists have been study-

ing these biochemical reactions for nearly 300 years [162] – so far tens of thousands

such reactions have been classified; certainly many more exist in nature. Here are

a few online databases where biochemical reaction data are collected or predicted:

MetaNetX, KEGG, MetaCyc, BiGG, ModelSEED, ATLAS of biochemistry.

To study the choice between pathways variants, we consider alternative pathways

leading from A to B (or having a certain net sum formula) and their respective advan-

tages and disadvantages. For simplicity, let us focus on biosynthesis pathways whose

main task ismore or less clear: producing a precursormolecule. Thus, the theoretical

question would be: if a cell needs to make B from A, which pathway should it use?

More specifically, how should the metabolic reactions be chosen and in what order?

What should their kinetics and how should they be regulated?

If the pathway variant found in nature is due to selection for “good functioning”, then

what are the features that make existing pathway designs successful? In short, what

are criteria for “good” pathways? One possible criterion seems to be simplicity, that

is, choosing a short route from pathway substrate and pathway product.

In contrast to the hugediversity that is allowedby the catalytic capabilities of enzymes,

a few metabolic pathways are extremely ubiquitous and exist virtually in every living

cell. For example, glycolysis is a general term for pathways that convert glucose to

https://www.metanetx.org/
https://www.kegg.jp/
https://metacyc.org/
http://bigg.ucsd.edu/
https://modelseed.org/
https://lcsb-databases.epfl.ch/pathways/atlas/
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Figure 6.1: Two natural variants of the glycolysis pathway, named after their discov-
erers: Embden-Meyerhof-Parnas (EMP) and Entner-Doudoroff (ED) – The pathways
are part of the core metabolism shown in Figure 3.1.

pyruvate while producing ATP [161]. One variant of glycolysis, named after Gustav

Embden, Otto Fritz Meyerhof, and Karol Parnas (or the EMP pathway for short, see

Figure 6.1), was the first metabolic pathway to be discovered by scientists [162]. Of-

ten, the pyruvate is reduced to lactate or ethanol, which makes the pathway redox

balanced. Therefore, it one of the most common way for producing ATP anaerobi-

cally (i.e. without oxygen to serve as an electron acceptor). Another common variant

was discovered in 1952 by Nathan Entner andMichael Doudoroff [163] (ED for short).

For example, E. coli is capable of metabolizing glucose through both the EMP or the

ED variants, and often does so simultaneously [93].

More generally, the overall reaction describing glycolysis is:

Glucose + 2 NAD(P)+ + nADP + nPhosphate −−−−→ 2 Pyruvate + 2 NAD(P)H + nATP + nH2O (6.1)

where the value of n for the EMP pathway is 2. Ng et al. [164] explored the space

of all possible glycolyses (with different values of n), by exhaustively enumerating all

glycolytic pathway variants. In order to generate the variants, they adapted a compu-

tational method first introduced by Bar-Even et al. [165] for finding alternative carbon

fixation cycles – metabolic cycles whose net reaction converts CO2 into organic com-

pounds. You start by collecting a database of known biochemical reactions (e.g. from
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a database such as KEGG [166]) and then use a linear-programming algorithm to iden-

tify the set of reactions with theminimal sumof fluxes that conform to the predefined

net reaction (e.g. 6.1). The objective is somewhat arbitrary, but since solving the LP

requires setting an objective, we chose themin-flux as a reasonable proxy for the sim-

plicity of the pathway. In any case, we will soon see how one can iterate through all

possible solutions. Ng et al. [164] used this algorithmwith the stoichiometry from 6.1

to find all possible glycolysis pathways comprising known enzymatic reactions (see

Box 6.B).

The objective set by the linear problem (6.2) is minimizing the sum of fluxes, which

corresponds to pathways with fewer reactions and low fluxes in each one. As dis-

cussed in 5.2, this objective is only a crude proxy for the efficiency of a pathway, and

its only purpose is to get the pathway solutions in a relatively logical order. Although

we have discussed global enzyme constraints in previous chapters (such asmolecular

crowding and proteome allocation), when comparing pathways we will focus only on

the efficiency of the pathway itself. This will allow us to compare pathways without

thinking about the rest of the cell or a specific metabolic context. But how can one

quantify the efficiency of a pathway? The next section will be dedicated to exactly this

question.

6.2 Pathway efficiency - some notions and thoughts

For glycolysis alone, Ng et al. [164] found 11,916 alternatives that produce at least

one mole of ATP per mole of glucose. These include, of course, the EMP pathway.

Although evolution can explore these options, natural selection typically converges

on one or a few efficient variants. This does not mean that every single pathway

observed in nature must be optimal, but we generally expect cells hosting highly in-

efficient pathways to eventually become extinct. Iacometti et al. [168] tested this ex-

perimentally by knocking out the EMP pathway from E. coli and forcing the cells to

use the alternatives that naturally exist in this bacterium. In all cases, growth rates

were slower than in the wild-type.

Before we discuss other examples for metabolic pathways, we need to define what

we mean by “efficiency”. There are several criteria one should consider:

◦ Low consumption rate of the substrate

◦ High generation rate of the product

◦ High regeneration rate or low consumption rate of the co-factor

◦ Small number of steps [169]

◦ Higher thermodynamic forces [170, 171]

◦ High enzyme turnover numbers

◦ High enzyme saturation levels
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Some of these criteria refer to the cost (or investment) of the pathway, while others

reflect the benefit (or profit) to the cell. By considering two common scenarios – single

nutrient limitation or exponential growth in rich media – we can focus on two simple

criteria which provide good measures of efficiency.

When the availability of a single nutrient is limiting growth, maximizing the molar

yield (i.e. the number of moles of product generated for each mole of the nutrient)

becomes the important feature. Yield is rather straightforward to calculate, as it

is a direct outcome of the stoichiometry of the pathway. For example, anaerobic

fermentation is often compared to respiration and deemed inefficient since it yields

two moles of ATP per glucose, instead of ≈30 [172].

On the other hand, when conditions are good, such as during exponential growth in

rich media, minimizing the total number of proteins required is often the objective

which determines growth rate. . Here, we will be using the enzyme demand (e.g. in

grams of protein) per unit of flux (typically, in mmol per hour per gram of cell dry

weight). In fact, the enzyme demand per flux, as an objective, takes into consider-

ation both the cost (protein) and the benefit (flux). Importantly, these two criteria

scale linearly with respect to each other: doubling the amount of all enzymes without

changing any of the metabolite concentrations would directly double the flux in the

pathway. Therefore, this measure of efficiency is independent of the magnitude of

the flux in the pathway. But, as we will see shortly, enzyme demand is a non-linear

function, making it trickier to compute compared to other constraint-based problems

such as ones we’ve seen in previous chapters.

Notably, these two measures of efficiency are not only useful for evolutionary pro-

cesses, but for bioengineering as well. Obviously, the molar yield has economical

implications when, for example, producing ethanol from sugar. However, the rate

of a bioprocess is important as well due to the costs involved, e.g. for maintaining

an operational bioreactor. One can imagine a computational model that accurately

predicts the enzyme demand per flux of a pathway. Choosing the pathways with the

lowest demand would be a good strategy for increasing the overall rate of bioproduc-

tion [173].

We define the enzyme demand per unit flux as the total amount of enzyme (in grams

of protein) that is required to catalyze all of the pathway reactions at their required

rates. We start by deriving a formula for the demand of a single enzymatic reaction.

Consider an enzyme-catalyzed reaction:

S −−−−⇀↽−−−− P (6.4)

where s and p will be the concentrations of the substrate (S) and product (P) respec-
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tively, and E the concentration of the enzyme which catalyzes this reaction (for sim-

plicity, we drop the tot subscript from Etot). Here, we will be using the factorized rate

law (Eq. 3.10), but other kinetic rate laws would produce similar results. The rate of a

reaction is given by:

v = e · k+
cat · s/KS

1 + p/KP + s/KS
·
(

1 − e∆rG′/RT
)

(6.5)

where k+
cat is the forward turnover rate, Ks and Kp are the Michaelis-Menten constants

for the S and product P, and ∆rG
′ is the Gibbs free energy. So, the minimal amount of

enzyme that is required for reaching a given rate v is:

q ≡ v · h · 1
k+

cat
· 1 + p/KP + s/KS

s/KS
·
(

1 − e∆rG′/RT
)−1

, (6.6)

where h is a number converting enzyme concentration e into enzyme amount q (for

example, the enzyme molecular mass). For an illustration, see Figure 6.2 . Summing

up the demand across all the reactions in the pathway (each with its own rate, kinetic

parameters, and substrate/product concentrations) will produce the total enzymede-

mand. Looking at this function, we can already make some interesting observations.

First, the kinetic parameters (k+
cat, Kp, and Ks) can be treated as constants since they

change only in evolutionary timescales, and we often assume that existing enzymes

already have near-optimal kinetics (although that’s not always the case). Since we

care about the demand per pathway flux one can, without loss of generality, set v to

1. However, if the pathway requires a non-trivial ratio between some reactions, the

value of v can be different based on the stoichiometry. Finally, the thermodynamic

term, i.e. 1− e∆rG′/RT (which we will discuss in more detail in the following section, 6.3), is

a function of themetabolite concentrations and the Keq, which is another constant. So,

generally speaking, enzyme demand is defined by a set of constants that are unique

to each pathway, and variables that represent the metabolite concentrations. Since

these concentrations are subject to change depending on the growth conditions, we

often treat them as optimization variables and try to find the minimal demand possi-

ble within certain constraints. In Section 6.4, we will see a general method for finding

the minimal value using convex optimization.

Most of the proposed criteria for good pathways have either to do with material in-

vestments (such as substrate, cofactor, or energy demand) or with “machine invest-

ments”, that is, enzyme demands. Enzyme demands, in turn, depend on pathway

length, enzyme masses, and enzyme efficiency, and therefore on rate laws (where

kcat values, thermodynamic forces, and metabolite concentrations come into play). In

fact, many criteria which we discussed earlier as indicators of efficiency are actually

an approximation of the enzyme demand under certain assumptions. For example,

the number of steps is proportional to the total demand if all enzymes have exactly
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Figure 6.2: Enzyme cost in metabolism – (A) Enzyme-specific flux depends on a num-
ber of physical factors. Under ideal conditions, an enzyme molecule catalyses its re-
action at a maximal rate given by the enzyme’s forward catalytic constant (blue). The
rate is reduced bymicroscopic reverse fluxes (magenta) and by incomplete saturation
with substrate, causing waiting times between reaction events, or by enzyme inhibi-
tion or incomplete activation (red). (B-C) On a logarithmic scale, catalytic rates and
enzyme demand can be split into sums of efficiency terms. With lower catalytic rates,
larger amounts of enzyme are required for realizing the same metabolic flux.

the same k+
cat, saturation, and thermodynamics. Therefore, it is quite a useful rule-

of-thumb in case not much else is known about the enzymes themselves. A better

approximation, denoted Pathway Specific Activity, was used by [165] to compare CO2

fixation cycles. If we assume that all enzymes are fully saturated and irreversible, the

demand would be a direct function of the individual enzyme specific activities (specif-

ically, proportional to the sum of all their reciprocal values). But even if we know

nothing about the enzyme kinetic parameters, thermodynamics alone can provide

us with useful information with which to grade pathways. Specifically, the Keq of a re-

action is a universal constant that is not affected by enzymes, but rather determined

solely by the chemical structures of the substrates and products.

In the following sections, we will focus on enzyme use efficiency as a main objective

and consider a thermodynamic approximation, relating enzyme demands to ther-

modynamic forces. For linear metabolic pathways, optimal enzyme profiles (and the

associated metabolite profiles and enzyme costs) can be computed with closed for-

mulae. We will also discuss a way to compute optimal enzyme profiles numerically,

for networks of any shape and size, as long as the flux mode is known.



The role of thermodynamics 141

6.3 The role of thermodynamics

In general, when considering larger metabolic networks, thermodynamic feasibility

can play an important or even crucial role in determining which pathways are used.

In this section we will discuss this role more explicitly and see how thermodynamics

can still give us useful insights about pathway efficiency even when no other kinetic

data is available.

Why are thermodynamic driving forces a meaningful criterion for good pathways? In

brief, the driving forces, defined as θ ≡ −∆rG
′/RT , play a double role: first, they determine

whether or not a pathway flux is feasible at all, given the metabolite concentrations

at the pathway boundary (i.e. the metabolites that form connections to the broader

metabolic network); and second, in case the pathway is feasible, driving forces can

affect enzyme efficiency and, consequently, the enzyme demand for a given desired

pathway flux. In Chapter 3, we learned that ∆rG
′, and hence the driving force θ, de-

pends on the equilibrium constant Keq of the reaction and on the substrate and prod-

uct concentrations. We also learned that for a flux in forward direction, the driving

force must be positive. Beyond that, the efficiency of an enzyme is proportional to

ηfor(θ) = 1 − e−θ, a function that ranges between 0 (for θ = 0, reactions in thermodynamic

equilibrium) and 1 (θ � 1, reactions far from equilibrium). Let us now see how this

non-equilibrium relation affects pathway efficiency.

6.3.1 Enzyme kinetics and driving forces

We should remind ourselves some of the lessons learned in Chapter 3. Specifically,

recall the factorized rate law [82] with a reversibility term that is an explicit function

of the Gibbs energy (Eq. 3.10):

v = e · k+
cat ·

∏
i s

ni
i /Ks

1 +
∏

j p
nj

j /Kp +
∏

i s
ni
i /Ks

· (1 − e∆rG′/RT ) . (6.7)

The enzyme mechanism behind this formula assumes fast binding and unbinding of

substrate and product, and a slow reversible conversion step (of bound substrate into

bound product). Note that here we generalize the rate law for cases with more than

one substrate and one product, where ni and nj are the stoichiometric coefficients of

substrates and products, respectively1. This generalization is one out of many, and

corresponds to the assumption that all reactants bind independently to the enzyme

(and at random order). We focus on this rate law because it is one of the simplest,

1In general, reaction stoichiometries can be arbitrarily scaled. For example, instead of a reaction 2 A → B,
wemay write A → 1

2 B for convenience, which will only lead to a scaling factor in the reaction rate. However,
this holds only if reaction stoichiometries are used to describe mass-balance. In cases like Eq. (6.7), where
stoichiometries appear in kinetic rate laws or in thermodynamic balances, we do not have this choice.
In these cases, the stoichiometries must reflect the molecularities, that is, the actual number of reactant
molecules involved in the enzymatic reaction.
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but the theoretical results in this chapter apply to most other generalizations as well

(e.g. convenience kinetics [174]).

According to the definition of k+
cat, and also by noticing that the middle and rightmost

terms in Eq. (6.7) are each smaller than 1, the rate of an enzymatic reaction is bounded

by v ≤ e · k+
cat (see Mathematical Details Box 6.C for a detailed explanation). However,

the additional terms are often much lower than 1, which means that the rate does

not reach its maximum. If we try to measure the apparent catalytic rate by dividing

the rate by the enzyme abundance (kapp = v/e) we would typically get a value that is

lower than k+
cat, while only in rare “ideal” cases, kapp would approach the k+

cat. In fact, this

reasoning was used by Davidi et al. [24] to estimate the k+
cat values of more than 100 en-

zymes in E. coli, where they sampledmany growth conditions and took themaximum

kapp as the estimate.

As discussed in Section 3.2.3, the factorized rate law has a thermodynamic perspec-

tive based on the flux-force relationship, where we view the reversibility term as a

“penalty” for the fact that by lowering the energy barrier, enzymes must catalyze re-

actions in both directions. When the driving force (θ) is low, the reverse reaction flux

can become significant and lower the net flux. On the other hand, if the driving force

is large enough, this term can be ignored and the rate law resembles irreversible ki-

netics .

So far we’ve seen that increasing the driving force of a single reaction translates to

a better enzyme efficiency and lower demand. If we consider whole pathways, ones

whose overall driving force is larger have more of it to distribute among the reac-

tions and therefore should also have higher efficiencies overall. However, using “too

much” driving force can also have downsides. Using a larger amount of the Gibbs

energy to drive the pathway reactions means that less of that energy would go for

building biomass or currency metabolites such as ATP. An example for this trade-off

between the efficiency of single enzymes (in terms of backward rates) and the overall

pathway efficiency (in terms of ATP yield) was demonstrated by Flamholz et al. [175]

who analyzed two versions of the famous glycolytic pathway (see Figure 6.1 below).

6.3.2 Driving forces should not be too small

With the factorized rate law 6.7, we can approximate the reaction rates by v ≤ e kcat (1−e−θ)

(where we assume positive fluxes by convention). The thermodynamic efficiency ηfor =

1−e−θ plays a prominent role. As shown in Figure 6.3, this formula yields two important

approximations: for small forces θ, that is, close to equilibrium, we obtain ηfor ≈ θ, while

for large forces, that is, for strongly forward-driving reactions, we obtain ηfor ≈ 1. In fact,

both approximations also serve as upper bounds across all θ values. What does this

mean? Far from equilibrium, the thermodynamic term does not play a role and can
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Figure 6.3: The thermodynamic efficiency term ηfor and some approximations – (A) In
a given reaction, the thermodynamic efficiency term ηfor = 1 − e−θ (solid line) can vary be-
tween 0 and 1 depending on the driving force θ. Small driving forcesmake the enzyme
inefficient, since ηfor → 0, while for large forces, thermodynamics does not play a role as
ηfor → 1. The dashed lines show two linear approximation that hold always as bounds,
but can also be used as good approximations for small or large θ values, respectively:
(1 − e−θ) < θ and (1 − e−θ) < 1. (B) The reciprocal value 1/ηfor is one of the factors determining
enzyme demand. The solid line shows the thermodynamic demand factor 1/ηfor, while
the dashed lines show the resulting approximations 1/ηfor > 1/θ and 1/ηfor > 1, correspond-
ing respectively to the enzyme demand approximations e ≥ v

kcatθ and e ≥ v
kcat
.

be ignored. Close to equilibrium, in contrast we obtain a simple approximation for

fluxes

v < e · k+
cat · (1 − e−θ) < e · k+

cat · θ (6.8)

and hence for the enzyme demand

e >
v

k+
cat · (1 − e−θ)

>
v

k+
cat · θ

. (6.9)

As θ goes to zero, the enzyme demand (for a given desired flux) goes to infinity. We

already know the reason from Chapter 3: the driving force determines the ratio of

forward and reverse one-way fluxes, v+

v− = eθ. If θ comes close to zero, their relative

difference becomes very small, and in order to obtain a given net flux v = v+ − v−, both

v+ and v− must grow enormously, which would require an a large amount of enzyme.

This effect concerns only very small θ values - for θ much larger than 1 (or ∆rG
′ much

smaller than -RT), it can be neglected. Therefore, redistributing driving forces be-

tween reactions, to avoid very small forces, can save enzyme costs. The relation

between driving forces, enzyme efficiency enzyme demand is shown in more detail
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Figure 6.4: Thermodynamic forces, enzyme efficiency, and enzyme demand in a lin-
ear chain of reactions – The plot in the center represent two possible profiles of the
thermodynamic driving forces (blue and red). The curves describe the cumulative ∆rG

′

values: while the total ∆rG
′ is fixed (and determined by external metabolite concentra-

tions), the shape of the profile can vary. In the optimal profile (in red), small driving
forces are avoided. The driving forces determine the ratios of forward and backward
one-way fluxes (red arrows), and at a given net flux (black arrows) the enzyme de-
mands. In the suboptimal blue curve, in contrast, the last three reactions show lower
forces, and therefore relatively high reverse fluxes (blue arrows); to obtain the same
net flux, forward and backward fluxes have to be strongly increased, which increases
the enzyme demand.

in Figure 6.4.

If small driving forces should be avoided to prevent enzyme costs from going infinity,

how can this happen in practice? The driving forces themselves dependonmetabolite

levels, which can vary over several orders of magnitude. While the true metabolite

concentrations are usually unknown, we hypothesize that selection favors concen-

tration profiles that prohibit very small driving forces, in order to escape the ensuing

large enzyme demands. Of course, completely avoiding small driving forces may be

impossible, as there is always a trade-off: if a metabolite concentration decreases,

the driving forces of all reactions producing it will increase, but the driving forces of

all reactions consuming it will decrease simultaneously. So, all else being equal, the

optimal metabolite profile is one that distributes its driving forces as evenly as possi-

ble.
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6.3.3 Max-Min driving force method

Previously in Chapter 4.4.3, wediscussed adding thermodynamic constraints to constraint-

based models in order to comply with the second law of thermodynamics. We can

extend that approach in order to implement the idea of avoiding small driving forces.

When we talk about the thermodynamic profile of a metabolic pathway, we usually

try to visualize it by the cumulative Gibbs energy of reaction: we start at 0 and at each

step add the ∆rG
′ of the next reaction, which, assuming the pathway is feasible, is a

negative number. The profile therefore has a shape of a downhill slope. The end

point represents the total Gibbs energy and depends only on the concentrations of

the metabolites that are part of the net reaction. Intermediate metabolites do not

affect it, but they do determine the shape of the profile itself (see Figure 6.4). Specifi-

cally, each intermediate metabolite typically affects the driving force of two reactions

– the one producing it and the one consuming it – with opposite signs. Therefore,

changing the concentration of an intermediate can help increase the driving force of

one reaction, but always at the expense of another reaction. This strong coupling

between ∆rG
′ is why it is not trivial to find the optimal thermodynamic profile of a

pathway.

The Max-Min driving force method (MDF) [176] is a method for predicting metabolite

concentrations, based on the principle of evenly distributed driving forces. All fluxes

are fixed and given, and assumed to be positive. It assumes that each metabolite

concentrationmust remain in a predefined range, converts each choice ofmetabolite

concentrations into the corresponding pattern of driving forces, and determines the

smallest resulting driving force in the network. If this smallest driving force is negative,

the flux distribution cannot be realized thermodynamically. Otherwise, the larger

this smallest driving force, the better the overall metabolite profile. Hence, among

all possible metabolite profiles, MDF predicts the one that maximizes the value of

the minimal driving force across the network. Mathematically, this leads to a linear

optimization problem: in the space of logarithmic metabolite concentrations, a lower

boundon all driving forces (denoted B) ismaximized (Eq. 6.10). An illustrative example

is shown in Figure 6.5.

Maximizex,B B

Subject to − (∆rG′◦ +RT · N>x) ≥ B

ln
(

Cmin

)
≤ x ≤ ln(Cmax)

(6.10)

MDF is easy to apply: it is based on a simple Linear Programming problem and re-

quires only the following input data: (i) the stoichiometric network; (ii) the flux direc-
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Figure 6.5: Max-Min Driving forcemethod (MDF): an optimality problem inmetabolite
space – (A) Example pathway with given equilibrium constants and fixed concentra-
tions of the external metabolites X and Y . What are the most favorable concentra-
tions of the internal metabolites A and B? Assuming that small driving forces should
be avoided in all reactions, MDF determines the metabolite profile that optimizes a
worst case: it maximizes the worst (that is, smallest) driving force among all three re-
actions. (B) Driving force in reaction 1, as a function of the logarithmic concentrations
of A and B, called ln a and ln b. Higher concentrations of A (the reaction product) lead to
smaller driving forces. Above a critical value (where X and A are in equilibrium), the
driving force becomes negative, and a forward flux is impossible (gray region). The
concentration of B, which does not participate in the reaction, does not play a role.
(C) Driving force for reaction 2. Here, it is the ratio b/a that counts. The lower the ratio
(lower right), the higher the driving force. If the ratio is higher than the equilibrium
constant, the driving force becomes negative (grey region). (C) Driving force for re-
action 3. (E) By overlaying the contours in (B), (C), and (D) and taking the minimum
value, we obtain theminimal driving force θmin among all three reactions. θmin is a piece-
wise linear function of ln a and ln b within the feasible range, yielding positive forces in
all three reactions. The maximum point of this function is the optimum metabolite
profile predicted by MDF. In the example shown, the feasible concentration space is
entirely defined by the driving forces themselves, given the external concentrations.
In general, physiological concentration ranges for all metabolites could further de-
crease the solution space and shift the optimum point (not shown).

tions; (iii)) the known equilibrium constants (or equivalently, the standard reaction

Gibbs free energies); (iv) physiological ranges for metabolite concentrations. Based

on these data alone, metabolite concentrations and driving forces (or ∆rG
′ values) are

predicted. An example application can be found in Hädicke et al. [177], where the

potential of CO2 fixation in E. coli via endogenous pathways was analyzed using MDF.

A theoretical insight from MDF is the notion of distributed bottlenecks. A simple bot-

tleneck would consist of a single reaction whose driving force cannot be increased

because the substrates are at their upper concentration bounds and the products
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are at their lower concentration bounds. Given the fixed equilibrium constant, noth-

ing can be done to increase the driving force in this reaction. A distributed bottleneck

is more complicated: it consists of a series of reactions that all share the same low

driving force, which, because of all the concentration constraints in the system, can-

not be further increased (e.g. as in Figure 6.4). Even though each single reaction looks

“harmless” because its own driving force could still be increased, this increase would

happen at the expense of other driving forces.

6.3.4 The role of thermodynamics for metabolic states

In summary, thermodynamics provides important clues both about the feasibility of

pathways fluxes and about their enzyme demand. To use this knowledge, fluxes need

to be considered togetherwithmetabolite concentrations (to obtain the possible driv-

ing forces), but no detailed knowledge of enzyme kinetics is required. Thermodynam-

ics alone yields an upper bound on fluxes (and hence, a lower bound on enzyme de-

mands) that holds for any kinetic rate laws. The only required data (except for the

metabolic network itself) are equilibrium constants (or equivalently, standard Gibbs

free energies of reactions ∆rG
′◦), which can be obtained from the eQuilibrator tool

(equilibrator.weizmann.ac.il) [178, 68, 69] as well as physiological bounds onmetabo-

lite concentrations. Given this information, and given a feasible choice of metabolite

concentrations, we can compute the driving forces of all reactions, and from the fac-

torized rate law (and assuming positive fluxes by convention) we can then approxi-

mate the reaction rates by v ≤ e kcat (1 − e−θ).

We also recall from Chapter 3 that driving forces are not independent between re-

actions, but depend on the metabolite concentrations, which creates trade-offs: in a

chain A R1→ B R2→ C, a lower concentration of B will increase the driving force in R1, but

decrease the driving force in R2. For high enzyme efficiency (low enzyme demand), all

driving forces should in principle be high, but this is most important for low θ values

(while for θ � 1 it does not even matter). Therefore we may conclude that, to save en-

zyme, a cell should rearrange its metabolite levels within physiological bounds such

that small θ are avoided. Implementing this as an optimality problem, we obtainMDF.

In conclusion, we described (i) a general rule of thumb that poor thermodynamics

makes reactions costly; (ii) simple approximations of enzyme cost; and (iii) practical

methods (MDF) to obtain metabolite profiles with favorable thermodynamic proper-

ties.

https://equilibrator.weizmann.ac.il
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6.4 Enzyme cost minimization

6.4.1 Enzyme cost minimization

The problemofminimizing the total enzymedemand (or cost) for a given pathway can

be solved numerically, thanks to the fact that they are always convex [179]. Finding

the minimum of the convex objective (the total enzyme cost) in a convex set (the set

of admissible metabolite profiles, a convex polytope in log-metabolite space) can be

done efficiently. In contrast to general optimality problems, such problems have a

unique local optimum, which can be found by simple numerical methods. In this

section, we demonstrate it with a simple example, the same three-reaction pathway

that you already saw in Section 6.3 above.

6.4.2 Enzyme cost landscape of a metabolic pathway

Given the fluxes, kinetics, and concentration bounds in a metabolic pathway model,

one can predict the enzyme demand by assuming that cellsminimize the enzyme cost

in that pathway. In the Enzyme Cost Minimization method A reaction rate v = e · κ(s)

depends on enzyme level e and metabolite concentrations si through the enzymatic

rate law, κ(s). If themetabolite concentrations were known, we could directly compute

enzyme demands e = v/κ(s) from fluxes, and similarly calculate the flux-specific enzyme

demand e/v = 1/κ(s). However, metabolite concentrations are usually unknown and

vary between experimental conditions. Therefore, there can be many solutions for e

and s realizing one flux distribution. To select one of them, we employ an optimality

principle: we define an enzyme cost function (for instance, total enzyme mass) and

choose the enzyme profile with the lowest cost while restricting the metabolite levels

to physiological ranges and imposing some thermodynamic constraints. As we shall

see below, the solution is in many cases unique.

Let us demonstrate this procedure with a simple example (Figure 6.6 (a)). In the path-

way X 
 A 
 B 
 Y , the external metabolite levels [X] and [Y] are fixed and given, while

the intermediate levels [A] and [B] need to be found. As rate laws for each of the

three reactions, we use reversible Michaelis-Menten (MM) kinetics

v = e
k+

cat s/KS − k−
cat p/KP

1 + s/KS + p/KP
(6.11)

with enzyme level e, substrate and product levels s and p, turnover rates k+
cat and k−

cat,

and Michaelis constants KS and KP. In kinetic modeling, steady-state concentrations

would usually be obtained from given enzyme levels and initial conditions through

numerical integration. Here, instead, we fix a desired pathway flux v and compute
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the enzyme demand as a function of metabolite concentrations:

e(s, p, v) = v
1 + s/KS + p/KP

k+
cat s/KS − k−

cat p/KP
. (6.12)

Figure 6.6 shows how the enzyme demand in each reaction depends on the logarith-

mic reactant concentrations. To obtain a positive flux, substrate levels s and product

levels p must be restricted: for instance, to allow for a positive flux in reaction 2, the

rate law numerator k+
cat [A]/KS − k−

cat [B]/KP must be positive. This implies that [B]/[A] < Keq

where the reaction’s equilibrium constant Keq is determined by the Haldane relation-

ship, Keq = (k+
cat/k

−
cat) · (KP/KS). With all model parameters set to 1, we obtain the con-

straint [B]/[A] < 1, i.e. ln[B] − ln[A] < 0, putting a straight boundary on the feasible region

(Figure 6.6 (c)). Close to chemical equilibrium ([B]/[A] ≈ Keq), the enzyme demand e2 ap-

proaches infinity. Beyond that ratio ([B]/[A] > Keq) no positive flux can be achieved (grey

region). Such a threshold exists for each reaction (see Figure 6.6 (b)-(d)). The remain-

ing feasible metabolite profiles form a triangle in log-concentration space, which we

call metabolite polytope P (Figure 6.6 (e)), and Eq. (6.12) yields the total enzyme de-

mand etot = e1 + e2 + e3, as a function on the metabolite polytope. The demand increases

steeply towards the edges and becomes minimal in the center. The minimum point

marks the optimal metabolite profile, and via Eq. (6.12) we obtain the resulting opti-

mal enzyme profile.

The metabolite polytope and the large enzyme demand at its boundaries follow di-

rectly from thermodynamics. To see this, we consider the unitless thermodynamic

driving force θ = −∆rG
′/RT [81] derived from the reaction Gibbs free energy ∆rG

′. The ther-

modynamic force can bewritten as θ = ln Keq
[B]/[A] , i.e. the driving force is positive whenever

[B]/[A] is smaller than Keq, and it vanishes if [B]/[A] = Keq. How is this force related to en-

zyme cost? A reaction’s net flux is given by the difference v = v+ − v− of forward and

backward fluxes, and the ratio v+/v− depends on the driving force as v+/v− = eθ. Thus,

only a fraction v/v+ = 1 − e−θ of the forward flux acts as a net flux, while the remaining

forward flux is partially canceled by the backward flux. Close to chemical equilib-

rium, where the mass-action ratio [B]/[A] approaches the equilibrium constant Keq, the

driving force goes to zero, the reaction’s backward flux increases, and the flux per

enzyme level drops. This is what happens at the triangle edges in Figure 6.6: a reac-

tion approaches chemical equilibrium, the driving force θ goes to zero, and large en-

zyme amounts are needed for compensation. Exactly on the edge, the driving force

vanishes and no enzyme level, no matter how large, can support a positive flux. The

quantitative cost depends onmodel parameters: for example, by lowering a kcat value,

the increase in enzyme cost at the boundary becomes steeper and the optimumpoint

is shifted away from the boundary (see Figure 6.6 (f)).
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Figure 6.6: Enzyme demand in a metabolic pathway – (A) Pathway with reversible
Michaelis-Menten kinetics (equilibrium constants, catalytic constants, and KM values
are set to values of 1, [A] and [B] denote the variable concentrations of intermediates
A and B in mM). The external metabolite concentrations [X] and [Y ] are fixed. Plots
(B)-(D) show the enzyme demand of reactions 1, 2, and 3 at given flux v = 1 according
to Eq. (6.12). Grey regions represent infeasible metabolite profiles. At the edges of
the feasible region (where A and B are close to chemical equilibrium), the thermody-
namic driving force goes to zero. Since small forces must be compensated by high
enzyme levels, edges of the feasible region are always dark blue. For example, in re-
action 1 (panel (B)), enzyme demand increases with the level of A (x-axis) and goes to
infinity as themass-action ratio [A]/[X] approaches the equilibrium constant (where the
driving force vanishes). (E) Total enzyme demand, obtained by summing all enzyme
levels. The metabolite polytope – the intersection of feasible regions for all reactions
– is a triangle, and enzyme demand is a cup-shaped function on this triangle. The
minimum point defines the optimal metabolite concentrations and optimal enzyme
levels. (F) As the kcat value of the first reaction is lowered by a factor of 5, states close
to the triangle edge of reaction 1 become more expensive and the optimum point is
shifted away from the edge. (G) The samemodel with a physiological upper bound on
the concentration [A]. The bound defines a new triangle edge. Since this edge is not
caused by thermodynamics, it can contain an optimum point, in which driving forces
are far from zero and enzyme costs are kept low. Please note the resemblance to the
MDF problem for the same pathway, shown in Figure 6.5.

6.4.3 Enzyme cost as a function of metabolite concentrations

The prediction of optimal metabolite and enzyme levels can be extended to models

with general rate laws and complex network structures. In general, enzyme demand

depends not only on driving forces and kcat values, but also on the kinetic rate law,

which includes KM values and small-molecule regulation. We can conveniently model

or approximate these factors by using factorized rate laws. Let us write this rate laws

here again in a general form to see the different factors at play. As we learned in
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Section 6.2, the rate of a reaction depends on enzyme level e, forward catalytic con-

stant k+
cat (i.e. the maximal possible forward rate per unit of enzyme, in s−1), driving

force (i.e. the ratio of forward and backward fluxes), and on kinetic effects such as

substrate saturation or small-molecule regulation. If all active fluxes are positive, re-

versible rate laws like the Michaelis-Menten kinetics in Eq. (6.11) can be factorized as

[82]:

v = e · k+
cat · ηfor · ηsat · ηreg. (6.13)

Negative fluxes, which would complicate our formulae, can be avoided by orienting

the reactions in the direction of fluxes.

Enzyme demand can be quantified as a concentration (e.g. enzymemolecules per vol-

ume) or mass concentration (where enzyme molecules are weighted by their molec-

ular weights). If rate laws, fluxes, and metabolite concentrations are known, the en-

zyme demand of a single reaction l follows from Eq. (6.13) as

el(s, vl) = vl · 1
k+

cat,l

· 1
ηfor

l (θ(s))
· 1
ηsat

l (s) · 1
ηreg

l (s) . (6.14)

To determine the enzyme demand of an entire pathway, we sum over all reactions:

epw
tot =

∑
l el. Based on its enzyme demands el, we can associate each metabolic flux with

an enzyme cost q =
∑

l hel
el, describing the effort of maintaining the enzymes. The bur-

dens hel
of different enzymes represent, e.g. differences in molecular mass, post-

translational modifications, enzyme maintenance, overhead costs for ribosomes, as

well as effects of misfolding and non-specific catalysis. The enzyme burdens hel
can

be chosen heuristically, for instance, depending on enzyme sizes, amino acid compo-

sition, and lifetimes. Setting hel
= ml (protein mass in grams per mole), q will be in gram

protein per gram cell dry weight. Considering the specific amino acid composition

of enzymes, we can also assign specific costs to the different amino acids. Alterna-

tively, an empirical cost per protein amount can be established by the level of growth

impairment that an artificial induction of protein would cause [40, 180]. Thus, each

reaction flux vl is associated with an enzyme cost ql, which can be written as a function

ql(vl, s) ≡ hel
el(s, vl) of flux and metabolite concentrations. From now on, we refer to log-

scale metabolite concentrations si = ln si to obtain simple optimality problems below.

From the factorized rate law Eq. (6.14), we obtain the enzyme cost function

q(s,v) ≡
∑

l

hel
el(vl, s) =

∑
l

hel
· vl · 1

k+
cat,l

· 1
ηfor

l (s)
· 1
ηsat

l (s) · 1
ηreg(s) (6.15)

for a given pathway flux v. If the fluxes are fixed and given, our enzyme cost becomes,

at least formally, a function of the metabolite levels. The cost function is defined on

the metabolite polytope P, a convex polytope in log-concentration space containing
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the feasible metabolite profiles. Like the triangle in Figure 6.6, the polytope is defined

by physiological and thermodynamic constraints.

Beyondminimizing the total enzyme cost, one can also use EnzymeCostMinimization

to analyze the individual enzyme demands. When the metabolite levels are known,

the demand can be directly calculated and each efficiency factor (η) in Eq. (6.15). By

omitting some factors or replacing them by constant numbers 0 < η ≤ 1, simplified

enzyme cost functions with fewer parameters can be obtained. For example, ηfor = 1

would imply an infinite driving force θ → ∞ and a vanishing backward flux, ηsat = 1 implies

full substrate saturation, and ηreg = 1 implies full enzyme activation and no enzyme

inhibition (or no small-molecule regulation at all). In these limiting cases, enzyme

activity will not be reduced, and enzyme demand will be given by the capacity-based

estimate v/k+
cat, a lower estimate of the actual demand. Instead of omitting an efficiency

factor, it can also be set to a constant value between 0 and 1. Such simplifications and

the resulting enzyme cost functions with fewer parameters can be practical if kinetic

constants are unknown.

6.4.4 General lessons from Enzyme Cost Minimization

Enzyme cost minimization not only provides numerical solutions, but also some gen-

eral insights.

1. Convexity Enzyme Cost Minimization shows again the importance of the metabo-

lite polytope. The usage of logarithmic metabolite concentrations not only leads

to a good search space for feasible metabolite profiles (as in MDF), but also fa-

cilitates optimization because enzyme cost is a convex function of the metabolite

log-concentrations [181]. Convexity makes this optimization tractable and scalable

– unlike a direct optimization in enzyme space. Convexity holds for a wide range of

rate laws and for extended versions of the problem, e.g. including bounds on the

sum of (non-logarithmic) metabolite concentrations or bounds on weighted sums

of enzyme fractions.

2. Factorized rate lawsdisentangle individual enzymecost effects To seehowmetabolic

states are shaped by different physical factors, we considered factorized rate laws.

The different terms in these functions represent specific physical factors and re-

quire different kinetic and thermodynamic data for their calculation. By neglect-

ing some terms, one obtains different approximations of the true enzyme cost. By

comparing the different scores, we can estimate the enzyme cost that cells “pay” for

running reactions at small driving forces (to save Gibbs free energy) or for keeping

enzymes beneath substrate-saturation (e.g., to dampen fluctuations in metabolite

levels ).
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3. Relationship to other optimality approaches Beyond their practical advantages,

factorized enzyme cost functions also allow us to easily compare our method to

earliermodeling andoptimization approaches. These approaches typically focused

on only one or two of the factors that are taken into account in Enzyme Cost Mini-

mization, andmanyof themcanbe reformulated as approximations of thismethod

[176, 182, 170].

4. Enzyme cost is related to thermodynamics In FBA, thermodynamic constraints

and flux costs appear as completely unrelated aspects of metabolism (as is ex-

plained in Chapter 5). Thermodynamics is used to restrict flux directions, and to

relate them to metabolite bounds, while flux costs are used to suppress unneces-

sary fluxes. In Enzyme Cost Minimization, thermodynamics and flux cost appear

as two sides of the same coin. Like in FBA, flux profiles are thermodynamically fea-

sible if they lead to a non-emptymetabolite polytope, allowing for positive forces in

all reactions. However, the values of these forces also play a role in shaping the en-

zyme cost function on that polytope. Together, metabolite polytope and enzyme

cost function (as in Figure 6.6) summarize all relevant information about flux cost.

Many pathways are regulated, for instance by feedback inhibition of enzymes via the

end product. While this may stabilise the dynamics and adapt it to current demands,

such enzyme regulation comes at a cost, which we can estimate by following the logic

of Enzyme Cost Minimization. Many enzymes are regulated by small molecules that

act as competitive or allosteric inhibitors [183], an effective way to implement feed-

back control, for example to adapt the flux in biosynthesis pathways to current needs.

In order for such a regulation to work, the enzyme needs to be partially inhibited on

average (because only then, its activity can be increased on demand, by alleviating

the inhibition). Therefore, the enzyme efficiency goes down, and the cell needs to

provide more enzyme to catalyze the same flux than without the inhibition.

How much will this regulation cost the cell as part of the enzyme budget? From the

perspective of Enzyme Cost Minimization, where we start from desired fluxes and

compute the enzyme demand, this question is easy to answer: in the inhibited en-

zyme case, the lower efficiency will be described by a factor ηreg ∈ [0, 1] (Mathematical

Details Box 6.C). In the same reaction, the enzyme demand increases by a factor 1/ηreg,

so the extra cost is simply 1/ηreg − 1 times the “baseline” cost of this enzyme (without

inhibition). Specifically, a non-competitive inhibitor, with efficiency factor ηreg = 1
1 + c/KI

yields a cost factor 1+c/KI. If themetabolite concentrations are fixed, this corresponds

to an extra enzyme demand ∆el = el ci

KI,li
. Similarly, an enzyme activation with efficiency

factor ηreg = c/KA

1+c/KA
in the rate laws yields a cost factor 1+c/KA

c/KA
= 1 + KA/c in the formulae
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for enzyme demands. If the metabolite concentrations are fixed, this corresponds to

an extra enzyme demand ∆el = el KA,li

ci
(where l and i denote the regulated reaction and

the regulating metabolite, respectively). As usually in Enzyme Cost Minimization, an

optimal rearrangement of enzyme andmetabolite concentrationsmust be taken into

account, which will then slightly reduce the overall cost.

The predictions of optimal states by Enzyme Cost Minimization rely on two main in-

puts: a metabolic model that relates metabolite concentrations, enzyme levels, and

fluxes, and an optimality principle based on the assumption that cells realize their

production fluxes at a minimal total enzyme cost. To test whether this optimality

principle holds at all, Noor et al. [179] compared the predictions from Enzyme Cost

Minimization to predictions from the same metabolic model and the same flux dis-

tribution, but with randomly sampled metabolite profiles (and the corresponding

enzyme profiles). In comparison, metabolite profiles sampled close to the Enzyme

CostMinimization optimum yielded significantly better enzyme level predictions than

metabolite profiles sampledmore broadly. This strongly supports the idea that E. coli

metabolism, in the conditions studied, is at least partially optimized for low enzyme

cost, and thus supports cost-optimality as a principle in living cells.

6.5 Comparison of alternative pathways

Having clarified our main functional criteria for pathways (substrate productivity and

enzyme productivity) and how they depend on pathway details (including outer con-

centrations), we can now compare alternative pathways by their substrate and en-

zyme demand per production flux (an example of “cost per benefit”) and see which

one scores better.

6.5.1 A tale of two glycolyses

One of the canonical examples discussed throughout this book is how cells choose

between respiration and fermentation for making their ATP. However, having a pre-

cise kinetic model for respiration is difficult, since it involves electron transfer and

membrane-bound reactions. Therefore, it is challenging to calculate the enzyme cost

of respiration using models like those discussed in this chapter. Flamholz et al. [175]

analyzed a similar but simpler case by comparing between the EMP and ED variants of

glycolysis, since all the required enzymes are soluble and expressed in the cytoplasm

and/or the periplasm and many of their kinetic parameters are measured. The com-

mon description of glycolysis ends in pyruvate (e.g., as depicted in Figure 6.1). This

means that the pathway is not neutral in terms of redox, since the oxidation state of

pyruvate is higher than glucose. In order to simplify the comparison and focus only

on ATP yield (rather than NADH), the EMP and ED pathways were extended to end in
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lactate by including lactate dehydrogenase (ldh) as an extra step, making them redox

neutral. These could be thought of as the more relevant versions of the pathways in

anaerobic conditions.

Although EMP-based fermentation is usually described in textbooks as less efficient

than respiration, since it produces only 2 moles of ATP per mole glucose instead of

≈ 30, the ED pathway has an even lower yield – 1 mole of ATP. Nevertheless, the ED

pathway is quite common among the bacteria. For example, Zymomonasmobilis – the

bacterium used in fermenting pulque (a.k.a., agave wine [184]) and a promising plat-

form for bio-production [185] – lacks key enzymes from the EMP pathway and uses

the ED pathway exclusively to metabolize sugars. These bacteria don’t seem to be

bothered by the low ATP yield and can achieve high growth rates [186]. This already

suggests to us that the ED pathway is probably superior to EMP in other aspects, such

as the enzyme demand. Another clue was provided by a study which found that the

ED pathway improves E. coli growth during glucose up-shifts and that the flux through

it increases by 130% [187] (see Economic Analogy Box 6.D)

To see if indeed the models provide predictions that are consistent with the experi-

mental evidence, Flamholz et al. [175] first used theMDFmethod to compare the two

pathways. The ED pathway was found to be substantially more thermodynamically

favorable, with a much higher score than the EMP pathway (8.0 versus 4.8 kJ/mol, see

Figure 6.7).

Although the EMP pathway is clearly more favorable, we can still argue that an MDF

of 4.8 kJ/mol is good enough, as it means θ > 1.9 for each one of the pathway reactions.

In this case, ηfor > 0.85 (see Figure 6.3) and therefore it might be a small price to pay

for double the ATP yield. But, as discussed earlier, the efficiency of a pathway is af-

fected by other factors besides the thermodynamics. Flamholz et al. [175] tried to

see whether ED is superior to EMP also in terms of the enzyme cost using the Enzyme

Cost Minimizationmethod. Indeed, they found that the ED pathway would require ≈5

times less protein compared to EMP for catalyzing the same flux (see Figure 6.8). So,

although the ATP yield of the ED pathways is half that of EMP, one can still generate

ATP at a higher rate using the same amount of protein, according to the model.

The comparison of EMP and ED provided some insight as to a trade-off that can exists

between the yield of a pathway and its cost, or enzyme burden. However, one can

expand the question and ask if there are any other theoretically possible glycolysis

pathways that might be able to break this trade-off and be more efficient than EMP

and ED in both aspects. Ng et al. [164] tried to address this questionwith an algorithm

they called optStoic that generates all biochemically feasible routes between glucose

and pyruvate, with various ATP/glucose yields. They then ran pathway analysis on

all 11,916 options and found that indeed both EMP and ED are both (nearly) Pareto-
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Figure 6.7: Comparing two metabolic pathways using the Max-min Driving Force
(MDF) method. The light blue line represents the cumulative Gibbs free energy along
the pathway if all metabolite concentrations were 1 mM. The MDF solution is pre-
sented as a gray line, where the bottleneck reactions are highlighted in red.

optimal. This suggests that evolutionmay indeed select for features such as high yield

and low enzyme cost, where onemight be more important than the other depending

on the context.

6.5.2 Metabolic engineering

Besides the quest for understanding the evolution of existing biochemical pathways,

pathway analysis methods like MDF and Enzyme Cost Minimization have also been

used by metabolic engineers in order to rank and prioritize different alternative de-

signs. For example, Volpers et al. [188] used the MDF algorithm and the Pathway

Specific Activity measure to compare between designs of photo-electro-autotrophic

strains. Similarly, Löwe and Kremling [189] used the Enzyme Cost Minimization algo-

rithm to predict the enzyme demand of both natural and synthetic carbon fixation

cycles.

6.5.3 Predicting the metabolite concentrations

So far, the examples given in this section focused on analyzing and comparing path-

way alternatives in isolation, outside of the context of actual living organisms. How-

ever, we should not forget that the motivation for optimization goals such as enzyme

demand are derived from physiological and evolutionary principles. Therefore, the

optimal solutions coming from MDF and Enzyme Cost Minimization might be good
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Figure 6.8: Comparing two metabolic pathways using the Enzyme Cost Minimization
(ECM) method. We used the same kinetic parameters for all enzymes in both path-
ways (k+

cat = 200 s−1, KM = 200 µM, same as in [175]). However, here we used an updated
version of Enzyme Cost Minimization with the factorized rate law, therefore the re-
sults are not identical. A Jupyter notebook for generating the figure can be found on
the book website.

predictions for the actual metabolic state that exists in naturally evolved organisms.

For example, a few years after the in silico analysis of the ED pathway [175], Jacobson

et al. [190] measured the intracellular concentrations ED intermediates in Z. mobilis,

and used them to calculate the Gibbs energies of the pathway’s reactions. Indeed,

they found that they closely fit the predicted values from the MDF solution. Simi-

larly, measured values of enzyme and metabolite concentrations in E. coli correlate

with predicted values fromEnzymeCostMinimization (when empricial reaction fluxes

were obtained from 13C-MFA measurements, Figures 6.9 and 6.10) [179]. In a related

paper, Wortel et al. [191] expanded the idea of this method to explore the entire flux

polytope.

These results suggest that indeed the optimization process that occurs throughout

evolution is somewhat similar to the (much simplified) models presented here. Of

course, improving the accuracy of the inputs and accounting for other effects that

impact fitness could improve the predictions further. On the other hand, it might be

naïve to expect natural systems to be optimal, which would mean that using basic

principles to precisely predict phenotypes is an impossible task.

https://gitlab.com/principlescellphysiology/book-economic-principles-in-cell-biology/-/blob/master/book-manuscript/latex/chapters/PAT/jupyter/plot_figures.ipynb


158 The enzyme cost of metabolic fluxes

fructose-1,6P

xylulose-5P

sedoheptulose-7P

ribulose-5P

glucono-lactone-6P

gluconate-6P

glycerone-P

2e-

 
ATP
 

 
ADP
 

 
ATP
 
 
ADP
 

Pi 

2e-

glucose
 
PEP
 

 
pyruvate
 

 
CoA
 

L-malate

succinate

citrate

isocitratecis-aconitate

fumarate

 
CoA
 

2e-

2e-

 
CoA,ATP

 ADP, Pi

 
CoA
 

2e-

2e

ZWF
PGI

PFK

PTS

GLH

PGD
RPI RPE

TXT

TAL

TXT

ALD

GAP

PGK

TIM

PGM

PGH

PYK

PDH

glycerate-2P

CSN

ACN

ACN

MDH

FUM SDH

SCS

ICD

KGD
-

2eCO2 -

2e-

glycerate-1,3BP

fructose-6P

glucose-6P

glyceraldehyde-3P

ribose-5P

erythrose-4P

glycerate-3P

PEP

pyruvate

oxaloacetate

acetyl-CoA

succinyl-CoA

2-ketoglutarate

 
ATP
 

 
ADP
 

CO2

CO2

CO2

CO2 Pi 

PPC

Figure 6.9: The E. coli model of central metabolism used in Noor et al. [179].

6.6 Concluding remarks

Coming back to our initial question, what have we learned from theory about the

choice between possible pathways? The “choice between pathways” in a larger net-

work is actually a choice between (network-wide) flux distributions that use different

alternative pathways. Here we discussed how to score the usefulness of given flux

distributions, which can also be used to score single pathways.

Importantly, flux distributions are scalable (by scaling all enzyme levels proportion-

ally, and keeping all metabolite levels constant). If we scale the fluxes, this will scale

both the flux benefit (for instance, the production of a desired product or biomass)

and the required resources (substrates consumed, enzyme budget invested, or toxic

byproducts produced). Because of this scaling property, our “quality criteria” mostly

have the form of ratios between an output flux (as the benefit) and some (limited)

resource (the cost). Such ratios are called “productivities”, where in Chapter 4-5 we
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focused mostly on substrate productivity (or yield on substrate) and in this chapter

on enzyme productivity (or enzyme-specific rate) as important criteria. Why these

criteria? On the one hand, they are closely related to some big objectives of the en-

tire cell – depending on the type of competition it is facing. On the other hand, they

are easy to link to some concrete criteria about metabolic pathways such as product

yield, pathway length, kcat values, thermodynamic forces, etc.

Since yield on substrate depends only on the shape of the flux distribution, it can be

studied bymethods like FBA (see chapters 4 and 5). In this chapter, we focused on the

more difficult case, enzyme productivity, where thermodynamics, enzyme kinetics,

and the arrangement of metabolite and enzyme concentrations come into play. The

factorized law in Eq. (6.7) shows us how the enzyme demand of a flux distribution can

be computed if metabolite concentrations are known, and how the demand depends

on forward kcat, the thermodynamic force, and enzyme saturation. The only difficulty is

that the thermodynamic forces andmetabolite concentrations are usually not known.

Here we considered some best-case scenarios, assuming that the cell will realize the

concentration arrangements that optimize pathway performance. When considering

thermodynamics alone (andmaking some further simplifications), this led to theMDF

method. For the full problem, the solution is provided by Enzyme Cost Minimization.

This method is directly related to the different pathway criteria we discussed initially

(including pathway length, thermodynamic forces, and kcat values) and thus shows

how these different factors determine enzyme demand. As a numerical method, it

is relatively easy to use because it is a convex optimization problem. But if little data

is available, simpler methods such as MDF, with their lower demand for parameters,

may be useful tools to predict pathway usage.

In order to predict optimal metabolic states, we started in the previous chapter with

models that optimize the fluxes in an entire network. Howeve, to keep the mod-

els linear, kinetics and concentrations were largely ignored. In FBA with molecular

crowding, a connection between fluxes and enzyme levels was made via empirical

parameters, the apparent catalytic rates or ”enzyme efficiencies”. We now saw that

these parameters are not at all constant parameters, but emerge from kinetics and

given concentration profiles, and we also saw how optimal concentration profiles can

be computed for a given flux distribution. This means: we now know how to predict

optimal fluxes from known enzyme efficiencies, and we know how to predict optimal

concentrations (and therefore enzyme efficiencies) from known fluxes. In the next

chapter we will put these two things together, in order to predict all variables in the

system – fluxes, metabolite concentrations, enzyme efficiencies, and enzyme levels –

from a single principle of maximal overall enzyme efficiency.



160 The enzyme cost of metabolic fluxes

Recommended readings

A search for efficient pathways, based on different criteria: Arren Bar-Even, Elad

Noor, Nathan E. Lewis, and Ron Milo. Design and analysis of synthetic carbon fixa-

tion pathways. Proceedings of the National Academy of Sciences, 107(19):8889–8894,

2010. doi: 10.1073/pnas.0907176107.

The max-min driving force method: Elad Noor, Arren Bar-Even, Avi Flamholz, Ed

Reznik, Wolfram Liebermeister, and Ron Milo. Pathway thermodynamics highlights

kinetic obstacles in central metabolism. PLoS Comput. Biol., 10(2):e1003483, 2014.

doi: 10.1371/journal.pcbi.1003483.

Enzyme costminimization: Elad Noor, Avi Flamholz, Arren Bar-Even, Dan Davidi, Ron

Milo, and Wolfram Liebermeister. The protein cost of metabolic fluxes: Prediction

fromenzymatic rate laws and costminimization. PLoSComput. Biol., 12(11):e1005167,

2016. doi: 10.1371/journal.pcbi.1005167.

Problems

Computer exercises for this chapter can be found on the book website.

Problem 6.1 Pathway efficiencies

Estimate pathway efficiencies (i.e. product production rates per total enzyme con-

centration) from simple back-of the envelope calculations and plausible numbers

(refer to the BioNumbers database for realistic values). (a) From pathway length

(assuming reasonable apparent kcat values); (b) from given apparent kapp values (or

given kcat values and ∆rG). (c) Convert the results into growth rates (assuming realistic

estimates of the total protein density; the proteome fraction of metabolic enzymes;

the biomass production rate etc). Assume plausible numbers in all cases.

Problem 6.2 Efficiency – dependence on substrate

Compute the reduction of pathway efficiency in a linear chain when decreasing the

external substrate concentration (no constraints on metabolite levels)

Problem 6.3 ATP yield in glycolysis

Derive the optimal ATP yield in a glycolysismodel with a linear flux-force relationship

Problem 6.4 MDF method

Implement the MDF method in a programming language of your choice.

Problem 6.5 MDF and enzyme cost

The optimality principle of MDF (avoiding small thermodynamic driving forces) can

be justified by assuming that low driving forces would entail high enzyme demands.

Do you expect that MDF solutions are also Enzyme Cost Minimization solutions (or

https://doi.org/10.1073/pnas.0907176107
https://doi.org/10.1371/journal.pcbi.1003483
https://doi.org/10.1371/journal.pcbi.1005167
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vice versa)? Otherwise, can you think of an approximation of the Enzyme Cost Min-

imization problem, such that MDF provides the correct solution? Show how the En-

zyme CostMinimization objective could be approximated step by step, and illustrate

this with an example.

Problem 6.6 Cycle of chemical reactions

Assume a cycle of chemical reactions A ↔ B ↔ C ↔ A without co-factors or external

inputs/outputs. (a) Show that there is no stationary, thermodynamically feasible

flux distribution except for the (trivial) vanishing flux. (b) Explain why, if there were

a flux, this would be a perpetuum mobile.

Problem 6.7 Optimal enzyme levels in two-reaction chain

Consider a chain of two reactions S ↔ X ↔ P with enzymes e1 and e2, v1 = e1(k+1S − k−1X), v2 =

e2(k+2X − k−2P ). Compute the steady state flux given e1, e2. Let e1 + e2 = epw
tot be fixed. De-

termine e1, e2 such that the flux is maximal. Use Lagrange multipliers. Hint: Assume

forward flux where P/S < (k+1k+2)/(k−1k−2) = q1q2.

Problem 6.8 Flux maximization in a linear pathway

Prove that the function:

f(e) = 1∑
i(Aiei)−1 (6.16)

for a fixed A and under the constraint ∑i ei = etot, is at its maximum when:

ei = etot · A
−1/2
i∑

i A
−1/2
i

Problem 6.9 Haldane kinetic rate law

Haldane described an enzyme-catalyzed reaction by three steps, each following a

mass-action rate law:

S + E
k1−−−−⇀↽−−−−k2

ES
k3−−−−⇀↽−−−−k4

EP
k5−−−−⇀↽−−−−k6

P + E . (6.17)

The ODE system describing the change in time of each species is:

d[ES]
dt

= [E] · [S] · k1 + [EP ] · k4 − [ES] · (k2 + k3)

d[EP ]
dt

= [E] · [P ] · k6 + [ES] · k3 − [EP ] · (k4 + k5)

d[E]
dt

= −[E] · [S] · k1 + [ES] · k2 + [EP ] · k5 − [E] · [P ] · k6

(6.18)

Prove that at quasy-steady-state (where the total enzyme concentration is fixed, and

the concentration of each species doesn’t change over time), the rate in which [S] is
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converted to [P ] is governed by the following rate law:

v = [E0]k
+
cat[S]/KS − k−

cat[P ]/KP

1 + [S]/KS + [P ]/KP
(6.19)

where:

KS = k2k4 + k2k5 + k3k5

k1(k3 + k4 + k5) ; KP = k2k4 + k2k5 + k3k5

k6(k2 + k3 + k4) ; k+
cat = k3k5

k3 + k4 + k5
; k−

cat = k2k4

k2 + k3 + k4

Problem 6.10 The factorized rate law

Use the Haldane relationship:

k+
cat
k−

cat

KP

KS
= k1k3k5

k2k4k6
= Keq (6.20)

and the definition of Gibbs free energy:

∆rG
′◦ = −R · T · lnKeq

∆rG
′ = ∆rG

′◦ +R · T · ln ([P ]/[S])
(6.21)

to prove that Eq. (6.19) is equivalent to the following factorized rate law:

v = [E0]k+
cat ·

(
1 − e∆rG′/RT

)
· [S]/KS

1 + [S]/KS + [P ]/KP
. (6.22)
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Math box 6.B Integer cuts for iterating all possible pathway variants

The linear problem can be described by:

minimize
∑

i

vi

subject to Nintv = 0

∀i 0 ≤ vi ≤ β

vglycolysis = −1

(6.2)

where v is the flux variable, and N is comprised of the universal stoichiometric ma-
trix , and in addition one reaction (whose flux is denoted vglycolysis) which has the

stoichiometry of Eq. (6.1). The constraint vglycolysis = −1 ensures that the sumof all ac-

tive reactions except for vglycolysis will together form a full glycolysis pathway, since

their net reaction has to balance the stoichiometry of vglycolysis given the mass bal-

ance constraint Nintv = 0. β given the upper bound on the flux for all reactions. For
simplicity, we assume that all fluxes are positive and that reversible reactions are
split into their two opposing directionalities . β is a tunable parameter that is an
upper bound on all the fluxes in the solution pathways. Setting it too low would
exclude solutions with complex stoichiometries. On the other hand, a very high
value would increase the complexity of the search and lead to very long run-times.
Typically, we choose β = 10 which is a good balance between the two extremes.
Finally, we set the objective function (

∑
i vi) to minimize the sum of fluxes. As we

will explain shortly, we can iterate through all possible solutions and therefore the
objective will only determine the order at which we find them.
To find all possible glycolysis pathways comprising known enzymatic reactions, Ng
et al. [164] iteratively introduced constraints in order to exclude all previous solu-
tions and find the next optimal one [167]: to exclude a solution, they add an integer
cut, which is an inequality constraint ensuring that the number of active reactions
is strictly larger than the sum over their indicator variables (boolean variables that
are equal to 1 if the reaction is active, i.e. carries a nonzero flux). Therefore, at
least one of those reactions must be inactive in all future solutions. This is quite
similar to constrained Minimal Cut Sets (cMCS) which were introduced in Chapter
4.5 as a way of exploring the flux space.
Formally, if {P0, P1 . . . Pm} are the set of solutions already discovered by our algorithm
(where ∀j Pj ⊆ {0, . . . , n}, i.e. each solution is a set of integers which correspond to in-
dices of active reactions) then the added constraints will be:

∀i zi ∈ {0, 1}

∀i vi − βzi ≤ 0

∀j
∑
i∈Pj

zi < ‖Pj‖
(6.3)

where ‖Pj‖ is the length of pathway j (i.e. the number of reactions). The zi are
boolean reaction indicators, i.e. zi must be equal to 1 if a reaction is active (vi > 0).
The final set of constrains eliminate Pj and any pathway which is a superset of Pj

from the solution space. Using this extra set of constraints iteratively, each time
generating the next pathway and adding it to the excluded list, will eventually go
through all possible solutions (by increasing order of their sum of fluxes). It is
important to note that using integer cuts requires switching to an MILP (Mixed-
Integer Linear Program) solver, which is computationally much more demanding
and typically requires a commercial license.
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Math box 6.C Factorized rate laws and enzyme cost function

According to Eq. (6.13), reversible rate laws can be factorized into five terms that
depend on metabolite concentrations in different ways [82]. For a reaction S 
 P
with reversible Michaelis-Menten kinetics Eq. (6.11), a driving force θ = −∆rG

′/RT , and
a prefactor for non-competitive inhibition, the rate law can be written as

v = e · k+
cat · [1 − e−θ]︸ ︷︷ ︸

ηfor

· s/KS

1 + s/KS + p/KP︸ ︷︷ ︸
ηsat

· 1
1 + x/KI︸ ︷︷ ︸

ηreg

Rate = enzyme · forward catalytic · thermodynamic · saturation · regulation
level constant factor factor factor

with inhibitor concentration x. The product of the first two terms, E and k+
cat, repre-

sents the maximal velocity, i.e. the rate at full substrate-saturation without back-
ward flux and without enzyme inhibition. The following factors decrease this ve-
locity for different reasons: ηfor describes a decrease due to backward fluxes, ηsat –
the decrease due to incomplete substrate saturation, and ηreg – the decrease due
to small-molecule regulation (see Figure 6.2 b). While k+

cat is an enzyme-specific
constant (yet, dependent on conditions such as pH, ionic strength, or molecular
crowding in cells), the efficiency factors are concentration-dependent, unitless,
and can vary between 0 and 1. The thermodynamic factor ηfor depends on the driv-
ing force (and thus, indirectly, on metabolite concentrations), and the equilibrium
constant is required for its calculation. The saturation factor ηsat depends directly
onmetabolite levels and contains the KM values as parameters. Enzyme regulation
by small molecules yields additive or multiplicative terms in the rate law denom-
inator, which in our example and can be captured by a separate factor ηreg. The
enzyme cost for a flux v, with an enzyme burden he, can be written as

q = he · e = he · v · 1
k+

cat
· 1

[1 − e−θ]︸ ︷︷ ︸
1/ηfor

· 1 + s/KS + p/KP

s/KS︸ ︷︷ ︸
1/ηsat

· [1 + x/KI]︸ ︷︷ ︸
1/ηreg

and contains the terms from the rate law in inverse form. The first factors, he v/k
+
cat,

define aminimum enzyme cost, which is then increased by the following efficiency
factors. By omitting some of these factors, one can construct simplified enzyme
cost functions with higher specific rates, or lower enzyme demands (compare Fig-
ure 6.2b). For a closer approximation, the factorsmay be substitutedwith constant
numbers between 0 and 1.

Economics analogy 6.D The push for fast growth

The ED pathway seems to be useful as a quick response to a sudden increase in
abundance of resources (glucose), but less efficient than EMP when the environ-
ment is steady. This is somewhat analogous to start-up companies, which burn
large amounts of venture capital in order to grow rapidly. However, after reaching
a certain scale, the dynamic nature of start-ups often becomes a burden, where
overhead costs pile up and signal that it is time to join a larger corporation.
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Figure 6.10: Validation of metabolite and enzyme concentrations, predicted by En-
zyme Cost Minimization, in the central carbon metabolism of E. coli (Fig 6.9) – (A)
Comparing predicted andmeasuredmetabolic concentrations. The thin diagonal line
marks x = y, i.e. where the predictions match the measurements. Full blue points are
for all metabolites whose allowed concentration range was set to 1µM - 10 mM. Hollow
blue points represent co-factors whose concentration was fixed in the analysis and
therefore are not actually predicted – thesewere omitted from the statistics. The Root
Mean Squared Error (RMSE, in log10 scale) was 0.62, the r2 (Pearson correlation) was
0.50, and p-value was 2.2 × 10−4. (B) Comparing predicted and measured enzyme con-
centrations. Here, the RMSE was 0.47, r2 = 0.54, and p = 5.3×10−6. (C) A pie chart showing
the distribution of the predicted absolute mass-concentrations for both enzymes (or-
ange) and metabolites (blue) together. Note that aconitase (catalyzing the reactions
acn1 and acn2) has a lower specific activity than glyceraldehyde-3P dehydrogenase (cat-
alyzing gap), and therefore occupies a higher fraction of themass-concentration even
though the required concentration of the latter enzyme is higher. Labels of enzymes
and metabolites that occupy the smallest fractions of the biomass are omitted due
to lack of space. Data and model predictions taken from [179].
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Economics analogy 6.E Two central assumptions: homogeneity and station-
arity

In the models described in this chapter, we generally assume that our system (for
example, a metabolic pathway in a cell) is spatially and temporally homogeneous,
and that it shows stable stationary states. This is clearly a simplification: in reality,
cells are inhomogeneous, with compartments, with enzymesunequally distributed
across the cell, and with enzymes forming complexes or dedicated compartments
like the glycosome (an organelle in some organisms that contains the glycolytic
enzymes), which changes (average) enzyme kinetics. Cells are also dynamic on
various time scales (chemical noise, metabolic dynamics, protein expression dy-
namics), which also may change (average) enzyme kinetics. If we ignore this in our
models – assuming a timeless steady state – this will not only cause approxima-
tion errors in ourmetabolic model, but muchmore importantly, we ignore the fact
that the cell can exploit spatial inhomogeneity (e.g. compartments or channeling)
and non-steady states (e.g. metabolic oscillations, or adaptation to fluctuations in
the environment) to further improve its fitness (as compared to a steady-state,
constant enzyme model).
Interestingly, classical economic theory makes similar assumptions – e.g. about
markets in equilibrium– which ignore the spatio-temporal, dynamic side of real
economic systems, which – as in the case of metabolic models – is likely to lead to
wrong results.



Chapter 7

Optimization of metabolic states

Andreas Kremling, Wolfram Liebermeister, Elad Noor and Meike T. Wortel

Chapter overview

◦ Optimal metabolic states in this chapter refer to enzyme-efficient states, which

are metabolic states that realize a given objective flux at a minimal enzyme cost.

◦ In models without further flux constraints, flux distributions of enzyme-efficient

states are Elementary Flux Modes (EFMs).

◦ Elementary Flux Modes can be used to find enzyme-efficient states in networks

that would be too large to optimize metabolic states ”by brute force”.

◦ Biomass per enzyme efficiency can be converted to cell growth rate by simple

approximate formulae.

◦ The Elementary Flux Mode that is realized in an enzyme-efficient state depends

on the external conditions.

◦ As growth conditions change, either the flux profile changes continuously (to-

gether with metabolite and enzyme concentrations), or fluxes change discontin-

uously, implying jumps also in metabolite and enzyme concentrations.

7.1 Introduction

In a simple economic picture of cells, we assume that cells adjust theirmetabolic state

in each environment to obtain a maximal fitness advantage. This may be impossible

in reality, but it remains an interesting question what this best metabolic state would

look like, according to our knowledge of cells. So what is the best metabolic state

overall (comprising metabolic fluxes, metabolite concentrations and enzyme levels)?

What pathways should a cell use, which enzymes should be induced or repressed,

and how should this change in a new environment? To answer these questions, we

need to remember that all metabolic variables (fluxes, metabolite levels, enzyme lev-
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els, and enzyme efficiencies) depend on each other. Physically, fluxes depend on

metabolite concentrations through kinetics and enzyme regulation (e.g. competitive

inhibition) and metabolites are produced and consumed by the fluxes until a steady

state is reached. Hence, if we think in terms of cellular economics (treating enzymes

as control variables), then all metabolic variables must be optimized together.

In the previous chapterswe saw someways to predict optimalmetabolic fluxes,metabo-

lite concentrations and enzyme levels separately: in Flux Balance Analysis (FBA, Chap-

ter 5), we optimized fluxes by maximizing an objective function (typically biomass)

while in Enzyme Cost Minimization [175, 179] (Chapter 6) metabolite concentrations

were optimized by minimizing cost (or, equivalently, maximizing the enzyme efficien-

cies). Each of these methods is based on a strong assumption: FBA requires mea-

sured flux ranges and/or apparent catalytic rates and assumes enzyme saturation

effects can be neglected, while enzyme cost minimization requires a given flux dis-

tribution. But what if we don’t know any of the variables in advance? How can we

predict all of them from first principles?

Before thinking about this, let us briefly step back: what do we actually mean by an

“optimal state”? What quantity should be maximized in metabolism? There could be

very different aims (e.g. production in biotechnology, versus number of offspring and

survival in awild-type cell). However, in both cases an important aim is cell growth – or

at least, avoiding strong growth deficits. Below we will see that cell growth depends,

to a good approximation, on biomass/enzyme efficiency, that is, biomass production

per total enzyme invested. Hence, whenever fast growth is important, cells should

maximize this efficiency.

In conclusion, wewill consider the following optimality problem: maximize biomass/en-

zyme efficiency, defined as the production flux per invested enzyme with respect to

all metabolic variables (metabolites, enzymes and fluxes) and under all constraints

(steady state, enzyme kinetics, etc.). Solutions to this problem are considered opti-

mal states.

7.2 Enzyme-efficientmetabolic states use elementaryflux

modes

The optimization problem in this chapter is to reach maximal objective flux with min-

imal enzyme investment. The biological interpretation is that this would lead to the

highest growth rate, because it optimizes the ratio between gains (fluxes) and costs

(enzymes). When we solve this optimization problem with mathematical tools, it is

convenient to either find the minimal enzyme investment for a certain flux, or the

maximum flux for a fixed enzyme investment. Although one could think of different
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biological explanations for those two ways to state the optimization problem, math-

ematically they are equivalent. For the outline of the proof that optimal states are

elementary flux modes, it is convenient to fix the objective flux to an arbitrary value

(we choose 1) and then minimize the enzyme investment. This leads to the following

optimization problem over the fluxes (v), enzymes levels (e) and internal metabolite

concentrations (s):

minimize
v,e,s

r∑
i=1

hi ei (7.1)

subject to: N · v = 0 steady state

∀i : vi = ei κi(s) enzyme kinetics

e, s ≥ 0 positive concentrations

vr = 1 fixed objective flux

s ≤ smax metabolite bounds

where hi are the weights, N is the stoichiometry matrix, i is the index of the reactions

(ranging from 1 to r), with the last reaction (with index r) representing the objective.

This optimization problem states that by adjusting the fluxes (v), metabolite concen-

trations (s) and enzyme concentrations (e), the total cost (sum of costs – hiei – for every

reaction) is minimized, while keeping the objective flux constant (any arbitrary con-

stant can be chosen, here we chose 1). The weights (hi) can be thought of as the size

or production costs of the enzymes (measured, for example, in molecular weight or

gene length) We require certain constraints: (i) the metabolic network needs to be

in steady state to avoid built-up of intermediates, (ii) enzyme kinetics – the flux of

each reaction (vi) has to be equal to the enzyme concentration (ei) times a metabolite

dependent (e.g., saturation) term (κi(s)), (iii) all enzyme and metabolite concentrations

have to be positive, (iv) the objective flux is equal to 1, and (v) the metabolite concen-

trations are within their given bounds. The latter constraint is optional and is mostly

necessary when dealing with irreversible kinetics. Reversible kinetics usually lead to

bounded metabolite levels because very high concentrations of products inhibit the

reaction that forms the products.

In this section, we will explain why the optimal state is reached at an Elementary

Flux Mode (EFM). One important starting point is that, as we have seen before in

Chapter 4, convex optimization problems with only positivity or equality constraints

(no other inequalities) lead to an optimal solution at an extreme point of the feasible

solution space, and those extreme points are Elementary Flux Modes. However, the

optimization problem (7.1) is not convex, mainly due to the hyperbolic dependence

of reaction rates on the concentrations of metabolites (κi(s) is usually not linear in the
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internal metabolite concentrations).

There are several ways to prove that the solution of this optimization problem is an

EFM, of which some are outlined in the papers by Wortel et al. [192] and Müller et al.

[193]. Here we will outline a proof by contradiction: assuming a solution to the opti-

mization problem that is not an EFM and showing that this leads to a contradiction.

Theorem 2. The flux distribution that maximizes an objective flux over the total enzyme

cost in a metabolic network without additional constraints is an Elementary Flux Mode.

Proof. Assume we have some optimal state where the flux distribution is not an EFM.

Any optimal solution is associated with a set of fluxes, enzyme concentrations and

metabolite concentrations. Now we set the metabolite concentrations to the con-

centrations of the assumed optimal state. Then all metabolite-dependent terms (κi(s))

become constants, and we return to a convex problem. As explained in Chapter 10

and Figure 7.1, the optimum of this problem (now in terms of enzyme concentrations

and fluxes) is a flux distribution that is an EFM. But this contradicts our initial assump-

tion that the optimal state from which we took the set of metabolite concentrations

was not an EFM. The proof by contradiction shows that the optimal state must be an

EFM.

7.3 Enzyme-efficient states in an example network

To illustrate the proof, we study a simple network representing growth on glucose

and pyruvate that we have seen previously in Chapter 5 (Figure 7.2). We use G and P

for glucose and pyruvate in the equations, we use the subscript ex when a metabolite

is extracellular and square brackets to denote a concentration. For the use in this

chapter, we add enzyme kinetics to this network. We will use the factorized rate law

as in Chapter 6, but then generalized for ns substrates and np products (also compare

Eq. (3.10) in Chapter 3):

v = e · k+
cat ·

∏j=1
ns

sj/KS,j

1 +
∏k=1

np
pk/KP,k +

∏j=1
ns

sj/KS,j

·
(

1 − e∆rG′/RT
)

(7.2)

See Box 7.A for all detailed rate laws of the example network. We can simplify this

equation by combining the forward catalytic constant, the thermodynamic efficiency

factor, the saturation efficiency factor, and the regulation efficiency factor (if that ex-

ists) in a function κ(s), which only depends on the metabolites, and not on the enzyme

concentrations. We will below write κ for κ(s).

vi = ei · κi (7.4)
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Figure 7.1: Translation from flux to enzyme space retains EFMs as extreme rays – The
top left panel shows the feasible flux spacewith the steady state constraints, all fluxes
positive (using splitting of fluxes, as explained in the text, if necessary) and a fixed
objective flux. The extreme points here are points where one flux becomes 0 and are
elementary flux modes (see Chapter 5). Here we show that when we have assumed
metabolite concentrations, such aswhenwe keep themat an optimal solution, we get
a linear transformation and the extreme rays are maintained. Different metabolite
levels, for example solutions to different environmental conditions, can lead to dif-
ferent transformations and therefore different optima (minimal total enzyme), but
those are always located at an EFM.

Now we take vBM = 1 and optimize all fluxes, enzyme concentrations and metabolite

concentrations to minimize the enzyme costs (etot =
∑

i ei), while satisfying the con-

straints posed in Equations (7.1), for different levels of external glucose and standard

levels of the other external metabolites. We see that for different concentrations of

external glucose, lead to different optimal fluxes, enzyme levels andmetabolite levels

(Table 7.1).

The table shows that the total enzyme needed for a biomass flux of one decreases
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Box 7.A Kinetics of the example network

The detailed kinetic equations for the example model (Figure 7.2) using the factor-
ized rate law (see Equation (7.2) and Chapters 3 and 6) are:

v0 = e0 · k
+
cat,0 ·

[Gex]/KGex
1 + [G]/KG + [Gex]/KGex

·
(

1 − e∆rG′0/RT
)

v1 = e1 · k
+
cat,1 ·

([G]/KG)([ADP]/KADP)

1 + ([P]/KP)([P]/KP)([ATP]/KATP) + ([G]/KG)([ADP]/KADP)
·
(

1 − e∆rG′1/RT
)

v2 = e2 · k
+
cat,2 ·

[P]/KP
1 + [Pex]/KPex + [P]/Kp

·
(

1 − e∆rG′2/RT
)

v3 = e3 · k
+
cat,3 ·

([P]/KP)([ADP]/KADP)([O2]/KO2 )

1 + ([CO2]/KCO2 )([ATP]/KATP) + ([P]/KP)([ADP]/KADP)([O2]/KO2 )
·
(

1 − e∆rG′3/RT
)

v4 = e4 · k
+
cat,4 ·

[Pex]/KPex
1 + [Pex]/KPex + [P]/KP

·
(

1 − e∆rG′4/RT
)

vBM = eBM · k
+
cat,BM ·

([P]/KP)([ATP]/KATP)

1 + ([BM]/KBM)([ADP]/KADP) + ([P]/KP)(ATP/KATP)
·
(

1 − e∆rG′5/RT
)

(7.3)

Note that P is a product twice in v1, as v1 produces 2P. Note that v2 and v4 are the same
reaction, but defined in the opposite direction. The standard set of parameters we
used for the toy model is all k+

cat,i = 10 s−1 except k+
cat,3 = 0.1 s−1, all ∆rG

′◦
i/RT = −440 and all

KM = 1 mM. For the external metabolites [Pex] = 1 mM, [Gex] = 0.05 mM, [O2] = 0.1 mM, [BM] = 1
mM and [CO2] = 10 mM unless mentioned otherwise.

with increasing glucose levels, as we expect. In addition, the optimal level of internal

glucose increases with increasing external glucose. This is because a higher external

glucose allows for a higher internal glucose while still maintaining a steady glucose in-

flux, and a higher internal glucose allows fewer enzymes to drive further metabolism.

Moreover, the fluxes of the solutions follow an EFM (see Figure 7.2b).

We can now reformulate the problem for only the flux and enzyme levels while keep-

ing themetabolite levels as they are in the table. With themetabolite levels in the first

row of the table, we can linearly relate the enzyme and flux levels (with the factors κi

that have become constants nowwehave set the internalmetabolite concentrations),

and thus the extreme rays of the enzyme and flux space will be equal and EFMs, as

pointed out above (see also Chapter 5 and Figure 7.1). Optimization in this space will

lead to the optimal flux distributions following an EFM (see Box 7.B for the detailed

calculations). As fixing part of the optimal solution should lead to the same optimal

solution, this required the flux distribution of the optimization over all variables to

follow an EFM, as was indeed the case.

We point out two important aspects, using the network (Figure 7.2) as an example.

[Gex] etot v0 v1 v2 v3 v4 vBM e0 e1 e2 e3 e4 eBM [G] [P] [ATP] [ADP]
0.01 156.2 5 5 0 9 0 1 54.4 4.4 0 94.4 0 2.9 0.08 15.14 0.05 20.09
0.1 91.3 50 50 99 0 0 1 61.3 11.3 14.2 0 0 4.4 0.13 4.55 0.11 20.09
1 36.2 50 50 99 0 0 1 13.0 8.0 12.5 0 0 2.7 0.60 7.65 0.11 20.09

Table 7.1: Outcomes of the optimization of the example network with standard ki-
netics, parameter values and external concentrations (see Box 7.A) for varying levels
of [Gex].
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First, it is convenient to split reversible reactions such that fluxes are always posi-

tive. In this case, that means that the reversible reaction from P to Pex is split into the

forward reaction v2 and the reverse reaction v4, both of which can have only positive

flux. This splitting makes sure that EFMs are the extreme rays of the flux space (see

Chapter 5). This splitting is purely a mathematical convenience; we still assume this

to be one reaction in the biological sense, and therefore the kinetic equations of both

the forward and the backward reactions will be exactly the same. Depending on in

which direction the flux goes, either one of the reactions will be positive and the other

zero. Any solution with both reactions positive is infeasible, but minimizing enzyme

levels will never lead to such a solution; therefore we do not need to set additional

constrains to avoid this. Second, the feasibility of EFMs can depend on external con-

centrations. In this network, the biomass reaction (vBM) is the objective flux and there

are three EFMs leading to the production of biomass: EFM1 consisting of v0, v1, v2 and

vBM, EFM2 consisting of v0, v1, v3 and vBM and EFM3 consisting of v4, v3 and vBM. However,

if Pex is absent in the environment, the uptake flux v4 will always be 0 and therefore

EFM3 will not be feasible.

7.4 Calculation of optimal states

We can now use the result that states of maximal enzyme efficiency are reached at

an elementary fluxmode to calculate optimal states in a metabolic network using the

following steps:

1. Enumerate the elementary flux modes that include the objective flux

2. Calculate the minimal enzyme for each EFM scaled to an objective flux of 1

3. Compare the EFMs and select the one with minimal enzyme demands

Step 1 is possible for relatively large networks, although usually not for genome scale

metabolic networks. Step 2 is a convex optimization problem as we have seen in

Chapter 6 and Step 3 is straightforward. These three steps together are called Enzyme

Flux Cost Minimization, because it is similar to Enzyme Cost Minimization, but while

that is focused on fixed fluxes, Enzyme Flux Cost Minimization simultaneously finds

the optimal fluxes, enzyme and metabolite levels. In this section we will show the

method on the example network of Figure 7.2.

First, we describe the network with the stoichiometric matrix (N) and the concentra-



174 Optimization of metabolic states

Box 7.B Optimal metabolic states in the example network

We minimize the enzyme investment for vBM = 1 with [Pex] = 0 (and therefore v4 = 0 and
EFM3 is not feasible) for the network in Figure 7.2 (the optimization problem in
Equation (7.1)). Assuming all hi = 1, the objective function

∑r
i=1 hi ei = e0 + e1 + e2 + e3 + eBM.

The constraints vBM = 1 and e, s ≥ 0 in Eq. (7.1) are straightforward. The steady state
of all internal metabolites (G, P, ADP and ATP) leads to the following equalities (the
steady states of ADP and ATP lead to the same equality):

Steady state ATP =⇒ 100 vBM = 2 v1 + 10 v3

Steady state P =⇒ 2 v1 + v4 = v2 + v3 + vBM

Steady state G =⇒ v0 = v1

Substituting vBM = 1 and v4 = 0 and solving this set of linear equations, we can write all
fluxes as functions of v2: v0 = v1 = 5 + 5

11v2 and v3 = 9 − 1
11v2 (there is only one independent

flux in this system). This means we can draw the feasible flux space on the v2 line
and we can express the objective function in terms of v2:

r∑
i=1

hiei = e0 + e1 + e2 + e3 + eBM

= v0/κ0 + v1/κ1 + v2/κ2 + v3/κ3 + vBM/κBM

= (5 + 5/11v2)/κ0 + (5 + 5/11v2)/κ1 + v2/κ2 + (9 − 1/11v2)/κ3 + 1/κBM

= (5/κ0 + 5/κ1 + 9/κ3 + 1/κBM)︸ ︷︷ ︸
α

+ (5/(11κ0) + 5/(11κ1) + 1/κ2 − 1/(11κ3))︸ ︷︷ ︸
β

v2

= α+ βv2

(7.5)

The kinetic functions (κi) depend on several parameters (external metabolite levels
[Gex], O2, [CO2] and [Pex], catalytic constants, Michaelis constants and Gibbs free ener-
gies) and the variables [G], [P], [ATP] and [ADP]. That means that once we have a set
of internal metabolite concentrations s, the enzyme levels in the objective function
can be written as a constant times the flux: ei = vi/κi, with κi a constant. For a set
of parameters, α and β are positive or negative depending on the choice of s. It is
clear that when we minimize this objective function by adjusting v2, we will always
have an optimum at v2 = 0 (when β is positive) or v2 = 99 (when β is negative). v2 = 99 is
the maximum of v2 because then v3 = 9 − 1

11v2 = 0, and higher values of v2 would lead to
negative values for v3.
In conclusion, the optimumcannot be at a value of 0 < v2 < 99. If therewould be anop-
timum with 0 < v2 < 99, we can determine s and calculate whether β > 0 to find a lower
objective value at v2 = 0 or v2 = 99, contradicting that we started with an optimum.
Only if β = 0 there is a range of optima, but this requires very precise parameter
values. v2 = 0 and v2 = 99 correspond to EFMs of this network (Figure 7.2).

tion vector (s):

N =



1 −1 0 0 0 0

0 2 −1 −1 1 −1

0 2 0 10 0 −100

0 −2 0 −10 0 100


, s ≡



[G]

[P]

[ATP]

[ADP]


(7.6)

And with the stoichiometric matrix we can describe the steady state constraints:
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Figure 7.2: States of maximal efficiency in an example model – (A) Example network
from Chapter 5 with added stoichiometry. (B) Three elementary flux modes of this
network. (C) Calculated enzyme investment needed for a biomass flux of 1. At a very
low concentration of extracellular glucose ([Gex]), EFM3 has the lowest cost. But as we
move along the x-axis, at around [Gex] = 0.02 there is a switch to EFM1 and later, at around
[Gex] = 0.07, EFM2 becomes the one with the lowest cost. (D) Specific fluxes (flux divided
by total enzyme) associated with the optimal EFM for different levels of Gex. Note that
v1 is not shown as it is always equal to v0. The rates show a discontinuity when there
is a switch from one optimal EFM to another.

d
dts = N v =



1 −1 0 0 0 0

0 2 −1 −1 1 −1

0 2 0 10 0 −100
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
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v4

vBM


=



0

0

0

0


(7.7)
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Now we find the EFMs (for example with EFMtool [194]). It can easily be checked that

the following EFMs (denoted by vectors f (i)) are in the nullspace of the stoichiometric

matrix:

f (1) =



5

5

0

9

0

1


, f (2) =



50

50

99

0

0

1
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The next step is to perform the convex optimization over the metabolite levels for

each one of the three EFMs. Therefore, we express the enzyme levels as a ratio of

the flux and the function f(s), using Equation 7.4. Summing over all enzymes, we get

a function for the total enzyme cost (level) as a function of fluxes, metabolite concen-

trations and parameters:

etot =
∑

i

ei =
∑

i

vi

κi(s) . (7.9)

We use the standard parameters (Box 7.A) and replace vi by the values given by each

EFM. We are then left with a convex optimization over the metabolite levels, an En-

zyme Cost Minimization problem as in Chapter 6. For [Gex] = 0.05 we obtain a total en-

zyme of 111.1 for EFM1, of 146.3 for EFM2 and 136.5 for EFM3. That means that for

these conditions we will conclude that EFM1 is optimal. From the optimization we

obtain the metabolite concentrations: [G] = 0.08, [P] = 3.93, [ATP] = 0.11 and [ADP] = 20.09 (that the

internal glucose concentration is higher than the external is because we described

the transport with regular enzyme kinetics instead of transporter enzyme kinetics,

which would have been more realistic). We can next use the rate equations to calcu-

late the enzyme levels from the fluxes and metabolite levels, using the values for the

parameters and external concentrations.

We can repeat this procedure for different levels of external concentrations and see

that the optimal EFM can change depending on the external concentration (Figure

7.2c). When the optimum shifts to using a different EFM, there is a discontinuity in

the fluxes at the external metabolite concentration (Figure 7.2d). Many cells show

shifts in metabolic strategies depending on the external conditions and Enzyme Flux

Cost Minimization is one way of explaining those shifts.

Above, Enzyme Cost Flux Minimization was used to find the metabolic state with the

maximum enzyme efficiency. Although in our calculation we obtain the enzyme con-

centrations last, it is by enzyme concentrations that cells actually control metabolism.

If cells produce enzymes at the concentrationswe calculated and reach a steady state,
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Figure 7.3: Translation of enzyme-specific biomass rate to growth rate – (A) Both from
experimental data and a cell-optimization point of view, the ribosomal fraction of the
proteome increases with the growth rate, while the metabolic fraction decreases. (B)
This leads to a hyperbolic dependency of the growth rate on the biomass production
rate per amount of enzymes.

this state will realize the fluxes and metabolite levels that lead to our optimal state.

7.5 Translating enzyme efficiency into cell growth rate

In the section above, we learned how to optimize metabolic states for a maximal

overall enzyme efficiency. Why is this quantity relevant? One reason is that overall

enzyme efficiency, according to some simple reasoning, determines the cell’s growth

rate. If microbes compete by growing fast, their fitness is largely determined by their

momentary growth rate in their respective environment. In such environments, the

biomass/enzyme efficiency will be under selection, which makes it one of the impor-

tant objective functions in this book. If higher enzyme efficiencymeans higher growth

rate, and if we have a conversion formula for this, we can plot the “growth rate” of

the different EFMs instead of “overall enzyme efficiency”.

Enzyme-efficient metabolic states allow us to compute specific biomass production

rates, i.e. the rate of biomass production per metabolic enzyme invested. If biomass

consisted only of enzymes, the ratio ”enzyme production rate per total enzyme de-

mand”would give us directly the growth rate. However, biomass does not only consist

of metabolic enzymes, but includes ribosomal enzymes, RNA, DNA, lipids, and other

compounds. Therefore we need a formula for converting biomass/enzyme efficiency

into cellular growth rate.

Mathematically, a cell’s growth rate is given by µ = vBM/sBM, where vBM is the biomass

production rate (biomass produced per cell volume and time) and sBM is the biomass

amount per cell volume. If a cell contained nothing but metabolic enzymes (more

precisely, the enzymes described in our model), the biomass/enzyme efficiency κBM =

vBM/henz would directly describe the cellular growth rate. Since that is not the case, we

need to convert henz to sBM. The metabolic protein fraction decreases with the growth
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Figure 7.4: Optimal growth rates of the two EFMs for different levels of the external
metabolite Gex, computed using Equation (7.10) from the enzyme demands (at a unit
biomass production rate) shown in Figure 7.2 (C).

rate, leading to a hyperbolic dependency of the growth rate on the biomass produc-

tion rate (Figure 7.3). We may use the empirical approximation henz/sBM = κprot(a − b µ),

where κprot = 0.5 is the fraction of protein mass within the cell dry mass and the pa-

rameters a = 0.27 and b = 0.2 h were fitted to describe the metabolic enzyme fraction in

proteomics data, assuming a linear dependence on growth rate [19]. This yields the

conversion formula (see also [191]):

µ = a κprot vBM

henz + b κprot vBM
. (7.10)

This formula has been used to convert the minimal enzyme cost per biomass flux for

different external concentrations in the toymodel (Figure 7.2c) to themaximal growth

for each EFM (Figure 7.4).

7.6 Application to central metabolism in E. coli bacteria

In the previous sections, we saw that finding enzyme-efficient metabolic states can

be done by iterating through all possible EFMs and performing the enzyme cost min-

imization on each one. We demonstrated it on a toy model comprising only 3 EFMs.

InWortel et al. [191], this method was scaled up and applied to amore realistic model

covering the central metabolic network, as shown in Figure 7.5A. For this larger net-

work, there are 1566 biomass-generating EFMs. Each reaction is assigned to a single

enzyme along with its molecular weight, k+
cat, KM, and ∆rG

′◦, and follows the generalized

factorized rate law as in Equation (7.2). These parameters are listed in Appendix sec-
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Figure 7.5: Model of central metabolism in E. coli bacteria. (A) The metabolic network
of the E. coli model used by Wortel et al. [191]. Note that only for the purpose of
visualization, the network shown here has been condensed by lumping consecutive
reactions that are fully coupled (e.g., the reactions between DHAP and PEP are now
represented by a single arrow). Furthermore, some groups of metabolites have been
merged to a single node: H6P – representing the hexose phosphates G6P, F6P, and
FBP; T3P – representing the triose phosphates G3P and DHAP; P5P – representing the
pentose phosphates R5P, X5P, and Ru5P. The metabolites that are direct substrates
of the biomass reaction are marked in bold. (B) A Venn diagram showing statistics of
biomass-producing EFMs in the model and their reliance on oxygen.

tion B.1, and the full procedure for obtaining them is described in Wortel et al. [191],

along with other model parameters.

First, Wortel et al. [191] wanted to study the effect of environmental conditions on

the growth rate of E. coli, and see whether the model would be able to recapitulate

empirical phenomena. The external glucose concentration was set to 100 mM and

oxygen levels were varied between 1 µ and 10 mM. They selected 4 flux modes as
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representatives (the EFMs max-gr, ana-lac, and aero-ace, and exp, which is based on

experimentally measured fluxes; the flux distributions are shown in Figure 7.6), and

calculated their predicted growth rates in each condition, using Equation (7.10). The

results are shown in Figure 7.7. When focusing on a single flux mode, one can see

that as the oxgyen level increases so does the growth rate. The increase saturates at

some point, which depends on the flux modes and on the kinetic parameters in the

model. Indeed, it has long been known that growth rate dependence on a limiting

substrate concentration has this specific shape – a relationship generally called the

Monod curve.

In this specific example, it is interesting to see theMonod curves of the different EFMs,

and try to understand the differences. First, the EFM called ana-lac (red curve), is a

flat line. This makes sense because cells that use this EFM do not utilize the oxidative

phosphorylation system and therefore do not require oxygen at all for growth. max-

gr, on the other hand, is very sensitive to the level of oxygen mainly because of the

high flux going through oxidative phosphorylation. It is also the EFM with the highest

growth rate in standard oxygen levels (0.21mM), evenwhen taking all the other ∼1500

EFMs into account (not shown here).

Instead of screening only external oxygen levels, we can also screen several model

parameters and compute ”winning EFMs”, their enzyme demands, and the result-

ing growth rates for our parameter combination. By screening glucose and oxygen

concentrations, we obtain the Monod landscape shown in Figure 7.8 (A). Just like in

Figure 7.7, there are distinct parameter regions in which optimal growth is reached

by specific EFMs. While themax-gr EFM remains best when glucose and oxygen levels

are high, at low oxygen levels we see a large number of different EFMs, one of them

ana-lac (see the EFM phase diagram in Figure 7.8 (B)). More results for this model

(fluxes plotted in the EFM phase diagram and in flux space, as well as ideal and real

enzyme costs for all EFMs), are shown in Appendix Section B.2.

7.7 Concluding remarks

In this chapter we considered the metabolic network of a cell - and enzyme levels,

metabolite concentrations, and fluxes as the state variables - and studied its maxi-

mally efficient states. Finding such states can be difficult because fluxes, metabolite

concentrations, and enzyme levels are tightly coupled: metabolite concentrations de-

termine enzyme efficiencies, enzyme efficiencies determine optimal enzyme levels,

and enzyme levels determine fluxes and metabolite concentrations, which in turn

determine enzyme efficiencies. To find an optimal state, all variables need to be opti-

mized at the same time, which is a non-linear optimality problemwith (possibly)many

local optima. In small toy models, solutions can be found numerically, but for large
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detailed models, the computational effort becomes enormous. Instead of simplify-

ing the problem (as in the previous chapters) we here used the insight that (in models

without extra flux bounds) the optimal solutions must be EFMs.

Recommended readings

◦ M.T. Wortel, H. Peters, J. Hulshof, B. Teusink, and F.J. Bruggeman. Metabolic states
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PLoS Computational Biology, 14 (2):e1006010, 2018

Problems

Computer exercises for this chapter can be found on the book website.

Problem 7.1 Effect of oxygen concentration

Consider the model in Figure 7.2. What would be the qualitative effect of a change

in oxygen concentration on the enzyme cost of the three EFMs and on the choice of

the optimal strategy?

Problem 7.2 Effect of external metabolites

Consider themodel in Figure 7.2 under standard conditions (Box 7.A and [Gex] = 1, such

that EFM2 is optimal, and EFM1 second best (remember that the higher the enzyme

cost, the less optimal the EFM). What might happen when we gradually increase the

concentration [Pex]? What is the qualitative effect on the enzyme cost of the three

EFMs?

Problem 7.3 States of maximal growth rate

Consider the following small toy network:

We want to optimize the specific pathway flux for the production of P (which is v3/etot,

where we assume all enzymes to have equal costs: i.e. etot = e1 + e2 + e3) at steady

state. We assume mass-action kinetics, meaning the rate is the enzyme concentra-
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tion times the forward rate constant times the substrate minus the backward rate

constant times the product: v = e(k+s − k−p). Unless mentioned otherwise, we use the

values s2 = 10, k+
1 = 2, k−

1 = 1, k+
2 = 3, k−

2 = 1, k+
3 = 1, k−

3 = 0.1, p = 0 (concentrations are denoted by

lower case letters).

(a) Write out the rate equations for all three rates in terms of the parameters and

the concentrations.

(b) Give an expression of the total enzyme concentration in terms of fluxes and the

metabolite concentrations s1 and x.

(c) Find the concentration of X for which the specific flux v3/etot is maximal for e1 = 0

and s2 = 10, and also give the corresponding value of v3. HINT: Is is easiest to set

etot = 1 and maximize v3, replacing e3 using the equation for the total enzyme cost

and the steady state assumption.

(d) Find the concentration of X for which the specific flux v3/eT is maximal for e2 = 0

and s1 = 10, and also give the corresponding value of v3/etot.

(e) Find the concentration of X for which the enzyme cost is minimal for e1 = e2 and

s1 = s2 = 10, and also give the corresponding value of v3/etot.

(f) What was the best distribution of enzymes from the three options above for

s1 = 10?

(g) Find the concentration of X for which the enzyme cost is minimal for e1 = 0 and

s1 = 50, and also give the corresponding value of v3/etot.

(h) Find the concentration of X for which the enzyme cost is minimal for e2 = 0 and

s1 = 50, and also give the corresponding value of v3/etot.

(i) Find the concentration of X for which the enzyme cost is minimal for e1 = e2 and

s1 = 50, and also give the corresponding value of v3/etot.

(j) What was the best distribution of enzymes from the three options above for

s1 = 50?

(k) Interpret the results from this problem in light of the proof shown in this chapter

about the optimal specific flux being attained at an EFM.
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Figure 7.6: The four flux modes chosen for drawing the Monod curves in Figure 7.7:
(A)max-gr – the EFM with the highest growth rate under the standard conditions cho-
sen in the study, (B) aero-ace – an EFM which mixes between respiration and acetate
fermentation, (C) ana-lac – an EFM that does not require oxygen (i.e. anaerobic) and
uses lactate fermentation, and (D) exp – which is not an elementary flux mode, but
rather one based on themeasured flux distribution for E. coli growing onminimalme-
dia and glucose. The active reactions are highlighted in color (with the flux direction
indicated by the arrowhead). The magnitude of each flux is not shown here but can
be found in the Supplementary section of Wortel et al. [191]. The biomass reaction is
not shown here due to space limitations, but is always active.
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Figure 7.7: Monod curves (cell growth rate as a function of oxygen level) computed
using the model shown in Figure 7.5 – Each curve was computed using one of the
EFMs and the associated (oxygen-dependent) enzyme demands. The ana-lac strategy
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Figure 7.8: Monod landscape – (A) Similar to the 1-dimensional Monod curve (Figure
7.7), the graphics shows the cell growth rate as a function of external glucose and
oxygen concentrations, predicted from the E. coli model in Figure 7.5. The growth
rate of the “winning” EFM – i.e. the onewith the highest growth rate under the glucose
and oxygen levels matching the x and y values – determines the height of each point.
Each color represents the region in which a certain EFM is the “winning” one. (B) EFM
phase diagram. The same plot as in (A), seen from above. The “winning EFMs” form
a sort of phase diagram. At the boundary between every two regions, the two EFMs
lead to the same growth rate (similar to the intersections between curves in Figure
7.7). The EFMs from Figure 7.6 are marked by their names. Note that the colors in
this figure do not match the previous colors marking these select EFMs.
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Principles of cell growth

Ohad Golan, Hollie J. Hindley, Hidde de Jong, Markus Köbis, Elena Pascual Garcia, and

Andrea Weiße

Chapter overview

◦ A comprehensive description of fundamental growth laws in microbial growth,

elucidating the core principles that govern biological growth patterns.

◦ A detailed exploration of the contrasts between coarse-grained and fine-grained

modeling is presented, offering insights into the varying levels of detail that each

approach encompasses.

◦ A thorough breakdown of the key assumptions in themodeling of metabolic sys-

tems is provided, underlining the foundational premises that are crucial for ac-

curately representing these complex systems.

◦ The process of deriving fundamental growth laws by modeling key assumptions

ismeticulously demonstrated, enabling a clear understanding of how theoretical

constructs translate into biological realities.

8.1 Introduction

A key feature of living systems is that they are able to grow and reproduce. The re-

productive success in a given environment defines the fitness of a living system. The

study of the growth of bacteria and other microorganisms is crucial for better under-

standing their capacity to cause diseases in humans or for better exploiting their use

in biotechnological or environmental processes. Beyond their interest for a variety of

applications, bacteria and othermicroorganisms have shown themselves idealmodel

systems for investigating fundamental questions on the relation between growth, fit-

ness and characteristics of the environment.

One of the first to systematically and quantitatively study the growth of bacterial cul-

185
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tures was Jacques Monod in the 1940s. He performed so-called diauxic growth ex-

periments, in which bacteria were cultured in a medium containing two different lim-

iting carbon sources. He showed that the bacteria first deplete one carbon source

before starting to assimilate the second carbon source. The order in which the pri-

mary and secondary carbon source were consumed was determined by the growth

rate they support: the preferred carbon source allows the culture to grow at a higher

rate. Further work on the molecular basis of diauxic growth led to the discovery that

cells inhibit the expression and activity of functions for the use of secondary carbon

sources when a preferred carbon source is present, a global regulatory mechanism

known as carbon catabolite repression [195, 196].

Monod characterized bacterial growth by means of batch culture experiments in a

well-defined growth medium allowing bacteria to reach a state of balanced growth,

where the accumulation of biomass can be described by a single constant, the ex-

ponential growth rate. Together with the chemostat, a device allowing continuous

culture of microorganisms at a predefined growth rate [197], these methods have

become standard in microbial physiology. They notably underlie the discovery of a

number of so-called growth laws, relating the growth rate to a variety of properties of

the physiology of growing bacteria. The growth laws are conserved across different

organisms and a broad range of experimental conditions. Here, we list three well-

known growth laws [198, 199]:

1. Dependency of the growth rate on nutrient availability [200]: In his characterization

of bacterial growth, Monod discovered the first growth law. He observed that the

growth rate of bacteria depends upon the nutrient concentration in the medium

in a hyperbolic fashion (Fig. 8.1A).

2. Correlation between growth rate and nutrient uptake rate [201]: In continuous cul-

tures, the growth rate was shown to vary linearly with the nutrient uptake rate

(Fig. 8.1B). The slope of this linear relation is called the biomass yield and the off-

set the ‘maintenance energy’, as it is assumed to be derived from the energy spent

on processes required to maintain the basic processes of the cell, in the absence

of growth [202].

3. Correlation between growth rate and cellular composition [203, 204]: In 1959, Schaechter,

Maaløe andKjeldgaard showed that RNA,DNAand thenumber of nuclei in Salmonella

typhimurium linearly correlatewith the growth rate. Later, it was further shown that

other physiological parameters, such as themass fraction of ribosomes in growing

populations, also linearly correlate with the growth rate [204] (Fig. 8.1C). Initially,

it was believed that the correlation between ribosomal mass fraction and growth

was strictly positive, however, Scott et al. [205] showed that when growth is inhib-

ited through translation-inhibiting drugs, growth rate and ribosomal mass fraction
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Figure 8.1: Bacterial growth laws – (A) Monod growth law: growth rate dependency
on nutrient availability (data from [200]). (B) Correlation between growth rate and nu-
trient uptake rate (data from [206]). (C) Correlation between growth rate and cellular
composition (data from [204]).

exhibit a negative (near-)linear relation.

The conserved nature of the growth laws has led scientists to ask whether there are

fundamental principles governing bacterial growth. To answer this question, differ-

ent types of mathematical models have been developed. One approach aims at inte-

grating all known molecular constituents of the cell and the reactions involving these

constituents into a big model, an in-silico copy, or ‘digital twin’, of the cell. Such mod-

els, known as fine-grained models, can be useful to predict emergent phenotypes,

but they are difficult to construct and maintain, and their complexity makes it hard

to grasp certain principles that underpin growth. In this chapter, we will focus on

coarse-grained models of bacterial growth. Rather than assembling individual reac-

tions in a bottom-up manner, these models are based on the top-down definition

of a limited number of basic cellular functions or processes involved in growth, de-

scribed by appropriate macro-reactions (Fig. 8.2). Coarse-grainedmodels are smaller

and therefore easier to construct and analyze. The lack of molecular detail can make

their predictions less accurate, but their simplicity allows a focus on how basic cellular

functions and their interactions shape bacterial growth.

How much detail is included in a model depends on the specific scientific question

asked, and similarly, models may vary in their underlying assumptions. Oftentimes,

assumptions are based on biochemical principles governing intracellular reactions,

on physical limitations faced by cells, on optimality principles, or on a combination of

these.

In this chapter, we show how to understand and, ultimately, how to develop coarse-

grained models of cellular growth. We present a number of coarse-grained models
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Figure 8.2: Coarse-grained modeling of cellular growth – Compared to genome-scale
FBA and whole-cell models (Chapters 4, 5, 10, coarse-grainedmodels zoom out of the
molecular detail and focus on key processes.

with increasing levels of granularity. The models have been chosen to also represent

a variety of commonly used assumptions, for example, based on growth rate max-

imization or on phenomenological or mechanistic constraints. Despite these differ-

ences, however, models we discuss generally recover the basic growth laws, and we

show how the latter can be derived from solving two of the simplest coarse-grained

models. The goals of this chapter are:

1. To enable the reader to understand and analyze any model of microbial growth

from the literature.

2. To enable the reader to develop their own coarse-grained model of a metabolic

system that is directed at their specific scientific question.

3. To provide the reader with a new perspective onmodeling of complex systems and

specifically the biological cell.

8.2 Fundamentalmodeling assumptions ofmicrobial growth

Themodels ofmicrobial growthwe consider here are based on fundamental assump-

tions that follow from biochemical and biophysical constraints. In this section, we dis-

cuss andmathematically define assumptions that are found, explicitly or implicitly, in

most coarse-grained models of microbial growth. The assumptions are formulated

in an abstract manner to hold for any self-replicating biological system, irrespective

of the specifics of the underlying molecular mechanisms. In the next section, we use

these assumptions to construct increasingly complexmodels ofmicrobial growth and

show how the latter can be used to derive the experimentally observed growth laws

presented in the introduction of this chapter.

The growth of microorganisms consists of the uptake of nutrients from the envi-

ronment and the conversion of these nutrients into new microbial cells through a

number of coupled metabolic processes (Fig. 8.2). This description brings out the

self-replicating or autocatalytic nature of microbial growth: cells transform nutrients

from the environment into new cells. In what follows, we consider growth on the pop-
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Figure 8.3: Coarse-grained models of metabolic systems with increasing complexity
– (A) A self-replicating system. (B) The simplest description of a metabolic system:
coupled catabolic and anabolic reactions. (C) A metabolic system that can catabolize
two different nutrient sources. (D) A catabolic system requiring two substrates to
grow: x and E.

ulation level, that is, an increase in the total amount of cells or, equivalently in many

situations, an increase of the biomass of the population. This leads to the well-known

model of microbial growth, where the change in biomass over time is proportional to

the amount of biomass (Fig. 8.3A):

dB
dt = λB, (8.1)

where t [h] denotes time, B in gram dry weight [gDW] the biomass and λ [1/h] the

population growth rate.

If the growth rate is constant, the solution to Eq. (8.1) describes exponential growth

of the biomass:

B = B0 eλt, (8.2)

where B0 [gDW] is the initial biomass at t = 0.

The growth rate is a key parameter that is often used as a proxy for the fitness of mi-

croorganisms. It is dependent on the metabolic processes, that is, how a cell utilizes

the nutrients to synthesize newbiomass (self-replication). The simplest description of

metabolism is that it takes up a nutrient, breaks it down intometabolites (catabolism),

and then utilizes these metabolites to produce new biomass (anabolism) (Fig. 8.3B).

Catabolic and anabolic processes comprise a variety of biochemical reactions that are

carried out by different sets of proteins and enzymes. The reaction rates of these pro-

cesses are limited biochemically and biophysically. We formulate these limitations as

modeling assumptions and define them as mathematical constraints, four of which

we briefly review below.

8.2.1 Conservation of mass and quasi-steady-state assumption

Dry biomass is often a more readily measurable quantity than cell volume. The latter

relates absolute abundances of cell components to their intracellular concentrations.
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Yet, because bacterial cells have been observed to maintain approximately constant

cell density across various growth conditions [207, 208] (though transient exceptions

have been observed at the single-cell level [209]), biomass can be regarded a proxy for

volume and is therefore assumed to be proportional to cell volume in many growth

models. All models considered in this chapter are based on the assumption of con-

stant cell density and approximate the concentration x of a cellular component x (we

use normal font for cell components and italic font for their concentrations) by its

absolute abundance divided by the cell mass.

According to the law of mass conservation, the change of mass is equal to the inflow

minus the outflow of mass. As a consequence, the change in concentration of a cell

component, for example a metabolite pool, is determined by the sum of the rates

of the reactions consuming and producing this cell component (Fig. 8.4A). The mass

balance for any cell component x is given by the following equation:

dx
dt =

∑
y

ry→x −
∑

k

rx→k, (8.3)

where ry→x denotes the rate of the reaction converting cell component y into cell com-

ponent x (production of x), and rx→k the rate of the reaction converting cell component

x into cell component k (consumption of x). Typically, cell component concentrations

have units mg/gDWormmol/gDW, so that rates of metabolic reactions are expressed

in units mg/(gDW h) or mmol/(gDW h).

In the simple system shown in Fig. 8.3B, there are two reactions: one converting the

nutrient sourceN into ametabolite X andoneutilizing themetabolite for the synthesis

of biomass. According to (8.3), the flux balance of metabolite pool x is given by dx/dt =

rn→x − rx→B.

A key assumption is that intracellular concentrations are in quasi-steady state. This

means that cell component pools remain constant:

dx
dt = 0, for all cell components x. (8.4)

The quasi-steady-state assumption simplifies the mathematical analysis of the sys-

tem significantly and holds for balanced growth of the microbial population. In this

chapter, we focus mostly on situations in which the quasi-steady-state assumption

applies, but also give an example of a model with metabolic dynamics. In metabolic

modeling, the rates of reactions at steady state are called fluxes, denoted by the sym-

bol J. With the quasi-steady-state assumption, Eq. (8.3) becomes

∑
y

Jy→x =
∑

k

Jx→k (8.5)
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that is, for every cell component, the sum of production fluxes equals the sum of

consumption fluxes. In the example system, we have Jn→x = Jx→B.

8.2.2 Proteome allocation assumption

Thebiochemical reactions breaking downnutrients into intracellularmetabolites, and

the reactions utilizing these metabolites for the synthesis of new biomass, do not oc-

cur spontaneously. The reactions are catalyzedmostly by proteins complexes, in par-

ticular metabolic enzymes and ribosomes. In coarse-grained models, well-defined

sets of biochemical reactions are grouped together into macro-reactions. The cell

components that are necessary to catalyze the individual steps of a macro-reaction

are grouped together into a corresponding so-called proteome sector. A proteome

sector includes mostly proteins that catalyze metabolic reactions but also ribosomes

catalyzing the reaction of protein biosynthesis. Proteins constitutemost of the biomass

of the cell [210]. Therefore, as a first approximation, the sum of the proteome sectors

equals the total biomass of the growing population measured in units of g (Fig. 8.4B):

∑
r∈{x→y}

Pr = B, (8.6)

where Px→y is the proteome sector catalyzing the macro-reaction that transforms cell

component x into cell component y. The proteome sectors as defined above are ex-

tensive quantities, summed over the entire growing population, like the total biomass

B. For the models, we are rather interested in intensive quantities, the amount of a

proteome sector relative to the total amount of biomass (protein), corresponding to

protein concentrations or protein fractions. Dividing the left-hand and right-hand

sides of Eq. (8.6) by B, we thus obtain:

∑
r∈{x→y}

pr = 1 (8.7)

where px→y is the fraction of the proteome converting x into y, defined by px→y = Px→y/B.

Proteome fractions are dimensionless and sum to one.

In the simple example system in Fig. 8.3B, we distinguish two macro-reactions: a

catabolic reaction and an anabolic reaction (biomass synthesis). We therefore define

two proteome sectors, corresponding to enzymes and ribosomes, respectively, with

fractions pn→x and px→B, respectively. In later examples in the chapter, the catabolic and

anabolic processes are further broken down into smaller macro-reactions and so are

the proteome sectors.
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8.2.3 Mathematical description of reaction fluxes

The rate at which a reaction is converting one cell component, e.g., a metabolite, into

another is determined by the proteome fraction, the concentrations of the substrates

of the reaction and possible regulation by other cell components in the system. While

mass-action kinetics provide a principled framework to develop rate equations for

biochemical reactions, in practice, various approximations based on mechanistic as-

sumptions are often used to obtain simplified equations [211]. Below there are a few

examples of rate laws defining the fluxes in coarse-grained models:

1. Excess substrate and no allosteric interactions. The simplest relation of the flux J to

the relevant proteome sector is linear, such that

Jx→y = px→y βx→y, (8.8)

where βx→y is a parameter describing the efficiency of proteome sector px→y in gen-

erating a flux from x to y. This expression assumes substrate x is in excess and

disregards any regulation of the flux by allosteric interactions of the enzymes and

other cell components.

2. Limited substrate and allosteric interactions. A more complex relation is obtained

when the substrate is in excess and allosteric interactions involving a cell com-

ponent n play a role in the modulation of the flux. The expression of the flux is

multiplied by two regulatory functions f(x) and g(n) describing the modulation of the

flux by the substrate and the allosteric cell component, respectively:

Jx→y = px→y βx→y f(x) g(n). (8.9)

It is important to note that that both f(x) and g(n) return values between 0 and 1, and

that the flux remains linear in the proteome fraction. Typically, a Michaelis-Menten

relation is taken for the effect of the concentration of substrate x on the flux, such

that f(x) = x/(kx→y+x) (Fig. 8.4D).When the concentration x is in excess, such that x � kx→y,

the function f(x) becomes approximately 1. Other types of regulatory functions can

be used depending on the macroreactions concerned and the growth conditions.

8.2.4 Volume and surface area assumptions

The intracellular volume as well as the surface area of the cell are limited (Fig. 8.4C).

Obviously, the total volume occupied by the components of the cell, in particular

proteins, cannot be larger than the cell volume. As such, the total volume of the cell

is larger than the sum of the volume of the proteome sectors that are functioning

inside the cell plus some constant volume taken up by other cell components such as
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DNA. This gives the following constraint:

Cell volume ≥
∑

r∈{x→y}

prvr + v0 (8.10)

where vx→y is the volume of proteome sector px→y and v0 is some constant volume filled

by other cell components. Similarly, the total surface occupied by proteins and lipids

making up the cell membrane has to equal the surface area of the cell. This constraint

gives:

Cell surface area ≥
∑

r∈{x→y}

prsr + l0 (8.11)

where sx→y is the surface area of proteome sector px→y and l0 is the surface area of the

lipids in the cell membrane.

8.3 Growth laws derived from basic modeling assump-

tions

In the following section, we will build upon the fundamental assumptions discussed

earlier to construct models of microbial metabolism with increasing complexity. We

will introduce additional assumptions as necessary to solve each model, and use

them to derive one of the growth laws presented in the introduction of this chapter

that have been experimentally observed in microorganisms.

Example 1 - Basic metabolic system with saturating substrate concentrations

In this example, we will use the basic metabolic model to derive the relationship be-

tween the concentration of ribosomes and the growth rate in microorganisms.The

most basic metabolic model involves the uptake of a single nutrient from the en-

vironment, the catabolism of that nutrient into a metabolite x, and the use of this

metabolite in anabolic processes to synthesize biomass (Fig. 8.3B). This model con-

sists of two reactions and two proteome sectors. According to the proteome allo-

cation constraint, the sum of the proteome sectors must sum to one (according to

Eq. (8.7)):

pn→x + px→B = 1. (8.12)

For simplicity, we assume that the rate of each reaction is proportional to the alloca-

tion of the proteome to that reaction (according to Eq. (8.8)), so that:

Jn→x = pn→xβn→x; Jx→B = px→Bβx→B . (8.13)

The mass conservation constraint, with the assumption of a steady state for metabo-



194 Principles of cell growth

amino acids
biosynthesis

d cell component
dt

incoming flux outgoing flux
pcatabolism + pbiosynthesis + ... + puptake = 1

0= =-

cell
component

pool

Conservation of mass and steady state Proteome allocation

Volume and surface area Reaction fluxes

flu
x(

J x
  
 y
)

pcatabolismvcatabolism + ... + v0 = cell volume

pGlucoseUptakevGlucoseUptake + ... + s0 = cell surface area

membrane
lipids

electron
transport

chain

membrane
biosynthesis

catabolism

saturated
range

non-saturated
range

glucose
uptake

catabolism
membrane

biosynthesis

cell
biosynthesis

amino acids
biosythesis

glucose
uptake

cell
biosynthesis

px   y = 0.3

px   y = 0.2

px   y = 0.1

substrate
concentration

Jx   y = px   y
s

s + km

(A)

(C) (D)

(B)

Figure 8.4: Fundamental assumptions in the modeling of microbial growth – (A) Con-
servation of mass and steady-state assumption: The change in concentration of a cell
component is equal to the incoming fluxminus the outgoing flux. At steady state, the
concentration of the cell component is constant. (B) Proteome allocation assumption:
the proteome is divided into different proteome sectors. The number of proteome
sectors in a model depends on the model granularity. The sum of all the proteome
sectors always equals 1. (C) Volume and surface area assumption: The volume of the
cell is limited and is filled with intracellular cell components such as proteins. The
sum of the volumes of the intracellular cell components is equal to the cell volume.
Similarly, the surface area of the cell is limited and contains membrane cell compo-
nents such as lipids. The sum of the surface areas of membrane cell components is
equal to the cell surface area. (D) Example of flux assumption according to Michaelis-
Menten kinetics: the reaction x → y is carried out by proteome sector px→y. Themaximal
rate is reached for saturating substrate concentrations and is determined by the size
of the proteome sector.

lite x, gives (according to Eq. (8.5)):

Jn→x = Jx→B . (8.14)

Finally, due to conservation of mass, the biomass synthesis flux equals the growth
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rate:

λ = Jx→B . (8.15)

Solving equations (8.12)-(8.15) gives a prediction for the growth rate:

λ = βx→Bβn→x

βx→B + βn→x
. (8.16)

Solution (8.15) for the growth rate is based solely onmechanistic assumption - that is,

assumptions that are based on the mechanistic properties of the biochemical reac-

tions in the cell. In this case, that is that the fluxes are linear to the relevant proteome

sector. Because we have taken a steady state approximation and the rates of the two

reactions must be equal, the growth rate is determined by the relative values of the

catalytic constants.

Using this model, we can now derive the relationship between the concentration of

ribosomes and the growth rate. Combining Eq. (8.12) and (8.14) gives:

λ = px→Bβx→B (8.17)

This shows that the growth rate is linearly proportional to the anabolic sector. Given

that the anabolic sector is composed mostly of ribosomes, this fits well with the ex-

perimentally observed linear relationship between the concentration of ribosomes

and the growth rate, which was first described by Schaechter et al. [203] and later

confirmed by Bremer et al. [204]. It is important to notice that this relation is due to

the assumption that the biomass synthesis flux is linear in the ribosomal proteome

sector.

In summary, we have derived the linear relationship between the concentration of

ribosomes and the growth rate using only basic assumptions about the properties of

the biochemical reactions in the cell and the conservation of mass. This relationship

is one of the experimentally observed growth laws in microbial systems.

Example 2 - Growth on two nutrient sources

In this example, we consider a metabolic system that grows on two different nutrient

sources, n1 and n2 Fig. 8.3C. We use the fundamental assumptions outlined in Section

1.2 and an additional assumption of growth-rate maximization to demonstrate how

cells may exhibit catabolite repression - a phenomenon in which cells utilize only one

nutrient even when multiple nutrients are available in the environment [196].

The metabolic system in this example catabolizes both nutrient sources to the same

metabolite x, but at different efficiencies. The anabolic reaction is the same as in

Example 1. There are now three proteome sectors in this model: two for catabolism
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of the nutrients and one for anabolism. Thus, according to the proteome allocation

constraint (Eq. 8.7), we have:

pn1→x + pn2→x + px→B = 1. (8.18)

As before, we assume a linear correlation between reaction rates and proteome sec-

tor fractions (according to Eq. (8.8)). The different efficiencies of the catabolic sectors

is represented as βn2 > βn1. Applying the mass conservation assumption for metabolite

x, combined with the steady state assumption, gives

Jn1→x + Jn2→x = Jx→B . (8.19)

The growth rate is again equal to biomass synthesis flux, as in Example 1:

λ = Jx→B . (8.20)

Given that there are more variables than constraints in this example, solving Eqs.

8.18 - 8.20 reveals that there is no unique solution for the growth rate, but rather a

solution space with one free variable pn1→x:

λ = βx→Bβn2→x

βx→B + βn2→x
+ pn1→x

(
βn1→x − βn2→x

βx→B + βn2→x

)
βx→B . (8.21)

The solution shows that the metabolic system has a decision to make regarding how

much of the proteome to invest in sector pn1→x. To solve this system, we introduce an

additional assumption of growth rate maximization – that is, to maximize its fitness,

themetabolic systemmaximizes the growth rate in a given condition. In this example,

to maximize the growth rate, the cell uses only the more efficient catabolic system,

setting pn1→x = 0 and the solution for the growth rate is as in example 1. The model

predicts that the cells will only utilize the nutrient source with the higher efficiency,

even if both nutrient sources are available in the environment. This solution fits the

catabolic repression experimental result presented in the introduction in which in

which the metabolic system represses the use of a less efficient nutrient source in

favor of a more efficient one.

Example 3 - Multiple energy generating pathways

In this example, we focus on a classic question in cell physiology known as overflow

metabolism [212, 213]. Within the cell, two primary energy-generating pathways ex-

ist: the oxygen-requiring respiration pathway and the oxygen-independent fermen-

tation pathway. It is established that, in the presence of oxygen, the respiration path-

way fully oxidizes available nutrients, rendering it more nutrient-efficient in contrast

to the fermentation pathway [214]. Utilization of the fermentation pathway ismarked
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by the secretion of byproducts, such as acetate in E. coli or ethanol in yeast, making

it inherently wasteful. Intriguingly, experimental observations reveal a counterintu-

itive phenomenon: even under oxygen-rich conditions, cells often opt for the less

efficient fermentation pathway. Under growth rates surpassing a critical threshold,

the secretion rate of byproducts, indicating an increased reliance on the fermenta-

tion pathway, exhibits a linear rise [147, 215, 216]. This counterintuitive preference

for fermentation has long presented a profound question in bacterial physiology.

Based on previous studies [147], we present a coarse-grainedmodel to elucidate this

observed phenomenon (Fig. 8.3D). The model postulates steady-state growth on a

single nutrient source, denoted as n. This nutrient is taken up from the environment,

and channeled towards biomass through the proteome sector pn→B. Additionally, it

serves as a precursor for energy generation, either through the respiration pathway

catalyzed by proteome sector pn→r or the fermentation pathway catalyzed by pro-

teome sector pn→f . Thus, according to the proteome allocation constraint (Eq. 8.7),

we have:

pn→B + pn→r + pn→f = 1. (8.22)

Diverging from earlier models presented in this chapter, our model necessitates two

precursors for biomass generation: energy and a carbon precursor. Carbon assimila-

tion is coarse-grained into the biomass generation pathway n → B, while energy is gen-

erated through the energy-producing pathways of respiration n → r and fermentation

n → f. Consequently, two mass balance equations are requisite – one for carbon flux

and another one for energy flux. The carbonmass balance equates the carbonuptake

rate coming from nutrient uptake JC
in to the carbon fluxes utilized for cell biosynthesis

JC
n→B, fermentation JC

n→f and respiration JC
n→r:

JC
in = JC

n→B + JC
n→f + JC

n→r. (8.23)

Similarly, the energy balance equation asserts that the energy generated by fermen-

tation JE
n→f and respiration JE

n→r equals the energy utilized for the biomass synthesis

reaction JE
n→B:

JE
n→B = JE

n→f + JE
n→r. (8.24)

Consistent with prior examples in this chapter, we maintain a linear correlation be-

tween reaction rates and proteome sector fractions (as per Eq. 8.8).

Both fermentation and respiration reactions utilize a carbon substrate and produce
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energy, with a key distinction lying in their nutrient utilization efficiency. The ratio of

carbon utilized in these reactions to energy generated is expressed as:

JE
n→r = εn→rJ

C
n→r; JE

n→f = εn→fJ
C
n→f . (8.25)

Given that the respiration pathway exhibits higher nutrient efficiency than the fer-

mentation pathway: εn→r > εn→f .

Concluding themodel description, we incorporate the cellular requirements for growth

precursors (energy and carbon) and the proteome. Under carbon limitation, the pro-

teome fraction dedicated to cell biosynthesis pn→B exhibits a linear growth rate depen-

dence [147, 217, 205, 218]:

pn→B = p0 + σn→Bλ. (8.26)

The growth rate correlates with the flux of growth precursors, adhering to a fixed

stoichiometry of the metabolic network [219, 220]:

JE
n→B = σEλ; JC

n→B = σCλ. (8.27)

Another key assumption of the model posits that, while the respiration pathway is

more nutrient-efficient, utilizing less nutrients per energy unit generated, the fermen-

tation pathway is more proteome-efficient, requiring a smaller proteome fraction per

energy unit generated. This assumption is embodied in the efficiency parameters of

the reaction fluxes: βn→f > βn→r.

To validate the efficacy of our model in capturing the experimentally observed linear

increase in acetate secretion with high growth rates, we endeavored to predict ac-

etate secretion as a function of growth rate. The acetate secretion rate is governed

by the flux through the fermentation pathway, represented by Jac = SacJ
C
n→f , where Sac is

determined by the involved stoichiometry. Solving Eqs 8.22 - 8.27 for acetate secre-

tion yields an expression that increases linearly with the growth rate:

Jac = Sac

εn→f
βE(pE − λ(σx→B + σE

βx→r
)). (8.28)

where βE = βn→rβn→f

βn→r−βn→f
and pE = 1 − p0. The negative value of βE, arising from the higher

proteome efficiency of the fermentation pathway, results in a positive slope and a

negative intercept on the Jac-axis. The model provides a good quantitative fit to the

experimental observation [147]. The critical growth rate λcr, signifying the growth rate

at which the cell activates the fermentation pathway, occurs when Jac = 0, giving λac =
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pE

σn→B+σE/βn→r
.

It is crucial to highlight the key assumption underlying this solution, which lies in the

relative efficiencies of the energy-generating pathways. At high growth rates, the cell

encounters inhibition not only in its ability to rapidly extract energy from the nutrient

but, more significantly, it is constrained by the available proteome. Consequently,

the cell shifts to utilize the more efficient fermentation pathway.

It is also noteworthy to identify the assumptions overlooked by the model. For in-

stance, the model excludes the proteome sector for nutrient uptake, coarsely inte-

grating it into the biomass biosynthesis and energy generation pathways. While this

assumption is reasonable for growth on a single nutrient, a model considering multi-

ple nutrients with varying uptake efficiencies necessitates the inclusion of proteome

sectors for nutrient uptake. Further analysis of the model can be found in [147, 221].

8.4 Mechanistic links between cellular trade-offs, gene

expression, and growth

This section presents a coarse-grained cell model that describes the dynamic adap-

tation of global mechanisms driving the growth of bacterial cells. Compared to the

models previously described in this chapter, this model is dynamic, i.e. not based on

steady-state assumptions, and it has a higher level of granularity. It is also based on

explicit mechanisms, which allows extension with additional mechanisms of interest,

for example, the effects of antibiotics or of heterologous gene expression on cellular

growth.

Energy metabolism and protein production are the main pillars of biomass produc-

tion and cell growth, and form the basis of the growth model. A set of ordinary dif-

ferential equations describes the dynamic interplay of (i) nutrient internalization and

catabolism, (ii) transcription, and (iii) and translation (see Fig. 8.5). A key assumption

of the model is that biomass is dominated by proteins, and so the cellular growth

rate corresponds to the total rate of protein synthesis via translation. All processes

are part of a feedback loop in which the final protein products act as catalyzers of the

model reactions, creating a self-replicating system.

In its basic form, the growth model includes 14 intracellular variables: internal nutri-

ent, si; energy molecules, a; and four types of proteins along with their corresponding

free (mx) and ribosome-bound mRNAs (cx). Of the four types of proteins considered,

there are three groups of catalyzing molecules: transporters (et), metabolic enzymes

(em) and ribosomes (r), and one group of housekeeping proteins (q). As themodel does

not assume steady state, the different reactions are defined in terms of reaction rates

instead of reaction fluxes. A simplified description of the main reaction rates of the
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Figure 8.5: Schematic of the dynamic growth model – The model focuses on key cel-
lular processes: nutrient uptake, transcription and translation. Enzymes (shown in
blue and dark green) import andmetabolize extracellular nutrient (shown in orange),
which yields energy (yellow). Availability of energy impacts transcription and trans-
lation, however, it is assumed that energy consumption is dominated by translation.
The different species of mRNA compete for ribosomes (light green), and their transla-
tion consumes energy. Assuming that biomass is dominated by protein, the total rate
of translation determines the rate of growth (lower right). Four classes of proteins are
modelled: ribosomes, nutrient transporters, enzymes and other house-keeping pro-
teins (red).

model is shown in Table 8.1. For details on all reactions and parameters, readers are

referred to the supplementary information of [222]. In what follows, the focus will

be on the conceptual aspects underlying the prediction of cellular growth rate, and

some examples of model applications.

Building on the assumptions of mass balance and proteome allocation described in

Section 8.2 of this chapter, the model centers around three fundamental constraints,

namely (i) a finite pool of cellular energy that fuels protein biosynthesis, (ii) a finite pool

of ribosomes for which mRNAs compete for translation, and (iii) a finite cell mass.

As a result, the model predicts the dynamic allocation of internal resources and its

emergent impact on cellular growth rate without the need to assume growth rate

maximisation.

8.4.1 Model definitions

Growth rate and biomass synthesis Based on the assumption that biomass is dom-

inated by protein, and other contributions are negligible, the biomass B of a cell can
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Description Reaction Reaction rate
Nutrient internalisation s → si et · vts

(Kt+s)

Nutrient metabolism si → nsa em · vmsi

(Km+si)

Transcription ∅ → mx ωx · a
(θx+a)

Ribosome binding mx + r ↔ cx kb ·mxr, ku · cx

Translation cx + nxa → x+mx + r cx · γ(a)
nx

Table 8.1: Summary of mainmodel reactions and their accompanying rates. The four
proteins represented in the model are denoted in the reactions by x, x ∈ r, et, em, q, γ(a) is
the rate of translational elongation, defined as γmaxa

Kγ +a , and nx is the average length of a
protein molecule in amino acids. The parameter ns represents nutrient quality and
determines the yield of energy per catabolized nutrient.

be calculated by summing over the coarse-grained proteome,

B =
∑

x

nxx+ nr

∑
x

cx, x ∈ r, et, em, q, (8.29)

which sums over all proteins (x) and mRNA-bound ribosomes (cx), with nr and nx de-

noting the lengths of proteins in terms of amino acids. Equation (8.29) is equiva-

lent to the mass balance assumption described in section 1.2.1 of this chapter. As a

consequence, the proteome allocations, defined by φx = x/B for x ∈ {em, et, r, q} sum to 1,

i.e.
∑

x φx = 1.

Similar to the previous examples in this chapter (Section 8.3), themodel correlates the

growth rate with biomass production, which depends on translating ribosomes and

their translation elongation rate γ(a). Importantly, the rate of elongation depends on

the energy produced in the catabolic processes described in themodel, which dynam-

ically couples protein synthesis with metabolism. Defining the number of translating

ribosomes Rt =
∑

x cx, the change in cellular biomass over time becomes

dB

dt
= γ(a)Rt − λB. (8.30)

The second term, λB, accounts for dilution via redistribution of mass to daughter cells

at division. In homeostatic conditions, that is when B is in steady state and so dB
dt = 0, it

then follows that λ∗ is proportional to the rate of protein synthesis. To define growth

dynamically,

λ(t) := γ(a)Rt

B0
, B0 > 0. (8.31)

Setting B0 to the typical biomass of a cell in mid-exponential growth ensures that cells

will have a steady-state biomass of B∗ = B0.

Rate of translation In actively growing bacteria, protein synthesis, and in particular

translation-associated processes, account for a major part of the energy budget. The
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Figure 8.6: Mechanistic derivation of the translational elongation rate – The model
assumes that each elongation step consumes a fixed amount of energy. In a first
step, energy reversibly binds the mRNA-ribosome complex, upon which elongation
takes place. Once the peptide reaches it’s final length, the protein is released and
ribosome and mRNA are freed up.

model assumes a simplified mechanism to derive the dependence of the translation

rates on the energy levels of the cell. It is assumed that each elongation step of trans-

lation consumes a fixed amount of energy (Figure 8.6), and further that intermediate

reactions are in quasi-steady state. It can then be shown that the net rate of transla-

tion elongation takes the form

γ(a) = γmaxa

Kγ + a
. (8.32)

Here, γmax denotes the maximal rate of translation elongation per ribosome and Kγ

the energy threshold of half-maximal elongation. For any protein x, the rate of its

translation is then given by

νx(cx, a) = cx
γ(a)
nx

, (8.33)

where cx denotes ribosomes bound to mRNA of type x and division by nx accounts for

the number of elongation steps to take place for the production of one px.

Rate of transcription The model assumes that transcription is energy-dependent,

but that its consumption is negligible compared to that of translation. Analogous to

translation, under the assumption of fixed energy consumption per elongation step,

the rate of transcription takes the same shape and is defined by

ωx(a) = ωxa

θx + a
, x ∈ r, et, em. (8.34)

Here, the energy threshold of half-maximal transcription, θx, is specific for each pro-

teome sector x, which dynamically links the proteome allocations φx with different

growth conditions. In particular, θr � θx for x 6= r ensures that the ribosomal sector

increases in rich growth conditions (cf. growth laws in Fig. 8.1C).

In addition, the model assumes that the transcription of household genes is neg-

atively auto-regulated to maintain near constant levels across different conditions.
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Figure 8.7: Mechanistic cell model – Experimental data (coloured circles) and model
simulations (lines) depicting the relationship between growth rate and cellular com-
position. The data describes the ribosomal fraction of the proteome φr in different
growth conditions. Each colour represents a different media composition, with in-
creasing drug-free growth going from red to green. The numbers within the circles
indicate the addition of the antibiotic chloramphenicol to the growth media at a cer-
tain concentration [in µM]. Although this antibiotic inhibits translation, an increase
in φr can be observed through all media compositions. The model fit to the experi-
mental data demonstrates the capacity of this model to describe two of the growth
laws. (Inset) Model simulation. Besides the composition, varying the amount of ex-
ternal nutrient in the growth media increases the steady-state growth rate up to a
saturation point. This reproduces Monod’s growth law.

Therefore

ωq(q, a) = wqa

θq + a
· I(q), with I(q) := 1

1 + (q/Kq)hq
, (8.35)

where I is the auto-inhibition function with threshold Kq and Hill-coefficient hq.

8.4.2 Model predictions

The model recovers the bacterial growth laws through the automodulation of finite

cellular resources in response to changing environments. It robustly fits empirical

data (Fig. 8.7), suggesting the growth laws are an emerging property of the constraints

integrated into the modeling approach.

The model predicts a hyperbolic dependence of the growth rate on nutrient avail-

ability as described by Monod’s law (Fig. 8.7 inset), derived using the conservation

of mass assumption and when φr � φq. Energy is created from the metabolism of in-

ternalized nutrients and determines the rates of transcription (ωx(a)) and translation

(γ(a)). In the absence of antibiotics, the latter is proportional to the growth rate of

the cell as described in Eq. (8.31). As the nutrient quality is increased, more energy
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will be available and therefore more transcription will occur. Due to the relationship

between transcription thresholds (θr � θx), the transcription of ribosomes is increased

comparatively more, leading to an increase in the ribosomal mass fraction as seen in

Fig. 8.7.

In a fixed nutrient condition, inhibiting translation by the addition of an antibiotic

increases intracellular energy levels as fewer ribosomes can translate. Again, with

θr � θx, this energy increase leads to a proportionally larger increase in transcription of

ribosomalmRNAs and so to a larger φR. In contrast to the scenario without antibiotics,

fewer ribosomes can actively translate and therefore the growth rate will be lower.

Consequently, a negative dependence of φR and growth rate arises.

8.4.3 Applications of the model

Due the coarse-grainedmodeling of mechanisms and the use of non-steady state dy-

namics, the model lends itself to modular extension for a range of applications. For

example, to reproduce the negative correlation between growth rate and ribosome

content amid translational inhibition (Fig. 8.7), themodel was extended to account for

inhibitory actions of the antibiotic chloramphenicol on ribosomes. Similarly, mech-

anisms that account for drugs with other modes of action could also be included.

Further, in [222], it was shown that the model can be extended to study a number of

applications:

Firstly, themodel was extended to account for expression of a heterologous gene cir-

cuit and predict constraints between heterologous circuit expression, circuit function,

and the growth of the host. This has applications in areas such as chemical produc-

tion in biotechnology, where host-circuit interactions are not understood and where

synthetic circuits have to operate robustly in different growth conditions. In this con-

text, the model can serve to quantify host-circuit interactions for a more host-aware

design of synthetic gene circuits.

In another application, the model’s ability to dynamically predict growth rate emer-

gently from intracellular mechanisms was used as a proxy for evolutionary ‘fitness’ to

study when gene regulation was evolutionarily stable. This was done by augmenting

the cellmodelwith population growth, assuming that all cells of a population are iden-

tical, and modeling competitive interactions between a resident and mutant strain.

Finally, in [222] it was shown how to use the model to study specific mechanisms

within a wider cellular context. With the example of gene-dosage compensation,

where the effects of a gene deletion can be reduced by increasing the expression

of a paralogous gene, it was shown how and when global regulatory mechanisms

caused compensation. The example showed that the constraints underpinning the
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growth laws can also cause global negative feedbacks on proteins affecting growth.

8.5 Concluding remarks

In this chapter, we delved into the intricate world of coarse-grained modeling of mi-

crobial growth. We began by describing key experimental evidence that has led to

what is known as bacterial growth laws. These laws are derived from growth mea-

surements and are deemed to be conserved for various organisms. We then mathe-

matically described the fundamental assumptions necessary tomodel bacterial growth.

Using basic modeling systems, we showed how to analyze such a system and derive

fundamental conclusions for bacterial growth. Thesemodels reproduce the bacterial

growth laws, providing a link between theoretical models and experimental results.

Finally, we introduced a more complex model that includes various cell processes

such as translation, transcription, and the cellular growth process. Overall, this chap-

ter highlights the power of coarse-grained modeling in unraveling the complexities

of microbial growth and offers a framework for exploring a wide range of biological

questions.

While this chapter lays a foundation for research on various topics in biology, many

areas remain to be explored. For example, the effects of changing environmental con-

ditions such as dynamic changes in nutrient availability, acidity, or temperature are

not discussed. Furthermore, various cellular processes such as protein degradation

andmembrane assembly are not covered in the chapter. Including these processes in

a coarse-grained model could potentially lead to the discovery of other growth laws.

In the next chapter, you will explore models that further refine the biological cell and

bridge between coarse-grained models and genome-scale models. These models in-

corporate several of the assumptions discussed here but utilize more knowledge of

the metabolic network.

Recommended readings

Growth laws in microbiology:

◦ Monod, The growth of bacterial cultures, Annual Review of Microbiology, 1949 [200].

Classical reference for the quantitative modeling of microbial growth.

◦ Schaechter, Maaløe, and Kjeldgaard, Dependency on medium and temperature of

cell size and chemical composition during balanced growthof Salmonella typhimurium,

Microbiology, 1958 [203]. Classical article that introduced the growth law for ribo-

somes.

◦ Scott, Gunderson, Mateescu, Zhang, and Hwa. Interdependence of cell growth and

gene expression: origins and consequences, Science, 2010 [205]. Article that re-
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newed interest in growth laws for the quantitative study of microbial physiology.

◦ Jun, Si, Pugatch, and Scott, Fundamental principles in bacterial physiology – history,

recent progress, and the future with focus on cell size control: a review, Reports on

Progress in Physics, 2018 [198]. A very complete review of growth laws in microbiol-

ogy.

Coarse-grained modeling of microbial growth:

◦ Hinshelwood, On the chemical kinetics of autosynthetic systems, Journal of the Chem-

ical Society, 1952 [223]. Historical reference for coarse-grained modeling of micro-

bial growth.

◦ Kafri, Metzl-Raz, Jonas and Barkai, Rethinking cell growth models, FEMS Yeast Re-

search, 2016 [224]. Review of coarse-grained models of microbial growth.

◦ de Jong et al., Mathematical modeling of microbes: metabolism, gene expression

and growth, J. R. Soc. Interface, 2017 [225]. Review comparing coarse-grained mod-

els of microbial growth with other modeling frameworks.

◦ Bruggeman, Planqué, Molenaar, and Teusink, Searching for principles of microbial

physiology, FEMS Microbiology Reviews, 2020 [226]. Review summarizing biological

insights obtained from coarse-grained models.

Examples of coarse-grained models:

◦ Molenaar, van Berlo, de Ridder and Teusink, Shifts in growth strategies reflect trade-

offs in cellular economics, Molecular Systems Biology, 2009 [227]. Influential article

illustrating the explanatory capacity of coarse-grained models.

◦ Weiße et al., Mechanistic links between cellular trade-offs, gene expression, and

growth, Proceedings of the National Academy of Sciences of the USA, 2015 [222]. Article

describing how growth laws for ribosomes can be recovered from coarse-grained

model of microbial growth.

◦ Basan et al., Overflowmetabolism in Escherichia coli results from efficient proteome

allocation,Nature, 2015 [147]. Article describing howproteomeallocation constraints

can account for overflow metabolism in bacteria.

◦ Zavřel et al., Quantitative insights into the cyanobacterial cell economy, eLife, 2019

[228]. Example of the use of coarse-grained models for explaining physiological

principles underlying growth of less-studied (photosynthetic) microorganisms.

Problems

Computer exercises for this chapter can be found on the book website.

Problem 8.1 Linear chain model

A system is composed of a set of 2 linear reactions: nutrient -> metabolite x1 ->

metabolite x2 -> biomass. Using the same approximations as in example 1, solve
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for the growth rate. What would be the solution for a system composed of N reac-

tions? Show that the least efficient reaction determines the growth rate.

Problem 8.2 Linear chain model with Michaelis-Menten rate laws

Solve example 1 when the nutrients are not available in excess. Use Michaelis-

Menten relations for both reactions. First, derive the concentration of metabolite

x as function of catabolic sector proteome size. What is the minimal size for the

catabolic sector? What happens if the catabolic sector is smaller than that? Next,

determine the proteome allocation that maximizes the growth rate.

Problem 8.3 Linear chain model with Michaelis-Menten rate law for the catabolic

reaction

Solve Example 2 when the nutrients are not available in excess. Use Michaelis-

Menten relations for the catabolic reaction. Atwhat point does themetabolic system

switch to use the other nutrient source?

Problem 8.4 Simple model with allosteric regulation of catabolic reaction [229]

A metabolic system is growing in an environment with one nutrient available. The

system allosterically regulates its catabolic reaction according to the concentration

of metabolite x. Assume Michaelis-Menten kinetics for all reactions. What is the

growth rate as function of catabolic sector proteome size? This is a complex solution,

don’t solve it analytically andplot a numerical solutions instead. What is the catabolic

sector proteome size that maximizes the growth rate?

Problem 8.5 Growth on a single nutrient that is degraded to both energy and

biomass precursors

Consider the model from section 1.3, example 3. Solve the model for the nutrient

uptake rate as function of growth rate for:

(a) Growth rates above the onset of acetate secretion

(b) Growth rates below the onset of acetate secretion

Problem 8.6 Simulating models numerically

Simple coarse-grained models can generally be solved analytically. However, for

models with a higher level of granularity, like the one presented in this section,

reaching an analytical solution to the model equations is highly complex. Compu-

tational approaches that allow numerically solving high-dimensional systems are of

great value.

(a) With the help of the provided code and following the detailed description of the

ODE system in the SI of [222], implement and solve the system of ODEs. Using

this implementation, reproduce Monod’s law, as seen in the inset of Figure 8.1.
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(b) The nutrient composition of the growth media is the main driver of increasing

growth rates. Simulate the model to steady state for different values of nutrient

qualities. What model species are most impacted by an increase in nutrient

quality?

(c) As seen in Figure 8.1, the addition of a drug that inhibits protein synthesis results

in an upregulation of the ribosomal fraction φR. Reproduce Figure 8.1. How do

the observed results relate to your answer in question 2?



Chapter 9

Universal features of

autocatalytic systems

David Lacoste, Barnabé Ledoux

Chapter overview

◦ A stoichiometric theory of autocatalysis is outlined, which is based on the no-

tion of productivity (either economical or chemical). The framework is applied to

the von Neumann universal constructor model as an example. New methods of

identifying autocatalytic subnetworks in complex chemical networks follow from

this approach.

◦ The expanding economic model of the von Neumann model is a linear model of

a circular and productive economy also based on stoichiometric considerations.

As shown in [230], a notion of growth factor introduced in thismodel has valuable

applications for the characterization of autocatalytic chemical reaction networks.

◦ A special case of the von Neumann model is the Leontief model, from which the

Leontief production function can be derived. This approach is useful inmodeling

certain features of cell metabolism, such as cell growth laws and inhibition of

bacterial growth by various types of antibiotics.

9.1 Stoichiometric versus dynamical autocatalysis

9.1.1 Stoichiometric autocatalysis

According to IUPAC, “an autocatalytic reaction is a chemical reaction in which a prod-

uct (or a reaction intermediate) also functions as a catalyst. In such a reaction, the

observed rate of reaction is often found to increase with time from its initial value”.

While this definition provides a sound kinetic characterization of autocatalysis, it is not

209
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easy to use it to identify autocatalysis in situations in which kinetics is poorly known.

Such situations arise frequently when trying to analyze complex chemical mixtures,

such as astrophysical samples analyzed by researchers studying the origin of life re-

search, or man-made prebiotic systems such as complex interacting RNA networks,

in which most of the species and reactions are unknown.

On the theory side, the concept of autocatalytic sets was introduced by S. Kauffman

in 1971, and played an important role in his early investigations of the Origin of order

in living systems. In 2004, W. Hordijk and M. Steel expanded this original work by

introducing the concept of reflexively autocatalytic food-generated networks (RAFs),

namely self-sustaining networks that collectively catalyze all their reactions using only

compounds from the food sets [231]. This formalism is based on the assumption

that any compound (or a fraction of them) involved in randomly picked reactions has

a certain probability to be catalytic [232]. Although very nice results follow from this

assumption, such as the existence of a phase transition controlled by the connectivity

of the network, this assumption is a bit problematic, because a given species can act

as a catalyst or not depending on the presence of other molecules and depending on

the reactions it is part of. In otherwords, the probability for a reaction to be catalytic is

context dependent and strongly constrained by the topology of the network itself. To

address both issues, namely the lack of available data on the kinetics and the short-

comings of the RAF formalism, a better starting point is to define autocatalysis from

stoichiometry rather than from kinetics. While alternate definitions of autocatalysis

are possible [233], we now detail the definition of [234], which encompasses autocat-

alytic sets and RAFs as particular cases.

Given a complete chemical network, autocatalysis is defined at the level of a subnet-

work of stoichiometric matrix N, i.e. for a subset of species and reactions of the full

network. Species which are not part of the autocatalytic subnetwork can still play an

important role, for instance, food species or building blocks. The autocatalysis of this

subnetwork requires two essential properties: autonomy (i) and productivity (ii). The

autonomy condition is there to exclude direct injection or loss of species from the

environment within the set of autocatalysts. More precisely, this condition requires

that each species is produced by at least one reaction (each row of the stoichiometric

matrix has at least one positive entry) and each reaction must at least consume one

species (each column has at least one negative entry). This notion of autonomy is

a close analog of the notion of circular economy in the economic context, provided

that species are replaced by goods, and reactions are replaced by industry sectors

of an economy. Productivity (ii) means the absence of mass-like conservation laws

and is related to the notion of a productive economy. More precisely, this condition
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requires the existence of a non-zero reaction vector v, such that

∆n = N · v > 0, (9.1)

element-wise. The existence of the flux vector v guarantees that there is a set of

species and reactions such that all species of the set are produced by the autocat-

alytic subnetwork. The proof that this property is equivalent to the absence of mass-

like conservation law is the content of Gordan’s theorem of linear algebra, which is

explained in the box 9.A.

A third more technical condition introduced in Ref. [234] is that N should be non-

ambiguous (iii) which means that a species can not be both a reactant and a product

of the same reaction. This condition (iii) is less essential but is convenient as it en-

sures that catalytic steps can be distinguished at the level of stoichiometric matrix.

Indeed, otherwise the stoichiometric matrix would be ambiguous in the sense that it

would not be possible to separate the contribution of the consumption of reactants

from the production of products. In practice it is always possible to transform an

ambiguous reaction into a non-ambiguous one provided intermediates in the reac-

tion are added. Another way to get around the issue of ambiguity without having

to transform the network, is to define the chemical network from the start by two

stoichiometric matrices instead of one as we will do in section 9.2.

Remarkably, this mathematical definition is enough to guarantee the existence of a

small number of minimal autocatalytic motifs called autocatalytic cores. The mini-

mality of these cores means that they cannot contain smaller cores in them. In [234],

it was found that with the above assumptions, only five minimal motifs could ex-

Math box 9.A Gordan’s theorem

Gordan’s theorem is the following result of linear algebra which takes the form of
an alternative:

∃v s.t. N · v > 0, (9.2)

or
∃ρ > 0 s.t. N> · ρ = 0. (9.3)

The first side of the alternative in 9.2 corresponds to the stoichiometric definition
of autocatalysis, the second side of the alternative in 9.3 corresponds to the exis-
tence of a so called mass-like mass conservation law, i.e. a conservation law with
only strictly positive entries, in which case no autocatalysis is present. Note that
when autocatalysis is present, only mass-like conservation are forbidden but not
general conservation laws in which the entries of ρ are positive and negative. An
example of an autocatalytic network with non-mass like conservation law is given
in [235], which also provides a nice geometric interpretation of conservation laws
as manifolds. Note also that a stronger condition for autocatalysis is the absence
of any conservation law, which mathematically means ker N> = 0.
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Type I Type II Type III Type IV Type V

Figure 9.1: Five minimal autocatalytic motifs (figure taken from [234]). Yellow circles
represent species, black lines connecting them represent reactions and the orange
squares indicate the locations where further reactions could be added while preserv-
ing the motif type.

ist, which are represented in Fig. 9.1. It also follows from that construction that an

orientation of the reactions in a core must exist such that v has only non-negative

components [236].

As a simple illustration of this framework, let us consider the universal construc-

tor which von Neumann introduced in 1940 [237]. This is an idealized machine U,

that would be able to construct any object including itself when given some set of

instructions I. von Neumann identified a potential recursion issue related to the

self-replication of the machine together with its instructions and he also understood

that for such a machine to evolve without compromising its replication, an additional

player in addition to U and I was needed. This additional player would be a universal

copymachine X that would copy the instructions without translating them [238]. With

this remarkable insight, von Neumann foresaw the essential mechanism of the DNA

based translation-transcription machinery that we know today. We can summarize

the reactions in which the universal constructor U, the universal copy machine X and

the instructions I are involved by the following simple chemical network :

X + I −−−−→ 2 I + X,

U + I −−−−→ 2 U + I, (9.4)

U + I −−−−→ U + I + X.

When written in this way, the sub-network of these three reactions with the set {U, I,X}

contains several catalytic steps, so that neither conditions (i) nor (iii) are satisfied. To

solve the issue, let us introduce food species F1, F2 and F3, intermediate species XIF1, UIF2

and UIF3 and their corresponding reactions so that the network is no longer explicitly
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catalytic :

F1 + X + I −−−−→ XIF1, XIF1 −−−−→ 2 I + X,

F2 + U + I −−−−→ UIF2, UIF2 −−−−→ 2 U + I, (9.5)

F3 + U + I −−−−→ UIF3, UIF3 −−−−→ U + I + X.

Now the subnetwork of species {U, I,X} satisfies the conditions (i) (autonomy) and (iii)

(non-ambiguity), and also condition (ii) (productivity) because the reaction vector that

corresponds to summing all the reactions produces all the species of the set, accord-

ing to the overall reaction X + 2 U + 3 I −−−−→ 2 X + 3 U + 4 I. Therefore this network is autocat-

alytic from the point of view of stoichiometry. Note also that all reactions have been

assumed to be irreversible here, which is allowedwithin the framework of [234], since

thermodynamic compatibility is not considered.

A significant benefit of the stoichiometric definition of autocatalysis outlined above is

that linear programming algorithms, which are a classic tool of analysis of optimiza-

tion problems, can be used to search effectively for autocatalytic subnetworks within

large chemical networks [239, 230, 236]. In carrying out this program, the authors

of [230] found that the number of autocatalytic subnetworks typically grow exponen-

tiallywith systemsize. In practice, amuch smaller number of subnetworks is expected

to be relevant dynamically in large networks, an issue which we address now.

9.1.2 Dynamical autocatalysis

Historically, autocatalysis as studied in classic chemistry has been related to a certain

type of kinetic pattern. To distinguish this classic definition from the previous based

on stoichiometry, we will call this form of autocatalysis, dynamical autocatalysis. In

this view, dynamical autocatalysis is defined as a chemical process in which one of

the products catalyzes its own formation according to

dxi

dt = k(X) · xn
i + f(X), for k > 0, n > 0, |k| � |f|, (9.6)

where X is the vector of all the concentrations xi, the term k(X) · xn
i describes the con-

tribution from autocatalysis while the function f describes the contribution coming

from the rest of the chemical system [240]. It follows from this definition that diverse

forms of autocatalysis are possible depending on k(X) and n, and that these forms

could remain concealed if f(X) is too large. It also follows from this definition that

when k(X) is constant, autocatalysis can generate exponential growth for n = 1, but also

over-exponential n > 1 or sub-exponential n < 1 evolution. In practice, the exponential

growth regime is anyway limited to an intermediate time window either because the

reaction eventually runs out of substrates (at long times) or due to product inhibi-
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tion, which can trigger sub-exponential behavior. Further, k and n are not indepen-

dent factors since they arise from shared physical factors (availability and diffusion of

ligands, size and flexibility of the molecules...) resulting in a trade-off between these

two parameters that is relevant for designing catalysts or autocatalysts from bottom

up [241].

From the definition in Eq. (9.6), it follows that dynamical autocatalysis has the poten-

tial to destabilize a dynamical state, which would otherwise have remained stable.

Recently, the connection between the topology of the autocatalytic reaction network

and its dynamical stability has been explored in two separate works that address dif-

ferent sides of that issue. In the first one, it was proven that for fully connected dilute

systems with no degradation, the stoichiometric definition of autocatalysis leads to

dynamical autocatalysis, characterized by a strictly positive Lyapunov exponent [242].

In the second one, for a certain class of parameter-rich kinetics, it was shown that the

stoichiometric definition of autocatalysis implies a choice of reaction rates for which

an unstable fixed point necessarily exists [243]. In a nutshell, the first work provides

explicit results regarding the relation between stoichiometric and dynamical aspects

of autocatalysis but the results are limited to the diluted regime, while the second

work does not have this limitation, but is only a proof of existence: it does not pro-

vide an explicit method to obtain the reaction rate stated in the result.

Several recent studies have explored growing systems from the point of view of non-

equilibrium thermodynamics [244]. In particular, in [235], Kamimura et al. have built

a comprehensive chemical thermodynamic theory of open systems which are also

self-replicating. This approach clarifies the thermodynamic conditions under which

growth is possible in a system in which the volume is also growing [235]. To in-

clude this change of volume, these researchers developed an extension of traditional

chemical thermodynamics theory. The growth of the volume is an important feature

of autocatalysis, which manifests itself in certain experiments such as that of [245].

In this work, small-molecule autocatalytic reactions occur in compartments made of

water in oil droplets. Small molecules, which act as fuel in these reactions, can dif-

fuse between compartments while the large molecules which are produced inside

the compartments cannot diffuse across compartments. This work provides a stun-

ning demonstration that autocatalysis can drive compartment growth, competition

and reproduction.

The question of how to connect stoichiometric, kinetic and thermodynamic features

of autocatalysis is an ongoing active area of research which is pursued by several

groups theoretically [236, 246, 235, 247]. For instance, in [246], a framework has been

proposed to derive structural and thermodynamic bounds for autocatalytic chem-

ical networks assuming mass-action law kinetics. The term structural means that
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these bounds depend on the topology of the network but not on the value of the

rate constants. Another important structural property of biochemical networks is for

instance robust perfect adaptation (RPA). This property means that there exist some

subnetworks, with specific topological features, whose parameters are irrelevant to

the steady-state properties of the rest of the network [248].

In [236], the authors proved there always exists a well-defined CRN corresponding to

an autocatalytic core, where by well-defined, wemean that there exists a list of chem-

ical species with finite concentrations and a list of reversible chemical reactions obey-

ing mass action law kinetics that realize this network dynamically. Within these as-

sumptions, they also showed that thermodynamic constraints prevent certain asso-

ciations of autocatalytic cores, which suggests that only a restricted number of cores

is relevant for the dynamics of a given autocatalytic network.

9.2 von Neumann’s model of an expanding economy

Besides his theory of the universal constructor mentioned above, J. von Neumann

made another essential contribution to our topic by proposing in 1945 amodel for an

expanding economy. The model assumes the economy to be circular, which means

that products (or goods) are produced from other goods and from building blocks

using a number of processes with a certain intensity vj [249]. There are n goods and m

processes with n < m, which are characterized by constant ratios of inputs to outputs.

The model is formulated in terms of an output matrix B and an input matrix A. Since

the total amount of good produced must match the internal and external demand,

described by the positive vector d, we have the equation

B · v = A · v + d. (9.7)

This economic model can be directly mapped onto a chemical reaction network, if

goods are interpreted as chemical species, the vector v represent chemical fluxes

[250] and d could represent a dilution or degradation. To formalize this analogy, it

is convenient to split the stoichiometric matrix N into the part that concerns the pro-

duction of products denoted N+ and the part that concerns the consumption of goods

or species N−, so that we can use B = N+,A = N− and N = N+ − N−. We say that an econ-

omy is productive when there exists a non-negative vector v such that B · v > A · v. This

condition maps exactly to the notion of productivity introduced in Eq. (9.1) for stoi-

chiometric autocatalysis, while the condition of circular economy maps to the notion

of autonomy introduced at the same time.

Obviously, wemust require the positivity of the vectors v and the condition
∑

i vi > 0. An-

other condition is that the economic system is irreducible, whichmeans that it cannot
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be decomposed into isolated independent sub-parts (a sub-part being here a subset

of goods which does not require goods from outside the subset to produce all the

goods of the subset). To show the existence and unicity of the dynamic equilibrium

for such economies, J. von Neumann introduced the function

α(v) = min
i

∑
j N

+
ij vj∑

j N
−
ij vj

, (9.8)

where the minimum is taken over all goods i, and he proved that the function α is

uniquely defined from the vector v, which is itself part of the solution. The quantity

α = max
v

α(v), (9.9)

represent a growth factor of the economic system and the value of the vector v at the

maximum describes the set of goods that defines a dynamic economic equilibrium.

In [250], Blanco et al. applied this framework to the study of autocatalytic reaction

networks. They underlined the importance of α for chemical reaction networks, which

they call the maximum growth factor (MGF). Note that this maximum growth fac-

tor is different from the dynamical growth rate of species within the network. The

MGF does not have dimensions of a growth rate, instead it is a dimensionless fac-

tor, which can be evaluated based only stoichiometry. Blanco et al. proved that this

MGF is strictly larger than one, if the network is autocatalytic [250]. Conversely, if

an autonomous network (where autonomy is now defined at the level of N− and N+)

has an MGF strictly larger than one, then it is autocatalytic. As an illustration, the au-

tocatalytic nature of the network of Eq. (9.1.1) can be assessed without the need of

introducing intermediates, because one can show that its MGF is strictly larger than

one and that it is autonomous.

Blanco et al. also developed efficient algorithms to identify the strongest, maximal

and minimal autocatalytic subnetworks, and used them to study the formose and

E. coli reaction networks. The formose network is an important prebiotic network,

which is known to be autocatalytic. Their results are markedly different for the two

networks as shown in Fig. 9.2. From an analysis of MGF of subnetworks, they found

that in the formose network, a single subnetwork dominates all the others but is frag-

ile with respect to perturbations. In contrast, the E. coli network is built from inter-

linked cores, which together forms a robust structure.

9.2.1 Leontief’s production function

Wassily W. Leontief won the Nobel prize in economics for his work on input-output

relations in economic systems, which he started in 1936 [254]. He later developed

this mathematical tool to study the American economy, and in particular the interde-
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(A) Formose network (B) E. coli network

Flow intensity

Figure 9.2: Autonomous subnetworks with highest value of MGF are shown for the
formose network (A) and for the E. colimetabolism (B). The intensity of fluxes in each
subnetwork is shown with the color scale. The figure is reproduced from [230] with
permission from the authors.

pendency between industries.

The Leontief model is the special case of the von Neumannmodel, in which each pro-

ductive activity has a single output (no joint products) whereas there may be many

activities producing the same output and each good is produced by at least one in-

dustry. As in the von Neumann model, it is also assumed in the Leontief model that

goods are produced with fixed ratios of production factors. This assumption leads to

the Leontief production function discussed in the box 9.B.

We can think of this production function as the outcome of a supply chain where pro-

duction factors have to be assembled in fixed proportions in order to form a product.

For instance, in order to build one bike, you need two wheels, one saddle, two ped-

als, etc. Those ratios are fixed, or equivalently the elasticity of substitution is σ = 0 as

discussed in the box 9.B. If you want to form a product P , for which you need to as-

semble n1 units of R1, n2 units of R2, ... up to nN units of RN , the production rate will be

limited by the smaller value of Rj/nj, that is the number of sets of resource j required

to produce P . If the minimum time to produce one unit of P is τP , and the minimum

time to use resource Rj in order to produce one P is τi, we can write

dP
dt = 1

τP
min

(
τP

τ1

R1

n1
,
τP

τ2

R2

n2
, ...,

τP

τN

RN

nN

)
. (9.13)
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Indeed, τP /τjnj is the number of products which can be simultaneously produced from

one resource j. This result holds true if resources are fully allocated to the production

of P , but if several products Pi need to be produced in parallel, one resource may be

used by different production chains simultaneously, meaning that a fraction αi,j of

total available resources Rj must be used for the specific product Pi, so that :

dPi

dt = 1
τP

min
(
αi,1

τP

τ1

R1

n1
, αi,2

τP

τ2

R2

n2
, ..., αi,N

τP

τN

RN

nN

)
. (9.14)

Then the prefactor before Ri represents the maximal number of copies of the prod-

uct that you can produce simultaneously from one unit of resource i. The fact that

resources may not be substituted with other resources has important consequences

for cell metabolism [255].

In the problem ??, we study a single resource - single product industry or workstation

and we show that a Leontief production function emerges from mass-action law ki-

netics when a certain time scale separation holds. This example is important because

it illustrates that the Leontief production function not only involves fluxes associated

to reactions or industries but can typically also include stocks associated to goods or

metabolites, which are only available in finite amounts.

Further applications of this formalism todescribe for instance the ability of ametabolic

network to switch from one behavior to another one (as in the crabtree or Warburg

effects in biology and in the Giffen behavior in economics) is studied in [256] and in

a coming chapter to be written.

9.2.2 Liebig’s law

Interestingly, the idea that the production rate could be limited by the scarcest re-

source is present in the field of agronomy under the name of Liebig’s law of minimum

[257, 258, 259, 260]. It was initially used to describe plant growth, which requires var-

ious resources, and where it is observed that varying the amount of fully available re-

sources did not modify the final production. This suggests that only scarce resources

will limit production and translates to the principle that when a population is growing

using various resources, the scarcest will set the growth rate, and the others will be

consumed accordingly. This law can be used to model the growth of an organism in

an environment where resources are constrained. The link betweenmass action laws

and Liebig’s law of minimum has been studied [259]. The interest of this method is to

obtain equations that are easier to solve on domains where one resource is scarcest.

One main difference between the Leontief production function and Liebig’s law of

the minimum is that for the latter, the minimum is not necessary taken between the

numbers of each production factor, but between the yields of those production fac-
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tors (which can be non-linear functions) [261]. In particular, this means that the rate

of production is set by the minimum of the yields of each production factor :

dY
dt = 1

τ
min ({fi(xi)}) , (9.15)

where fi are functions of the production factors xi. To model the requirements of

plants in nutrients, yields given by Michaelis-Menten kinetics can be used [259]. In-

stead of directly comparing the numbers of each production factors, it consists in

comparing the yields. However, the idea that one resource will be limiting remains

the same.

9.2.3 Application to metabolism

The law ofminimumwas used to build simplifiedmodels ofmetabolism as an ensem-

ble of coupled autocatalytic cycles [255]. Metabolism is seen as a supply chain, where

production factors must first be produced and then assembled in fixed proportions

to form a product. We call P the number of proteins of one type, produced by translat-

ing mRNA (of number m) with ribosomes (of number R) and substrates (of number S).

Using the Leontief production function, we can write (following the method of [255])

:

dP
dt

∣∣∣∣
prod

= 1
τP

min
(
αPR, αPS,

τP

τesR
m, . . .

)
(9.16)

Ribosomes and substrates have to be used simultaneously to produce different types

of proteins, αP is the fraction of the total population of ribosomes (and substrates)

used to produce the particular protein P . The minimum time to produce one P is

τP , the minimum time to elongate the polymer by one amino acid is τe, and sR is the

size of the domain on the mRNA that has to be dedicated to the production of one

polymer P at a given time. As explained in [255], τP /τesR is then the maximum number

of ribosomes that can translate simultaneously one mRNA, and thus the maximum

number of copies of P you can produce simultaneously from one unit of mRNA. This

is indeed what was predicted from Leontief’s model for input-output systems: the

prefactor before every amount of resources is the maximum number of copies of

the protein you can produce simultaneously from this specific resource. This term

is that of production of the protein, now the protein could be consumed to form a

product, or degraded.

To use ribosomes, you first need to form ribosomes by assembling proteins and ribo-

somal RNA. Similarly, to usemRNA youmust first polymerize RNA. This suggests that a

minimal autocatalytic network that begins to capture the structure of the transcription-
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Figure 9.3: (A) Scheme of coupled autocatalytic networks interacting with a toxic
agent. The orange box linking two arrows represents the Leontief production func-
tion. B1 represents active ribosomes; C1 active RNA polymerases; similarly B2, ..., BN−1

and C2, ..., CK−1 are intermediates, RN , RK are building blocks. We suppose that “toxic” in-
hibiting agents in numbers A can bind to one of the autocatalysts (chosen here to be
B1 for simplicity). (B) Illustration of the growth laws when varying either the amount
of antibiotics or the nutrient quality linked to pre-exposure growth rate λ0 displayed
on the right scale. This figure is reproduced from [263] with permission.

translation machinery is made of two coupled autocatalytic cycles associated respec-

tively to RNA and ribosomes. These two cycles will then be described by coupled

equations with production terms described by Leontief’s production function [255].

From such an framework [255], one can derive the various growth laws that charac-

terize the cell metabolism, which have been discussed in detail in various chapters of

this book. Let usmention briefly two recent works that follow this line of research : In

the first one carried out in [262], the authors noticed that RNA polymerase, andmRNA

levels correlate in experiments with growth rates in contrast to the belief that ribo-

somes should be the sole drivers of the growth rate. To explain these observations,

the authors developed a theoretical framework building on [255], which account for

the joint role of all these factors in the observed growth rate.

Another recent application of the above framework concerns a model for the inhi-

bition of bacterial growth by antibiotics [263]. In that work, the cell metabolism is

modeled as two coupled autocatalytic cycles, in which one cycle describes the produc-

tion of ribosomes, while the other describes RNA-polymerase production as shown

in Fig. 9.3. It is assumed that the antibiotic inhibits one of these two essential auto-

catalytic cycles by targeting some essential metabolites in them. Growth laws can be

recovered from the model as shown in Fig. 9.3B. A first law describes the increase

of ribosome fraction as a function of growth rate when nutrient quality is increased

(solid magenta curve) while a second growth law describes the up-regulation of ribo-

somes as a result of the inhibition of translation by ribosome inhibitors (colored solid
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lines). In addition, the model successfully describes the experimental dependence of

the growth rate on various types of antibiotics and confirms the existence of growth

bistability, namely a regime in which two possible values of the growth rates are pos-

sible in the same range of physical parameters.

9.3 Concluding remarks

In this chapter, we have established a connection between the universal constructor

model and the expanding economic model, which were both introduced by von Neu-

mann. Interestingly, vonNeumannhimself did not discuss the relation between these

two works, which we make in this chapter. This expanding economic model of von

Neumann (1945) and the input-output model of Leontief (1936, 1941) laid the foun-

dation of a modern framework for economic analysis. Their framework turned out to

be essential to quantify the relative interdependency of various parts of an economy

and the nature and the structure of economic equilibria. Remarkably, these tools

continue to inspire developments in other fields as recent studies of autocatalytic

chemical networks show. Thanks to linear programming methods, we are now able

to identify autocatalytic subnetworks efficiently and characterize them using notions

such as the maximum growth factor or using thermodynamic bounds. More work

is needed to understand the interactions between autocatalytic networks, and their

role in the emergence of chemical complexity linked to pre-Darwinian evolution.
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Problems

Problem9.1 Production function of aworkstationwith a single resource and single

product

We model a workstation with a single resource and a single product [261]. Let x be

the amount of available resource or stock, r the supply rate of this stock, q the specific

rate with which the stock is being lost or degraded. Further, let u (resp. v) be the

number of idle (resp. busy) machines which can process the stock. The processing
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time is 1/β, b is the number of output products per machine, a is rate of capture of

stock by machines, α is how many machines get involved per unit resource/stock.

(a) Assuming mass action law for the processing of the stock, show that the equa-

tions of the problem are

ẋ = r − a u x− q x,

u̇ = βv − α u x,

v̇ = −βv + α u x,

ẏ = bv.

(b) Show that the total number of machines is a constant denoted u0. Derive the

steady state number of busy machines v̄ in terms of the steady state amount of

stock x̄. Comment on the form of the output production that you find.

(c) Introduce the variables γ = q/(a u0) and ρ = α r/(a β u0). Derive the expression of v̄ in

the limit γ � 1 and γ � |ρ − 1| and show that it has a Leontief form. Interpret this

form in terms of how the stock is handled in the regime ρ < 1 and ρ > 1.

(d) Show that for small but non-zero γ, the input-output function falls below the line

boundary defined by the Leontief function.

Problem 9.2 UPF model

The UPF model is a toy model of metabolism made of two coupled autocatalytic

cycles [255]. In the model, a fraction α of machines of type U catalyze themselves.

The remaining machines synthetize another type of machines P . The P machines

convert an external substrate f to an internal substrate F , which is used by U tomake

more copies of itself and new Ps. To simplify, we assume that tomake onemore unit

of U by the first reaction, one unit of F is needed, and one unit to make one unit of P

by the second reaction.

The model is defined by the following set of equations

U + F α−−−−→ 2 U,

F + U 1−α−−−−→ P + U,

f + P −−−−→ F + P,

U −−−−→ ∅.

(a) Let ni be the number of molecules of type i, where i ∈ {U,P, F, f}. The life type of

a machine of type U is τL, the incorporation time of f into F is τF and the incor-

poration time of one unit F is τa. Show that within the framework of Leontief
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production functions, the equations of the model are

dnU

dt = αmin(nU , nF )
τa

− nU

τL

dnP

dt = (1 − α) min(nU , nF )
τa

dnF

dt = min(nP , nf )
τF

− min(nU , nF )
τa

.

(9.17)

(b) Discuss the four limiting regimes of the model: (i) nF � nU and nf � nP , (ii) nF � nU

and nf � nP , (iii) nF � nU and nf � nP and (iv) nF � nU and nf � nP . Simplify the equations

for each regime by introducing a common growth rate µ.

(c) Summarize your results by deriving the growth laws of the various regimes in a

single plot representing α vs. µ.

Problem 9.3 MGF of two simple networks

(a) Calculate the MGF introduced in Eq. (9.9) for the following two simple networks

:

A −→ B

B −→ 2 A (9.18)

and

2 A −→ B

B −→ A. (9.19)

(b) Comment on the values obtained in the previous question.
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Economics analogy 9.B Production functions

In economics, production functions relate the quantities of outputs to that of in-
puts in a system. There are various production functions commonly used in eco-
nomics, one of the most well-known is the Cobb-Douglas production function
[251, 252], which can be written in a general way:

y = c
∏

i

xαi
i , (9.10)

where xi are production factors (which could be labor, capital or other factors), y
is an amount of product and c, αi are positive coefficients. Mathematically, this law
bears similarities with the mass action law in chemistry, where the rate of produc-
tion of a species is related to the product of the concentrations of the reactants
to the power of their associated stoichiometric coefficient. A more general pro-
duction function is the constant elasticity of substitution (CES) production function
[253]. This function accounts for the fact that one productmay be substituted with
another one and can be written in the form:

y = c

(∑
i

αix
ρ
i

) 1
ρ

. (9.11)

Here, ρ is the coefficient of substitution and αi is the weight of the production factor
i in the total production (∑i αi = 1). Instead of ρ, one often uses the elasticity of
substitution σ which is such that ρ = σ−1

σ .
Here it is assumed that the elasticity of substitution is the same for all pairs
of production factors. Note that σ could also be defined as an elasticity coef-
ficient that compares the change in the ratio of inputs to changes in the ratio
of marginal products. Indeed, the marginal product with respect to factor j is
yj = ∂y/∂xj = cραjx

ρ−1
j (

∑
i αix

ρ
i )

1−ρ
ρ and represents the sensitivity of the product to the

amount of production factor j. Therefore, yj/yk = αjx
ρ−1
j /αkx

ρ−1
k , and we recover that

:

σ = ∂ ln(xj/xk)
∂ ln(yk/yj) . (9.12)

Therefore, σmeasures precisely how the ratio of twoproduction factors ismodified
when the ratio of two corresponding marginal products is modified. Now, three
famous cases can be considered [253]:
◦ σ → ∞ : In this case, any modification in the ratio of marginal products would
require an infinite modification in the ratio of production factors. This means
that the ratio of marginal products remains constant whatever the modification
in the ratio of production factor. This is the so called perfect factor substitution
limit. Indeed, the CES production function becomes linear (ρ = 1), y = c

∑
i αixi, and

any production factor can be substituted by another (even if ∃i, xi = 0, it can be
replaced by any other xj).

◦ σ = 1 : In this case, a modification in the ratio of marginal products translates to
the same modification in the ratio of production factors. If we want the depen-
dency of the production in production factor j, we need to double the amount of
production factor j. This limit corresponds to ρ → 0, in which case we recover the
Cobb-Douglas production function y = c

∏
i x

αi
i . This means that the level of substitu-

tion of a any production factor is null (if one of the xi = 0, then y = 0). Interestingly,
for all values of σ ∈ [0, 1], there is no possible substitution between production fac-
tors.

◦ σ = 0 : This case is particularly interesting, it means that the ratios of the produc-
tion factors xj/xk are fixed whatever the ratios yj/yk. In this limit we recover the so
called Leontief function with fixed factor proportions. There is still no substitution
between the products (if one xi = 0, then y = 0), but this also means that forming
one unit of product always requires the production factors in the same propor-
tions. This corresponds to ρ → −∞, which gives y = cmin(xi). Interestingly, this is a way
to get rid of the coefficients αi which represent the share of each production fac-
tor in the total production. This boils down to saying that production is limited
by the scarcest resource.



Chapter 10

Resource allocation in complex

cell models

HugoDourado, AnneGoelzer, PranasGrigaitis, WolframLiebermeister, and EladNoor

Chapter overview

◦ Whole-cell resource allocation models on a genomic scale combine a detailed,

FBA-like description of metabolism with a model of macromolecule synthesis,

formulated as linear constraint-based problems.

◦ Resource allocationmodels of cells can be built based on three basic constraints:

stationary fluxes (balancing production and consumption fluxes, uptake and ex-

cretion fluxes, as well as compound dilution by cell growth); catalytic constraints

relating fluxes to the amounts of catalyzing enzymes (or other machines); and

density constraints, limitingmolecule amounts in cell compartments, ormolecule

concentrations.

◦ Large resource allocation models build on the same principles, and have been

implemented as different variations (RBA models, ME-models, and pc-models).

◦ These constraints narrow down the solution space predicted by FBA towards

more physiological solutions

10.1 Detailed resource allocation models of cells

In the previous chapters, we have saw two principal approaches to modeling pro-

duction processes in cells. To keep the number of variables low, but with intention

of well-parametrizing the model, one can construct small, coarse-grained models of

growing cells (Chapter 8). On the contrary, Flux Balance Analysis (FBA) models can ac-

commodate a very large number of variables (Chapter 5), making them an excellent

choice to model metabolic networks at genome-scale.

225
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Small, coarse-grained models are very suitable for investigating base principles of

life. Likely the best example to illustrate this is the work of Douwe Molenaar and

co. [264], where a self-replicator model was used to proposed that the low-yield, or

substrate-inefficient (”wasteful”) metabolic strategies are adopted as a consequence

of these pathways beingmore efficient in terms of protein use, compared to the high-

yield pathways. In other terms, the growth output of the ”wasteful” strategy per unit

protein is higher than the ”efficient” one. Thus we now believe that fermentation of

glucose, often called under an umbrella term ”overflow metabolism”, will take place

in many organisms if the substrate in their environments is abundant enough.

However, the chemistry of life is extremely diverse, and even such a familiar concept

as fermentation can become complicated. Take three representatives of the tree of

life: a bacterium Escherichia coli, budding yeast Saccharomyces cerevisiae, and mam-

malian, say, human cells. All three exhibit overflow metabolism - even when enough

oxygen is available in the environment - yet the underlying biochemistry tells us that

E. coli ferments glucose into acetic acid, S. cerevisiae - into ethanol, and human cells -

into lactate. Bringingmore contrasts on the table, theremight be extremedifferences

in a single taxon already: some yeasts, for instance, will never produce ethanol when

oxygen is present; some of them have lost the ability to do respiration at all over the

course of evolution. This might sound like playing a trivia game, but in many cases,

meaningful modeling of complex biological systems requires both taking and mak-

ing biochemical insight. Therefore, when we aim not only to uncover the underlying

principles, but also to learn biochemistry, more detailed models such as FBA model

have an upper hand.

Yet we already know from previous chapters that the predictions of canonical FBA

models are limited to substrate-efficient metabolic states. Continuing with the exam-

ple of the overflow metabolism, FBA models would predict E. coli or S. cerevisiae to

respire on minimal medium with glucose as the main carbon source – regardless of

the maximal flux of glucose into the cell. Thus the prediction of substrate-inefficient

metabolism using FBA over the years used to rely on introducing additional, mainly

empirical (e.g. maximal oxygen uptake), constraints onto the system [158]. More-

over, we can impose only linear constraints in FBA models, and this greatly reduces

our options.

Overall, we often seek to take the advantageous points of both ”schools ofmodeling”,

however, this is where we need to start doing compromises. In an ideal world, the

self-replicator models from Chapter 8 would be much more detailed, and would be

extended with explicit kinetics and thermodynamic constraints to obtain a detailed

cell model. However, the number of variables would increase tremendously, and

non-linear optimization is very inefficient already past even small systems. On the
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contrary, we could try to advance on existing FBA-type models by introducing the

concepts of protein economy (Chapter 7) at genome-scale, as well as self-replication.

Following our best understanding, these, again, would constitute non-linear relation-

ships (e.g. enzyme kinetics), yet large-scale non-linear programming is not a viable

option either. Thus simplifications are necessary to keep linearity (and convexity) to

solve optimization problems for large-scale models.

So can we make large-scale models tractable? If we linearize all formulae, then in-

stead of a biconvex or convex/concave problem, we obtain a linear problem (a bit

like FBA); more precisely, a system of linear equalities and inequalities that define a

set of feasible states. This set is a polytope, and linear optimality problems on this

set can be solved easily. More specifically, to model metabolism in a growing cell, we

need to consider dilution of metabolites in the growing cell volume, or simply - the

growth rate µof the cell.

10.1.1 Replacing enzyme kinetics by linear catalytic constraints

To obtain large, detailed cell model that we can actually solve, all relationships be-

tween models variables have to be linearized. This concerns, most importantly, all

catalyzed processes: we assume a linear dependence between a catalyzed flux and its

catalyst (enzyme or machine) concentration, but ignore the dependence on the con-

centrations of substrates, products, cofactors, or additional regulators. What does

this mean in practice? As we know from Chapter 3, typical enzymatic rate laws have

the form v = e k(s): the rate v is proportional to enzyme level e and enzyme efficiency k,

which is given by a kinetic rate law k(s), a nonlinear function of the metabolite concen-

trations. Depending on the context, k is also called apparent kcat. The kinetic rate laws

k(s) have typical shapes, as described in Chapter 3.

To linearize the expression for v, while keeping the dependence on e, we need to re-

place the ratio k = v/e by a fixed number, and so k becomes a model parameter. If

the metabolite concentrations were known (experimentally, or from kinetic models

under optimality assumptions, see Chapter 6), the value of k could be computed. Oth-

erwise, it can also be determined experimentally, by measuring v and e and setting

k = v/e [24], which is feasible for a limited number of enzymes, however. Obviously, in

reality, neither s nor k will be fixed and given, but for our linearized model, we need to

assume this. This holds both for metabolic reactions (with enzymes as catalysts) and

for macromolecular reactions (with molecular machines as catalysts).

Under this assumption, we can replace all kinetic constraints by two linear constraints

on the enzyme. If we consider coefficients k and k
′ to approximate enzyme kinetics

in the forward and backward direction, respectively, the flux the enzyme e catalyzes

should satisfy −e k′ ≤ v ≤ e k. We set k′ = 0 for irreversible reactions, and, for simplicity



228 Resource allocation in complex cell models

reasons, we usually assume k = k
′ for reversible reactions, unless kinetic measure-

ments are available that suggest otherwise. This relationship can be formulated as

enzyme capacity constraints in order to replace the kinetic rate laws in the FBAmodel.

By writing down such constraints for each enzyme in the model, we can couple the

metabolic fluxes with the demand for enzymes, needed to operate these fluxes.

By linearizing all formulae as described above, it is possible to build very large mod-

els, describing resource allocation on genome scale. What we commonly refer to

as ”resource allocation models” therefore formalize the mathematical relationships

defining the interactions and allocation of resources between the cellular processes

to describe optimal resource allocation using constraint-basedmodels. All these rela-

tionships take the form of linear, growth-rate dependent equalities and inequalities,

and, when linearized, form a convex feasibility problem [265, 266, 267].

10.1.2 Overview of existing FBA extensions

By itself, the idea of constraining metabolic models to represent limited metabolic

capacity of cells is not new. There are two ways to approach this budgeting problem.

The first possibility is ”protein budgeting”, where a fixed amount of protein needs

to be partitioned in the optimal manner (e.g. to maximize growth). The second,

alternative method is ”resource budgeting”, where models include both the protein

budgeting and the descriptions of demands for protein synthesis. However, ”pro-

tein budgeting” problems assume that investments in protein production follow the

budget, and not vice versa.

Some enzyme-constrained variants of FBA account for empirical constraints on the

total concentration of metabolic enzymes (FBA with molecular crowding, or FBAwMC

[268]), or on proteome sectors (Constrained-Allocation FBA, or CAFBA [269]). While

these types of models can predict metabolic states more reliably, the empirical con-

straints come as model assumptions and thus cannot be understood by the models

themselves. In these models, the primary assumption is that the cell phenotype is

obtained by genetic regulations, and the main goal and utility of genetic regulation

can be interpreted as ways of saving resources. Thus in many cases when we predict

cell phenotype maximizing growth, we find predictions in good agreement with the

experimental observations. Therefore, resource allocation models extend and em-

bed the ideas of proteome partitioning beyond frameworks like CAFBA and GECKO

[270], or representing metabolic capacity limitations beyond FBAwMC.

Currently, there are three main implementations of large-scale resource allocation

models: Resource Balance Analysis (RBA) [271], Models of Metabolism and Macro-

molecular Expression (ME-models) [272] andproteome-constrainedmodels (pc-models)

[39]. All these implementations are formalized as LP feasibility problems at a fixed
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growth rate, where the growth rate can then bemaximized in an additional optimiza-

tion loop. Originally, ME-models were considered as an extension of M-models, by

including predictions for mRNA, protein, and ribosome levels. Importantly, they do

not consider density constraints that, for instance, RBA does. Therefore, limitations

on the capacity of exchange fluxes (as in FBA) are necessary to obtain a solution.

10.1.3 Why maximize the growth rate?

Under the assumption of the balanced growth, the copy number of each cell compo-

nent is doubled between two consecutive cell divisions. If metabolites are described

by their concentration, we can think of cell growth as dilution by which the concen-

trations of all compounds would go down if their amounts remain the same. For a

given compounds, dilution by growth can be effectively modeled of every metabolite

by a ”consuming reaction”, with a flux given by vdil = µ s, the compound concentration

multiplied by the growth rate. By adding these hypothetical dilution reactions to the

metabolic network, we obtain a new stationarity condition N v = µ s that connects the

vectors of fluxes and compound concentrations, and in which the growth rate µ ap-

pears as a parameter. For each choice of the parameter µ, we can ask whether a

feasible steady growth state – i.e. a feasible combination of v and s exists. Further-

more, the feasible combinations (µ,v, s) form a convex set, with possible solutions (v, s)

for low values of µ and no solutions above a critical value µmax, the maximal possible

growth rate for our model. Finding this critical value as well as the corresponding op-

timal fluxes v and compound concentrations s is relatively easy, and can be done by

bisection: solving a series of Linear Programming problems (checking for potential

solutions (v, s) for different values of µ).

10.2 Thebasic constraints in resource allocationmodels

As mentioned above, fine-grained resource allocation models build on genome-scale

metabolic models (GEMs) to encompass all the reactions that can be employed in

a metabolic network. The technical advance, when constructing such models, is

to impose sets of additional constraints onto GEMs to couple the metabolic fluxes

with investment into metabolic pathways (production of enzymes). To the date, dif-

ferent implementations of this concept were proposed to predict optimal resource

allocation in different microorganisms [273].

Although the precise formulations vary, resource allocation models build on three

principal types of constraints (Figure 10.1):

(1) Mass-conservation constraints

(2) Flux coupling constraints

(3) Compartment capacity, or protein density, constraints
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The general description of these constraints in fact is the same as for small, coarse-

grained self-replicator models, only the number of individual constraints increases.

Moreover, every of the constraints described canbe split into a number of constraints,

considering only a subset of fluxes in the model (e.g., fluxes taking place in a certain

cell compartment).

Alongside these three major types of constraints, there is another set of constraints,

which we may call ”environment” constraints - these correspond to, e.g. the compo-

sition of growth medium, biomass composition at at given growth rate µ, etc. They

are implemented by setting target values for amounts and/or fluxes defining a viable

cell in a given (or several) environmental conditions, but they are not structural con-

straints. These constraints usually are added ad hoc and do not need to bear any

functional meaning per se. We will now expand on the three types of constraints

used in resource allocation models; note that the description is not exhaustive and

peculiarities may vary among different formulations.

10.2.1 Steady-state and mass-conservation constraints

Mass-conservation constraints define the metabolic network (stoichiometry and rela-

tion between fluxes). The initial building blocks of these extended models are GEMs,

and thus the metabolic network stoichiometry is already there; what remains to be

defined are theprotein turnover processes. We consider four types of protein turnover

reactions in fine-grained resource allocationmodels: protein synthesis, folding, degra-

dation and dilution-by-growth. So, for every protein present in such a model, we

add these four reactions: two of them, translation and degradation, include the stoi-

chiometry of amino acids needed for its translation and released during degradation

based on the protein sequence. The reactions which represent either protein fold-

ing modeled as the conversion of the ”unfolded” protein species into the ”folded”

ones, and the dilution-by-growth is modeled as a sink for the ”folded” protein species

(”folded” → ∅).

10.2.2 Catalytic constraints

Next, the flux coupling constraints couple the metabolic fluxes with protein usage:

usually, the usage scales with the catalytic turnover value kcat of the enzyme. In this

step we have to collect the kinetic information (in most cases, kcat values), which are

used as model parameters. We establish the coupling between fluxes and protein

synthesis by setting v = kcat e η, where e is the enzyme concentration and 0 < η ≤ 1 is an

efficiency term summarizing the effects of reaction thermodynamics, enzyme satura-

tion, and possibly small-molecule regulation. The value for η can be either assumed or

fitted from experimental data, and when η = 1, the enzyme is considered to operate at
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Figure 10.1: Overview of biological components and mathematical constraints in
large-scale resource allocation models – A Resource Balance Analysis (RBA) model is
shown as an example. (A) Typically, an RBAmodel describesmetabolisms andmacro-
molecule production in a growing cell (yellow blocks). Precursors from metabolism
are needed to produce macromolecules, and some macromolecules serve as en-
zymes to catalyze metabolic reactions. In addition, macromolecules are diluted and
are localized in cell compartments. (B) Sets of mathematical constraints. The vari-
ables and processes described by an RBAmodelmust satisfy a number of constraints,
include mass-balance constraints (between production, degradation, and dilution of
compounds); capacity constraints (relating process velocities to the concentrations
of catalysts); density constraints (on the total amount of compounds in a cell com-
partment); and possibly empirical physiological constraints on any types of ”target
variables”, to ensure realistic models.

its maximal rate. Coupling constraints are introduced to couple both (i) themetabolic

reactions with enzyme usage (as described above) and (ii) protein turnover reactions

with the respective macromolecular machinery (e.g. sum demand of ribosomes for

protein translation, vtranslation = [Ribosome] × kcat,ribosome). The sheer number of the kinetic

parameters needed for formulating the coupling constraints in the fine-grainedmod-

els requires the modeler to consider different assumptions and simplifications when

building and parameterizing these models, as briefly discussed below.
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The number of processes described in a fine-grained manner directly translates to

the number of reactions and metabolites in the model. For instance, transcription is

modelled explicitly in theME-models [272]. Themodeler’s decision is key here: under

assumption that transcription and translation forma linear pathwaywith fixed scaling

factors (i.e. there is a fixed ratio of peptides translated per mRNA transcribed), the

flux throughmRNA translation reaction can be computed post-optimization based on

the flux through the protein translation reaction. Explicit modelling of transcription

would require describing processes of mRNA transcription, processing, export from

nucleus, and then cytosolic degradation after themRNA is translated – for each of the

transcripts, with precise stoichiometry and a new set of coupling constraints.

The next issue is kinetic parametrization of these fine-grained models. We currently

can use only very simplified kinetics in the models (flux coupling v = kcat e η), and sim-

plify such factors as enzyme saturation and thermodynamic driving force into a sin-

gle value of factor η. Two approaches are used to deal with this, as a large fraction

of parameters are not even available. First, condition-dependent kinetic parameters

(”apparent catalytic constants”, kapp) are fitted from experimental (mostly quantitative

proteomics) data (setting keff = kcat α, where 0 < α ≤ 1) with a value α chosen to match pre-

dicted enzyme abundance and experimental measurements. Otherwise, for the en-

zymes with measured kcat values, we can assume that enzymes work at their maximal

rate, i.e. the saturation function η = 1. Then the model computes the minimal protein

requirement to sustain the flux through the metabolic reactions. The comparison of

minimal predicted vs. observed protein abundance can represent the ”apparent satu-

ration”, or ”overcapacity” of enzymes. For instance, it is common in yeast S. cerevisiae

that the flux and not protein expression varies across conditions, and the relationship

between predicted andmeasured expression can suggest the nature of the observed

protein expression [274].

10.2.3 Protein density constraints

The final layer of information in our resource allocation models is a set of protein

density constraints in each cell. These constraints put an upper limit on the amounts

machines driving the cellular processes, e.g. a maximal protein capacity of a com-

partment. These constraints are formulated as weighted sums of protein abundance,

usually with weights proportional to the proteins’ molecular weight. Usually, the den-

sity constraints are expressed in terms of (usually maximal) mass, area, and volume

of the compartment (e.g. ”what is the maximal mass the mitochondrial proteins can

take up in gDW of cells?”). Based on the biological interpretation of the constraints, we

formulate the weighing multipliers to represent either of the metrics (mass/area/vol-

ume) that every protein occupies.
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Box 10.A Protein abundance versus concentration in resource allocation mod-
els

Herewewould like to include a relevant note for interpretation of the output of the
fine-grained resource allocation models. Both the classical FBA and these exten-
sions do not consider ”metabolite concentration” as a concept: optimization vari-
ables are all fluxes. Frameworks discussed in this chapter model protein synthesis
from amino acids and energy equivalents explicitly, with a typical flux dimension of
mmol gDW−1 h−1 (as for any other fluxes). To compute the amount of protein that has
to be produced in the steady-state growth, we should consider the flux balance for
the protein e: vsynthesis,e = vdegradation,e +vdilution,e, or, rewritten with the respective parameters,
vsynthesis,e = (vdeg,e + µ) e. Here, kdeg,e is the degradation rate for the protein e, and µ is the
specific growth (= dilution-by-growth) rate. The [e] in the rewritten equation holds
dimension of mmol gDW−1, which is protein abundance, rather than concentration.
The predicted amount of protein in cells can be compared to experimental mea-
surements in two ways. First option is to convert abundance to concentration us-
ing the relationship between the cell volume and dryweight (e.g. VgDW = 1.7 mL gDW−1 in
Saccharomyces cerevisiae, [17]). Alternatively, proteome mass fractions are a pop-
ular unit in label-free mass spectrometry-based protein quantification, a popular
method in quantitativemicrobiology. Respectively, predicted proteomemass frac-
tions canbe inferredby converting protein abundance inmmol to g, and scaling to the
protein content in dry cell biomass. Here, it is important to consider the conversion
factors (protein content in dry biomass). E. coli maintains rather constant protein
content in dry weight across growth rates (ca. 0.55 (g protein) gDW−1) [275, 276]. On
the contrary, the protein content is known to vary in S. cerevisiae as a function of
growth rate [17].

The capacity constraints can be both equality and inequality constraints: more fre-

quent are the latter (usually defining the ”upper limit” of, e.g. amount of protein tar-

geted to mitochondria). However, some cell properties should be described through

equality constraints: one of these is the protein density of biomass, defining the ”tar-

get” protein translation per gram dry cell biomass.

10.2.4 Interpreting the consequences of the additional constraints

We have briefly discussed what types of additional constraints need to be imple-

mented to extend FBA models to account for cellular resource allocation, and now

let us recap on what these sets of rules mean in biological terms. The constraints

described above shall couple the metabolic fluxes with the production of enzymes

that operate these functions, so the model has to produce amino acids and generate

ATP in order to use them for protein translation. Moreover, the enzyme demand will

be coupled with the production of the macromolecular machines required to pro-

duce, fold, and degrade these enzymes (ribosomes, chaperones, and proteases, re-

spectively), requiring the same building blocks (see Chapter 2). These constraints

therefore formalize a self-replicating molecular system in balanced growth subject to

different structural constraints:
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1. Themetabolic network has to produce allmetabolic precursors necessary for biomass

production and mass conservation must hold for all intracellular molecule species

- i.e. intracellular metabolites and molecular machines.

2. The capacity of each type of molecular machine must be sufficient to ensure its

function, i.e. to catalyze chemical conversions at a sufficient rate;

3. The intracellular density of compartments and the occupancy of membranes must

not exceed the defined limits.

As highlighted before, the biological interpretation of the additional constraints dis-

cussed above is rather universal for different implementations of resource allocation

models, with minor deviations in terminology and/or formulation. To illustrate how

resource allocation models are built from conventional GEMs, and how the respec-

tive models are formalized in mathematical terms, in the following we will consider

one of the popular formulations of resource allocation models in more depth.

10.3 ResourceBalanceAnalysis: model construction and

simulation

Resource Balance Analysis (RBA) is a flexible and generic modeling framework that

describes the functioning of an organism using linear equality and inequality con-

straints, as described in general terms in Section 10.2. As a consequence, an RBA

model includes all knownmetabolic reactions coupled to relevant cell processes with

major protein investments (production of biomass precursors; including, but not lim-

ited to protein translation, protein folding, protein transmembrane transport, and

protein degradation). Where applicable, circumstantial information can be included

into the model to establish the dependency of enzyme activity on metal ions, vita-

mins, and/or cofactors. Which metabolic reactions and cell processes are regarded

as relevant may vary between organisms and is a modeler’s choice.

10.3.1 Building a draft RBA model

The software package RBApy [277] contains all the routines needed to build and simu-

late RBA models. In order to build a new RBA model, it takes as an input a genome-

scale metabolic network in SBML format [278], together with additional information

to formulate all the constraints described above. Different types of biological data

are needed to build an RBA model for a given type of cell:

◦ Amino acid sequences formetabolic enzymes andmacromolecularmachines (e.g. ri-

bosomes and chaperones),

◦ If applicable, stoichiometry of known cofactors (e.g. metal ions),

◦ Efficiencies of metabolic enzymes,
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◦ Molecular weights and localization of proteins (for density constraints),

◦ Any empirical constraints on concentrations or fluxes (”targets”, see previous sec-

tion).

The software first extends the input GEMwith a description of protein production and

dilution in the cell. To do so, it extracts information from the input files on (i) protein

sequences and cofactors, (ii) the subunit stoichiometry of protein complexes, and (iii)

protein localization (using information from public databases such as UniProt). Using

this information, reactions corresponding to protein synthesis, folding, degradation,

and dilution by growth are added automatically. Finally, the software maps enzymes

to the reactions they catalyze and to the proteins they consist of. The output of the

routine is a draft (uncalibrated) RBA model.

10.3.2 Mathematical description of a RBA problem

Notation. Below AT refers to the transpose of the matrix A. Rn
>0

∆=
{
x ∈ Rn |xi > 0 for all i ∈

{1, · · · , n}
}
, R>0

∆= R1
>0, Rn

≥0
∆=
{
x ∈ Rn |xi ≥ 0 for all i ∈ {1, · · · , n}

}
and R≥0

∆= R1
≥0.

In a standard RBA model, we consider balanced growth (see Chapter ??), that is, the

average state of a cell in a cell bacterial population growing exponentially at the spe-

cific (constant) growth rate µ ≥ 0, i.e. the amount of produced biomass per biomass per

cell per unit of time. Our simulated average cell is composed of different molecule

species:

1. ny types of molecular machines, which can be subdivided further into ne enzymes

and transporters involved in the metabolic network E ∆= (E1, . . . ,Ene
) at the concentra-

tions e ∆= (e1, . . . , ene
)T and metabolic fluxes v ∆= (v1, . . . , vne

)T ; and nm macromolecular ma-

chinesM ∆= (M1, . . . ,Mnm) involved in non-metabolic cellular processes, such as the trans-

lation apparatus, at the concentrations m ∆= (m1, . . . ,mnm
)T ;

2. np proteins P ∆= {P1, . . . ,Pnp
} belonging to unspecified cellular processes. p ∆= (p1, . . . , pnp

)T

denotes the set of concentrations of P;

3. ns intracellular and mass-balanced metabolites S ∆= (S1, . . . , Sns
). Within the set S, we

distinguish a subset B ∆= (B1, . . . ,Bnb
) of abundant metabolites which have fixed growth-

independent concentrations b̄ ∆= (b̄1, . . . , b̄nb
)T (andusually coincidewith biomassmacro-

components such as DNA, cell wall or plasmic membrane). We also consider a set

of extracellular metabolites Sext
∆= (Sext,1, . . . , Sext,next) of concentrations sext

∆= (sext,1, . . . , sext,next)T

that are not mass-balanced.

Finally, let us introduce the vector yT ∆= (eT ,mT ) of concentrations of molecular machines

of size ny. Typical units of concentrations e, m and p are in millimoles per gram of cell

dry weight, and fluxes v in millimoles per gram of cell dry weight per unit of time.
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For a given cell growth rate µ ≥ 0, the RBA optimization problem (named Prba(µ)) can be

formalizedmathematically as follows. For a fixed vector of concentrations p ∈ RNnp

>0 and

the given growth rate µ ≥ 0,

find possible cell states y ∈ Rny

≥0,v ∈ Rne ,

subject to

(C1) −Ωv + µ(CS
Y y + CS

B b̄ + CS
P p) = 0

(C2a) µ(CM
Y y + CM

P p) − KT y ≤ 0

(C2b) −K′

E y ≤ v ≤ KE y

(C3) CD
Y y + CD

P p − d̄ ≤ 0

where all the inequalities are defined component-wise and:

◦ Ω is the stoichiometry matrix of the metabolic network of size ns × ne, where Ωij corre-

sponds to the stoichiometry of metabolite Si in the j-th enzymatic reaction;

◦ CS
Y (resp. CS

P) is an ns ny (resp. ns np) matrix where each coefficient CS
Yij
corresponds to the

number of metabolite Si consumed (or produced) for the synthesis of one machine

Yj (resp. Pj); CS
Yij
is then positive, negative or null if Si is produced, consumed or not

involved in the the synthesis of one machine Yj (resp. Pj);

◦ CS
B is an ns × nb matrix in which each coefficient CS

Bij
corresponds to a metabolite Si

consumed (or produced) for the synthesis of one Bj;

◦ KT (KE and K′

E, respectively) arematrices of size nm×ny (ne×ny, respectively) inwhich each

coefficient kTi (kEi and k′

Ei
, respectively) is positive and corresponds to the efficiency

of molecular machine Mi , i.e. the rate of the process per amount of the catalyzing

molecular machine, (the efficiency of the enzyme Ei in forward and backward sense,

respectively);

◦ CM
Y (resp. CM

P ) is an nm × ny (resp. nm × np) matrix in which each coefficient CM
Yij
typically

corresponds to the length in amino acids of the machine Yj (resp. Pj). In some cases

(for instance for the constraints on protein chaperoning), the length in amino acids

can be multiplied by a coefficient, such as the fraction of the whole proteome that

necessitates chaperoning;

◦ d̄ is a vector of size nc, where nc is the number of compartments (compartmentmem-

brane and/or compartment interior for which density constraints are considered. d̄i

is the density of molecular entities within the volume or surface area. Densities are

typically expressed as a number of amino-acid residues by volume or surface area.

◦ CD
Y (resp. CD

P) is an nc ×Ny (resp. nc ×np) matrix in which each coefficient CD
Yij
corresponds

to the density of one machine Yj (resp. Pj) in the compartment i. By construction, we

have one unique localization per machine.
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For given growth rate and medium composition, all equalities and inequalities in our

RBA problem Prba(µ) is linear in the decision variables (y,v) and is proven to be convex

[265, 267]. At given µ, Prba(µ) is a feasibility optimization problem, where constraints

(C1-C3) define the feasibility domain. The feasibility domain can be empty or non-

empty. If there exists a solution (y,v) to Prba(µ) -i.e. the feasibility domain is non-empty-,

then there exists a feasible resource distribution compatible with the given growth

rate. In other words, the cell can grow at this growth rate value. By construction, the

feasibility domain of Prba(µ) corresponds to the set of all possible phenotypes of the

cell at a growth rate µ ≥ 0.

We conclude this with some remarks:

1. In practice, the vector b̄ contains non-zero values only for the concentrations of

macro-components such as DNA, cell wall, and lipid membranes, and for a few set

of metabolites. These values are usually extracted from the biomass formation

reaction used in FBA models (see Chapter 5).

2. To model reversible enzymes, we introduced two diagonal matrices containing the

enzyme efficiencies, i.e. KE and K′

E, describing the capacity constraints of enzymes

in both directions. If an enzyme Ei is considered irreversible, k′
Ei
is set to 0.

3. In [266, 279], an RBA model was built for Bacillus subtilis. It integrates two macro-

molecular processes in constraint C2a, the translation and chaperoning of proteins,

and two density constraints, the limitation of the cytosolic density and of themem-

brane occupancy. An RBA model can be refined by integrating for instance other

cellular processes and molecular machines, such as the transcription machinery,

the protein secretion apparatus (see [279, 277]), ormolecule turnover [280], as well

as other types of constraints.

10.3.3 Simulation and analysis of RBA models

How to incorporate the medium composition. We represent the medium compo-

sition in two aspects, namely (i) qualitatively, by allowing exchange of the medium

metabolites in the model (UBExchange,n > 0). Note that some metabolites, although not

explicitly represented by the growth media, should also adhere to this rule (e.g. oxy-

gen, water, and protons). The (ii) quantitative composition of the growth medium is

determined by extracellular concentrations, which, in turn, dictate the efficiencies of

metabolic transporters viaMichaelis-Menten-like rate laws (as nonlinear k(c) functions;

see section 10.1.3). For an extracellular nutrient Sext,i with concentration sext,i ≥ 0, the ef-

ficiency of the corresponding metabolic transporter(s) is given by kE(sext,i) = kcatsext,i
KM+sext,i

, with

parameters kcat and KM for the turnover number and the affinity of the transporter,

respectively.

Obtaining the RBA solution for a given parameter set. For an RBA problem with
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given parameters, there exists a maximal growth rate µ∗ ≥ 0, such that for any µ, Prba(µ)

is feasible if and only if µ ≤ µ∗ [265, 267]. For a givenmedium composition, themaximal

growth rate µ∗ can computed by using a bisection algorithm, in which a series of LP

problems are solved to narrow down the exact growth rate at which the problem be-

comes infeasible. A real-life example would be simulating growth in glucose-limited

chemostat cultures under different dilution rates D. With increasing D, the glucose

availability increases, and a set of n different glucose uptake rates qGlc (qGlc,1, qGlc,2, . . . ,

qGlc, n) can be subjected to an RBA model to obtain a set of optimal metabolic states

(µ∗
1, µ∗

2, . . . , µ∗
n).

Together with the maximal feasible growth rate one obtains the optimal cell configu-

ration maximizing growth (µ∗,y∗,v∗). The principle of optimal performance, in this case,

that a cell phenotype should maximize growth rate, in fact, coincides with the princi-

ple of parsimonious resource allocation between cellular processes.

Exploration of the feasibility domain. Although RBA models inherently reduce the

solution space due to principle of parsimonious resource allocation, the solutions

obtained might still contain considerable flux variability. In the same vein as Flux

Variability Analysis ([281], see Chapter 5), the feasibility domain can be explored at

optimal (µ∗) or sub-optimal (µ ≤ µ∗) growth rates. For one decision variable yi (resp. vi),

two LP problems are solved, where (i) constraints C1, C2 and C3 remain unchanged;

(ii) the decision variable yi (resp. vi) is maximized (LP 1) and minimized (LP 2). This

operation is repeated for each decision variable to obtain in fine the feasibility domain

of all decision variables.

It was proven that the feasibility domain becomes smaller with increasing growth

rate [265, 267], so it might be worthwhile to probe the solution space at slow-growth

regimes. In practice, at the optimum, the cell configuration (µ∗,y∗,v∗) is often unique.

Indeed, non-unique solutions will exist if two alternative metabolic pathways have

exactly the same cost in resources. Since all enzymes have different amino acid se-

quences, use different cofactors, are differently localization, etc, this is highly unlikely.

A caricatural example of amodel with non-unique solutions would be one in which an

enzyme pool is arbitrarily split into two, and the two new ”enzyme species” are given

different names, although they are physically exactly the same.

10.3.4 Calibration of model parameters

An RBA model may contain a high number of model parameters. First, the global

parameters to be estimated are related to cell composition: (i) the concentrations of

bulk biomass components b̄, which is usually deduced from the biomass reaction of

the genome-scale metabolic network of the organism. Using quantitative proteomics

data [282], one can infer (ii) the protein densities in different compartments (d̄), and
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(iii) the abundance of housekeeping (unspecified) proteins (p).

The next set of parameters we need to collect concerns the efficiencies of molecular

machines (KE, K′

E,KT). As we learned in Chapters 2 and 3, the rate of an enzymatic reac-

tion v depends on the enzyme efficiency or ”apparent catalytic rate”, given by v = ekapp,

with kapp = κ(c) = k+
cat · ηrev(c) · ηsat(c) < k+

cat. The kapp values are always below the kcat value, but

may vary from state to state depending on metabolite concentrations. Since internal

metabolite concentrations s are unknown and difficult to measure at genome-scale,

we cannot estimate kapp from the explicit kinetic law κ(c). We need to obtain these kapp

parameters empirically, for example by measuring the flux v and the protein abun-

dance e in one condition and taking their ratio.

Hence, for a given environmental condition, efficiency parameters can be estimated

using quantitative proteomics in combination with fluxomics [279] or FBA to estimate

the flux distribution [277]. To account for variable enzyme efficiencies, onemaymake

the simplifying assumption that enzyme efficiencies depend mostly on growth rate.

By estimating the enzyme efficiencies at different growth rates and interpolating be-

tween them, one obtains empirical relationships between efficiency and the growth

rate [279] to be used in Prba(µ). For instance, several estimates of enzymatic efficiencies

obtained in contrasting growth conditions will provide a relationship KE(µ) instead of

a constant KE value.

10.3.5 Enzymeefficiencies: use of -omics data-informed kapp vs. naïve

kcat values

The three most popular formalisms of fine-grained resource allocation models, RBA

[271], ME-models [272], and pc-models [39], are variations on the same theme, im-

plementing the four major constraints discussed in Section 10.2. Thus most of the

ideas, concepts, and constraints are equivalent (or at least highly similar) in their bio-

logical interpretation. Most of the differences arise from the approach taken towards

parametrization of these models, and consequently, interpretation of model output.

Here we will discuss an example where implementations differ significantly.

In resource allocation models, two types of constraints define the proteome capacity

at given growth rate µ, the protein density vector b̄, and the fraction of housekeep-

ing proteins p in the proteome. The remaining proteome space is to be distributed

among the proteins that are explicitly defined in the model. The RBA formalism re-

quires to formulate the function kapp(µ) (or KE(µ) in the RBA problem, Section 10.3.2) for

every protein in the model using -omics data (see Section 10.3.3), and the fraction

of the ”housekeeping” proteins in the proteome is determined from data for each

simulation.
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Conversely, the formulation of pc-models [39] allows more flexibility to the ”unspec-

ified” protein UP , represented by a single artificial protein of average size and amino

acid composition. Instead of setting a fixed amount allocated to p which changes

across conditions, one can determine theminimal fraction of this protein in proteome

UPmin, and formulate the demand to produce UP as an inequality constraint UP ≥ UPmin.

Interestingly, in Saccharomyces cerevisiae, the proteome mass fraction occupied by

non-metabolic proteins is relatively constant under different glucose-limited condi-

tions, as determined by quantitative proteomics data (see [39], Fig. S1 for a plot).

This inequality constraint can be interpreted as the upper limit of available protein

space, i.e., under fixed protein density y + p = const., the proteome not occupied by

y ∆= e + m is allocated to p. Since now the model can distribute the proteome among

explicitly-defined vs. unspecified protein freely, the procedure of fitting kapp values is no

longer a prerequisite. Using kcat values, collected from literature/databases/own ex-

perimental measurements, rather than apparent kapp values, has consequences both

for predictions and the data use: first, the model prediction on the protein use is the

”demand” of the enzyme and is strictly coupled to the flux through the enzyme (equiv-

alent to the ECM1 layer of enzyme costs in the Enzyme Cost Minimization method,

Chapter 6). Second, the condition-dependent quantitative proteomics data can be

used as validation dataset for model predictions instead [283], as the predicted pro-

tein abundance is not dependent on these datasets.

Using less data for parameter fitting and redirecting these data-rich datasets towards

validation of model prediction strengthens the argument for using resource alloca-

tionmodels for learning newbiology, and already has real-life examples. For instance,

the discrepancies in predicted vs. observed levels of glycolytic enzymes at glucose-

scarce conditions in [39] inspired the same team to revisit the question whether the

high levels of glycolytic enzymes represent the optimal expression given very low

thermodynamic driving force and undersaturation of glycolytic enzymes. Compar-

ing predictions of Enzyme Cost Minimization models with the results of the pc-model

and experimental data, [274] proposed that S. cerevisiae expresses genuine excess of

glycolytic enzymes in glucose-limited conditions, meant to amply consume any glu-

cose as soon as it appears in the environment.

10.4 Biomass composition as a constraint or as a pre-

diction

Cell models describe, among other things, what a cell is composed of (see Chapter 2).

In FBA, specifically, “biomass” refers to the proportions of different molecule classes

(e.g. lipids, protein, DNA, RNA, cofactors) in 1 gram dry weight of cells, and biomass
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composition needs to be defined prior to optimization. Since, at least for FBAmodels

of microbes, biomass production usually is the optimization objective, the literature

frequently refers to the mathematical description of cell composition as ”biomass

objective function” (BOF). Inmost cases, it is assumed that the proportions of biomass

constituents are fixed, only the total production (flux through BOF) changes.

For the predictions of FBA models to be reliable, a realistic BOF is a must (see Chap-

ter 5). Therefore, there is a sustained effort to experimentally determine biomass

composition, even for E. coli [284]; for more details on the usual experimental mea-

surement methods, see the box in Chapter 2. In case supporting data are available,

the cell composition in the BOF may be described in a more fine-grained manner

for individual molecule types (e.g., individual lipids, proteins, mRNA species, etc), or

even in terms of atomic composition (which in turn gives clues about the amounts of

molecule classes). So, overall, biomass composition acts as a global, and one of the

most stringent, constraint on the predicted solution space in FBA-based models.

However, cell composition may greatly vary not only between (micro-)organisms, or

different cell types within the same organism, but also for the same organism/cell

type across different conditions. The budding yeast S. cerevisiae, for instance, exhibits

rather linear relationships between the proportions of bulk biomass constituents as

a function of growth rate in glucose-limited cultures [3]. This variable composition

often poses a challenge for models: just like the uptake rates, the varying biomass

composition reflects complex global rearrangements of resources (for instance, dif-

ferent ribosome content at different growth rates [35] leads to changes in RNA-to-

protein ratio in the cells), and choices between metabolic strategies (e.g. depletion of

storage carbohydrates in glucose-fermenting S. cerevisiae [17]).

A main advance of resource allocation models, compared to conventional FBA mod-

els, is that only a part of the biomass composition is given as input information just

like in FBA (b̄ in RBA). The proteome composition, on the contrary, becomes a genuine

prediction of the optimization procedure. Unlike small self-replicatormodels (see the

models in Chapter 8), this prediction is very detailed, as the the predicted proteome

composition is represented by the sum of individual protein abundances. Moreover,

if proteins require trace elements or cofactors (e.g. iron in iron-containing proteins)

for function, the demand and contribution to the overall biomass of these metabo-

lites will also be predicted by the model (as it will vary with the expression level of

those proteins).

In theory, the abundance of biomass constituents other than proteome could be for-

mulated in theway they becomepredictions of the resource allocationmodels, rather

than hardcoded inputs. Following the idea implemented in the small, coarse-grained

models of [264], one could set relationships between, e.g., protein density in the cells
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and production of lipids (in [264], the biological interpretation was to maintain the

surface area-to-volume ratio constant). Currently this is not widely accepted as a

standard practice, and, as we can see from the example above, requires comprehen-

sive experimental evidence, which, by itself, could be interpreted still as ”input to the

model”.

10.5 Concluding remarks

In this chapterwe consideredwhole-cell resource allocationmodels that couplemetabolic

networks with a description of the macromolecular machinery that is required to

operate them. Compared to FBA models, these models contain a large number of

additional reactions, metabolites, constraints, and model parameters, and, overall,

offer a fine-grained representation of cellular economy. Many of the kinetic param-

eters cannot be accurately measured for individual enzymes, and/or are condition-

dependent. The quantitative nature of the predictions of resource allocation models

(and the most cellular decisions/phenotype shifts), however, is largely due to global

constraints: for instance, when the protein density g gDW−1 in a compartment reaches

its upper limit (=that compartment is fully packed with protein), the cells switch from

fully-respiratory to respiro-fermentative growth (see [272] for E. coli, or [39] for S. cere-

visiae). Unlike the kinetic parameters in single reactions, which are rather uncertain,

these ”global”, cell-wide constraints are based on more trustworthy evidence.

Thus thesemodels still retain a reasonable compromise concerning numerical tractabil-

ity andmodel complexity, and can accurately predict complex adaptations, which can-

not be captured by GEMs in an autonomous way, i.e. without the addition of empir-

ical constraints on fluxes. A successful use case of using resource allocation models

is dissecting iron economy, using RBA models: some proteins require iron for their

function, and the cell growth can become iron-limited in some conditions. The RBA

model was used to predict cell behavior under iron starvation, and the predictions

suggested couple of scenarios, (i) the cell may increase the import of iron, but also

(ii) avoid using proteins that contain iron (and the pathways in which they operate)

[279, 285].

As with the biomass composition, another aspect of resource allocation models (and

FBA-based models in general) with some duality in its interpretation is the objective

function. Although its validity has been always debated since conception, maximiza-

tion of instantaneous growth rate as the optimization objective has shown incredi-

ble success in predicting microbial physiology. The current approach we apply for

resource allocation models still remains the FBA-based assumption that the desired

cell phenotypes are the onesmaximizing instantaneous growth rate µ. This time, how-

ever, the µ is also amodel variable, so we have to apply bisection to obtain the optimal
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solution for each parameter set we use in resource allocation models.

It is becoming more and more evident that many cell phenotypes (and microbial

species!), which we try to predict, do not actually maximize instantaneous growth

rate. For instance, most experimental research on microbial physiology has been fo-

cused on carbon-limited (C-limited) cultures, especially the yeast work in Delft, the

Netherlands (see [3, 17] for examples). It seems that the principle of growth rate

maximization works very well in C-limited case, and the success of resource alloca-

tion models to quantitatively capture these phenotypes [272, 279, 39] affirms this

assumption. But is C-limitation descriptive of natural environments? Let us continue

the argument with yeasts as an example.

Yeasts in the wild, for instance, are often subjected to feast-famine cycles in terms of

carbon availability, and one could argue that in the famine phase of the cycle, these

yeasts should act as if they were glucose-limited. Yet the current opinion in the yeast

ecology seems to see feast-famine cycles as a continuous, although reduced, supply

of carbon, and steer towards embracing a higher role of nitrogen (N) limitation in nat-

ural environments instead. Currently, our understanding of N-limited growth is not

very comprehensive, and N-limitation is also a case where the instantaneous growth

rate maximization breaks down: the pc-models of S. cerevisiae cannot quantitatively

capture the cell behavior under N-limited conditions.

So the selection of a suitable optimization objective can be a choice followed by huge

success, but also, the optimal solutionmight end up contradicting the existing knowl-

edge. How can we try to mitigate that? One huge advance of resource allocation

models is that at any condition, the available solution space is greatly reduced, com-

pared to conventional FBA. We can argue that we have introduced a whole new set,

a whole new type of constraints into the model by accepting assumptions stemming

from the metabolism-molecular machinery coupling. In theory, we should be able to

reason further regarding any additional (even empirical/ad hoc) constraints and/or

additional optimization objectives which would bring our model predictions closer

to observed biology. Just remember: fitting models is not a sin; but nontransparen-

t/reckless fitting is! After all, modeling is an art, and there is no one cookbook that

represents the ground truth: we should be free to explore the secrets of biology, as

unrealistic as our assumptions are at times.

A final remark onmodeling being an art. In this book, we have explored several types

of cell models of different size, detail, and assumptions behind. This whole hierar-

chy and diversity of different implementations and formalismsmight seem overcom-

plicated and unnecessary, but it is a mere reflection that ”one size does not fit all”.

Hence, and we invite (future) modelers to be creative, mix, match, and tailor different

models (andmodeling types) to covermore andmore biological knowledge. The com-
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promise between fine-grained but linear modeling vs. complex kinetics that materi-

alized into resource allocation models is an inspiring example of how one can push

bounds of different methods to create mathematical representation of our mental

pictures of cells.

Recommended readings

RBA website Website rba.inrae.fr for further details on RBA. Under Tools, you can find

example models and Jupyter notebooks for running them.

Review article on large-scale resource allocation models K. de Becker et al. ”Using

resource constraints derived from genomic and proteomic data inmetabolic network

models” Curr Opin Syst Biol 2022, 29:100400

Problems

Problem 10.1 The role of metabolite concentrations

The available cell space for proteins depends on the assumed space occupied by

small metabolites.

(a) What if the metabolite content of the cell has been underestimated? Assume

that the amount of small metabolites in cells is currently underestimated. What

problems in model predictions would arise from the fact? In what way would

predictions (by FBA or other methods) be distorted?

(b) In what way would a cell, in reality, profit from a lower small metabolite con-

tent? Can we assume that the ratio between small metabolites and proteins is

optimized? Describe possible aspects of this compromise! For inspiration, see

[286].

rba.inrae.fr
https://rba.inrae.fr/tools.html
https://doi.org/10.1016/j.coisb.2021.100400
https://doi.org/10.1016/j.coisb.2021.100400
https://doi.org/10.1016/j.coisb.2021.100400


Chapter 11

Optimal cell behavior in time

Dafni Giannari, Hidde de Jong,Diego A. Oyarzún, Steffen Waldherr, and Agustín G.

Yabo

Chapter overview

◦ Microorganisms live in continually changing environments, which require them

to develop adaptation strategies.

◦ These strategies have been profitably studied under the assumption that mi-

croorganisms have evolved to optimize one or several aspects of their adaptive

response.

◦ The mathematical formalization of this assumption leads to dynamic optimiza-

tion problems that can be solved by means of techniques from optimal control

theory.

◦ The chapter discusses three example problems: dynamic optimization of en-

zyme expression inmetabolic pathways, dynamic optimization of coarse-grained

models of cellular growth, and dynamic flux balance analysis.

◦ The results obtained for these problems illustrate the interest of studying adap-

tation strategies from theperspective of dynamic optimization, and the strengths

and weaknesses of this approach.

11.1 Introduction

The study of microorganisms in the laboratory has often focused on the creation of

stable conditions enabling balanced, reproducible growth of the population. Such

conditions are almost never found in nature. Microorganisms live in continually chang-

ing environments in which nutrients are only intermittently available and in which

the cells are submitted to a variety of other temporally varying stresses (acidity, tem-

perature, drought, ...). In order to survive in these conditions, microorganisms have

245
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developed a range of molecular mechanisms to detect changes in the environment,

or signals announcing such changes, and to adapt their functioning accordingly.

A well-studied example of the dynamic response of bacteria to changes in their envi-

ronment is the phenomenon of diauxic growth, discovered by Jacques Monod ([287]

(see also Chapter 8). When Escherichia coli is grown in amedium containing amixture

of two carbon sources, e.g., glucose and lactose, the cells generally first deplete the

carbon source supporting the highest growth rate (glucose) before starting to assim-

ilate the other carbon source (lactose). A variety of mechanisms are involved in this

switch from a preferred to a secondary carbon source, including the release of the

repression of enzymes necessary for lactose utilization, the release of the inhibition

of lactose transporters, and the global regulation of a large number of other genes

[288, 289].

In many situations, the precise functioning of the molecular mechanisms regulating

the adaptation of microbial physiology to changes in the environment is not or only

qualitatively understood. This precludes their inclusion in quantitative models that

accurately predict the dynamic response of the cell in a variety of conditions. The

lack of mechanistic, quantitative information can be bypassed bymaking appropriate

assumptions about the regulatory systems, in particular that the latter have evolved

under the selection pressure of the environment to optimize the response to external

perturbations. More precisely, it is assumed that microorganisms have developed

mechanisms that allocate limiting resources (proteins, fluxes, ...) to cellular processes

so as to maximize or minimize some objective function, or combination of objective

functions, over the time-interval of environment changes.

The use of an optimality assumption to make up for missing or incomplete informa-

tion was already exploited with success in Chapter 5 of this book. The difference

with those approaches is that here we are interested in cases where the optimality

criterion is defined over an interval of time rather than at steady state, and thus we

need to consider dynamic instead of static optimization. Moreover, some methods

take into account that cells may vary the allocation of limiting resources to cellular

processes over the time interval in which the environmental changes occur, instead

of only considering a constant response in a stable environment. This generalization

of the problem enormously increases its complexity. It may also lead to nontrivial

dynamical effects that are not found in the case of static optimization, such as the

accumulation of resource buffers to anticipate future changes in the environment

[290].

The classical argument motivating the optimality assumption in the case of microor-

ganisms is that mutants of genes coding for enzymes in central metabolism often

have a lower growth rate than the wild-type strain, where growth rate is interpreted



Introduction 247

as indicating fitness [291]. This argument, however, derives from observations of

balanced growth in a stable environment. Is there any evidence that, in the case of

changing environments, microorganisms have evolved to perform dynamic optimiza-

tion? Some circumstantial evidence is provided by the observed capacity of microor-

ganisms to anticipate changes in their environment. For example, whenmoving along

the digestive tract, E. coli cells are exposed first to lactose and then tomaltose, thus re-

quiring the ability to switch fromgrowth on lactose to growth onmaltose (reminiscent

of diauxic growth in the laboratory) [292]. Interestingly, reporter gene studies found

that the enzymes required for maltose assimilation are expressed at a much higher

level in the presence than in the absence of lactose, in otherwise identical conditions

[293]. This suggests a specific effect of the presence of lactose on the expression of

maltose enzymes, preparing the cells for the expected future availability of maltose.

This and other examples of anticipatory behavior are not conclusive in themselves,

but they suggest that dynamic optimization is a plausible working hypothesis that

may be useful in practice.

The aim of this chapter is to show howmicrobial physiology can be studied by means

of dynamic optimization, by combining a specific objective function, or combination

of objective functions, with models of different scope and granularity, while taking

into account a number of biophysical and biochemical constraints. We first provide

a general definition of dynamic optimization problems in the mathematical frame-

work of optimal control. We then instantiate this general definition for three types

of biological problems, each giving rise to a specific class of models. In particular,

we discuss (i) dynamic optimization of enzyme expression in metabolic pathways,

(ii) dynamic optimization of resource allocation in coarse-grained models of cellular

growth, and (iii) dynamic flux balance analysis (dFBA) of metabolic networks. Across

the different examples, the scope of the models varies from metabolic pathways (i)

to metabolic networks (iii) to the entire cell (ii). The increase in scope is sometimes

traded against a lower granularity of the description of cellular process (ii). Some of

the models provide a kinetic description of the rates of the individual reactions (i and

ii), whereas other models only provide constraints on the reaction rates (iii). In ev-

ery case, different objective functions are tried, for example the minimization of the

time to produce a given compound or the maximization of the amount of biomass

produced.

For each of the biological problems and corresponding models considered, we give

the precise definition of the modeling formalism and the optimization problem, a

small example as an illustration, a discussion of the solution of the problem, and a

brief description of more realistic applications and the insights they have given into

the functioning of cellular networks. The chapter does not give a detailed explanation
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of the mathematical methods that are used for solving different classes of optimal

control problems, because this would require knowledge of specializedmathematical

concepts with which the average reader of the book may not be familiar. Moreover,

these methods have been the subject of dedicated textbooks [294, 295]. Rather, we

focus on the definition of the dynamic optimization problems and the interpretation

of the solutions returned by available numerical solvers of optimal control problems.

11.2 Mathematical form of dynamic optimization prob-

lems

Themodels of cellular processes considered in this chapter have the form of systems

of ordinary differential equations (ODEs) (Chapter 3). Dynamic optimization problems

for such systems take the form of so-called optimal control problems, which have

their roots in physics and engineering [294, 295].

Let x(t) be the (time-varying) state of the dynamical system, typically concentrations of

(intracellular or extracellular) metabolites or proteins, and let f(·) describe the (linear

or nonlinear) dynamics of the state. u(t) denotes the (time-varying) control variables,

e.g., fluxes allocated to specific reactions or protein fractions allocated to specific en-

zymes. The time-points 0 and T > 0 indicate the bounds of the interval over which the

behavior of the system is optimized, with respect to an objective function J. The be-

havior of the system, given the control exerted by u(t), is subject to constraints c1(·)

and c2(·) on the admissible control inputs at specific time-points t or over the entire

time-interval [t0, te], respectively. The constraints express physical limitations, such as

the intracellular density of molecular constituents (Chapter 2), or biochemical limita-

tions, such as the maximum protein synthesis rate. Combining the above elements,

we obtain the following definition of dynamic optimization problems:

max
u∈U

J(x(t),u(t), 0, T ), (11.1)

such that

dx
dt

= f(x(t),u(t)), x(0) = x0,

0 ≥ c1(x(t),u(t)),

0 ≥ c2(x(0),x(T )). (11.2)

In summary, the problem consists in finding controls that, given the dynamics of the

system, maximize the objective function and satisfy the constraints [296].

The above definition makes no specific assumptions about the dynamics of the sys-

tem under consideration. Given that we deal with biochemical reaction systems, the



Enzyme expression in metabolic pathways 249

dynamics can be refined to

dx
dt

= N v(x(t),u(t)) − µ(t) x(t), x(0) = x0, (11.3)

where N represents the stoichiometry matrix and µ is the (time-varying) growth rate.

The principles of describing the structure of biochemical reactions systems bymeans

of a stoichiometry matrix were described in Chapter 3 above.

The problemdefinition assumes that there is only a single objective function to be op-

timized. Thismay not be appropriate, sincemicroorganisms seem to optimize several

criteria in parallel, for example growth rate and survival under stress [297]. In many

situations, it is therefore more appropriate to generalize the above problem to the

case where J(. . .) represents a vector of n objective functions J = [J1, . . . , Jn]. Thus gener-

alized, the problem does not usually have a single solution, but rather an infinite set

of solutions located on a so-called Pareto surface [298]. Solutions on the Pareto

surface have the property that every alternative solution improving the performance

with respect to some objective necessarily degrades the performance with respect

to at least one of the other objectives. In the problems developed in the sections

below, we principally consider optimality in the case of a single, possibly composite

objective.

Many methods for solving optimal control problems (11.1)-(11.2) exist. While some

optimal control problems can be solved analytically, most of the problems considered

in the examples below require numerical approximations to be solved. All exam-

ples developed in the sections below have been solved by means of freely available

solvers.

11.3 Dynamic optimizationof enzymeexpression inmetabolic

pathways

Anumber of experimental works suggest thatmetabolic regulation encodes temporal

patterns in enzyme expression that may be beneficial for cell physiology [299, 300].

Since the timing of gene expression can directly control resource expenditure, several

authors have attempted to rationalize such patterns as solutions of optimal control

problems defined as in (11.1)-(11.2). The general idea is to optimize the temporal

evolution of enzyme concentrations using objective functions that are representa-

tive of cellular goals. This provides a rationale to reverse-engineer optimality princi-

ples that underlie the expression patterns observed in experiments. In this section,

we briefly describe results obtained for unbranched metabolic pathways, the basic

building blocks of the metabolic networks of the cell.
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Dynamic optimization of enzymatic concentrations was first considered by Klipp and

co-workers [301]. The problem under study was the minimal-time activation of an

unbranched network from an “off” state, where only the precursor is present, to a

state where all substrate has been converted into product. To this end, the authors

considered an unbranched pathway with n enzymes and (n+ 1) metabolites:

dx0

dt = −k1e1x0,

dxi

dt = kieixi−1 − ki+1ei+1xi,

dxn

dt = knenxn−1,

(11.4)

with a given initial condition x0(0) 6= 0 and xi(0) = 0 for i = 1, 2, . . . , n, and where all enzymatic

reactions are assumed to follow mass-action kinetics with rate constant ki. To model

the “off” state prior to pathway activation, the initial conditions can be set to x0(0) = s,

where s is the concentration of precursor at t = 0, and xi(0) = ei(0) = 0 for all i = 1, . . . n. The

goal was to determine a vector of optimal enzyme concentrations e(t) that solve the

following problem:

e?(t) = arg min
e∈U

1
s

∫ ∞

0
(s− xn(t)) dt, (11.5)

subject to the dynamic model in (11.4) and constraint set U as in (11.1) defined by a

limited overall enzyme abundance over the optimization horizon:

n∑
i=1

ei(t) = etot, (11.6)

where etot is a constant amount of total enzyme concentration. The objective function

in (11.5) is called the transition time of the pathway and quantifies the time needed to

convert all precursor into product. Note that the optimization problem (11.4)-(11.6)

falls within the general class of problems defined by (11.1)-(11.2).

Numerical solutions of the optimization problem reveal that the enzyme profiles have

a temporal sequence that matches the order in which the enzymes appear in the

pathway. Crucially, such pattern resembles the “just-in-time” strategies widely stud-

ies in operations research [302], whereby costly resources are deployed only when

needed in a production line. In the context of cellular metabolism, such a strategy im-

plies that minimal time activation tends to express biosynthetic enzymes only when

their substrates have been built up to sufficiently high concentrations, and thus avoid

wasteful protein expression.

The first experimental demonstration of the just-in-time principle was presented by

Zaslaver and colleagues [299]. This work employed luminescent and fluorescent re-

porters to measure the temporal adaptation of Escherichia coli upon withdrawal of
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amino acids from the growth media. Clear just-in-time patterns of enzyme expres-

sion were found in the serine, methionine and arginine biosynthetic pathways. To

better understand such patterns, the authors studied a model for an unbranched

pathway with three enzymatic steps and Michaelis-Menten kinetics:

dxi

dt = kcat,i ei
xi−1

xi−1 +KM,i
− kcat,i+1 ei+1

xi

xi +KM,i
− µxi, i = 1, . . . , 3, (11.7)

with given initial conditions x1(0) 6= 0, x2(0) = x3(0) = 0, and where (kcat,i, KM,i
) are the enzyme

turnover rate andMichaelis-Menten constants of each enzyme, respectively. The pre-

cursor concentration x0 is assumed to be constant. Themodel also includes a dilution

term that accounts for dilution by cell growth at rate µ. In contrast to previous works,

this model also includes an explicit description of enzyme expression:

dei

dt = βi

1 + r/κi
− µ ei, i = 1, . . . , 3, (11.8)

where the first term is a lumped model of enzyme expression controlled by a time-

varying (active) repressor concentration r(t), with maximal expression rate βi, and κi

being the concentration of (active) repressor required for half-maximal expression.

Moreover, since bacterial amino acid pathways are often subject to end-product feed-

back, the model assumed that the repressor gets activated by the pathway product:

r(t) = rT(t) x3(t)
Kr + x3(t) , (11.9)

where rT(t) denotes the total (active and inactive) repressor concentration. The model

also included negative autoregulation of the repressor itself:

drT

dt = β0

1 + r/κ0
− µ rT, (11.10)

where β0 and κ0 define the strength of autoregulation similarly as in the lumpedmodel

for enzyme expression in (11.8).

The authors constructed an optimization problem so as to study the relation between

optimality, and the strength of the regulatory parameters k = (k1, k2, k3) and β = (β1, β2, β3).

To this end, they defined the optimization problem

min
k,β

a ·
3∑

i=1

∫ T

0

β0

1 + r(t)/κ0
dt︸ ︷︷ ︸

total amount of repressor

+
∫ T

0
|F − Fgoal| dt︸ ︷︷ ︸

deviation from steady state

, (11.11)

where a is a scalar weight accounting for the protein costs, T is the optimization hori-
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zon, and F is the rate of product synthesis:

F = kcat,3 e3
x2

x2 +KM,3
. (11.12)

In problem (11.11), the constant Fgoal is a prescribed production flux that the path-

way should achieve at steady state. Minimization of the objective in (11.11) accounts

for the activation of the pathway from an “off” state until it reaches a prescribed flux

Fgoal. This formulation differs from the previous example [301] in two important ways.

First, it accounts for cellular resources in the objective function itself. The first term

of the objective quantifies the total amount of repressor produced through the op-

timization horizon, and thus relates to the amount of cellular resources required to

activate the pathway. Second, the decision variables are the regulatory parameters,

not the temporal profiles of the molecular species. Therefore, strictly speaking, this

is not an optimal control problem but rather a static optimization problem subject to

dynamic constraints encapsulated by the pathway ODE model. Through numerical

solutions for different values of the protein cost weight a and optimization horizon T ,

the authors determined conditions under which the optimal solutions showed two

features of the just-in-time property, namely:

τ1 < τ2 < τ3, max
t
e1 > max

t
e2 > max

t
e3, (11.13)

where τi is the response time, i.e. the time to reach 50% of maximal concentration,

and maxt ei is the peak concentration of each enzyme. This theoretical model was de-

signed to mimic the architecture of gene regulation in such pathways, whereby the

end product commonly represses the expression of upstream enzymes, and thus

gave both experimental and computational evidence that just-in-time patterns may

be the result of optimality principles underlying the regulation ofmetabolic pathways.

Further experimental evidence of temporal patterns in enzyme expression have been

found in other pathways [303] andorganisms [300], andnumber of subsequentworks

have explored their optimality in more detail; we refer the reader to the review in

[304] for a detailed discusson on such approaches. Oyarzún and colleagues [305],

in particular, gave the first mathematical proof that just-in-time dynamics are a gen-

eral property in models of unbranched metabolic pathways. Using a cost-benefit ob-

jective function that balances the speed of response against the cost of expressing

pathway enzymes, they showed that the just-in-time patterns emerge in pathways of

arbitrary length and with minimal assumptions on the enzyme kinetics. Specifically,
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they considered a general model for an unbranched pathway with n+ 1 reactions:

dxi

dt = gi−1(xi−1) ei−1 − gi(xi) ei, i = 1, . . . , n, (11.14)

with initial conditions xi(0) = 0 for i = 1, 2, . . . n, and the precursor x0 assumed to be at a

constant concentration. The functions gi represent a general kinetic turnover rate

satisfying the following conditions:

gi(0) = 0,

∂gi(xi)
∂xi

> 0.
(11.15)

The above assumptions are generally satisfied by most enzyme kinetic functions, as

catalytic rates are typically a monotonic function of the substrate concentration. In

particular, the assumptions in (11.15) are met by common kinetics such as mass-

action, Michaelis-Menten and Hill equations. The optimization problem considered

in [305] corresponds to a free final-time optimal control problem:

e?(t) = arg min
e∈U

∫ T

0
(1 +α′ e(t)) dt, (11.16)

where e(t) is the vector of enzyme concentration, α is an (n + 1)−dimensional vector of

tuneable weights, T is a free optimization horizon, and U is a constraint set as in (11.1).

The first term in the objective function (11.16) accounts for the total time taken to ac-

tivate the pathway from the “off” state up to a steady state flux, while the second term

weighs the cost of pathway activation. To account for limited availability of cellular

resources, the authors also included a temporal constraint on the enzyme concen-

trations:

n∑
i=0

ei(t) ≤ etot, (11.17)

which is a relaxation of the constraint originally employed by Klipp et al in (11.6), as

well as a terminal constraint of the form:

ei(t) =
Fgoal

gi(xi(T )) , for t ≥ T, (11.18)

where Fgoal is a (constant) target pathway flux, similar as in (11.11). The terminal con-

straint ensures that the pathway reaches a steady state at the final time T . Using Pon-

tryagin’s Minimum Principle [295], the authors showed that the optimal enzyme con-

centrations follow a bang-bang temporal profile that matches the order in the which

they act on the pathway. This result was shown to be independent of the weight α,

the number of enzymatic steps, and valid for a wide range of enzyme kinetics sat-
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Figure 11.1: Example of optimal enzyme expression in an unbranched metabolic
pathway – (A) A simple scheme of the metabolic pathway. (B) Time evolution of the
optimal enzyme expression ui and metabolite concentration xi. For the simulations,
the functions gi are Michaelis-Menten with constants k = (1, 2, 4, 3) s−1, K = 1 mM, V = 0.2 mM
s−1 and x0 = 5 mM. Enzymatic weights are set to αi = 1 mM−1 s and maximum enzyme
availability Etot = 1 mM. Resulting activation times are t0 = 1.59 s, t1 = 2.2 s and tf = 2.55 s.

isfying the assumptions in (11.15), thus extending the original finding in [301] to a

larger class of pathways. Figure 11.1 shows a numerical example of the optimal ac-

tivation pattern obtained for an unbranched metabolic pathway of length three (see

also Exercise 11.1).

In this section we have reviewed some optimal control approaches for the optimiza-

tion of unbranched metabolic pathways. While differing in their formulations and

solution strategies, these approaches provide substantial computational evidence

that some temporal patterns observed in metabolic dynamics can be understood

as the solution of an optimal control problem. In the next section we focus on ap-

proaches that go beyond individual pathways and include additional components and

processes of the cellular machinery.

11.4 Dynamic optimizationof resource allocation in coarse-

grained models of cellular growth

In the previous section, we consideredmodels thatwere essentially limited tometabolic

pathways. The optimization problems were formulated in terms of the allocation of

enzymes to the different reactions in the pathway. In this section, we generalize the
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perspective by increasing the scope of the models from metabolism to protein syn-

thesis and growth. The optimization problems concern the allocation of resources

to the synthesis of enzymes catalyzing different metabolic reactions, but also to the

synthesis of ribosomes in charge of the production of proteins. Growth is explicitly

defined in termsof the increase of proteinmass, and leads to growth dilution of all cel-

lular components. The models are very similar to those considered in Chapter 8, but

the optimization problems are dynamic rather than static. That is, instead of search-

ing an allocation of cellular resources to the synthesis of different classes of proteins

that is optimal at steady state, during balanced growth, we are interested in finding

a time-varying resource allocation strategy optimizing an objective defined over an

interval of time, e.g., during a transition between two states of balanced growth.

We consider the class of models with dynamics given by Eq. (11.3), where the input u

is interpreted as the (time-varying) resource allocation strategy. Among the cellular

components x, we distinguish betweenmetabolites and proteins, with concentrations

c and p, respectively. Accordingly, the concentration vector can be written as x = [c,p]′.

We also distinguish between enzymatic reactions and protein synthesis reactions.

While the former have metabolites as substrates and products, the latter convert

metabolites (amino acids) into proteins. An enzymatic reaction i has the following

reaction rate function:

vi(t) = ki pj(t)hi(c), (11.19)

where ki is a catalytic constant, pj the concentration of protein j, and hi a function

describing enzyme saturation. Enzyme saturation is determined by the substrates,

products, and activators/inhibitors of the reaction. Typical rate functions vi follow

mass-action kinetics or (ir)reversible Michaelis-Menten kinetics. The synthesis of pro-

tein i is associated with the reaction-rate function

vi(t) = ui(t) vR(t), (11.20)

where vR is the total protein synthesis rate defined by

vR(t) = kR pR(t)hR(c(t)), (11.21)

with kR the maximum protein synthesis rate, pR the concentration of ribosomes, and

hR a function describing the saturation of ribosomes by their substrate, that is, amino

acids (ormoreprecisely, tRNAs chargedwith amino acids). The function ui in Eq. (11.20)

is a time-varying resource allocation function, describing the fraction of the total pro-

tein synthesis rate allocated to the synthesis of protein i. The fractions are non-
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negative and sum to 1, that is, for every time t,

∑
i

ui(t) = 1, and ui(t) ≥ 0, for all i. (11.22)

In most models, the biomass of a growing cell population is equated with the mass

of proteins, the most abundant cellular component (Chapter 2). Under the further

assumption that the biomass density is constant, it follows that the total protein con-

centration ptot must be constant, where

ptot =
∑

i

pi(t), (11.23)

with the index i running over all proteins. Moreover, the growth rate reduces to the

relative (or specific) increase of the protein mass, which leads to

µ(t) = vR(t)
ptot

= kR pR(t)hR(c(t))
ptot

. (11.24)

The above model couples metabolism, protein synthesis, and growth in a single for-

malism, in the spirit of the small resource allocation models discussed in Chapter 8.

Figure 11.2 gives an example of a resource allocation model, describing a simple

self-replicatory microbial system [306, 307] (see Chapter ?? for related models). The

model divides the proteome into three categories: ribosomes, enzymes, and house-

keeping proteins, with concentrations pQ, pR, and pM , respectively. In addition to the

three categories of protein, we add ametabolite representing the precursors for pro-

tein synthesis, with concentration c. The precursors are produced from nutrients in

the environment at a rate vM , a macroreaction catalyzed by the enzymes. Protein

synthesis occurs at a rate vR, catalyzed by the ribosomes. The resource allocation

functions uQ, uR, and uM determine the fraction of the protein synthesis rate assigned

to each of the three protein categories, where uQ is assumed to be a constant, growth-

rate-independent fraction. The rate equations for the metabolic and protein synthe-

sis reactions follow irreversible Michaelis-Menten kinetics, where the substrate con-

centration in the medium is assumed saturating.

The resource allocation functions in the model are not explicitly specified by regula-

tory mechanisms, but assumed to follow a dynamic pattern optimizing an objective

criterion. In many cases, the objective criterion is based on the hypothesis that mi-

croorganisms have evolved to maximize the accumulation of biomass. While this

hypothesis can be criticized on theoretical and empirical reasons, it is a reasonable

choice in well-mixed environments and provides an interesting baseline in other en-

vironments. In the model framework considered here, this gives rise to the following



Coarse-grained models of cellular growth 257

metabolites

M

R Q

substrate
vRvM

enzymes

othersS c ribosomes

0 5 10 15 20 25 30

Time [h]

0.0

0.2

0.4

0.6

u
R

(C)

(A) (B)

(D)

0 5 10 15 20 25 30

Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

M
a
ss

 f
ra

ct
io

n
s pR

pM
pQ

Dynamical system
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Figure 11.2: Example of optimal resource allocation strategy in a coarse-grained
model of microbial growth – (A) Representation of simple self-replicator model of
microbial growth. (B) Model and optimization problem for the self-replicator shown
in panel A, as discussed in the text. (C) Optimal dynamic resource allocation strategy,
in terms of the fraction of resources attributed to ribosome synthesis (uR). (D) Time-
varying protein mass fractions corresponding to the optimal solution shown in panel
C. The parameter values used for the simulation are kM = 0.5, kR = 1, KR = 0.5 and uQ = 0.6.

objective function:

max
u∈U

J(x(t), u(t), 0, T ) =
∫ T

0
kR pR(t)hR(c(t)) dt, (11.25)

where like in the general case of Eq. (11.1), U denotes the set of admissible profiles

for the resource allocation functions u. Note that maximization of biomass over the

time-interval [0, T ] amounts to taking the integral of the instantaneous growth rate over
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that time-interval, defined by Eq. (11.24). This objective does not generally reduce to

growth rate maximization, that is, maximization of the instantaneous growth rate at

every time-point of this interval. In particular, there may be situations where a lower-

than-optimal growth rate over some sub-interval of [0, T ] may prepare for a higher

growth rate after a sudden change in conditions, and thus turn out to be beneficial

for the total accumulation of biomass over [0, T ]. The dynamic perspective onmicrobial

growth in this chapter thus entails a generalization of the objective criterion in com-

parison with previous chapters, where balanced growth of microorganisms at steady

state was considered.

The question can be asked, for the microbial self-replicator in Figure 11.2, how the

cells redistribute their resources over the different protein categories after a change

in environment, in particular a shift of the cells from a poor to a rich carbon source.

In the case of E. coli, for example, such as shift might involve a change from mini-

mal medium with acetate to minimal medium with glucose. Given that E. coli grows

faster on glucose than on acetate, and that a higher growth rate requires an increased

proportion of resources to be allocated to ribosomes according to the growth law

(Chapter 11), one expects uR to increase after the shift. Since uQ is assumed constant,

and the resource allocation functions must sum to 1 at every time-point, this overall

increase of uR must be balanced by a decrease of uM . These expectations concern re-

source allocation before the shift (balanced growth on acetate) and a long time after

the shift (balanced growth on glucose), but the growth law provides no information

on the pattern of adaptation immediately after the shift.

In order to investigate the optimal adaptation pattern of uR immediately after the

growth transition, we solve thedynamic optimizationproblemspecified in Figure 11.2.

For the simple example considered here, the optimal solution can be characterized

analytically [308, 306, 307]. This is not possible for more complicated examples, how-

ever, which require the optimal solution to be constructednumerically. Figure 11.2C-D

show a typical solution for parameter values estimated from experimental data [307].

Starting from a low value of uR during balanced growth on acetate, the optimal re-

source allocation scheme consists of a sequence of switches between uR = 1 (maximal

ribosome synthesis) and uR = 0 (no ribosome synthesis), until an intermediate value of

uR for balanced growth on glucose is attained. The value of uR during balanced growth

on glucose is higher than that for balanced growth on acetate, as expected from the

growth law.

The sequence of on-off switches followed by the intermediate steady-state value is

called a bang-bang-singular solution in optimal control theory [306, 307]. The solu-

tion reflects a dynamic trade-off between the two different functions contributing to

growth: metabolism and protein synthesis. When, due to growth dilution, the ribo-
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some concentration falls to a level that is limiting for maximal protein synthesis, the

synthesis of ribosomal proteins is switched on (uR = 1), leading to an increase of the ri-

bosome concentration. Switching on the synthesis of ribosomal proteins causes the

synthesis of metabolic enzymes to be switched off. When, due to growth dilution,

the concentration of metabolic enzymes next falls to a level that the precursors pro-

duced by the latter become limiting, the synthesis of metabolic enzymes is switched

on (uR = 0) to replenish the precursor pool, and so on (see Exercise 11.2).

Optimal solutions with a similar bang-bang pattern were already encountered in the

previous section. They also occur in a model with a more detailed description of

different precursor (amino acid) synthesis pathways under the objective under the

minimal time of adaptation after a shift from a medium supplemented with amino

acid to a medium lacking amino acids [309]. In a different type of problem, the devel-

opment of intestinal crypts, the minimal time to mature crypts was found to depend

on the on-off control of the proliferation of stem and non-stem cells [310]. There

is no convincing experimental evidence that the adaptation of ribosomal synthesis

after a nutrient upshift from a poor to a carbon source follows a bang-bang singu-

lar pattern. The interpretation of proteomics data after a nutrient upshift in E. coli

shows that the simple upregulation of ribosomal resource allocation to the steady-

state value for growth on the rich nutrient captures the ribosomal protein expression

data well [311].

This example serves to emphasize that, while the optimality assumption may lead

to thought-provoking predictions, these need to be confronted with experimental

data. In case the optimal solutions do not agree with the data, several revisions of

the problem could be considered. While growth optimization was chosen as the ob-

jective criterion in the example of Figure 11.2, there is evidence that during balanced

growth, microorganisms find a trade-off between maximizing growth rate in a given

environment and minimizing necessary adjustments to other environments [297].

The problem could therefore be generalized to a multi-criteria optimization problem.

An example is the analysis of a model similar to that considered here under the ob-

jectives of biomass maximization and minimal adaptation time after a nutrient shift

[312]. The formulation of the optimization problem in Figure 11.2 does not put any

constraints on valid optimal resource allocation strategies, except that the individual

functions ui components need to sum to 1 (Eq. (11.22)). Bearing in mind that the reg-

ulatory mechanisms underlying a resource allocation come with a cost, and need to

respect certain physical constraints, the predicted resource allocation strategy may

not be feasible. When such constraints are taken into account, the optimal solution

may no longer be bang-bang singular, but resemble the observed adaptation pattern

[313, 307].
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In summary, the dynamical optimization approach for studyingmicrobial growth pre-

sented here provides a way to test the consequences of hypothesized objective func-

tions in combination with simple resource allocation models. The predictions can be

confronted with experimental data, but may also inform the redesign of microbial

strains for metabolic engineering purposes (Box 11.A).

Box 11.A Temporal optimization for biotechnological applications and process
design

As explained in Section 11.2, time-dependent optimization problems are defined
by an objective function, expressing the criterion that microorganisms presum-
ably optimize. In the case of microorganisms growing in natural conditions, the
choice of a particular objective function is difficult to make and several functions
may qualify. For example, microorganisms could be assumed to maximize their
biomass over a given interval of time or minimize the time to adapt to their new
environment after a change in growth conditions. The choice may be somewhat
arbitrary and inmany cases itmakes sense to consider amulti-criteria optimization
problem. Even more fundamentally, the idea that microorganisms have evolved
to the point that they optimize one or several objective functions, is controversial.
In bioengineering applications, however, the formulation of an objective function
is less problematic. In this context, the objective function is not assumed to have
evolved through natural selection, but is rather stipulated by the metabolic engi-
neer in an a-priori manner, in agreement with a practical objective. Possible ob-
jective functions are the maximal amount of fermentation product that can be
obtained from a given amount of substrate (maximal yield) or the minimal time
to produce a given amount of fermentation product (maximal productivity). The
use of optimal control methods for process design in bioengineering is well-known
[314]. Most of these methods, however, treat microbial growth as a black box and
do not provide much detail about the underlying cellular processes, contrary to
the formalisms discussed in this chapter. Opening up the black box of microbial
growth allows the use of control variables that go beyond standard process pa-
rameters of the bioreactor and represent directed perturbations of specific cellular
processes.
One example is the use of coarse-grained models of microbial growth for the de-
sign of optimal operating conditions for the so-called growth switch [315]. The
growth switch is a synthetic regulatory circuit allowing growth of E. coli to be ar-
rested in order to passively reorient the resources thus becoming available to-
wards the production of a metabolite of interest [316]. The maximal production
of thismetabolite from a given amount of substrate, within a given interval of time,
was formulated as an optimal control problem. Its solution showed that the opti-
mal solution consists of two phases: a first phase of maximal biomass production
followed by a second phase of maximal product synthesis [315]. The conclusion
that this two-phase procedure is optimal corresponds well with established prac-
tice in biotechnology [317]. Very similar conclusions were attained in related work
by Jeanne et al. [318].
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11.5 Dynamic flux balance analysis (dFBA) of metabolic

networks

Dynamic Flux Balance Analysis (dFBA) is an extension of Flux Balance Analysis (FBA) as

described in Chapter 5, that can simulate the interactions between the metabolism

of an organism and its dynamic environment. In contrast to the constant, steady-

state flux solutions that are generated by classical FBA, dFBA yields flux solutions

that may dynamically depend on concentrations of extracellular metabolites, such

as sugars or other carbon sources, dissolved oxygen, or secreted waste metabolites.

Applying these fluxes to the concentration balance of extracellular metabolites also

permits to capture dynamic changes in these concentrations due to the metabolic

activity of the cells, and track the resulting overall biomass growth. It is noted that

a basic assumption of dFBA is that organisms rapidly reach intracellular steady state

in response to extracellular perturbations, and on the long run no metabolite can

accumulate or deplete.

In general, a dFBAmodel comprises threemain parts as demonstrated in Figure 11.3:

the dynamic equations, in the form of differential equations, for biomass and extra-

cellular metabolites, constraints on the fluxes as in the FBA model, and an optimiza-

tion objective that determines how to choose the optimal fluxes.

We first consider the dynamic equations used for dFBA.

The biomass dynamics are given by

Ẋ = µX, (11.26)

where X denotes the biomass concentration, typically measured as dry mass in g L−1,

and µ denotes the growth rate, typically measured in h−1. In principle, this equation

follows the equations for balanced growth. However, instead of using simplemodels,

like a Monod equation for the growth rate, the growth rate is taken from the value of

the biomass reaction in an FBA model (check in Chapter 5!).

Denoting the concentrations of the extracellular metabolites that are modelled dy-

namically as the vector c, the dynamics for these metabolites can be formulated as

the differential equation

ċ = SexchvX. (11.27)

Here, v is the flux vector for the complete metabolic network, including uptake and

production reactions for exchange metabolites, and Sexch is the stoichiometric matrix

that links these reaction fluxes to the metabolite concentrations which are balanced

dynamically. Multiplication with the biomass X is necessary, since the flux values in
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the FBA model are determined relative to biomass, whereas the concentrations c of

the dynamic metabolites are relative to the system volume. The equations are not

yet closed, because the fluxes v (including the growth rate µ as one element of the

flux vector) still need to be determined by optimization.

As constraints, two types of constraints are used in dFBA models. A flux balance con-

straint as in steady-state FBA models is applied to the concentrations of all metabo-

lites that are not dynamically balanced in (11.27), e.g., intracellular metabolites. This

steady state constraint is given by

Sintv = 0, (11.28)

where Sint is the stoichiometric matrix that links reaction fluxes in the vector v to the

steady-state metabolites. Further, upper and lower bounds need to be put on the

individual reaction fluxes. In contrast to classical FBA, where these bounds are con-

stant, in dFBA flux bounds can depend on concentrations of metabolites in the vector

c. This is mostly applied to uptake reactions for nutrients, and often as Michelis-

Menten kinetics. For example, if ci is the concentration of a sugar substrate, and

vi is the uptake reaction for this substrate (conventionally negative in FBA models),

bounds of the form

− Vi,maxci

KM + ci
≤ vi ≤ 0 (11.29)

would be used, where Vi,max and KM are the common parameters of the Michealis-

Menten kinetics (Chapter 3).

In recent years, dFBA is increasingly applied for the simulation of dynamic biologi-

cal systems, especially due to the promising use of genome-scale metabolic models

(GSMMs) for interpreting cell physiology andevolution, aswell as for guidingmetabolic

engineering and bioprocess design and optimization [319, 320, 321]. The dFBA appli-

cations based on GSMMs include the bacteria Escherichia coli [322] and Lactococcus

lactis [323], as well as the yeast Saccharomyces cerevisiae [324, 325, 326, 327]. How-

ever, the majority of dFBA applications use small-scale metabolic models, most of

which include less than 100 reactions. Such applications include models of bacteria,

like Escherichia coli [328, 329, 330, 331] and Corynebacterium glutamicum [332], mod-

els of yeast [333], but also plant and animal models, such as a model of the core

metabolism of Arabidopsis thaliana [334].

It is noted that most of the dFBA applications for microorganisms simulate microbial

fermentations under batch or fed-batch conditions. Since dFBA can be used for the

analysis, control and optimization of biochemical processes, many dFBA applications

focus on either dynamic metabolic engineering or optimal control of bioreactors, or

both simultaneously. Dynamic metabolic engineering studies can predict the effect

of strain gene insertion and deletion on the dynamic behavior and productivity of
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Figure 11.3: Schematic representation of dFBA – As in FBA, the intracellular environ-
ment in dFBA is represented by a linear programming (LP) optimization problem that
describes themetabolismof themicroorganismbased on its genome-scalemetabolic
model (GSMM). FBA assumes that all intracellular metabolite concentrations remain
constant while the cells optimally distribute their metabolic fluxes to maximize their
growth rate and hence, an LP can calculate the growth rate, as well as the intracel-
lular and exchange fluxes of the GSMM. The calculated growth rate and exchange
fluxes can be used to update the extracellular environment. The extracellular envi-
ronment in dFBA is represented by ordinary differential equations (ODEs) that de-
scribe the mass balance equations for biomass and metabolites found outside of the
cell. Moreover, the intracellular GSMM and the extracellular mass balance equations
can be linked through kinetic rules for substrate uptake, like the Michaelis-Menten
equations, that can raise concentration-dependent constraints for exchange fluxes
and predict growth rate dependencies on substrate concentrations.

a bioprocess [324, 322, 325], while optimal control of batch or fed-batch operation

of bioreactors is important for the production of desired chemicals [324]. Finally,

dFBA has also been expanded for the study of microbial communities, where each

microorganism is represented by a linear program (LP) that is solved independently

[335, 336, 337]. Co-culture simulations with dFBA can predict possible consortia com-

positions, as well as metabolic engineering approaches to improve the productivity

of the consortia, but they are out of the scope of this chapter.

Coming to the mathematical formulation of dFBA models, dFBA is an optimization

problem coupled with a system of ordinary differential equations, that can be solved

with the help of various mathematical and numerical techniques. Even though dFBA

was first introduced in 1994 [328], it was not formalized until 2002 [329]. The existing

formalized solution approaches that are going to be discussed here involve the static

optimization approach (SOA), the dynamic optimization approach (DOA), and the di-

rect approach (DA). More recently, reformulation approaches and surrogate models

for the optimization problem have also been proposed in order to ease the compu-

tational complexity of dFBA simulations. This complexity arises from several charac-

teristics of dFBA. More specifically, the solution of dFBA problems faces challenges in

terms of:
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1. problem size and scalability: As the size of the metabolic network increases, the

computational cost increases. For this reason, simulations that involve large genome-

scale metabolic models or multispecies microbial communities are limited.

2. stiffness: The stiff behavior of dFBA has been observed in many cases, such as the

simulation of the diauxic growth in E. coli [329].

3. nonlinearity: The presence of nonlinear constraints or objective functions can sig-

nificantly increase the computational cost.

4. feasibility: The intracellular optimization problem can become infeasible and lead

to failure of the integration of the extracellular ODEs.

5. differentiability: The optimal value of the intracellular optimization problem may

not be continuously differentiable, which poses an obstacle when dFBA is used for

optimal control or parameter estimation.

6. non-unique solutions: The solution of the intracellular optimization problem is

usually not unique which can make fluxes unrealistically “jump” between different

optimal solutions.

Static Optimization Approach (SOA) divides the total time horizon of the dFBA sim-

ulation into several smaller time intervals. The optimization problem is solved to ob-

tain the flux distribution at the beginning of each time interval, and then the ODEs are

integrated over the time interval with this fixed flux distribution. The dynamics calcu-

lated from this time step are used to constrain the optimization problem solved at the

beginning of the next time interval, and the process is repeated until the end of the

simulation time is reached. SOA can be implemented easily with the use of an Euler

scheme for integrating the system and a suitable existing LP solver for solving the FBA

at each time step. SOA is also implemented in the constraint-based reconstruction

and analysis (COBRA) toolbox forMATLAB [338] which can perform dFBA simulations.

Since its implementation is relatively simple, SOA has been widely used in studies

for the diauxic [329, 331], aerobic and fermentative [328, 322] growth of E. coli, for

S. cerevisiae fermentations [333, 326, 327], as well as for the metabolism underlying

plant growth [334]. Many of these applications include larger-scale or genome-scale

metabolic networks, due to the scalability of SOA. However, the main drawback is

that SOA is inefficient and can become computationally expensive because it has to

solve the optimization problem at each time step. This can be challenging for most

dFBA problems which are stiff and require small time steps to ensure accuracy, con-

vergence, and stability of the solution.

Dynamic Optimization Approach (DOA) follows closely the general dynamic opti-

mization framework described in Section 11.2: an objective function that depends

on the dynamic states of the system over the complete time horizon of interest is for-

mulated, and the dynamics (11.26)–(11.27) and algebraic constraints (11.28)–(11.29)
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are added as optimization constraints. In other words, DOA discretizes the total time

horizon of the dFBA simulation, and then transforms the dynamic optimization prob-

lem into a non-linear programming (NLP) problem, which is solved once by simultane-

ously optimizing over the entire time of the simulation. In this way, DOA obtains the

time profiles of fluxes and metabolite concentrations in the system, and allows the

formulation of a dynamic objective function, which could provide useful information

about the design of genetically modified metabolic networks or the maximization of

bioprocess productivity. Because of this characteristic, DOA is often used in dynamic

metabolic engineering, parameter estimation and optimal control applications. For

example, DOA has been used for simulating the diauxic growth of E. coli [329, 339].

On the downside, even though the optimization problem does not need to be re-

peatedly solved like in SOA, the single NLP of DOA can become easily intractable, as

its dimension increases with the fineness of time discretization. Additionally, DOA

has been mainly limited to small-scale metabolic networks, since it cannot be easily

applied to genome-scale metabolic networks due to the large number of variables

and constraints that are introduced in the NLP as the size of the network increases.

Direct Approach (DA) has been formulated more recently than SOA and DOA, and

directly includes the LP solver for the FBA in the right-hand side evaluator function

of the ODEs. In this way, it can take advantage of existing ODE integrators with

adaptive step size and error control that can reduce the number of integration steps

and provide better solution accuracy compared to SOA. DA has been implemented

in the ORCA toolbox [340], which complements the constraint-based reconstruction

and analysis (COBRA) toolbox for MATLAB [338]. Furthermore, DA has been used

for studying the (an)aerobic growth of wild-type and engineered E. coli strains [330],

the aerobic growth of Corynebacterium glutamicum on glucose and xylose in biorefin-

ery simulations [332], as well as the aerobic and anaerobic growth of wild type and

engineered S. cerevisiae strains [324, 325, 326]. Some of these applications involve

dynamic metabolic engineering for product maximization, andmany of them include

genome-scale metabolic networks, since DA is relatively easily scalable like SOA.

However, DA requires the LP to be resolved at least once, every time the right-hand

side of the ODEs is evaluated [341]. This can make DA computationally demanding,

especially for larger metabolic networks. Another major challenge is that when eval-

uating the right-hand side of the ODEs close to the boundary of feasibility, the LP can

become infeasible and make the dFBA simulation fail. The LP can become infeasi-

ble either because it is really infeasible and the simulation should be terminated, or

because the ODE integrator becomes unable to evaluate the right-hand side of the

ODEs and the simulation is discontinued, or erroneous death phasemessages are be-

ing displayed. The latter can happen as dFBA simulations involve discrete events that
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Math box 11.B DFBAlab

In order to address some of the computational challenges of dFBA, Höffner, Har-
wood, and Barton proposed a simulator for dFBA, which was initially coded in FOR-
TRAN [343], but gained popularity when implemented in MATLAB with the name
Dynamic Flux Balance Analysis laboratory (DFBAlab) [337], and more recently in
Python [344]. It is noted that the DFBAlab is compatible with the COBRA toolbox
[338]. Based on this dFBA simulator, it is not necessary to resolve the LP each time
the right-hand side of the ODEs is evaluated and consequently, the solution pro-
cess becomes faster. This is possible because the FBA solution at an initial time can
be used to compute future optimal solutions by detecting changes in the active set
or by computing the optimal basis of the FBA solution [345]. Unfortunately, such
formulations need to continuouslymonitor the active set of the LP,which increases
with the size of the metabolic network, or need to choose a basis for the optimal
solution that ismost likely to remain optimal as the simulation proceeds [345]. The
latter is challenging since the optimal basis can be non-unique even for a unique
optimal solution. Nevertheless, DFBAlab manages to reduce the number of times
that the LP is resolved, and also avoids obtaining infeasible LPs and numerical
failure by using the LP feasibility problem and the Karush-Kuhn-Tucker (KKT) opti-
mality conditions of the FBA problem (see below). In addition, the differentiability
problem could be solved with the help of non-smooth analysis which provides op-
timality conditions in terms of sub-gradients or generalized gradients, for convex
and non-convex functions respectively. Furthermore, to tackle the issue of primal
multiplicity of the FBA problem, DFBAlab performs lexicographic optimization .

correspond to switches in the active set of the LP solution. More specifically, differ-

ent bases for the optimal solution of the LP can emerge at each time step. Moreover,

at the points of change of the active set, the dFBA model is not differentiable, since

the optimal value of the LP as a function of the right-hand side of the constraints

is not continuously differentiable. This is a problem because the first and second

derivatives of the model must be computed when dFBA is used for optimal control

or parameter estimation applications. Finally, another drawback emerges due to the

primal multiplicity of the LP. As it is well-known, FBA is formulated as an underdeter-

mined problem and therefore, the LP does not have a unique solution [342]. Non-

unique optimal reaction fluxes can lead different ODE integrators to different results.

11.6 Concluding remarks

One approach for understanding the response of microorganisms to changes in their

environment is to assume that this response has beenoptimized by evolution. That is,

the regulatorymechanisms controlling the response optimize an objective, or a trade-

off between competing objectives, subject to a variety of physical and biochemical

constraints. This approach gives rise to dynamic optimization problems (11.1)-(11.2)

that can be solved by techniques from optimal control theory. Three examples of

such problems were considered in this chapter: dynamic optimization of enzyme ex-
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Math box 11.C Lexicographic Optimization

Lexicographic or hierarchical optimization involves the solution of a series of LPs
with auxiliary objectives ranked in priority order. The use of auxiliary objectives
reduces the feasible space and leads to a unique optimal solution, while the aux-
iliary objectives can have specific biological meanings and can be selected based
on prior knowledge about the organism [297]. Some of the most-used auxiliary
objectives are based on the assumption that evolution leads to the exclusion of
inefficient pathways so that cells can biosynthesize the smaller possible number
of enzymes. Examples of such auxiliary objectives include the minimization of en-
zyme cost [346], the minimization of the total reaction flux [347], and the mini-
mization of the number of active reactions [348]. However, it has been shown that
such objectives may not be suitable for some engineered cells. In general, it is not
trivial to find a series of auxiliary objectives that are consistent with experimental
data, assure uniqueness and preserve continuity of the optimal solution. In some
cases, even when all auxiliary objectives have been used, hierarchical optimization
cannot ensure the uniqueness of the dFBA solution. Apart from the use of auxil-
iary objectives, auxiliary rules or auxiliary parameters have also been proposed
to address the primal multiplicity of FBA. For example, geometric methods have
been proposed to identify a unique distribution of reaction fluxes for FBA [349],
even though there is no biological evidence to justify such methods.

pression in metabolic pathways, dynamic optimization of coarse-grained models of

cellular growth, and dynamic flux balance analysis. This does not exhaust the range

of possible problems that can be considered. One example is the combination of the

resource allocation perspective with dynamic flux balance analysis [339].

Some of the predictions obtained by means of dynamic optimization seem to be sup-

ported by available experimental data, such as the time-ordering of enzyme expres-

sion in a linear pathway. Other predictions cannot currently be tested or may not

be consistent with the available experimental data, such as the dynamical ribosomal

protein synthesis pattern. The contradiction between a predicted optimal response

and the observations is interesting, because it indicates that some of the assump-

tions underlying the problem need to be revised. The model may not account for

all relevant processes taking place in the cell, important constraints may have been

ignored, or the objective may not capture the actual processes taking place.

The solution of a dynamic optimization problem may be different from the concate-

nation of the solutions of repeated static optimization problems defined over short,

consecutive time intervals making up the time horizon. For instance, the optimal pat-

tern of resource allocation over a time horizon may involve the accumulation of a

reserve of unused resources that, while being wasteful in the short run, is benefi-

cial when the whole time interval of interest is considered. One example was given

in the introduction of this chapter, concerning the expression of maltose enzymes

in the presence of lactose [293]. Another example is the accumulation of glycogen
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Figure 11.4: Example result of a dFBA simulation for the E. coli core model [350] per-
formed with DFBAlab – (A) Illustration of dynamic metabolites and relevant exchange
fluxes. Extracellularmetabolites usemass concentration (g L−1), exchange fluxes are in
molar amount per dry biomass and time (mmol gDW−1 h−1). (B) Concentration-dependent
constraints applied to the exchange fluxes during the dFBA simulation. (C) Differential
equation model for biomass concentration X and metabolite mass concentrations.
Growth rate µ and exchange fluxes v∗ (in red) are optimal values from the underly-
ing FBA model. mO2

, mG, mE, mA are molar masses of O2, glucose, ethanol, and acetate,
respectively. kLa = 8.5 h−1 is the volumetric mass transfer coefficient for oxygen. (D)
Simulation results for concentrations of biomass and metabolites. We can observe
four growth phases: aerobic growth on glucose with production of acetate, anaer-
obic growth on glucose with production of ethanol and acetate, aerobic growth on
acetate, and a stationary phase. (E) Simulation result for oxygen concentration in the
liquid medium. Oxygen is depleted in the second growth phase due to mass transfer
limitations, but replenishes at the start of the third phase. (F) Penalty function time
course. Increases of the penalty function indicate periods where the underlying FBA
model is infeasible. Here, this occurs when the ATP maintenance constraint cannot
be satisfied due to a lack of substrates, and happens in this simulation during a brief
period where the switch from glucose to acetate as a substrate takes place, since
oxygen needs to be replenished first, and in the stationary phase.

in cyanobacteria during daylight, providing the energetic resources for maintenance

metabolism in the night time [290].

The analysis of the growth of microorganisms using dynamic optimization critically

depends on the choice of an appropriate objective function. In the examples dis-

cussed above, optimization was performed with respect to a single objective, e.g.,

the maximal accumulation of biomass over a time interval or the minimal time to de-
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plete a given amount of substrate. It is plausible, however, that microorganisms have

evolved under the necessity to satisfy several objectives simultaneously. This can be

taken into account by formulating a weighted sum of the different objective func-

tions, such as the simultaneous minimization of throughput time and investment in

enzymes in Eq. (11.16). Another approach is to generalize the optimization problem

to amulti-objective optimization problem, with sets of Pareto optimal solutions, each

providing a trade-off between mutually conflicting objectives. One example of such

a multi-objective optimization problem is given by a generalization of the dynamic

optimization of enzyme expression in metabolic pathways in Section 11.3, with the

double objective of minimizing the time to consume a given amount of substrate and

minimizing the concentration of (possibly toxic) intermediate metabolites [351].

Instead of making a-priori assumptions about the objectives presumably optimized

by microorganisms, one could try to infer the latter from the experimental data. This

inverse optimization approach leverages the large amounts of time-course data on

the dynamic response of microorganisms to environmental perturbations that have

accumulated in the past decade. Inverse optimization requires the solution of com-

plex inverse optimal control problems that have been little explored until now [296].
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Problems

Computer exercises for this chapter can be found on the book website.

Problem 11.1 Interpretation of abrupt switches

The solutions of some of the optimization problems in section 11.3 exhibit abrupt
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switches in enzyme concentrations (”bang-bang behavior”), which in reality are not

possible.

(a) What would be possible adjustments of the models to make the predictions

more realistic? (Hint: consider explicit modeling of enzyme synthesis and en-

zyme degradation or dilution by growth.)

(b) What predicted behavior would you expect for these modified models?

(c) In these extended models, which possibilities would the cell have to speed up

the adaptation of enzyme concentrations? Under what circumstances could this

provide an actual advantage?

Problem 11.2 Accounting for metabolites

The resource allocation model in Section 11.4 defines biomass as being composed

of proteins only, neglecting notably the (small) contribution of metabolites. This has

the disadvantage of putting no constraints on metabolite concentrations, which is

not realistic from a biological point of view.

(a) What would be a possible adjustment of themodel to integratemetabolites into

the biomass composition, under the assumption that the total biomass density

remains constant? (Hint: consider the definition of growth rate in Eq. (11.24).)

(b) Howwould the objective function for thismodel (Eq. (11.25)) need to be adapted

accordingly?

(c) How would you expect the resulting constraint on metabolite concentrations to

affect the predicted behavior of the microbial self-replicator?
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Chapter 12

Diversity of metabolic fluxes in a

cell population

Andrea De Martino and Marcelo Rivas-Astroza

Chapter overview

Even in clonal populations, cells appear to be strongly heterogeneous in terms of,

e.g., protein levels, RNA levels, sizes at birth or division, interdivision times and

elongation rates. Part of this variability is likely due to the inherent stochastic-

ity of gene expression at the level of single cells. It is however known that het-

erogeneous populations may possess an evolutionary advantage, for instance in

variable environments or under stress. Despite appearing to be at odds with the

idea of optimality presented in the previous chapters, metabolic diversity can be

described and modeled within the constraint-based framework introduced in the

previous chapters. Specifically, a statistical representation of heterogeneous pop-

ulations can be obtained by defining suitable probability distributions on the flux

polytope. This chapter addresses

◦ the different sources of variation that affectmicrobial metabolism alongwith the

mechanisms that may favor higher variability,

◦ the methods devised to represent heterogeneous microbial populations within

the framework of constraint-based models, and

◦ how these approaches connect to the optimality scenario presented in the pre-

vious chapters.

273
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12.1 Introduction

The theory of cellular metabolism developed up to this point through constrained-

based models (CBMs) relies crucially on some type of optimality assumption: among

all viable flux states encoded in the flux polytope by mass-balance, thermodynamic

and regulatory constraints, cells strive for those that maximize a physiologically mo-

tivated objective function. For E. coli cells growing on carbon-limited substrates, for

instance, it is reasonable to take such a function to be the growth yield. At the very

least, these optimal states provide reference points to gauge cellular behavior. In

this respect, having a good grasp of what makes a configuration of fluxes through

the network ‘optimal’ with respect to a certain objective is rather important from a

theoretical viewpoint. On the other hand, it is not easy to prove directly in an exper-

iment that a certain function is actually being optimized (in any physical system, let

alone in a microbe or a microbial population). An optimality assumption can usually

be corroborated a posteriori, e.g. by comparing optimality predictions to experimen-

tally measured fluxes or growth rates [355, 356], or indirectly, e.g. by showing that,

in a given growth medium, certain metabolic enzymes are expressed at just the level

ensuring maximal growth [148]. By looking at the behavior of individual cells in a

population, however, one cannot help but notice a salient feature: their diversity.

Individual cells are macroscopically heterogeneous in terms of parameters like inter-

division times, elongation rates, sizes at birth or division, etc. This suggests that a

corresponding diversity is present at the level of intracellular processes like cell cy-

cle, gene expression and, of course, metabolism. Quantitative experiments probing

populations at single-cell resolution (see Experimental Methods Box 12.A) can nowa-

days characterize such a diversity in some detail. Among the remarkable outcomes of

these studies is that, when analyzed through a lens that accounts for diversity, bacte-

rial growth displays signatures of universality [357, 358, 359], suggesting the existence

of general, system- and condition-independent control mechanisms (e.g. of cell divi-

sion and growth) that do not change with specifics like strain, quality of medium, etc.

Identifying these mechanisms yields robust insight (and predictive capacity) into the

physiology of microbial systems (see also Chapter 14).

It is not hard to guess why a bunch of identical cells sharing the samemediumwould,

say, elongate at different rates. For one, gene expression has a stochastic component,

from e.g. the random diffusion of transcription factors to targets to the thermal noise

driving the on/off dynamics of transcription events. We also know that the cell cycle

can be highly variable [369]. And other ‘natural’ sources of variance can be found

in the dynamics of expression in genetic circuits, aging, asymmetric partitioning of

cellular resources at division, inter-cellular interactions, and epigenetic modifications
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Experimental methods 12.A Quantitative methods for single-cell analysis

At the very minimum, quantitative experimental characterization of cell-to-cell di-
versity inmicrobial populations requires (i) the possibility of achieving steady-state
cell growth in controlled environments, and (ii) the possibility of identifying indi-
vidual cells within a population. The two setups that are most important for the
present chapter (and most widely used in general for the study of cell-to-cell het-
erogeneity in microbial systems) are the following.
◦ High-resolution optical microscopy of bacteria growing on agarose pads. Optical
microscopy is the first and still most used technique to address cellular individ-
uality [360]. Besides giving direct information about the macroscopic growth
dynamics of individual cells [361, 359], it can be used in conjunction with gene
expression reporters like fluorescent proteins to quantify diversity in gene ex-
pression levels [362] and dynamics [363]. Optical means usually allow to reliably
follow the expression of a relatively small number of genes. In addition, how-
ever, they can also provide information about many other aspects of bacterial
physiology, like motility, chemotaxis or the spatial self-organization of colonies.

◦ Microfluidic ‘lab-on-a-chip’ devices. In essence, these techniques allow to confine
single cells or small lineages thereof in controlled environments for long-term
data acquisition [364]. A well-known example is the ‘mother machine’ [365]. In a
mother machine cells grow in narrow (ca. 1 µm) microfluidic dead-end channels
such that (a) all cells in the same channel are daughters of a mother cell stuck
at the closed side of the channel; (b) a main feeding channel carries away cells
that grow out of the length of dead-end channels (which suffice to contain a few
cells, usually 5 to 10); and (c) nutrient in-flow and waste out-flow from the feed-
ing channel ensure a constant medium in all dead-end channels via diffusion.
This setup effectively keeps the population size fixed. Growing bacteria can then
be imaged and analyzed by standard means like time-lapse microscopy to ob-
tain the statistics of quantities like the interdivision time or the size at birth at
stationarity [358].

The setup of mother machines has the advantage that cells can be followed for
many more generations than on agarose pads, since the latter tend to become
overcrowded after a limited number of rounds of divisions. On the other hand,
agarose pads offer a more natural environment for cell division. In addition to
these, a host of other techniques are being increasingly refined and used to probe
single-cell properties and behavior in bacterial populations, including single-cell
metabolomics by mass spectrometry [366], nanoscale secondary ion mass spec-
trometry (nanoSIMS) [367], and single-cell transcriptomics [368].

[370]. In other terms, a degree of variability across a population is to be expected.

The question, however, is, how can variability be reconciled with the optimality pic-

ture? And related to this: can we explain cell-to-cell differences in terms of some

other, perhaps more involved, optimality criterion? Are there cases in which vari-

ability is optimized? Can we describe quantitatively a microbial population in ways

that account for inter-cellular diversity? Note that cell-to-cell variability is inherently

a population-level concept. Addressing it therefore requires a framework that is ca-

pable of clearly distinguishing single-cell properties from population-level ones.

It is definitely possible to explain cell-to-cell variability within an optimality framework
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Figure 12.1: Single optimum versus multiple optima in the flux polytope – (A) A two-
dimensional flux polytope (shaded area) with non-negative fluxes and the defining
constraints shown as dashed lines. (B) The linear objective function represented by
the blue line has a unique maximum (red dot). (C) The linear objective function, rep-
resented by the blue line parallel to one of the constraints, has a continuous set of
maxima points which coincides with the segment shown in red.

(see Chapter 5). For example, one could say that, in appropriate conditions, all mi-

crobes in a population are optimal, but the optima are slightly different for different

cells. As amatter of fact, optimal states in CBMsneed not be isolated points belonging

to the flux polytope. There can in fact be infinitelymany flux vectors thatmaximize an

objective function (this happens, for instance, when an objective function attains its

maxima on one of the edges or faces of the polytope, see Figure 12.1). This implies

that identical cells subject to the same constraints and sharing the same objective

may end up having different metabolic profiles despite carrying the same value for

the objective function. In this scenario, diversity is induced by a very special feature

of the objective function and, unless some other ingredient is brought into the game

to lift the degeneracy, all optimal states would be equally likely for cells. If having

an objective function of this type seems unlikely in a high-dimensional setup such as

metabolism, one may imagine a scenario in which all cells optimize the same objec-

tive but with slightly different constraints (i.e. in a slightly different polytope, e.g. due

to small variations in regulatory constraints, energy demands, or nutrient uptakes).

In this case, each cell would solve its own optimization problem, ending up having,

along with a differentmetabolic profile, a slightly different value of the objective func-

tion. Metabolic diversity is therefore induced by variability in the constraints. But it is

also possible that, if cells are subject to fluctuating exogenous constraints (e.g. vari-

able nutrient levels), they would prefer to maximize their, say, growth rate averaged

over conditions, especially if fluctuations occur on faster timescales than those over

which metabolic reactions equilibrate. In such a case, the average growth rate would

bemaximum (given the external variability), but other than that every cell could carry

a different growth rate and a different metabolic profile. In this respect, one can say

that diversity is now being optimally adapted to external conditions, or onemay even

think that different cells have different objective functions. This scenario, possibly
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unrealistic for growing microbial populations but not for other cell types (think for in-

stance of the mixture of neurons with high energy demands and glia with low energy

demands in the brain), would also lead to heterogeneous flux profiles and objectives.

And so on.

It is clear from these examples that, in order to represent heterogeneity within CBMs,

one must, first and foremost, clarify the origin of heterogeneity as much as possible.

Next, it is necessary to shift from the language of individual flux vectors belonging

to the flux polytope to that of ensembles of flux vectors or, more reasonably for large

populations, of probability densities defined on the flux polytope. This transition is less

trivial and more momentous than it sounds and, together with the causes of variabil-

ity, is the core subject of the present chapter. We shall begin by giving a more precise

characterization of the different types and sources of diversity that can be considered

whenmodelingmetabolic networks. Next, we shall introduce probability densities on

the flux polytope and briefly discuss a few simple examples. We shall then address

the general problem of using probability densities to represent heterogeneity and

uncertainty, most notably that seen in empirical data. Finally, we will show how these

ideas can be used to generalize the notion of optimality to heterogeneous popula-

tions.

12.2 Sources of variability anduncertainty inmetabolism

Metabolic heterogeneity is widespread among clonal populations of prokaryotic and

eukaryotic cells. Populations of Escherichia coli display diverse cell-to-cell conversion

yields of glucose into final products, such as fatty acids and tyrosine [371]; not sur-

prisingly, the intracellular concentration of co-factors, including ATP, also vary sig-

nificantly between cells [372]. Saccharomyces cerevisiae metabolic states have been

observed to change over time for each cell. For instance, a single budding yeast does

uptake oxygen before duplicating its genetic material, but it changes to an anaero-

bic metabolism once DNA duplication starts in order to prevent mutations related

to free radicals [373]. Animal cells within a single tissue also show heterogeneous

metabolisms. Non-small cell lung cancer display a remarkable diversity of preferred

carbon sources. Within the tumor, some cells consume glucose and produce lactate,

whereas others divert their metabolism to consume lactate as a carbon source [374].

The root cause of this metabolic heterogeneity is manifold, including uneven distri-

bution of nutrients in the environment, asymmetric cell partitioning at division, and

noise in gene expression [375, 376]. These effects are stochastic, and prevent the

determination of a cell metabolic state in advance. This type of uncertainty is rooted

in the nature of metabolism itself. We refer to it as objective uncertainty.

There is however another type of uncertainty at play, one that comes fromourmodels
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Figure 12.2: Minimalmetabolic networkwithmultiple optima – (A) Toy networkwhere
the top metabolite is imported by reaction v1 and processed by reactions v2 and v3,
which convert it into the bottommetabolite that is then excreted via v4. Whenfixing v1 =
10, themaximization of v4 –a proxy of biomass growth rate– undermass balance results
in v4 = 10. There are however infinitelymany flux vectors (definedby the condition v2+v3 =
10) that are coherentwith this solution, including those indicatedby redblue and green
flux values. (B) The subspace of optimal solutions forms a line (dark purple) in the
space of feasible flux vectors (Problem 12.1 ). The orange-shaded triangle represents
the flux polytope for 0 ≤ v1 ≤ 10.

of metabolism. In any metabolic network reconstruction, there can be missing reac-

tions [377], errors or lack of knowledge about the directionality of certain reactions

under in vivo conditions [378], and errors in the experimental estimates of certain

parameters –such as exchange fluxes, or the weights of the biomass reaction [379].

Even when using a bona fide metabolic network conditioned by precisely measured

parameters, optimality principles can lead to a reduction of the viable polytope as

opposed to the identification of a single ‘optimal’ state [380] (see Chapter 5). This is

exemplified in the network of Fig. 12.2.A, where the maximization of v4 only reduces

the viable polytope to a subspace defined by the line shown in Fig. 12.2.B. Uncertain-

ties that stem from modeling uncertainties can be categorized as subjective, as they

arise solely from an observer’s imperfect knowledge.

As we will see in the following, although objective and subjective uncertainties have

different sources, both can be modeled using probability theory.

12.3 Probability densities over the flux polytope

In what follows, we shall denote the convex flux polytope by P and a generic flux

configuration in P by v = {vi}N
i=1. A probability density p defined on P is any non-negative

function such that ∫
P
p(v)dv1 · · · dvN ≡

∫
P
p(v)dv = 1 . (12.1)
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Notice that the integral over P implicitly encodes two types of constraints: mass-

balance equations (i.e. Sv = 0) and ranges of variability of the form vi,min ≤ vi ≤ vi,max (see

Chapter 5). The quantity
∫

P dv represents therefore the a priori volume of P (which,

understandably, is far from simple to calculate for high-dimensional polytopes like

those corresponding to genome-scale metabolic network reconstructions [381]). As

usual, p(v) can be interpreted as the relative likelihood of flux configuration v: if we

imagine that a cell is assigned a flux configuration by “randomly sampling it from P”

using the rule described by p, then p(v)dv represents the probability that the cell’s flux

configuration will lie in a small volume dv around v. It is clear then that probability

densities on P provide a mathematically convenient way of describing the metabolic

state of large populations (or ensembles) of cells at a given time, provided one can

assume that cells have the samemetabolic network and are subject to the same con-

straints, so that P is the same for all of them. For the population of cells described

by p, the probability density clearly contains all the statistics of metabolic fluxes, from

mean values to variances to correlations. For instance, by integrating p over all fluxes

except the i-th, one obtains the marginal probability density of flux vi, i.e.

∫
P
p(v)dv\i = pi(vi) , (12.2)

where the subscript \i corresponds to ‘except for the fluxof index i’ (so dv\i = dv1 · · · dvi−1dvi+1 · · · dvN).

And from pi we can immediately retrieve the statistical features of flux vi (e.g. mean

value, variance, etc).

Let us make a few simple examples.

◦ If we assume that all cells in the population maximize the same objective function,

and that there is no degeneracy in the optimal state, then

p(v) = δ(v − v?) , (12.3)

where v? denotes the (unique) objective-maximizing flux vector and δ(x) denotes

Dirac’s δ-distribution.

◦ If we canmake no assumption on the cells’ metabolic activity other than it has to be

compatible with the constraints encoded by P, then any flux vector v ∈ P is equally

likely to occur in a population. This means that p is constant on P. Specifically, its

value must be equal to the inverse of the volume of P:

p(v) =
(∫

P
dv′
)−1

(v ∈ P) . (12.7)

For any given flux polytope, this distribution can be sampled at least in principle

using the methods described in Chapter 4.
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Math box 12.B Dirac’s δ-distribution

For our purposes, the defining property of the δ-distribution in one dimension is
the following: if a variable x is δ-distributed around the finite value x?, then, for any
continuous function f, ∫ +∞

−∞
f(x)δ(x− x?)dx = f(x?) . (12.4)

Thismeans that, intuitively, δ(x−x?) = 0 everywhere on the real axis except at x?, where
its value is +∞. Such a function only makes sense within an integral. In this respect,
(12.3) should be seen as an abuse of notation, albeit a convenient one. There are
however several ways to represent the δ-distribution that comply with the above
requirement. For example, one can define

∫ +∞

−∞
f(x)δ(x− x?)dx := lim

σ→0

∫ +∞

−∞
f(x) 1√

2πσ2
e− (x−x?)2

2σ2 dx

= lim
σ→0

∫ +∞

−∞
f(x? + σy) 1√

2π
e− y2

2 dy = f(x?) . (12.5)

The generalization to n > 1 dimensions is obtained by straightforwardly assuming
δ(x − x?) =

∏n
i=1 δ(xi − x?

i ), so that ∫
Rn

f(x)δ(x − x?)dx = f(x?) . (12.6)

Because the δ-distribution effectively has non-zero probabilitymass only at a single
point, it is reasonable to expect (12.6) to hold also if the integral is carried out over
a compact domain D, provided x? belongs to D. This is indeed the case, although
the proof requires some work. For a quick guide to the many other interesting
and useful properties of the δ-distribution that are beyond our current scopes, see
[382].

◦ Imagine having a dataset derived from a 13C labeling experiment (mass spectrome-

try) that gives the mean value vi of every flux in the network (the average being over

the population of cells used in the experiment), together with an experimental error

σi (which likely conflates different sources of uncertainty of which wemay know very

little, if anything at all), such that the experimental population-level estimate of vi is

vi±σi. Let us assume that we know enough about the experiment to be able to define

a flux polytope for the cell type (P), and that all empirically measured averages and

errors are in P. Then, if we want to describe the population by a probability density

in P that is uniform over the domain defined by experimental estimates, we can set

p(v) =
N∏

i=1

θ(vi + σi − vi)θ(vi − vi + σi)
2σi

(v ∈ P) , (12.8)

where θ(x) denotes the Heaviside (step) function defined as (Problem 12.2)

θ(x) =


1 for x > 0

0 for x < 0
. (12.9)
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β = 0 β > 0 β → ∞

p(v) ~ const. p(v) ~ eβf(v) p(v) ~ δ(v-v*)

uniform optimumBoltzmann

Figure 12.3: Boltzmann distribution on the flux polytope – The Boltzmann distribu-
tion, Eqn (12.10), morphs from a uniform probability density to a δ-distribution con-
centrated on the flux vector that maximizes the function f as β varies from 0 to +∞.

◦ (Boltzmann distribution) Let f(v) denote a generic function of the flux vector, such

as f(v) =
∑N

i=1 civi, with ci prescribed constants. The Boltzmann distribution is defined

as

p(v) = 1
Z(β) eβf(v) (v ∈ P) , (12.10)

where β is a constant and Z is a factor ensuring normalization (i.e. (12.1)), namely

Z(β) =
∫

P eβf(v)dv. The behavior of p is simple to grasp in three limits.

1. For β → 0, (12.10) reduces to (12.7): in other words, p becomes uniform over P (and

therefore insensitive to f).

2. For β → +∞, p effectively concentrates on the flux vector v? that maximizes f (which

for simplicity we assume to be unique). To see this at a heuristic level, it suffices

to notice that, for any v 6= v?, the ratio

p(v?)
p(v) = eβ[f(v?)−f(v)] (12.11)

increases exponentially as β increases. Because densities are normalized, when

this ratio becomes large, p(v) must become very small. Hence, when integrated

over P, the larger is β, the closer to v? must flux vectors be in order to give a signif-

icant contribution to the integral. For β → +∞, the only relevant contribution comes

from v?, so that, effectively, p(v) ' δ(v − v?). This conclusion can be reached more

precisely using Laplace’s method (a.k.a. saddle-point approximation) to evaluate

integrals of the form
∫
Rn eβg(x)dx in the limit β → ∞ for fixed n (see e.g. [383], Ch. 27).

3. By a similar reasoning, for β → −∞ the only relevant contribution to integrals in-

volving p comes from the (unique, by assumption) flux vector v? that minimizes f,

so that, effectively, p(v) ' δ(v − v?).

When β varies, things depend strongly on the form of f and can become rather

complicated when f is non-linear, especially when terms that involve the product of
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two or more fluxes (‘high-order interactions’) are present. However, in the simple

case in which f is linear (as outlined above), then the probability density gradually

morphs from a uniform distribution over P to a δ-distribution around the maximum

of f as β increases from 0 to +∞ as shown in Fig. 12.3 (and likewise when β decreases

from 0 to −∞). In this respect, the parameter β can be seen simply as a ‘degree of

optimization’: the closer a population is to optimizing f, the higher the value of β.

For reasons that will become clear in the next section, the Boltzmann distribution

plays an especially important role in this chapter (Problem 12.3).

◦ In Constrained Allocation FBA [356] (see Chapter 10), one considers an ensemble

of growth-rate maximization problems constructed by sampling (from a prescribed

probability density) a family of random variables representing the proteome frac-

tion to be invested in each metabolic enzyme per unit flux of the corresponding

reaction. The idea in CAFBA is that different sets of parameters effectively cor-

respond to different cells, reflecting the cell-to-cell variability in e.g. transcription

levels and protein abundances. The population-level behavior is then obtained by

averaging over different choices of these parameters (i.e. over a population of het-

erogeneous cells). An alternative interpretation is however possible, namely that

different parameters reflect the different environmental conditions that a species

can encounter over its life process history. By averaging over parameters one ob-

tains a growth strategy that levels out this environmental variability. Such a strategy

may be the one that cells prefer to implement e.g. when environmental fluctuations

are fast (faster than regulatory timescales). In either case, in CAFBA, randomness

in a family of parameters related to the optimization problem induces randomness

in the solutions, and therefore a probability density over the feasible space. This

probability is unfortunately hard towrite down explicitly in the case of CAFBA due to

the complexity of the optimization problem. Its marginal distributions are however

easy to calculate numerically. Two of them, specifically for the single-cell growth

rate and acetate excretion fluxes, are shown in Fig. 2 in [356].

We could provide more examples but the key message of this section should already

be visible: probability densities on the flux polytope are useful (a) when one wants

to explicitly represent how uncertainties, experimental knowledge (with errors), or

variability in parameters impact our knowledge of what part of the flux space P is oc-

cupied by themetabolic states that occur in a truemicrobial population; and (b) when

one is interested in representing an optimal (in some sense) population in a way that

explicitly accounts for heterogeneity. If one has data (with errors), a probability den-

sity can provide a representation of the data, as in (12.8). It can likewise describe the

solution to a population-level optimization problem, and therefore a purely theoret-

ical prediction, as in (12.3). Or the solution to an optimization problem with uncer-
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tainty, i.e., partial knowledge or variability in some of the parameters, in which case

it represents an ‘informed’ theoretical prediction (as in the CAFBA example, where

the ‘information’ injected into the problem comes from the probability density from

which parameters are sampled). Or it can simply be a tool to interpolate between ex-

treme cases whenwe are unsure about howwell a certain function is being optimized

(as in (12.10)). Notice how, in our examples, different motivations activate different

theoretical routes, all of which lead to working with probability densities that have a

priori different origins and meanings even though they can be formally the same.

The two broadmotivations for working with probability densities on P outlined above

[i.e. (a) representing uncertainty and (b) representing optimal heterogeneous pop-

ulations], pose fundamentally different modeling challenges. In the first case, the

key question is one of model selection: given some empirical knowledge, what is the

probability density on P that best represents our residual uncertainty? For instance:

how good of a choice for p is (12.8) given the data we had? Are there criteria that can

guide our choice of a probability density? We will briefly consider these issues in the

upcoming Sec. 12.4. When attempting to model optimal heterogeneous populations

at the theoretical level, instead, one basically has to generalize the problem tackled

by CBMs like FBA to the case in which an optimal probability density is searched for

instead of an optimal flux configuration. We will see how this can be done in Sec.

12.5.

12.4 Representing heterogeneity and uncertainty

12.4.1 Maximum Likelihood, Maximum a Posteriori and Bayesian

inference

We have seen that probability densities on P can represent, under certain assump-

tions, populations of microbes whose metabolism can be described by the same flux

polytope, and that different probability densities can be surmised tomodel the distri-

bution of v ∈ P when some external information (e.g. experimental data) is available.

Here, we will address the following question: how can one choose the p that best

represents our knowledge about the metabolic state of a population in presence of

these external data?

To summarize the huge and highly involved set of problems behind the above (very

general) question [383] in a way that is useful for the purposes of this chapter, we

can start by assuming we have a priori chosen a form of p that depends on certain

free parameters and ask how to tailor parameters so that p ‘optimally’ matches the

empirical evidence. To be concrete, let us denote by ψ the vector of parameters of p,

and by W = {w1,w2, ...,wR} a set of R experimental samples of v. Each measurement, w, is a
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vector of metabolic fluxes that ideally should include all the reactions of a metabolic

network. In practice, a vector w typically spans only a subset of all the reactions of

the metabolic network, e.g. those that are amenable to 13C labeling (TCA, glycolysis,

and pentose phosphate pathways) or that correspond to exchange fluxes that can

be reliably measured (glucose and oxygen consumption, or lactate and ethanol, to

name a few). According to Bayes’ rule (we assume all variables to be continuous), the

quantities

◦ p(ψ|W): the conditional probability density of the parameters given the observations

(a.k.a. the posterior);

◦ p(W|ψ): the conditional probability density of the observations given the parameters

(a.k.a. the likelihood);

◦ p(ψ): the prior probability density of parameters (a.k.a. the prior);

◦ p(W): the (marginal) probability density of observations (a.k.a. the evidence)

are related by the formula

p(ψ|W) = p(W|ψ)p(ψ)
p(W) . (12.12)

Ideally, what one would like to know in order to ‘optimally’ set the parameters of p is

how likely a parameter set is given the data, i.e. the full posterior p(ψ|W), as it allows

to quantify our uncertainty on the model itself. One may however also consider dif-

ferent (less ambitious) ways to choose parameters. The three best known methods

are the following:

◦ Maximum Likelihood (ML) inference aims at finding the parameter vector that max-

imizes the likelihood:

ψML = arg max
ψ

p(W|ψ) . (12.13)

In standard cases, this produces a single ‘optimal’ vector ψ (hence it is called a ‘point

estimator’), resulting in a p that models -in a context-specific manner- the metabolic

heterogeneity within the cellular population.

◦ Maximuma Posteriori (MAP) inference aims instead at finding the parameter vector

that maximizes the posterior:

ψMAP = arg max
ψ

p(ψ|W) ≡ arg max
ψ

p(W|ψ)p(ψ) , (12.14)

where the last equality follows from the fact that p(W) does not depend on ψ. As for

ML, the MAP estimator is a point estimator.

◦ Bayesian inference aims finally at computing the full posterior distribution p(ψ|W). It

is therefore a ‘distribution estimator’ rather than a point estimator.

Problem 12.4 should clarify the way in which point estimators differ from (and are

less informative than) distribution estimators in practice.
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Math box 12.C Gaussian model

Maximum Likelihood (ML) is the most commonly used point estimation method.
As said above, the estimated parameters, ψ̂, are computed as the argument that
maximizes the likelihood of the observed data, i.e.

ψ̂ = arg max
ψ

p(W|ψ) = arg max
ψ

R∏
i=1

p(w(i)|ψ) = arg max
ψ

R∑
i=1

log[p(w(i)|ψ)] , (12.15)

where in the last step we used the fact that, as far as the solution is concerned,
maximizing p(W|ψ) is equivalent to maximizing its logarithm. ML takes a familiar
form if one follows, for instance, Theorell et al. [384] in modeling data according
to a multivariate normal distribution:

w ∼ N(w|ψ) = 1√
(2π)N |Σ|

(
−1

2(v̄ − w)T Σ−1(v̄ − w)
)

(12.16)

The parameters encompass themean values, v̄, and the covariancematrix, Σ. That
is, ψ = [v̄,Σ]. Accordingly,

p(w(i)|ψ) = N(w(i)|ψ) = 1√
(2π)N |Σ|

e
(

− 1
2 (v̄−w(i))T Σ−1(v̄−w(i))

)
, (12.17)

and

ψ̂ = arg max
v̄,Σ

R∑
i=1

[
−1

2(v̄ − w(i))T Σ−1(v̄ − w(i)) − log
(√

(2π)N |Σ|
)]

, (12.18)

which leads to the well-known weighted least squares estimators of mean values
(ˆ̄v) and variances (Σ̂). With ˆ̄v and Σ̄, the frequency of any vector w can be computed
from N(w|ˆ̄v, Σ̂). Standard techniques, such as confidence intervals, can be applied to
assess the precision of ψ̂. Generally speaking, the larger the number of samples,
R, the smaller the uncertainty in ψ̂.

12.4.2 MaxEnt inference

According to the principle of Maximum Entropy (MaxEnt) [399], among all probability

densities that are consistent with given prior knowledge or data, the one having the

largest value of the entropy

H[p] = −
∫

P
p(v) ln p(v)dv (12.19)

is the one that best represents our knowledge about the system. A classical intuitive

justification of the MaxEnt principle is most easily given for discrete variables [400].

Consider N cells, each of which can be found in any of K states (what precisely defines

a state is immaterial for this reasoning). Let an assignment n = {n(i)} be given, such

that n(i) denotes the number of cells in state i (with ∑K
i=1 n(i) = N). Because we can always

exchange the states of two cells without changing n, there are multiple ‘microscopic’

ways to realize an assignment n. Combinatorics tells us that the number of different
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microscopic realizations of an assignment n is given by

N (n) = N !∏K
i=1 n(i)!

. (12.20)

If all n(i)’s are large enough, we can use Stirling’s approximation (n! ' (n/e)n) to see that

N (n) ' eNH(n) , H(n) = −
K∑

i=1

n(i)
N

ln n(i)
N

≡ −
K∑

i=1
p(i) ln p(i) ≡ H(p) , (12.21)

where p(i) denotes the fraction of cells in state i (or, equivalently for us, the probabil-

ity to find a cell in state i). H is the entropy of the assignment n, and is in essence a

measure of the microscopic degeneracy that underlies a macroscopic arrangement.

The distribution p = {p(i)} carrying the largest entropy subject to certain constraints is

therefore the one having the largest underlying microscopic degeneracy given those

constraints. So, if one were to randomly pick a microscopic state given those con-

straints, the most likely macroscopic state would be the maximum entropy distribu-

tion. In other terms, the MaxEnt distribution is the least biased distribution com-

patible with the constraints, as any other distribution satisfying the same constraints

would correspond to a smaller underlying degeneracy, thereby neglecting some fea-

sible (i.e. constraint-satisfying) microscopic configurations. In this respect, a MaxEnt

distribution requires the least information besides prior knowledge (i.e. constraints).

(A more detailed justification for using the MaxEnt principle as an inference tool is

given e.g. in [400].) If for instance cells are assigned to states in a completely random

way, the MaxEnt distribution is the solution of

max
p

−
K∑

i=1
p(i) ln p(i) subject to

K∑
i=1

p(i) = 1 , (12.22)

which can be found via the method of Lagrange multipliers (Problem 12.5). If other

constraints are imposed, though, theMaxEnt distributionwill clearly change (Problem

12.6). For our purposes, the continuous case with entropy given by (12.19) can be

seen as a straightforward generalization of the discrete one.

To get some grasp of the scenario that the MaxEnt rule provides within CBMs, let us

work out one especially noteworthy case, namely the MaxEnt probability density of

flux configurations with a given mean value of a generic function f of the fluxes. This

probability density is the solution of

max
p(v)

−
∫

P
p(v) ln p(v)dv subject to

∫
P
p(v)dv = 1 and

∫
P
f(v)p(v)dv = f . (12.23)
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To find it, we construct the functional

L[p] = H[p] + α

[∫
P
p(v)dv − 1

]
+ β

[∫
P
f(v)p(v)dv − f

]
, (12.24)

where α and β are Lagrangemultipliers for the normalization and themean-value-of-f

constraints, respectively. Variation of L with respect to p yields the maximum condi-

tion

−1 − ln p(v) + α+ βf(v) = 0 . (12.25)

Solving for p results in

p(v) = eβf(v)

e1−α
. (12.26)

The normalization condition however determines the value of α, as one must have

∫
P

eβf(v)dv = e1−α ≡ Z(β) . (12.27)

One is then left with

p(v) = 1
Z(β) eβf(v) (v ∈ P) . (12.28)

The value of β must be determined from the constraint on the mean value, namely

from
1

Z(β)

∫
P
f(v)eβf(v)dv = f . (12.29)

Notice that the result is nothing but Boltzmann’s distribution (12.10). We have there-

fore found that (12.10) is the MaxEnt distribution for a given mean value of the func-

tion f. This means that if we have a dataset returning the empirical mean value of

an observable f over a population of cells, our knowledge is best represented by as-

suming that p(v) is of the form (12.10), with β ensuring the matching of empirical and

theoretical means.

This suggests a possible way to represent single-cell growth-rate distributions [405],

such as the E. coli populations growing in rich media studied e.g. in [358, 359] (see

Figure 12.4).

Let us assume that all cells in the population can be described by the same flux poly-

tope P and let λ(v) denote the growth rate associated to flux configuration v. We can

ask the following question: what is the p(v) on P that best represents our knowledge

that the mean growth rate of cells is λ (empirical)? The answer is

p(v) = 1
Z(β) eβλ(v) (v ∈ P) , (12.30)

where Z(β) =
∫

P eβλ(v)dv, and where β is set so that the empirical mean growth rate (λ)
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p(λ) p(λ)
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λ
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with β s.t.

MaxEnt

=λ

Figure 12.4: MaxEnt modeling of single-cell growth rate distributions – Empirical dis-
tributions (blue points, left) are reproduced by aMaxEnt assumption where themean
growth rate is constrained (right), leading to a Boltzmann distribution over the flux
polytope (Eq. (12.30)).

matches the theoretical mean, i.e.

1
Z(β)

∫
P
λ(v)eβλ(v) dv = λ . (12.31)

We can therefore solve the above equation (numerically) and analyze the resulting

distribution. One sees from (12.30) that β has a ‘natural’ unit given by λ−1
max, the inverse

maximum growth rate achievable in P (which is easily computed by LP). In the popu-

lations analyzed in [405], the value of β that ensures the matching condition ranges

from 190/λmax to 300/λmax, suggesting that indeed the degree of optimization of λ is signif-

icant. The most remarkable result, however is that the marginal distribution of the

growth rate computed from (12.30), namely

p(λ) =
∫

P
δ(λ− λ(v))p(v)dv , (12.32)

matches the overall empirical growth-rate distributions. In other words, if one ad-

justs the parameter of (12.30) so that the theoretical mean growth rate and the ex-

perimental one coincide, then (12.32) reproduces the entire empirical growth-rate

distribution. This observation confirms the empirical evidence that the variance of

single-cell growth-rate distributions is a function of the mean, such that, if growth

rates are re-scaled by the mean, distributions roughly collapse on ‘universal curves’

[358, 359]. In addition, the analysis of [406] has shown that predictions for individ-

ual fluxes obtained from (12.30) (i.e. mean values plus standard deviations) provide

a better fit to experimentally measured fluxes than growth-rate maximizing fluxes

obtained from FBA. This is especially important as it suggests that, despite the rel-

atively high degree of optimization, the cell-to-cell variability underlied by (12.30) is

biologically relevant.

In the following section we will use this observation as a springboard for the analysis

of optimal heterogeneous populations.
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12.5 Representing optimal populations

Let us start from a rather abstract question. Suppose that an organism is actually

maximizing a certain function F , unknown to us, which depends on metabolic fluxes

v as well as on a set of other variables w that are not part of metabolism: F ≡ F (v,w).

We shall denote by v?,w?) the (supposedly unique) configuration of variables where F

attains its maximum. Let’s furthermore say that we have a guess for what the organ-

ism’s objective function might be, and that this guess is only a function of metabolic

fluxes, which we denote by f ≡ f(v). If we trust our guess, and if f is maximized by

the (supposedly unique) flux vector v̂, our prediction for the fluxes would be v̂. Ques-

tion: what is the probability that v̂ is the true optimum, i.e. that v̂ = v?? Note that

f(v?) ≡ f? < f̂ ≡ f(v̂) (i.e. at the ‘true’ optimum the value of f is bound to be smaller than

the maximum value of f).

The answer goes like this: according to the MaxEnt principle, the probability density

p(v) for any flux configuration v to be the true state of the system (i.e. the true opti-

mum) should be undetermined other than by our knowledge that the real optimum

has some value of f below f̂. What is the correct constraint to enforce (besides normal-

ization) if we are to look for such a p(v)? We could impose that allowed configurations

strictly have some fixed value of f < f̂. This choice would lead to a uniform density

over all states with a given value of f. In this way, though, we are imposing that states

with a different value of f are strictly inaccessible, which is not part of our knowledge.

However, if we impose that only the mean value of f is constrained, MaxEnt will re-

turn a probability density with the exact samemean value as the uniform density just

described (by construction) but a much larger entropy, just because –intuitively– it

will assign a non-zero probability to all states. Hence, as long as we have no other in-

formation, the best prediction we can make for p(v) is given by the probability density

that maximizes the entropy H[p] subject to the constraint 〈f〉 ≡
∫

P p(v)f(v)dv = f?, i.e. by the

solution of

max
p

−
∫

P
p(v) ln p(v)dv subject to

∫
P
p(v)dv = 1 and

∫
P
p(v)f(v)dv = f? . (12.33)

We now know the result to be given by (12.10), i.e.

p(v) = 1
Z(β) eβf(v) (v ∈ P) , (12.34)

where β is the Lagrange multiplier enforcing the constraint 〈f〉 = f?. What this means

in practice is this: if one is modeling a microbe’s metabolism and is unsure about

the objective function but has a guess (f), information theory suggests that the best

one can do is to assume that metabolic flux configurations are selected according
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to (12.34). Ideally, the value of β for which one obtains the best agreement between

predictions based on sampling (12.34) and experiments is the ‘degree’ to which the

system optimizes f. If f is the true objective function, then the agreement between

theory and experiments will get better and better as β increases. It is important to

keep in mind that (i) while we have assumed that the organism is actually maximizing

something, we didn’t really use the fact that F is maximized at (v?,w?) (only that the true

state of the system has some value of f below f̂); (ii) this is a totally ideal situation (for

instance, experimental data have errors, so whether comparisons between theory

and experiments are informative doesn’t only depend on the theory but also on the

quality of the data).

The fact that (12.34) is ‘optimal’ in a rather fundamental sense (a priori different from

the sense in which f-maximizing populations are optimal) encourages to view distri-

butions described by (12.30) through a different lens. Whenwemaximize the entropy

at fixed mean growth rate, in practice, we are looking for the ‘broadest’ probabil-

ity density (i.e. the most variable population) on P that is compatible with the given

mean. In other terms, we are saying that, given amean growth rate, the optimal pop-

ulation is the one that has the largest possible variability. To quantify variability in a

more readily understandable way, it is convenient to transform it into a measure of

the amount of information encoded in p. One can reason as follows: if no prior infor-

mation is available about the population, uncertainty is maximal and all flux vectors

in P must be considered to be equally likely. This means that, for such a population,

the probability density over P is uniform (see (12.7)). We shall denote the entropy of

the uniform distribution over P by H(0). When we inject information into the problem

(e.g. the fact that the population has a certainmean growth rate), then the probability

density is no longer uniform but given, say, by (12.30). The uncertainty is therefore re-

duced by H(0) −H(β), where H(β) is the entropy of (12.30). (Clearly, H(0) is just the entropy

of (12.30) for β = 0.) The quantity

I = H(0) −H(β)
ln 2 (12.35)

denotes the amount of information (in bits, hence the factor ln 2) injected by a non-zero

value of β. Re-formulating our population-level optimization, we can say that, for any

fixed mean growth rate 〈λ〉, the optimal population is the one carrying the smallest

value of I. A short calculation (Problem 12.7) shows that 〈λ〉 and I are related by

β〈λ〉 = I ln 2 +
∫ β

0
〈λ〉dβ′ , (12.36)

where it should be noted that 〈λ〉 is an increasing function of β (as β increases, the

density gets more and more concentrated around the growth-rate maximizing flux

vector, thereby leading to an increase of 〈λ〉).
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Figure 12.5: Fitness-information bound (general form) – The orange line encodes the
maximum mean growth rate achievable for any given value of the information con-
tent I (Eq. (12.35)) of a metabolic flux distribution (or theminimum value of I required
to achieve any given mean growth rate).

The curve 〈λ〉 versus I described by (12.36) can therefore be computed numerically

for any metabolic network reconstruction (as the only ingredients required are en-

coded in the flux polytope P) [405]. The resulting line (see Figure 12.5) separates the

(〈λ〉, I) plane in a viable (achievable) region and a forbidden region where the mean

growth rates are too large for the amount of information encoded in the population.

This ‘phase diagram’ yields, first and foremost, a general prediction linking the mean

growth rate (fitness) of a microbial population to its metabolic heterogeneity: all pop-

ulations must have fitness-heterogeneity values in the viable region. Recent work re-

lying on an advanced statistical inference framework has shown that actual microbial

populations indeed lie in the viable part of the plane [407]. In addition, it provides a

quantitative definition of an optimal population that accounts for variability: optimal

populations have fitness-heterogeneity pairs that lie on the boundary between the

viable and the forbidden region. In this respect, results from [405, 406, 407] can be

summarized by saying that heterogeneous, faster-growing E. coli populations (mean

growth rate larger than roughly 1/h, richer growthmedia) are very close to optimality,

while slower-growing ones tend to havemean growth rates and information contents

that get more and more sub-optimal the less rich is the growth medium. (Of course,

this notion of optimality refers to the growth rate and information content as the

key parameters to evaluate a population’s performance. It may well be, and this is

an issue definitely worth exploring, that slower-growing population are optimal with

respect to some other parameter(s).) At any rate, the above definition of optimality

coincides with the standard one (growth-rate maximization) for β → +∞, in which case

variability goes strictly speaking to zero as all cells collapse on the same flux configu-

ration. And we now understand how it generalizes it: by stressing the way in which

heterogeneous populations can be optimal despite growing at sub-maximal rates.

For later convenience, note that, because the entropy is a convex functional, the so-
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lution to the MaxEnt problem is the same as the solution to

max
p

∫
P
p(v)λ(v)dv subject to

∫
P
p(v)dv = 1 and −

∫
P
p(v) ln p(v)dv = H? . (12.37)

The above problem has perhaps a more direct interpretation: the optimal popula-

tion is the one that has the largest mean growth rate at fixed variability (entropy) or,

equivalently, at fixed information content.

Before moving on, we notice that, in the above setting, optimality of heterogeneous

populations has a rather simple mechanistic interpretation in terms of how popu-

lations ‘occupy’ the flux polytope. If one considers the uniform distribution on P,

Eq. (12.7), and calculates the marginal distribution for the growth rate (i.e. (12.32)),

one finds that the growth-rate landscape in which populations grow is extremely

skewed towards slow growth rates: the overwhelming majority of metabolic flux

configurations corresponds to slow-growing cells, i.e. with growth rates roughly two

orders of magnitude below λmax. This implies that, whatever flux vector we are in,

a small random change to it is overwhelmingly more likely to decrease our growth

rate than increase it. In this respect, slow states have an ‘entropic’ advantage over

fast states. On the other hand, by definition, fast-growing flux configurations repli-

cate faster than slow-growing ones, and therefore have a replicative advantage. It is

therefore tempting to interpret the probability density (12.30) as resulting from the

balance between these two tendencies. One can for instance imagine that amicrobial

population grows and evolves in time in P due to (i) replication events, and (ii) small

random changes of the flux vector (due e.g. to gene expression noise). Ref. [405]

has indeed shown that such a population evolves toward a distribution very close to

(12.30), where the role of β is played by the inverse rate of diffusion of the population

in P, that is, by the inverse of the rate at which small random changes occur: fast

rate implies small β, and vice versa. (As the mathematical analysis of this scenario

requires the toolbox of non-linear Fokker-Planck equations, it is beyond the scopes

of this chapter.)

The above theory can be extended in various directions. We shall limit ourselves to

one example here, namely that of optimal populations in fluctuating environments

[408]. The basic assumption we make is that the growth rate λ is a function of both

the flux vector v and of a single (for simplicity) exogenous variable s ≥ 0 representing

the stress level to which the population is subject: λ ≡ λ(v, s). We furthermore assume

that s is a random variable with probability density P (s). For any value of s, λ will be

maximized by a certain flux vector v? ≡ v?(s). If fluctuations of s are sufficiently slow,

then cells may be able to perfectly adapt their metabolic response to every value of s

they encounter. But this is unlikely to be possible in rapidly fluctuating environments.
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In the latter case, it is instead reasonable to assume that cells will try to maximize

their average growth rate, where the average is taken over the distribution of s. The

relevant quantity is now the probability density to observe a certain flux configuration

v given that the state of the environment is s (p(v|s)), while the objective function (to be

maximized over p(v|s)) is just

〈λ〉 =
∫
dsP (s)

∫
P
p(v|s)λ(v, s)dv . (12.38)

We should now specify the constraints. One is simple and concerns normalization:∫
P p(v|s)dv should be equal to one for all s. To introduce the second one, we note that,

because one expects v to encode information about the environment, it is convenient

to constrain the mutual information of v and s, i.e.

I(v; s) =
∫
dsP (s)

∫
P
p(|s) log2

p(v, s)
p(v)P (s)dv , (12.39)

where p(v, s) = P (s)p(v|s) is the joint distribution of v and s, whereas p(v) =
∫
dsP (s)p(v|s). Clearly,

I = 0 if p(v, s) factorizes over v and s and it gets larger and larger as v and s become more

and more correlated. Putting these pieces together, we can write the cell’s optimiza-

tion problem as

max
p(v|s)

∫
dsP (s)

∫
P
p(v|s)λ(v, s)dv subject to

∫
P
p(v|s)dv = 1 (∀s)

and
∫
dsP (s)

∫
P
p(v|s) log2

p(v|s)
p(v) dv = I? . (12.40)

A comparison with (12.37) should clarify how the above generalizes the previously

discussed optimization framework. Again using the method of Lagrange multipliers

one finds that the optimal probability density is now given by (Problem 12.8)

p(v|s) = p(v)
Z(s, β) eβλ(v,s) , (12.41)

where

Z(s, β) =
∫

P
dv p(v) eβλ(v,s) , (12.42)

while β is a Lagrange multiplier.

Themeaning of (12.41) is straightforward: when β → 0, themetabolic flux configuration

v becomes independent of s, implying I = 0. As β increases, v and s get more and more

correlated, while p?(v|s) tends to get more andmore sharply peaked around v?(s). In the

limit β → +∞ cells respond to each value of s by selecting the exact flux configuration

that maximizes λ. To achieve this, maximal I is required. A detailed study of the opti-
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mal probability density emerging in this case within a highly coarse-grained model of

metabolism has been carried out in [408], showing how complexmetabolic strategies

(including the coexistence of slow-growing, persistent states with fast-growing ones)

arise as optimal responses to a fluctuating environment.

12.6 Concluding remarks

Metabolic variability in cell populations has, as we have discussed, multiple origins,

both rooted in unavoidable stochastic effects and (possibly) in the fact that, in certain

cases, being heterogeneous can be optimal for a microbial population. Models can

account for variability by representing (sufficiently large) populations via probability

densities defined on the flux polytope. Two main (different) goals can be achieved.

First, one can look for the probability density that yields the best (in a precise sense)

description of a set of empirical data. Methods like Maximum Likelihood and Maxi-

mum Entropy provide different, albeit related, approaches to this task. Second, one

can formulate optimization problems for populations, whose general solution is a

probability density rather than a single flux configuration. Solutions to these prob-

lems can highlight how fitness and variability are related in optimal populations, pro-

viding useful theoretical benchmarks for real microbial systems. While possibly more

demanding from a mathematical viewpoint (and certainly more demanding from a

computational viewpoint), these approaches expand the scope of CBMs, including

in terms of predictive power. In addition, they can refine the notion of optimality

and provide insights into the fundamental principles that govern the organization

of metabolism across populations. The question of whether variability confers an

advantage to microbial populations is however very general, and goes beyond the

metabolic level of CBMs on which we focused here. A broader discussion of these

aspects is presented in Chapter 13.
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Problems

Computer exercises for this chapter can be found on the book website.

Problem 12.1 Multiple optima in the model from Fig. 12.2

Use the model in Fig. 12.2 to study different objective functions, specifically combi-

nations of fluxes. Can you find other cases in which the optimum is not unique?

Problem 12.2 Relationship between Dirac’s δ and Heaviside’s θ

Show that, for a real variable x, a continuous function f and upon integration over R,
d

dxθ(x) = δ(x). Hint: Use the fact that d
dx [θ(x)f(x)] = θ′(x)f(x) + θ(x)f ′(x).

Problem 12.3 Well-defined versus ill-defined flux spaces

Using the samplingmethods introduced in Chapter 4. and a linear objective function

of your choice, write a program that will sample a toy two-dimensional flux polytope

according to (12.10), and check the outcome for a few values of β. Then try changing

the shape of the polytope in different ways by changing the constraints. What fea-

tures of the polytope can make sampling harder and/or less accurate (i.e. require a

larger number of samples)? Can you work out a modification of the sampling algo-

rithms that alleviates these problems?

Problem 12.4 MAP inference versus Bayesian inference

Consider a Bernoulli random variable with parameter ψ, i.e. such that the probability

of having k successes in n trials given ψ is

p(k|ψ) =
(
n

k

)
ψk(1 − ψ)n−k , (12.43)

and assume that the prior for ψ is a β-distribution with parameters a and b, i.e.

p(ψ) = Γ(a+ b)
Γ(a)Γ(b) ψ

a−1(1 − ψ)b−1 . (12.44)

Calculate the full posterior p(ψ|k) and the MAP estimator for ψ as a function of k, n,

a and b. Then assume a = b = 2 and compare the following situations: (i) a Bernoulli

process that returned 2 successes in 3 trials; (ii) a Bernoulli process that returned 20

successes in 33 trials. Show that the MAP estimator for ψ is 60% for both (i) and (ii)

(so the two processes are indistinguishable to MAP), while the posterior is different.

Knowing the posterior, which process would you pick if you were asked to point to

the one that is more likely to have ψ = 0.6?

Problem 12.5 Uniform distribution as the solution of (12.22)

Show that the solution of the maximization problem (12.22) is the uniform distribu-

tion p(i) = 1/K for all i.
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Problem 12.6 MaxEnt distribution in different cases

Assume that a certain real variable x takes values x(i) in the K states (one can for in-

stance think of x(i) as the growth rate of cells in state i). Show that the MaxEnt distri-

butions for constraints imposed on (i) normalization of the distribution, (ii) normal-

ization and mean value of x, (iii) normalization, mean value of x and second moment

of x, and (iv) normalization andmean of the logarithmof x, are, respectively, uniform,

exponential, Gaussian, and power-law.

Problem 12.7 Fitness-information relationship

Retrieve formula (12.36).

Problem 12.8 Optimal flux distribution in fluctuating stress conditions

Retrieve formula (12.41) (hard).
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Math box 12.D Inference in metabolic network modeling

In metabolic network modeling v is usually a vector of fluxes. Unfortunately, the
number of samples is usually very small [385], which may lead to ψ̂ over-fitted to
the sample set. One way to overcome limited sample sizes is to regularize the esti-
mation procedure by incorporating prior information on ψ via the MAP estimation
method (12.14). The evidence p(ψ) in MAP can be used to encode the distribution
of v values observed in previous experiments or formulated as a plausible non-
informative probability distribution. For example, Heinonen et al. [386] formu-
lated p(ψ) as amultivariate normal distribution with mean values equal to zero, and
variances for each flux adjusted to prevent fluxes extending beyond their lower
and upper bounds defined in P. MAP estimation can be considered as an ML es-
timation whose objective function has been augmented by the prior distribution
of p(ψ). In this sense, MAP estimation is a ‘regularized’ ML estimation, which helps
prevent overfitting.
MAP estimation however does not exploit the capacity of Bayes’ theorem to ex-
plore the full set of values that the parameters can achieve. By producing a dis-
tribution estimation of the parameters, Bayesian inference allows quantifying the
parameters’ variability. Compared to point estimation methods, though, Bayesian
inference is computationally expensive as it requires to asses how different val-
ues of p(ψ) affect p(W|ψ). Fortunately, some families of p are susceptible to methods
such as Gibbs sampling or Markov Chain Monte Carlo that offer an efficient way
to compute the posterior numerically [387]. This is the case, for instance, for the
truncatedmultivariate normal distributions that Heinonen et al. [386] used for the
likelihood and prior functions appearing in (12.12). The posterior can then be used
to derive statistical features of quantities that depend on ψ, e.g. metabolic fluxes.
In practice, most parameters underlying the mechanisms that govern cellular
metabolism -e.g., enzymes’ allosteric regulation or the local conditions within cells’
organelles- remain unknown. Various hypotheses can be advanced to close this
knowledge gap. Alas, it is not uncommon to have conflicting scenarios. For in-
stance, to explain overflow metabolism in S. cerevisiae and E. coli [388, 389, 390],
numerous plausible explanations have been pushed forward, including ATP sav-
ings for the production of non-oxidative enzymes (which by being smaller, com-
pared to their oxidative counterparts, require less ATP in their synthesis) [391, 392],
limited uptake rates capacity [393], and an upper limit on the dissipation of Gibbs
energy [394]. (See [395] for an excellent review of optimization-based explana-
tions.) Because each mechanism can be encoded through a different prior, it is
clear that the choice of the prior is a delicate matter in Bayesian inference. Gener-
ally speaking, the choice of the prior becomes less and less problematic the more
data we have, i.e. the better sampling we have of the state space of the system.
However, if data is scant, the prior will leave an important imprint on the resulting
posterior. In these cases, a careful selection of the prior is paramount. Among the
methods most commonly employed are (a) the construction of empirical priors
(namely priors that encode previous knowledge about parameters), (b) the use of
so-called “non-informative priors” (i.e. priors that reflect ‘vague knowledge’ about
parameters, like the fact that a certain parameter is non-negative) [396], and (c) the
selection of priors based on theMaximumEntropy principle (see below) [397, 398].
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Economics analogy 12.E Maximum Entropy economic equilibrium

Most of economic theory relies on the assumption that markets are capable of
allocating resources optimally, i.e. so that the utilities of each of the participating
agents is maximized (an assumption can can be seen as the analog of each cell in a
population maximizing its growth rate). In order to achieve optimal states (called
‘equilibria’ in economics), agents endowed with a priori different preferences, re-
sources and goals identify the actions that maximize their utilities (e.g. transac-
tions, trade, or production) and carry them out. This process however can become
more and more demanding as the number of agents that take part in the market
gets larger and larger, because (in short) the set of viable transactions for each
agent can become exceedingly large. How can one describe the equilibria that
arise from these situations?
A possible approach, used at least since [401], is based on the Maximum Entropy
principle. The idea, in short, is the following. Once every agent has somehow
chosen their preferred actions (i.e. once a system-wide ‘configuration of individual
actions’ has been selected), themarket as a whole presents a set of transactions to
be carried out that aggregate the choices of individual agents. When looked at the
aggregate level, though, each set of transactions can correspond tomore than one
configuration of individual actions. (This can happen, for instance, because agents
have a degree overlap in their characteristics which makes them indistinguishable
from an economic perspective.) If one assumes that agents choose their actions
at random from their set of viable transactions, then some sets of transactions are
bound to be more likely than others, simply because they can be realized in more
‘microscopic’ ways (for instance, by interchanging agents of the same type). It is
then reasonable to think that the likelihood of any particular set of transactionswill
be larger, the larger the number of microscopic ways in which it can be realized.
Taking entropy as a measure of multiplicity, the most likely set of transactions,
then, is the one that maximizes the entropy.
A model of market where the above program is worked out in detail is found in
[401]. The ‘statistical equilibrium’ theory that follows from the use of theMaximum
Entropy principle generalizes the standard competitive equilibrium discussed in
microeconomics by providing a description of optimality in largemarkets with het-
erogeneous participants. This line of work has also inspired further developments
that explicitly included agents’ heterogeneity into the theory of competitive equi-
libria [402, 403, 404]. To the best of our knowledge, a similar approach has not yet
been used to model heterogeneous microbial systems.



Chapter 13

Cells in the face of uncertainty

David Lacoste, Olivier Rivoire, and David Tourigny

Chapter overview

◦ Organisms that grow and survive in uncertain environmentsmay need to change

their physiological state as the environment changes.

◦ When the environment is uncertain, one strategy known as bet-hedging is to

make these changes randomly and independently of the environment, to ensure

that at least part of the population is well adapted.

◦ Organisms that collect information from their environment may also use this

information to modulate their changes of physiological states.

◦ We review these different strategies and point out parallels with the theory of

optimal financial investments.

13.1 Introduction

To a large extent, the content of this textbook prior to the current chapter has dealt

with models of microorganisms under the implicit assumption that the dynamics of

both environmental factors and intracellular components are deterministic, and that

behavior is optimized uniformly across cells in a population. On longer time scales

however, natural selection also acts on populations and these populations may en-

counter environments that fluctuate across both time and space. Under these condi-

tions, natural selectionmay not favor a homogeneous deterministic cellular response

across the population, but rather select for a certain level of population diversity and

heterogeneity, including behaviors arising from mechanisms that are fundamentally

stochastic. Stochasticity is inherent to intracellular processes such as gene expres-

sion and signal transduction due to the small number of molecules that they involve.

It is often referred to as “noise”, but this terminology can be misleading because may

299
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also fulfill an essential role in cellular function and survival, for example during growth

in uncertain environmental conditions. The purpose of this chapter is to highlight this

role, introduce the mathematical models necessary for understanding it, and draw a

new economic analogy with problems of investment in finance.

Before expanding upon the role that uncertainty plays in shaping cellular behavior,

we briefly point out some general limitations of deterministic models based on op-

timal regulation of behavior in time as described in Chapter 11. In that chapter, it

was assumed that microorganisms have evolved, under selective pressures exerted

by the environment, to optimize a specific objective criterion or combination of ob-

jective criteria that were shared by all cells of a population. This assumption was

then incorporated into an optimal control framework to explain how cellular behav-

ior (e.g., enzyme expression) is optimally regulated in time depending on determin-

istic interactions between a microbial population and its environment. In particular,

we consider optimal control strategies across a prescribed time window. Defining in

such case assumes the organism has perfect information on how the environment

will change (including in response to actions taken) over time. In an uncertain en-

vironment, this information is simply not available. An alternative is instantaneous

optimization of growth rate at each time point but this is a shortsighted strategy that

excludes any partial information on future environmental states that the organism

may have acquired over the course of evolution. Such deterministic models may be

suitable for deterministically changing environments, but cannot account for stochas-

tic behaviors that may be advantageous to population growth in uncertain environ-

ments.

In this chapter, it will be shown how principles of optimality can be formulated to

study the behavior of organisms growing under uncertainty. Unlike the deterministic

setting however, optimality will instead need to be defined in terms of probabilities

and expected returns. Analogous to the general unification of deterministic models

for cellular behavior using an optimal control theory framework, models including un-

certainty are unified by the subject of stochastic optimal control. Beyond biology, this

subject has wide-reaching applications to engineering but the most relevant analogy

is with financewhere stochastic strategies of portfolios diversificationmirror stochas-

tic strategies of cellular diversification. This will add a new economic analogy to the

economic analogies of previous chapters.
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13.2 Strategies to copewithuncertainty: a financial anal-

ogy

We will use the topic of as a recurring example throughout this chapter (Figure 13.1).

When a clonal population of bacteria is exposed to an antibiotic, not all cells within

the population are killed – a small sub-population, although genetically identical to the

rest, may nevertheless be in a distinct phenotypic state that is growth-dormant and

resistant to treatment (Figure 13.1A). While the peers of this dormant sub-population

previously grew well in the absence of antibiotic, upon exposure to treatment these

growing cells are killed, and only the dormant cells (the persisters) remain alive. In

turn, when the remaining persisters are transferred to an environment without an-

tibiotic a large fraction is able to revert to the growing state, allowing the population

as a whole to survive. Remarkably, in this subsequent phase of growth roughly the

same small fraction of persisters is retained as before the treatment. Deterministic

models based on short-term optimal growth cannot explain how part of a popula-

tion adopts a slow-growing state: they would predict that each cell should adopt the

growing phenotype in absence of antibiotics. Cells could have a mechanism to de-

tect the presence of unfavorable environmental conditions and adopt the persister

phenotype as a response, but there are several experimental observations not ex-

plained by such a mechanism [409]: (1) a fraction of persisters exists prior to antibi-

otic treatment; and (2) not all cells, although genetically identical, adopt the persister

phenotype. We will see that a more parsimonious description of persistence involves

an optimization of long-term rather than short-term growth, which differs when en-

vironmental conditions fluctuate.

Bacterial persistence is an example of , which more generally refers to the benefit

of spreading resources across multiple behavioral phenotypes to reduce the associ-

ated with investing all resources into any single phenotype. Returning to the exam-

ple of bacterial persistence, a natural question one may ask is: what determines the

precise fraction of persister cells (risk-avoiding, potentially low-reward phenotype)

compared to growing cells (risky, potentially high-reward phenotype) within a given

population? This question echoes a central question in financial investment: how

should investors diversify their portfolio to maximize their capital in the context of

uncertain returns? We will see that some of the same mathematical arguments of

optimality under uncertainty can be used to analyze these two problems, showing

how the optimal fraction of persisters is expected to depend critically on the prob-

ability to experience different environmental states. The terms of the analogy are

presented in Table 13.1.

A pure bet-hedging strategy assumes the absence of any direct information on the
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Figure 13.1: Bacterial persistence as an example of a cellular strategy to cope with
uncertainty in environmental conditions – A) Cells in a genetically identical popula-
tion can display one of two distinct phenotypes that are associated with growth (pink
cells) or dormancy (blue cells) in the absence of antibiotics. Only the dormant cells
survive (persist) when exposed to antibiotics, and can transition back to the growth
phenotype so that the population as a whole resumes growth in the absence of an-
tibiotic. B) In this simplified model of bacterial persistence, the strategy u over two
responses (phenotypes) Rgrowth, Rdormant depends on environmental states Elow and Ehigh,
corresponding to low and high levels of the antibiotic, respectively. The occurrence
of the states Elow and Ehigh is governed by probabilities p(Elow) and p(Ehigh), respectively. C)
Themultiplicative rates f(R|E) associated with phenotypes Rgrowth, Rdormant depend on envi-
ronmental conditions, so that f(R|E) can be represented in matrix form. The resulting
optimal strategy ud corresponding to the fraction of dormant cells in the population
in turn depends on the probabilities of the environmental state E. An analogy with
Kelly betting is illustrated on the right-hand side, where the probabilities of a horse
winning a race, the odds provided by a bookmaker and the optimal betting strategy
are identified with p(E), f(R|E) and u(R|E), respectively, as displayed in Table 13.1.

current environmental state. Biologically, cells may sense signals or cues that en-

code varying degrees of information on their current environment. For instance, in

some populations, a larger proportion of persisters is found in nutrient-poor envi-

ronments compared to nutrient-rich, implying a direct relationship between shifts in

environment and switches between phenotypes. These sensing or signaling mecha-

nisms can come with associated costs however, imparted by the investment of cellu-

lar resources in, for example, the gene expression machinery. Thus, optimal cellular

behavior in the face of uncertainty may be expected to involve a trade-off between

stochastic (e.g., bet-hedging) and deterministic (e.g., signaling) mechanisms that bal-
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Biology Gambling Finance
Individual Capital unit Currency unit
Environment p(E) Race results p(x) Market state
– Gambler Investor
Phenotype decisions u(R) Bets b(x) Investment strategy
Multiplicative rate f(R,E) Odds o(x) Immediate return
Environmental cue P (S|E) Side information P (y|x) Side information
Population growth rate Λ Long-term return W Long-term return
Extinction probability Probability of bankruptcy Probability of bankruptcy
Growth rate variance σ2 Growth rate variance σ2

W Volatility
Population size Nt Capital Ct Capital

Table 13.1: Analogy between bet-hedging in biological populations and diversifica-
tion strategies in Kelly’s gambling and finance. The common problem in each case
is an uncertain environment that makes it impossible to anticipate which phenotype
or investment is optimal for future growth. In finance, the “population” is constituted
by the capital which is distributed across different options (different horses of a race
or different stocks of a stock market). The main limitation of the analogy is that in-
formation is not processed centrally in biological populations but at the level of each
individual, with therefore no equivalent to a gambler or investor. The notations are
introduced in the main text for the biological problem and in Box 13.B for the gam-
bling problem.

ance benefit to cost in a manner that depends on evolutionary context. Other trade-

offs may also exist regarding reward versus risk associated with a particular cellular

strategy. Analogously, financial investors face trade-offs when using incomplete in-

formation on the current state of the market and developing an investment strategy

based on the level of risk they are willing to incur.

13.3 Modeling cells growing in uncertain environments

Webeginwith a simplemodel of persistence before introducing amore general frame-

work. This simple model assumes that bacterial cells experience an alternation of

low and high antibiotics environments and can adopt two physiological states, grow-

ing or dormant (Fig. 13.1). The dormant cells are unable to replicate but persist in

either high- or low-antibiotics environments while growing cells always divide when

antibiotics are low in concentration but die when they are high. Mathematically, this

is described by f(R,E), the number of descendants of a cell with phenotype R in en-

vironment E: f(R = dormant, E = low) = f(R = dormant, E = high) = 1, while f(R = growing, E = low) = 2 and

f(R = growth, E = high) = 0. In absence of sensingmechanism, we consider that the fraction of

dormant cells, ud ≡ u(R = dormant), is a fixed quantity that only possibly evolves on very long

time scales. The population thus growsby a global factor Ahigh = f(R = dormant, E = low)ud if the

environment is high antibiotics and by a factor Alow = f(R = dormant, E = low)ud + 2f(R = growing, E =

low)(1 − ud) if it is low antibiotics. Finally, the environment fluctuates randomly, with a

probability pa to have high antibiotics and a probability 1 − pa to have low antibiotics.
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Over a large number T of generations, a population therefore experiences in average

paT periods of high antibiotics and (1 − pa)T periods of low antibiotics. As further ex-

plained below, the population size NT after T generation is hence expected to globally

grow as Nt = (Ahigh)paT (Alow)(1−pa)TN0. This corresponds to an exponential growth (or decay)

of the form NT = eΛTN0 with a long-term growth rate Λ given by Λ = pa ln ud+(1−pa) ln(ud + 2(1 − ud)).

Two bacterial populations which have different “strategies” ud will then have different

growth rates Λ(ud). The optimal strategy which maximizes Λ(ud) is therefore when the

probability ud to adopt the dormant state is

ud =


2pa, if 0 < pa ≤ 1/2.

1, if 1/2 < pa ≤ 1.

The interesting case is when pa < 1/2, otherwise antibiotics is so often high that the

population cannot grow. In this case, we find that a limited fraction of the popula-

tion should be in the dormant state and that this optimal fraction depends on the

frequency pa at which high antibiotics occurs.

This example can be extended to an arbitrary number of environmental states E and

phenotypic (response) states R and to the presence of cues collected from the envi-

ronment. In general, the states and cues may take discrete (as in the above example)

or continuous values. The “strategy” of a cell may then be described by its probability

u(R) to adopt a particular phenotype R. This strategy depends on the environment if

some signal S is perceived, in which case the strategy takes the form of a conditional

probability u(R|S) satisfying

∑
R

u(R|S) = 1, with u(R|S) ≥ 0

for each possible signal S. For the example of bacterial persistence, u(R = dormant|S) may

be the fraction of cells adopting a dormant phenotype within the population of cells

with intracellular antibiotics concentration S. The fraction of growing cells would then

be given by u(R = growing|S) = 1 − u(R = dormant|S). By comparison, Figure 13.1B illustrates a

model where u(R|E) depends directly on the environmental state E. In finance, u(R|S)

would correspond to the fraction of the capital that an investor allocates to asset R

when receiving incomplete information S on the current market state E. More gen-

erally, we may also consider that the probability to adopt a phenotype Rt at time t

depends on the phenotype Rt−1 adopted at time t − 1 by the cell or its parent, which

would be described by u(Rt|S,Rt−1) or u(Rt|St, Rt−1) to indicate that the signal St is obtained

at time t.

The model also needs to specify the temporal dynamics of the environment and the
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relation between S and E. The simplest assumption is that successive environmental

states are uncorrelated, and occur with probability p(E) and that signals are derived

from a conditional probability p(S|E), as illustrated in Figure 13.1B where p(S|E) = δ(S|E) is

equivalent to S ≡ E. This is sufficient to demonstrate bet-hedging or discuss the value

of signaling and in the examples below we therefore make this simplifying assump-

tion by default. More generally, to address issues of inheritance where Rt depend on

Rt−1, we may assume a discrete-timeMarkov process where the state of the next envi-

ronment depends only of the previous one, with transition probabilities p(Et|Et−1)where

Et denotes the state of the environment at time t = 1, 2 . . . . Even more generally, we may

alsowant to account for the feedback that the population exerts onto its environment

and consider that Et depends on the size and composition of the population.

Finally, we need to specify the dynamics of the population itself. Between time points

t and t + 1, a cell adopting phenotype R in the context of environment Et either dies or

survives and may additionally produce offsprings. This is summarized by a quantity

f(R,Et) ≥ 0 that indicates the mean number of descendants at time t+ 1 of an individual

with phenotype R in environment Et (possibly including the individual itself). Given

that u(R|St) denotes the fraction of cells or probability of the organism adopting phe-

notype R based on sensed state St, a population is therefore expected to globally in-

crease (or decrease) in size by a factor

At =
∑

R

f(R,Et)u(R|St) (13.1)

that depends both on the strategy u and the current environmental state Et. This fac-

tor At is a stochastic variable as it depends on the stochastic variables Et and St. More

explicitly, if Nt denotes the size of the population at time t, this size will increase or

decrease to Nt+1 = AtNt at time t + 1 (in average). We can in this way account for the

dynamics of population growth and then ask what is an “optimal” strategy u(R|S) that

leads to, for example, the largest population size over a given time interval. Com-

pared to the deterministic setting, however, this is not yet a well-formulated problem

as the population size varies with time and therefore generally depends on the partic-

ular sequence of environments E0, . . . , Et, which is in turn stochastic. Thus, we need to

extend the concept of optimality to the stochastic regime. We examine this question

in the next section.

13.4 Optimization in uncertain environments

In the previous section, we used notation At to denote the fractional increase or de-

crease in population size given that strategy u(R|St) is adopted in environment Et. An

alternate name for this quantity is the instantaneous growth rate. It follows from re-
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cursion that, given an initial population size of N0 at time t = 0, the population size at

time t is given by

Nt = AtAt−1 · · ·A1N0 (13.2)

where At depends on the environmental state Et and is therefore a stochastic variable

when the environment varies stochastically. Here the choice of an objective criterion

is fundamentally linked to the time scale at which growth is considered.

13.4.1 Long-term versus short-term optimization

At the shortest time scale, maximization of population growth over a single time step

corresponds to adopting the distribution u(R|St) that maximizes the arithmetic mean

E[A], where A denotes the random variable whose realization at time t is At (Box 1). This

maximum is typically achieved by a population where all individuals adopt the same

optimal phenotype – thephenotype Rmaximizing E[f(R,Et)u(R|St)] =
∑

E,S P (S|E)P (E)f(R,E)u(R|S).

In the example of persistent cells, this strategy would correspond to having all cells in

a growing state if the most likely environment is an absence of antibiotics. This strat-

egy is extremely risky if these growing cells cannot survive an episode of antibiotics,

which would therefore lead to extinction of the population. Taking into account the

rare but important events of high antibiotics concentration requires taking a long-

term perspective. Remarkably, in the long-term the problem becomes effectively de-

terministic due to the law of large numbers. The best known example of a law of large

number applies to the sum A1 + · · · + At of t random variables Ai, which almost certainly

behaves as tE[A] as t → ∞. Here, the problem involves a product of random variables and

a similar but different law of large number applies: the product A1 ×· · ·×At does not typ-

ically behave as (E[A])t but instead as exp(tE[lnA]) where E[lnA] is known as the (Box 1). This

corresponds to the intuition that population size typically grows exponentially in the

long run, Nt ∼ eΛtN0, with a well-defined long-term growth rate

Λ = E[lnA] =
∑
E,S

p(S|E)p(E) ln
(∑

R

f(R,E)u(R|S)
)
, (13.3)

that is predictable despite the stochasticity of the environment.

Biologically, therefore, maximizing the geometric mean is equivalent to maximizing

the long-term growth rate of the population. This is the relevant measure of fitness

in the long-term from an evolutionary point of view, because of two populations with

growth rates Λ1 and Λ2, the one with Λ1 > Λ2 will almost certainly exponentially outnum-

ber the other.

The simple example of persistence that we introduced previously illustrates well how

maximizing the long-term is different from optimizing the instantaneous growth rate.

The arithmetic mean E[A] is indeed maximized by ud = 0 when pa < 1/2, which leads to cer-



Optimization in uncertain environments 307

Math box 13.A Arithmetic versus geometric mean and logarithmic utility

Additive random processes are governed by the law of large numbers: the sum of
many random variables scales with their arithmetic mean. In finance and biology,
returns are compounded and growth is amultiplicative process. This is fundamen-
tally different: the typical outcome is no longer described by the arithmetic mean
but by the geometric mean [410]. A simple example illustrates this difference.
Imagine a succession of environments in which the population either doubles or
is reduced by 2/3, with same probability. This corresponds formally to a popula-
tion size increasing as Nt = At . . . A1N0 where At = 2 (doubling) with probability 1/2 and
At = 1/3 (2/3 dying rate) with probability 1/2. The arithmetic mean is 7/6 which is > 1 and
suggests that the population will grow. But as each outcome has the same prob-
ability, the typical growth over t generation is actually given by 2t/2(1/3)t/2 = etΛ with
Λ = (1/2) ln(2/3) which is < 0: the population will in fact most likely go extinct. Math-
ematically, taking the log turns the product into a sum to which the central limit
theorem applies. More intuitively, the arithmetic mean is dominated by very rare
events. Historically, the importance of the geometric mean for estimating risk was
first understood by Daniel Bernoulli in the context of games [411, 412]. Later, it
has been the subject of many debates in finance [411], reflecting the fact that al-
ternative utility functions over which to optimize may be more appropriate when
considering a short temporal horizon or when accounting for different degrees of
risks.

tain extinction unless pa = 0. This remains true for general models including multiple

environmental states and sensing that conveys information about the environment

through conditional probability p(S|E). Using the long-term growth rate Λ as ameasure

of fitness, it is then possible to quantify the value of information S by comparing the

optimal growth rate that can be achieved in presence of S to that in its absence. Re-

markably, for special limits of the model, corresponding to Kelly’s horse-race model

(Box 2), this value is given by some of the same quantities that appear in Shannon’s

theory of communication (Box 3).

13.4.2 Trade-offs at intermediate time scales

So far we considered two extreme limits of immediate and infinite time scales under

one important assumption: the population is always large enough to escape extinc-

tion. Eq. (13.2) is indeed valid only for large Nt and does not apply anymorewhen Nt ∼ 1,

in which case the population size is subject to stochastic effects, called demographic

noise in population biology. In our analogy with finance, the eventuality of Nt = 0 with

no possible recovery corresponds to a risk of bankruptcy.

When considering long time scales, a populationwith Λ > 0will either becomeextinct or

grow exponentially. In this later case, demographic noise is eventually negligible and

our approach valid. At intermediate time scales, however, population sizes Nt may

deviate substantially from N0eΛt predicted by exponential growth, and may become

extinct (Nt = 0) as a result. To quantify these deviations, note that for themodel defined
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Figure 13.2: Kelly’s optimal strategies – Evolution of the log-capital (A) or of the capital
itself (B) as a function of the number of races for Kelly’s optimal strategies (red curve)
and for a non-optimal strategy (yellow curve). In log-scale, the straight lines have the
slope of the corresponding growth rate for each strategy. Note that the fluctuations
in Kelly’s strategy can in fact be quite large, when plotted in normal scale instead of
log-scale.

in the main text where there are no correlations of the instantaneous growth rate At,

the central limit theorem imposes that the quantity

∆t = 1
σ

√
t

(
ln Nt

N0
− tΛ

)
, (13.8)

converges on long times towards a Gaussian distribution of unit variance, where σ is

the standard deviation of the instantaneous growth rate. It follows from this property

that

σ2 = 1
t
Var

(
ln Nt

N0

)
, (13.9)

measures the deviation from exponential growth. This quantity is therefore a natural

measure of risk, known in finance under the name of volatility. To understand at

which time scale this risk is important, we consider Eq. 13.8, assuming ∆t is of the order

one. Risk will be important, when the term associated with fluctuations, which is of

the order of σ
√
twill be larger than the term associatedwith exponential growth, which

is tΛ. This will happen when t � (σ/Λ)2: the risk is relevant at intermediate time scales,

long-enough for the central limit theorem to apply but not too long for deviations

from exponential growth to become negligible.

This measure of risk has well known drawbacks in finance : it is symmetrical with re-

spect to losses and gains, which does not conform to the intuitive notion of risk, and
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furthermore typical fluctuations are often non-Gaussian. Nevertheless, the volatil-

ity is still an important notion in the study of optimization of portfolios [418]. In

this context, Markowitz introduced plots of the volatility σ as a function of the mean

growth rate, which define the so-called “efficient frontier”. This representation illus-

trates graphically a fundamental trade-off that exists between the maximization of

the mean return and the minimization of the variance (or risk). The point of zero

volatility is a risk-free strategy, which corresponds to dormant states in biology.

This trade-off is naturally present in Kelly’s model introduced in Box 2. Indeed, Kelly’s

strategy is based on themaximization of the long-term growth rate, but at intermedi-

ate times the capital can deviate significantly from the expected exponential growth

as shown in Figure 13.2. Prominent economists, such as Samuelson, strongly op-

posed the use of Kelly’s criterion in finance precisely for that reason [419]. In practice,

however, investors canmitigate this risk by using Kelly’s criterion for only a fraction of

the bets [420]. The resulting strategy has reduced fluctuations, and at the same time,

a reduced growth rate. Another consequence of the trade-off is that the risk near the

optimal strategy (Kelly’s strategy) can be reduced significantly provided one is ready

to sacrifice a small amount of growth rate, an important lesson for gamblers and in-

vestors. In order to build systematically improved gambling strategies with a reason-

able amount of risk in Kelly’s model, one can introduce an objective function that is a

linear combination of the growth rate with the volatility of Kelly’ model, σW , weighted

by a risk aversion parameter α [421]. Themethod is illustrated in Problem 13.4 for the

two-horse version of Kelly’s model. By optimizing this objective function, one builds

the Pareto diagram shown in Fig. 13.3 when varying the parameter α.

A general inequality characterizes this trade-offmathematically for an arbitrary num-

ber of horses. For Kelly’s gambling model with fair odds defined in the box 13.B, it

has the form

σW ≥ W

σq
, (13.10)

where σW is the volatility of Kelly’s model, W the average growth rate (the equivalent

of Λ) and σq is the standard deviation of a distribution, q(x) defined by q(x) = r(x)/p(x). This

distribution compares the probability of races outcomes described by p(x) with the

risk-free strategy described by b(x) = r(x), for which σW = W = 0 [421]. Recently, a similar

bound has been derived for other well-known financial models such as the Black-

Scholes and the Heston models [422].

Let us now illustrate the implications of this trade-off for a biological population using

a simple bet-hedging model with only two phenotypes. Individuals in the population

can switch from phenotype A to phenotype B with a transition probability π1, and with

probability π2 from B to A, assuming no sensing. The population grows in an environ-
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Figure 13.3: Pareto diagram showing the growth rate W versus the fluctuations mea-
sured by the standard deviation of the growth rate σW (which is the volatility for this
model) in the simple case that only two horses are present. The curve can be ob-
tained by varying a risk aversion parameter α, which enters in the definition of an
objective function (see Problem 13.4 for details). The point of maximum growth rate
(red square) corresponds to Kelly’s strategy and divides a trade-off branch (blue solid
line) from a non-trade-off branch (red solid line) (adapted from [421]).

ment that fluctuates between two values 1 and 2. We denote the population vector,

which describes the number of individuals in each phenotype at a given time t by

N(t) = (NA(t), NB(t))T , where T denotes the transpose. The subpopulation of individuals

with phenotype A grows when placed in the environment i with the growth rate kAi,

while the other subpopulation with phenotype B grows with rate kBi. The population

is assumed to be large, there is no population noise, the dynamics of the system is

deterministic in each separate environment. The population dynamics of the model

can be described by the vector equation :

d

dt
N(t) = MS(t)N(t), (13.11)

with matrices

MS1 =

kA1 − π1 π2

π1 kB1 − π2

 and MS2 =

−π1 + kA2 π2

π1 kB2 − π2

 . (13.12)

The finite time averaged population growth rate is defined as

Λt = 1
t

ln N(t)
N(0) , (13.13)

in terms of the total population N(t) = NA(t) +NB(t), and the long term population growth

rate is

Λ = lim
t→∞

Λt. (13.14)

This optimal long term growth rate Λ can be obtained analytically in this model [423],
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Figure 13.4: Pareto diagram showing the population growth rate versus the fluctu-
ations of that growth rate in a simple model of a biological population evolving in a
stochastic environment with no sensing according to Eq. 13.11 [424]. (A) The time
scale of environment fluctuations is comparable to that of phenotypic fluctuations.
(B) The probability Pext that the population goes below a certain extinction level ver-
sus the risk aversion parameter αwhich measures the distance along the Pareto plot.
Colored bullets represent different points on the Pareto front (adapted from [424]).

but approximations are needed to evaluate the fluctuations of the growth rate, which

is the equivalent of the volatility σ2 of Eq. 13.9 [424]. One can then study the trade-off

that exists between the average growth of the population (either measured instanta-

neously or over a long time) and the fluctuations of the growth rate, using the same

Pareto plot used for Kelly’s model in Figure 13.3. This “efficient frontier” is shown

in Fig. 13.4, and as in the case of Kelly’s model, in the region of fast growth rate, it

is advantageous for a population to trade growth for less risky fluctuations. In this

model, σ2 correlates with the probability that the population N(t) goes below a certain

threshold, where the population is considered as extinct. The probability of extinc-

tion is not monotonic along the Pareto front, which explains why in the region of low

growth rate, it ismore advantageous to prioritize instead the increase the growth rate

to avoid extinction.

In the context of ecology, besides the probability of extinction, a quantity of interest

is the chance for a population to grow from rarity in the presence of other species.

In agreement with the above trade-off, it was found that this chance can not be pre-

dicted only from the mean growth rate, and that the mean growth rate and its vari-

ance should be both used for such a prediction [425]. In summary, the similarity of

the Pareto plots (called efficient frontier in finance) obtained in Kelly’s model and in

models of biological populations in fluctuating environments [424], and evidences

from various works in ecology, suggest that the trade-off discussed here is broadly

applicable in various fields ranging from biology and ecology to economics.
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13.5 Strategies in correlated environments

So far we considered two time scales: the time scale at which phenotypic changes

occur and at which instantaneous growth is defined (t = 1 in our discrete-time model,

which may be taken to correspond to one generation), and the longer time scale t ∼

(σ/Λ)2 beyond which population growth is effectively exponential, with growth rate Λ.

We saw that the choice of an optimization criterion depends fundamentally on the

time horizon relative to these time scales.

Additional time scales are relevant when environmental states are correlated in time,

for instance through aMarkov chain P (Et|Et−1). This is for instance the case if conditions

of high nutrient or high stress extend over several generations. As a consequence,

strategies u(Rt|St, Rt−1) that depend on past internal states Rt−1 in addition or instead of

externally driven signals St may become valuable, since the fact that phenotype Rt−1

survived in environment Et−1 indirectly carries information on the current environ-

ment Et. We may then recognize that Rt plays two distinct roles: on one hand, it de-

termines survival and growth via f(Rt, Et) and, on the other, it provides information to

determine the next state Rt+1 via u(Rt+1|St+1, Rt). This corresponds to the fundamental dis-

tinction between phenotype and genotype in biology: the genotype γ is what is trans-

mitted from one generation to the next while the phenotype φ is what determines

instantaneous growth. Formally, Rt = (φt, γt) with f(Rt, Et) = f(φt, Et) and u(Rt|St, Rt−1) = u(Rt|St, γt−1),

by definition of φt and γt. The “central dogma” of molecular biology states that infor-

mation flows from the genotype to the phenotype but not reciprocally, which corre-

sponds here to assuming that u(φt, γt|γt−1) factorizes as d(φt|St, γt−1)h(γt|γt−1), where d(φt|St, γt−1)

may be interpreted as a developmental kernel and h(γt|γt−1) as an inheritance kernel,

with no dependence on St (no Lamarckism). The mathematical framework that we in-

troduced can be used to study towhich extent this particular decomposition is indeed

a good “strategy” [426]. The answer generally depends on the nature and amplitude

of the environmental fluctuations.

Similarly, the model can be analyzed to understand the conditions under which it

is advantageous to introduce phenotypic variations that are not transmitted – as in

bet-hedging – versus genotypic variations that are transmitted – as with genetic mu-

tations. Stochasticity may indeed be introduced either in the mapping from γt−1 to φt

or the mapping from γt−1 to γt, or in both of them – a problem with no equivalent in

finance. This is illustrated in Fig. 13.5 with a simple solvable model showing how the

optimal strategy depends on the nature of the fluctuations of the environment. In

particular, bet-hedging strategies where stochasticity is purely phenotypic are found

to be optimal for environmental fluctuations of sufficient large amplitude but low

temporal correlations from one generation to the next.
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Figure 13.5: Example of optimal strategies in correlated environments – (A) We
consider here a model where the environment Et is a continuous variable fol-
lowing a Gaussian process, P (Et|Et−1) = exp

(
−(Et − aEt−1)2/(2σ2

X)
)
/(2πσ2

X)1/2 with two param-
eters a and σ2

X that control the overall amplitude of the fluctuations σ2
E = σ2

X/(1 −
a2) and their time scales τE = −1/ ln a, as illustrated by the different time series.
(B) An individual inherits a genotype γt−1 which determines its phenotype φt with
probability d(φt|γt−1) = exp

(
−(φt − γt−1)2/(2σ2

D)
)
/(2πσ2

D)1/2 where σ2
D thus represents phenotypic

noise. γt−1 also determines the genotype γt of the progeny with probability h(γt|γt−1) =
exp
(
−(γt − γt−1)2/(2σ2

M )
)
/(2πσ2

M )1/2 where σ2
M thus represents mutational noise. The number ξ

of offsprings is a random variable whose mean f(φt, Et) = k exp
(
−(φt − Et)2/2

)
depends on

the phenotype φt as well as the current state Et of the environment. A population of
such individuals grows with a long-term growth rate Λ that can be computed analyt-
ically [426]. (C) Values of σ2

D and σ2
M that optimize Λ define four phases as a function

of the environmental parameters τE and σ2
E. For nearly constant environments, the

optimal strategy is to maintain constant phenotypes (σ2
D = 0) and genotypes (σ2

M = 0)
(“no variation”). For strongly varying but poorly correlated environments, the opti-
mal strategy is to introduce phenotypic variations (σ2

D > 0) but no genotypic mutations
(σ2

M > 0) (“phenotypic switching”). For highly correlated environments, the optimal strat-
egy is instead to introduce genotypicmutations (σ2

M > 0) while canalizing the phenopype
(σ2

D = 0) (“inherited variations”). A phase also exists where both types of variations are
beneficial (“mixed”). This model thus identifies environmental variations for which
bet-hedging (phenotypic switching) is expected to evolve, namely variations of envi-
ronmental of sufficient amplitude but with limited temporal correlations across gen-
erations.

Historically, the notions of genotype and phenotype were introduced much before

themolecular mechanisms that underlie themwere uncovered. In general, the geno-

type, defined as inherited information, should not be confused with the notion of ge-

netic information: along with DNA, a range of epigenetic states, including metabolic

states, are also transmitted from cell to cell which represent genotypic information.

In otherwords, the physiological state of a cell, whichwe analyzed inmost of this book

from the standpoint of a phenotype determining current growth, may also represent

valuable genotypic information for future generations.
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13.6 Concluding remarks

We presented optimal strategies that biological populations may exploit for coping

with uncertain environments and drew analogies with problems of gambling and fi-

nancial investments. Optimality assumes ameasure of performancewhich, however,

is not readily defined when environments are changing stochastically. In particular,

the time scale over which the problem is considered is critical. This difficulty has led

to multiple debates over the concept of fitness in biology which partly mirror those

over the concept of utility in economics.

While the analogy with finance is instructive, its limitations should also be kept in

mind. Most importantly, the states that individuals of a biological population adopt

are not centrally controlled by a gambler or an investor. This raises a question that

is absent in finance but central in evolutionary biology: is a strategy that is optimal

for the population but detrimental to some of its members – as for instance the per-

sister cells that “sacrifice” their current growth for the sake of future growth – evo-

lutionary stable? A strategy that is optimal for a population may indeed never be

achieved through evolution as natural selection at the individual level may favor non-

cooperating individuals – an issue known as a “conflict between levels of selection”

which implies that a strategy may be optimal at the population level but not evolu-

tionarily stable. To address this question, wemay extendourmodel to treat strategies

as variables that are themselves subject to evolution (Problem 13.5). For the model

discussed in this chapter, the results show that strategies that optimize the long-term

growth rate are indeed evolutionarily stable (but this is no longer necessarily the case

when considering, for instance, sexually reproducing populations [427]).

The same extension of the model to evolving strategies shows that knowledge of the

statistics of the environment (pd for our example) is not required a priori but can effec-

tively be learned through an evolutionary process. This solves a problem that appears

also in gambling and financewhere the statistics of the environmentmust be inferred

from past experience. The question has been particularly studied in finance, where

optimal learning strategies known as universal portfolios have been proposed [428].

In the simpler case of Kelly’s model, the gambler may for instance record previous

race results and use them together with Bayesian inference to predict the probability

of the race outcomes [429]. With biological populations, however, learning must be

performed at the individual level. One theoretical proposal that goes beyond ran-

dom mutations is for instance that biological populations may use a reinforcement

mechanism akin to Hebb’s rule in neural learning [430].

Finally, we note that the models that we presented rely on a strongly simplifying as-

sumption: the environmental changes occur independently of the population. In fact,
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the environment is often also changing as the population grows, for instance through

the consumption of nutrients. Even more generally, the environment may comprise

other individuals from the same or other populations with which they may interact.

This ecological dimension is the subject of other chapters.
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Leibler. Ecology: Phenotypic diversity, population growth, and information in fluctu-

ating environments. Science, 309(5743):2075–2078, 2005. doi: 10.1126/science.1114383

Problems

Problem 13.1 Kelly strategy with partial information

In analogy with Kelly’s problemof betting on horse races, assume that different envi-

ronments E occurwith independent probabilities p(E) at each generationwith a single

phenotype R = E permitting growth by a factor f(E). In absence of any information,

the optimal strategy u(E) for long-term growth is proportional betting, u(E) = p(E) (Box

13.B). Now assume that an information S is available to eachmember of the popula-

tion that relates to E through a transition probability q(S|E), i.e., q(S|E) is the probability

of perceiving S given E.

(a) Show that the long-term growth rate can be written in the form

Λ =
∑

S

p(S)
(∑

E

p(E|S) ln(f(E)u(E|S))
)

(13.15)

where p(S) is the probability to perceive S averaged across all environments and

p(E|S) is the probability that environment is E given that S is perceived. Write p(E|S)

as a function of p(E) and q(S|E).

(b) Justify that the optimal strategy is u(E|S) = p(E|S).

(c) Compare the optimal long-term growth rate in presence of information to the

https://doi.org/10.1126/science.1099390
https://doi.org/10.1002/047174882X
https://doi.org/10.1126/science.1114383
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optimal growth rate in absence of information and show that the difference is

given by the mutual information

I(E,S) =
∑
E,S

q(S|E)p(E) ln q(S|E)
p(S) (13.16)

The mutual information I(E,S) therefore quantifies the value of information S in

this particular context.

(d) Acquiring information is generally costly. If the presence of the information

channel q(S|E) reduces the long-term growth rate by c, what are the conditions

on p(E) for the presence of this channel to be beneficial?

(e) The cost c may be expected to depend on the precision of the sensor. Consider

for instance a channel that reveals the correct environment with probability 1 − ε

and otherwise does not reveal anything (so-called erasure channel). Given a

cost c(ε) that increases when ε decreases, which value of ε provides an optimal

trade-off between the value and the cost of information?

Problem 13.2 Value of information beyond Kelly’s model

Consider the model of bacterial persistence introduced in the main text where cells

can adopt two phenotypes, one growing irrespectively of the environment and the

other growing only in absence of antibiotics.

(a) Express the long-term growth rate Λ in presence of an information S modeled

by an information channel q(S|E).

(b) What is the optimal strategy given S?

(c) Show by comparing to a situation with no information that the value of informa-

tion can be strictly lower than I(S,E).

Problem 13.3 Stochastic sensing at the level of individual cells

In the two previous problems, the information S is assumed to be common to each

member of the population. Here we assume instead that each individual has its own

sensor q(S|E) so that S may differ from one individual to the next.

(a) Justify that in this case the long-term growth rate takes the form

Λ =
∑

E

p(E) ln

∑
R,S

f(R,E)u(R|S)q(S|E))

 (13.17)

(b) Use the concavity of the logarithm (Jensen’s inequality) to justify that the same

information channel q(S|E) has more value at the individual level than at the pop-

ulation level.

Problem 13.4 Pareto front for Kelly’s model
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Let us consider Kelly’s model with fair odds for two horses. Let the probability that

the first horse wins be p, the bet and the odd on the first horse be b and 1/r.

(a) Write the expression of the mean growth rate 〈W 〉, and of the volatility σW for this

problem. Show that there is a risk free strategy when b = r.

One introduces the objective function

J = α〈W 〉 − (1 − α)σW . (13.18)

(b) From the optimization of J show that the optimal strategy has the two branches

shown in Fig. 13.3. Show that the optimal bets on these two branches are of the

form b± = p± γσ, where γ = (1 − α)/α and σ =
√
p(1 − p).

(c) Show that the slope of the Pareto border has the form

dσW

d〈W 〉
= σ

p− b
. (13.19)

What happens to this slope near Kelly’s point and near the risk free strategy ?

Problem 13.5 Evolution of an optimal strategy

Here we consider evolving the strategy itself.

(a) Implement numerically themodel of bacterial persistence introduced in themain

text for a large but finite population. To this end, consider N individuals (e.g.,

N = 1000), each with an attribute R. For each individual, draw a random number

ξ of descendants, with mean f(R,Et) where Et drawn from P (E) is common to all

individuals. Assign a R to each of these descendants with probability u(R). If the

total number of descendants Nt is non-zero, record the ratio Nt/N and re-sample

at random the population to bring back its size to N. Show that provided that N

is large enough and Nt does not reach 0 then (
∑

t ln(Nt/N))/t provides a good approx-

imation to the growth rate Λ in the limit of large t.

(b) Extend the model to make udu(R = dormant) an attribute of each individual. Assume

that ud is transmitted from one parent to one of its offspring as ud = min(1,max(0, ud +µ))

where µ is normally distributed with variance σ2
M . Show that provided that σ2

M is

small enough, the distribution of ud evolves to be centered around the optimal

ud.
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Math box 13.B Kelly’s optimal betting strategy

In 1956, [413] extended the work of on communication to the field of . This clas-
sic model has important implications for investment strategies in and beyond. In
the context of biology, Kelly’s paper led to a clarification of the notion of value of
information which is described in Box 13.C
Let us recall the basic elements of Kelly’s horse race. The odds paid by the book-
maker when the horse x wins is o(x), and the probability for this to happen is p(x). A
gambler can distribute his/her bets on the different horses, and b(x) is the fraction
of the bet set on horse x. Thus, a strategy of the gambler is defined by a vector
of bets b of M components b(x). At every race, the gambler invests his/her entire
capital on all horses, so that ∑M

x=1 b(x) = 1, always betting a non-zero amount on all
horses. Since no bet is zero, there is a well-defined vector of the inverse of the
odds paid by the bookmaker denoted r. When the odds are fair, the bookmaker
does not keep any of the invested capital and as a result ∑M

x=1 r(x) = 1.
At each time t, one horse, which we call x, wins with probability p(x). As a result, the
capital at time t + 1 is updated according to Ct+1 = bx

rx
Ct. As explained previously, this

multiplicative process is best studied by considering instead the log of the capital,
log-cap(t) ≡ lnCt, which satisfies the assumptions of the law of large numbers when
races are independent. In these conditions, log-cap(t) ≡ lnCt converges on long times
towards the growth rate W (b,p) where

W (b,p) =
∑

x

p(x) ln o(x)b(x). (13.4)

This growth rate can be rewritten using an information theoreticmeasure between
two probability distributions, p and q, called the Kullback-Leibler divergence and
defined by

DKL(p,q) =
∑

x

p(x) ln p(x)
q(x) . (13.5)

One can show that this quantity is a non-negative measure between the two prob-
ability distributions. With this notation, the growth rate can be rewritten as

W (b,p) = DKL (p‖r) −DKL (p‖b) , (13.6)

It follows from this equation that the strategy b∗ = p is optimal. This strategy, known
as Kelly’s strategy or proportional betting, overtakes any other strategy in the long-
term as illustrated in Fig. 13.2.
This formulation shows that the growth rate is the difference between the dis-
tance of the bookie’s estimate from the true distribution and the distance of the
gambler’s estimate from the true distribution. Hence, the gambler makes money
if they have a better knowledge of the winning probabilities than the bookie. The
optimal long term growth rate is the positive quantity :

W ∗(b,p) = DKL (b‖r) . (13.7)

Kelly’s horse race model is formally a particular case of the model introduced in
themain text when considering that one, and only one phenotype R = R(E) can grow
in any given environment E, such that f(R,E) = f(E) if R = R(E) and 0 otherwise. Horses
x may then be interpreted as both the environments E and their associated phe-
notypes R(E) so that u(R) = b(x) and f(E) = o(x). In biology, but also in finance where
R is interpreted as an asset, there is generally no one-to-one correspondence be-
tween environments E and phenotypes R and multiple phenotypes (assets) may
grow (have non-zero return) in any given environment. The optimal strategy is
then no longer necessarily proportional betting as illustrated in the example of
persistence presented in the main text and as also shown in Ref. [414].
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Math box 13.C The value and cost of information for growing populations

To see how uncertainty may be quantified by Shannon , first consider a model
where f(R,E) is non-zero only for one phenotype R best adapted to each particular
environment E(R). As seen in Box 2, the optimal strategy in the long-term is pro-
portional betting, u(R(E)) = p(E). To quantify the cost of uncertainty, it must be com-
pared to a situation where full information is available, in which case all the cells
can systematically adopt the optimal phenotype, leading to an ideal growth rate
Λ∗∗ =

∑
E p(E) ln f(R(E)). The cost of uncertainty is Λ∗∗ − Λ∗ = −

∑
p(E) ln p(E), which is nothing

but the Shannon entropy of the environment H(E). This has a simple interpretation:
the more unpredictable the environment, the larger its entropy and the lower the
maximal growth rate of the population.
The reasoning can be extended to the presence of partial , modeled by p(S|E). The
case of perfect information is indeed the limit case where S = E. The optimal strat-
egy with partial information is a generalization of proportional betting that takes
into account S and the difference of growth rate is now given by the mutual infor-
mation I(S,E) (Problem 13.1). The mutual information is minimal when the signal
S is uncorrelated to E, in which case I(S,E) = 0, and maximal in presence of perfect
information, in which case I(S,E) = H(E) [415].
These results were first derived by Kelly [413]. They have been generalized tomore
general forms of f(R,E) as well as to more general environmental processes in the
context of financial investment in which case the cost of uncertainty and value
of information are no longer equal but bounded by information theoretic quanti-
ties [415, 416]. This is illustrated in Problem 13.2 with an extension of the model
of persistence presented in the main text.
Information is generally costly as it implies producing and operating an accurate
sensor, which may come at the expense of growth rate. Taking into account this
cost introduces a trade-off between the cost and value of information that may
justify an imperfect sensor, or even explain an absence of sensor (Problem 13.1).
This trade-off has for instance been invoked to explains that bacteria subject to
infrequent periods of antibiotics evolved to stochastically switch their phenotype
rather than to sense the presence of antibiotics [417].
While the problemsof information processing in biology and in finance sharemany
analogies, it is also important to recognize an important difference: in biology,
information processing is distributed at the level of each cell, which may perceive
different signals, while in finance, information is processed by an investor who
centralizes the information. The value of information is bounded by information
theoretic quantities only in the second case, or more generally when the same
common information is available to all the cells [416]. If information processing
is stochastic at the single cell level, the value of information is effectively higher
(Problem 13.3).
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Chapter 14

Strategies for cell cycle control

Mattia Corigliano, Marco Cosentino Lagomarsino, Jacopo Grilli, and Gabriele Micali

Chapter overview

◦ Cells require coordination of growth and division, as well as coordination of cell-

cycle progression with several essential sub-tasks, such as chromosome replica-

tion and segregation.

◦ Single-cell dynamics data offer correlation patterns that can be used to under-

stand these decisional processes.

◦ The cell-cycle progression and cell-division decisional process can be described

by continuous-time and discrete-time stochastic processes.

◦ There are quantitative relationships that connect growth, cell-cycle progression,

and resource allocation.

◦ There are differences and common points in the decisional processes by which

single cells of different organisms commit to divide (sizers, adders, accumulators,

titration-dilutors, etc.)

14.1 Introduction: thedecision todivide illustrated through

single-cell E. coli data.

As nicely put by the Nobel prize winner François Jacob, “the dream of every cell is to

become two cells”. Achieving this dream often requires multiple steps, such as grow-

ing by a certain size, replicating DNA, and dividing. The previous chapters have ad-

dressed cell growth as a consequence of optimization of catabolic and biosynthetic

fluxes through optimally regulated resource allocation; this chapter deals with the

decision to divide (and to progress the cell cycle), based on growth and other impor-

tant cellular processes and cues. Clearly this decision to divide or progress the cell

cycle must be based on a set if inputs (growth, production processes such as DNA
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Figure 14.1: Salient quantitative features of cell-division control, explained through
E. coli data – (A) E. coli cells are rod-like. Within a condition they grow by increasing
their length, and they divide symmetrically. Following single-cell lineages, growth in
length or volume is close to exponential. (B) Size-growth plots quantify the strength
of division control. For a timer, multiplicative growth quantified by G = log(sd/s0) is un-
coupled to birth size, for a sizer, it is maximally coupled. The single-cell data show an
intermediate trend. (C) Since G = log(sd/so) = ατ , the size-growth plot can be split into con-
tributions correlationg birth size to growth rate (top) and/or interdivision time. The
data show that E. coli bacteria only compensate by modulating interdivision times.
(D) Two equivalent quantifications of the strength of the division control size. The
intermediate control strategy adopted by E. coli adds a size that is independent from
the initial size (“adder”). This strategy is sufficient to achieve size homeostasis.

replication and cell-wall biosynthesis, partitioning processes, etc.) and entails several

outputs, prominently cell division, but also intermediate key cell-cycle substeps, such

as initiation of DNA replication or construction of a “divisome” organelle. The ques-

tions that we will consider concern the characterization of the known aspects of this

decisional process and its coupling to cell size, to cell growth, and to the chromosome

cycle. We will use throughout the chapter E. coli as an example. This section provides

a description of themain problem through an introduction to the data, based on E. coli

bacteria. Sections 2-5 start from a mathematical toolbox of models that are useful in

this context and compare them with data. Finally, section 6 describes applications to

other organisms than E. coli.

Capturing the key processes regulating cell division is a fundamental question in bi-

ology, which remains open despite a history of more than 60 years. During the years,

scientists have learned a great deal about the size and shape of bacteria in different

nutrient conditions, what most of the molecular players involved in the division pro-

cess are, how the DNA replicationmachinery is formed and how it proceeds along the

chromosome, how the septum and the new cell wall are synthesized. However, the
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vastmajority of these data are based on population averages, out of which it turns out

to be impossible to extract any direct and/or causal link between the different pro-

cesses involved in cell growth that set cell division [431]. Today, a new generation of

data has the potential to answer several open questions [431, 432, 433]. These data

differ from the previous generation in the ability tomeasure single bacterial cells over

multiple division events in controlled conditions. At the same time, the expression of

a specific gene or the concentration of specific proteins of interest can be monitored

using fluorescent reporters. For example, fluorescent tags on the proteins involved in

replication are used to score the initiation of replication in each cell cycle. Single-cell

data allow for validating mathematical models and thus bring insights into the causal

link between the several processes a cell need to complete before dividing.

By following lineages of cells overmultiple generations under controlled environmen-

tal conditions, scientists collected different important pieces of evidence (Figure 14.1):

First, within a cell cycle, the cell size s(t) is well-described by a single exponential in

time1 [436, 437]: s(t) = s0 exp(αt), where s0 is the size at birth, α is the growth rate, and t is

the time since cell birth.

If division occurs at time τd, a simple relationship connects the size at division sd with

the other cell properties: sd = s0 exp(ατd). All the four parameters of this equation are

subject to stochasticity in time and vary across single cells, even when they grow in

controlled conditions. Second, in steady growth, the size distribution of newborn cells

does not change over time, an observation that is referred to as cell-size homeosta-

sis [434]. Equivalently, cells show specific correlation patterns between size at growth

and size at division, which are related to their cell-division strategy [438, 434].

Let us try to understand more in detail how single-cell correlation patterns can be

used to understand cell-divisionbehaviors. The observation of near-exponential growth

immediately suggests a change of variables that is useful to formulate mathematical

models and to understand how single cells control cell division. Indeed, if we can as-

sume that growth is exponential, we can use logarithmic sizes instead of linear sizes.

One robust observation, is that the elongation G = log(sd/s0) = ατ depends on the size

at birth s0 (Figure 14.1B). This allows us to generate so-called “size-growth” plots (Fig-

ure 14.1B), in which the log-multiplicative growth during a cell cycle of a single cell is

plotted as a function of the logarithmic size at birth [438]. Different mechanisms of

size control predict different slopes for this plot. A cell division set by a “timer”, for

instance, would predict no relation between G and size. Since G = log sd − log s0, if instead

log sd were independent of the initial size, a “sizer”, one would predict a slope = −1. The

E. coli data typically fall half way in between these two predictions, a negative slope

1Note that most of the studies today use cell length as a proxy for size. However, different choices are
possible such as volume or mass, and the differences are not fully characterized [434, 435].
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of about 0.5 (Figure 14.1B).

By noticing that the overall logarithmic growth G during a cell cycle is the product of

the single-cell growth rate and inter-division time (G = ατ), we can ask the question of

which one of these variables is responsible for the correlation. This analysis disen-

tangles the contributions to cell division control due to growth rate and inter-division

timing (Figure 14.1C). In other words, the dependency of G on initial size can be further

decomposed on the dependency of growth rate α and division time τ. In E. coli, when

growth rate and interdivision times are plotted separately as a function of the loga-

rithmic size at birth, the negative slope is only observed in the interdivision-time plot,

suggesting that cell control size by adjusting the single-cell interdivision time rather

than their single-cell growth rates. Hence, E. coli data indicate that τ does depend

strongly on initial size, while the growth rate has only a weak dependency [437].

One can visualize andquantify themutual dependencies between cell sizes and growth

properties in other equivalent ways (Figure 14.1D). For example, in E. coli data, the

scatter plot relating size at division in the y-axis to size at birth in the x-axis for single

cells has a slope of around 1 (and once again this observation holds true for differ-

ent strains and under different environmental conditions). In this plot, a slope of 0

would suggest that cells on average need to reach a threshold in size upon division,

a sizer. More technically, the division size sd is independent on the initial size s0 in the

case of a sizer. Instead, a slope of 2 in this plot would suggest that cells on average

need to wait a fixed time upon division, a timer. The observed intermediate slope of

1 can also be understood using the equivalent plot in which the added size between

birth and division is used on the y-axis, studying the dependency of the added size

sd − s0 on s0. This latter way to plot the data is particularly popular, given that, for many

datasets it shows no dependency, suggesting that adding a constant added size is the

mechanism of size control effectively in place. Indeed, for E. coli the experimentally

observed slope is always close to 0 [439, 440, 434], an observation that goes under

the name of “adder” behavior since cells appear to add on average a constant size

during the cell cycle (Figure 14.1(B,D)).

It is fairly simple to rationalizewhy, for exponentially growing cells, a cell division strat-

egy based on a timer does not achieve a homeostatic size. In order to do this, we can

call q(i) = log(s0(i)) the logarithmic cell size at birth of cell-cycle i, and look at its dynamics

through subsequent cell cycles. Since s(τ) = s0 exp(ατ), and 〈ατ〉 = log 2, and assuming that

cells divide perfectly in two halves, one immediately gets that

q(i+ 1) − q(i) = ν(i)

where ν(i) is a zero-average random variable independent for each cell-cycle, arising
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from the size-independent fluctuations of inter-division times (hence, in technical jar-

gon, we can model ν as a discrete-time Markovian random process). Since the jumps

in logarithmic size between subsequent cell cycles are random and independent, cell

size at birth makes a discrete-time multiplicative random walk, hence, within a pop-

ulation, the distribution of cell sizes at birth tends to get wider and wider across divi-

sions. The following two sections will explain how size homeostasis can be achieved

by size-coupled cell divisions.

14.2 Hazard rate approach to cell division

As we have seen in the previous section, E. coli cells grow roughly exponentially.

Hence, we can describe their growth by a trajectory for size s (measured as cell mass

or volume) of the kind s(t) = s0 exp(αt), where t is time from cell birth. While experimen-

tally the growth rate α fluctuates with time, we will neglect its variability and assume

for the moment that it is constant. As a consequence, the cell grows as a simple ex-

ponential function of time. We will address different hypotheses regarding this point

in the later sections.

A simple way to describe the decision processes leading to division (or other cell cycle

progression events) is the so-called “hazard rate”model [441, 437, 440]. In this frame-

work, as the cell cycle progresses, each cell has a certain probability to divide, and we

call hd the rate of cell division. In principle, this rate can be a function of many differ-

ent internal cellular parameters, all the processes that contribute setting cell division.

However, since we have in mind experiments measuring cell size versus time and

recording cell divisions, the most general “empirically accessible” hd can depend on

s, t, s0, α with the constraint that s/s0 = exp(αt). This means that there can be at most three

free parameters. We can also consider simplified models, such as hd = hd(s) or hd = hd(s, t).

Empirically, the lack of correlation between α and birth size suggests a smaller role for

this parameter. It is important to realize that this formalism is very powerful, as it can

be applied more widely to any sub-cell cycle decision (for example, entry into a spe-

cific phase, such as initiation of DNA replication, mitosis, etc.), and to measurements

of different relevant cell-cycle processes (for example chromosome configurations

or the expression of cell-cycle proteins or other factors), which the hazard rate may

depend on.

Given a model for the hazard rate, we are interested in the cumulative probability

F (t|s0, α) that a cell born at t = 0 has not divided at time t, given that its initial size is s0

and its exponential growth rate α. Box 14.A discusses the mathematical formalism to

obtain this probability.

The considerations wemade so far are sufficient to produce “forward models” where

a hazard rate is assumed, and one explores its consequences on the division dynam-
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Figure 14.2: Illustration of the inverse hazard rate approach on data – Data from
many lineages of dividing cells can be used to estimate the cumulative distribution
of non-divided cells, which can also be conditioned on different variables. The drawn
example refers to the case where the tested variable is the added size s − s0. In this
case, the formalism allows to extract mathematically the hazard rate hd(s− s0) from this
distribution. Experimental E. coli data are consistent with this adder scenario, with an
hazard rate that peaks at a characteristic added size, after which the division control
weakens.

ics. The simulation of such a model is straightforward. For each discretized time

increment dt, the cell will grow by the prescribed dynamics s(t) and will divide with

hazard rate hd. If a division occurs, the mother’s cell size will halve, and go from s to

s/2 (we assume for simplicity perfect binary divisions, but this assumption can easily

be relaxed). What is a “sizer” in this framework? We can define it as a model where

hd = hd(s) [442]. Equally, a timer is a model where hd = hd(t), and an adder has hd = hd(s − s0).

At this stage, it is only intuitive, but not formally grounded, that the scatter plots of

the previous section correspond precisely to these models. This problem will be dis-

cussed in section 14.3. Note that not all the choices of hazard rates will guarantee a

steady-state cell size distribution. As a particular case, one can consider a constant

division rate hd(t) = r, which is a simple Poisson process (see the problem above). This is

a pure timer andwe expect that it will notmaintain a steady-state cell size distribution

(the reader can verify it, e.g. by simulations).

Beyond the forward approach, we would like to recognize the trends in the data that

favor one model rather than another. In particular, we can ask which model best

describes the E. coli data, presented in the first section of this chapter. This question is

a “reverse problem”, and is equivalent to the inference of the hazard rate hd from data

(Figure 14.2). It is a very common reverse problem for the literature, used for example

in the so-called “survival analysis” in clinical studies [443]. In that case, the hazard rate

typically corresponds to a one-time negative outcome (death of the patient) and the

process is not repeated along lineages as in the case of cell divisions. However, the

mathematical ingredients are very similar. Consequently, there are many regression

methods available in the literature, which can be transferred to our case. One of the

most famous is Cox regression [444]. However, most of these regression methods

need an ansatz for the parameterization of the model, which might be a nuisance,
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Math box 14.A Probability distribution of (un)divided cells

This box derives the probability distribution of (un)divided cells from the hazard
rate. The probability that a cell divides between time t and t+ dt is the probability of
not having divided so far times the probability of dividing between t and t+dt, in turn
given by the product of the hazard rate and the time interval dt, F (t|s0, α)hd(s(t), t, s0, α)dt.
During the same time interval, the cumulative probability of not having divided will
decrease by the same amount. Hence, we can write

F (t+ dt|s0, α) = F (t|s0, α)[1 − hd(s(t), t, s0, α)dt] . (14.1)

In the limit of dt → 0 we obtain a differential equation, which governs the evolution
of our system

d
dtF (t|s0, α) = −hd(s(t), t, s0, α)F (t|s0, α) , (14.2)

and whose formal solution is (for t ≥ 0)

F (t|s0, α) = e
−
∫ t

0
dzhd(s(z),z)

. (14.3)

Since we said that the probability of a cell division event in the time interval [t, t+ dt]
is P (t|s0, α)dt = F (t|s0, α)hddt, the corresponding probability density is

P (t|s0, α) = hd(s, t)e−
∫ t

0
dzhd(s(z),z) = − d

dtF (t|s0, α). (14.4)

Alternatively, the size s can be used as a coordinate, considering for s > s0,

F (s|s0, α) = e
−
∫ s

s0
dzh∗

d(z,t(z))
, (14.5)

while F (s|s0, α) = 0 for s < s0. Here, h∗
d(s, t(s))dx is the probability of cell division in the size

range between s and s + ds. The two rates are simply related by h∗
d(s, t(s))ds = hd(s(t), s)dt,

where ds/dt = hg(s) = αs is the rate of growth.

as it would require some previous knowledge. Here we consider a simpler, direct

inference method, which does not need any parameterization (but is effective only

with a sufficient amount of data, i.e., for many cell divisions).

Suppose for simplicity we deal with a sizer. In this case, it is possible generate an

estimator for the functional form of hd(s) using Eq. (14.5). By inversion, we obtain

hd(s) = −αs d
ds log[F (s|s0)], (14.6)

where F can easily be estimated from data, from the cumulative fraction of undivided

cells at size s with initial size s0. In our case, we can use the mean value of the growth

rate 〈α〉, since we are neglecting fluctuations in growth rate.

Since we do not know whether our assumption of a sizer apples to data, we can first

combine the data and the inference to falsify the assumption [437]. In order to do

this, we can further condition our histograms in order to fix s0. If hd depends solely on

s, then the inferred function h̃d should not change with varying s0. This is indeed the
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case if the procedure is applied to simulated data. However, when we apply the same

procedure to the experimental data shown in the previous section, the inferred hd(s)

changes if it is inferred for different bins of birth size s0. Hence, we conclude that our

E. coli data do not behave as a sizer, in the sense of the hazard rate. Instead, if we

consider the adder ansatz for the hazard rate hd(s − s0), and we repeat the procedure,

we find that further conditioning by birth size or time from birth does not change our

inferred hazard rate [440]. Hence, we can conclude that a hazard-rate analysis of the

data supports an adder (or at least that the data cannot falsify this simple model).

How does the inferred hd depend on size? Curiously, for any fixed s0, hd increases su-

perlinearly for small cell sizes, then reaches a maximum after which it decreases. In

other words, some cells may “miss” a cell division event and keep growing until they

find a better occasion to divide. This process is called “filamentation” (because the

cells that miss one or more division elongate and end up looking like filaments), and

is typically the consequence of stress, but also present in stress-free growth condi-

tions. experimental observations show that E. coli forms filaments in response to

DNA damage, antibiotics, host immune systems, temperature, starvation, and many

other stresses. As a consequence, size plasticity may be in many cases an adaptive

strategy. The quantitative division rules of filamentous E. coli cells have been studied

experimentally [445], but we lack a comprehensive mathematical model.

One very robust observation of cell division statistics, in E. coli and beyond [446, 440,

447, 448], is that the distributions of size at birth, size at division, and division times

measured across conditions, collapse onto the same curve when rescaled by their

mean. For instance, the distributions around these values are clearly non-overlapping:

the single-cell birth-size distribution in glucose pglu(s0) strongly differ from the one in

TSB medium pT SB(s0). In particular, the typical size at birth for E. coli growing in glucose

〈x0〉glu is about 2/3 the size of E. coli growing in TSB 〈s0〉T SB and the average division time

〈τd〉T SB is TSB is half the one of E. coli in glucose 〈τd〉glu. This appears to be valid across dif-

ferent environmental conditions (e.g., nutrient quality, temperature, pH, etc.). The re-

markable empirical observation is that, when comparing two conditions, the rescaled

distribution is universal. If we introduce the rescaled size s̃0 = s0/〈s0〉c, the distribution

of s̃0 is universal, independent of the condition. This observation applies also to size

at division, added size between divisions, interdivision time, and, to a certain extent,

growth rate [447].

An obvious question that follows from this observation is how the size-scaling proper-

ties of cell-size at birth constrain the mechanisms of homeostasis and the properties

of stochasticity at the single-cell level. A necessary consequence of the distribution

collapse is that the processes leading to single-cell heterogeneity and homeostasis

must have common underlying properties across conditions. Conditions differ be-
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cause they are characterized by different dimensional scales, but, phenomenologi-

cally, division control is governed by the same underlying principles (although the

key molecular players may vary). The collapse of all the distributions, when the vari-

ables are rescaled by the mean has another, stronger, consequence: whatever the

division control mechanism is, it depends on only two scales, a size-scale (setting the

typical cell size) and a temporal scale (setting growth rate and division time).

This constraint has strict consequences on the variability of the hazard rate across

conditions. In particular, it implies that the hazard rate must take the mathematical

form [449]

hd(s(t), s0, tα) = αh̃

(
s(t)
〈s〉c

,
s0

〈s〉c

)
, (14.7)

where the function h̃(·, ·) is the same across conditions. The dependency on α and t

disappears, as the scaling of division time, implies the existence of a unique time

scale. Since h̃(·, ·) is by definition adimensional, it can only depend on the product αt,

which can always be re-expressed as a function of s and s0, as αt = log(s(t)/s0). While this is

a powerful observation, as it allows to naturally connect division mechanisms across

conditions, it does not provide any evidence to a particular decisional mechanism

enforcing cell division, which is encoded in the function h̃(·, ·). Addressing this question

needs further experimental details.

14.3 Cell-division control as adiscrete-time linear response

process

In the previous section, we have seen how the cell-division control mechanism can

be mathematically defined using the hazard-rate framework. This approach uses as

a fundamental ingredient the probability per unit time of cell division hd, which is,

a-priori, a function of many internal cellular parameters. This approach is, in some

sense, very general, as it allows to characterize any complex cellular decision pro-

cess. However, this generality limits the tractability and interpretability of the model.

In this section, we introduce an alternative discrete-time mathematical framework

which greatly simplifies the parameterization and the interpretation of a cell-division

control model [450, 451], and easily maps to the empirical parameters discussed in

Figure 14.1.

Specifically, instead of tracking the division rate at different stages of the cell-cycle, it

is often convenient tomodel directly the cell size at birth across different generations.

In this case we can, in full generality, write

si+1
0 = f(si

0, α, . . . ) + ηi(si
0, α, . . . ) . (14.8)
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where si
0 is the birth size of the cell at generation i. The function η(·) represents a

random variable whose mean is equal to 0 and having, a priori, arbitrary probability

distribution. The function f(·) described the control over cell division. Specifically, the

function f(·) can be simply (almost tautologically) defined as the conditional average of

the size at birth at generation i+1 given all the variables that contribute to cell division

control (the previous size at birth, the growth rate, and others),

f(si
0, α, . . . ) := 〈si+1

0 〉|xi
0,α,... . (14.9)

The random variable η(si
0, α, . . . ) characterizes the fluctuations around this conditionally

averaged birth size.

This formulation of the process is as general as the hazard-rate formalism as it allows

to express any division probability F (s|s0, α, . . . ). Eq. (14.8) simply isolates the contribu-

tion of the (conditional) average size at division from the deviations from this average.

This separation is useful because it allows a clear interpretation of the mechanism of

division control, and because the conditional average size at division is typically ac-

cessible from single-cell experiments. For instance, a timer corresponds to f(si
0, α) ∝ si

0,

where the proportionality constant equals exp(ατd)/2. A sizer corresponds to f(·) being a

constant, independent of the initial size si
0. Along the same lines, an adder is defined

as f(si
0, α) = (si

0 + ∆(α))/2, where ∆(α) corresponds to the (average) added size. The formal-

ism also shows how there is a continuum of possible intermediate behaviors besides

these three limit cases.

Given the facts that growth is exponential, and the distribution of sizes at birth is

approximately Lognormal [440, 447], it is once again convenient to introduce the log-

arithmic size qi
0 = log si

0. One can derive the dynamics of the variable qi
0 as a function

of the dynamics defined in Eq. (14.8) [449]. Since the fluctuations of this variable

are small, this dynamics is fully specified by a set of linear-response parameters λab

relating the main observables (i.e. in our case each of the variables a, b can be q0, α, τ,G).

The linear-response framework offers a flexible and analytically tractable tool to for-

mulate and explore different models of division control. The models can be con-

strained by correlation patterns measured in data, quantified for example by covari-

ances, which relate to the coupling parameters λab. However, the question remains of

whether such models are consistent with data. For E. coli data, the linear-response

framework predicts the correct consistency relations between experimental mea-

surements, thereby confirming its usefulness to characterize empirical data [451]. A

second, more biologically relevant, question is identifying the biological mechanism

reproducing the observed dependency patterns. As already discussed, the observa-

tion that λqq ∼ 0.5 is a strong indication of adder-like size-control mechanisms [450, 440,
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449, 451]. Interestingly, one can show that the non-zero correlation between growth

rate and log-initial size 〈δαi+1δqi
0〉 can be explained because of the correlation between

mother and daughter single cell growth rates (the presence of a non-zero value λαα

and a dependency of the division size on the growth rate (a non-zero term λqα). Such

a relation between parameters point to some dependency on the size at division on

the single cell-growth rate. For E. coli, it is possible [451] to reproduce the empirical

values of these coupling parameters by assuming an adder model where the added

size depends exponentially on the single-cell growth rate, following the same depen-

dency it has on the population growth rate (this behavior will be discussed in more

detail below, and is sometimes termed Schaechter’s Law [452]).

14.4 Coordinationof cell divisionwithdifferent cell-cycle

processes

In the previous sections, we learned that E. coli single-cell dynamic data reveal the

adder size-control behavior, which allows bacterial cells to maintain size homeosta-

sis. We also discussed a mathematical framework that describes how size control

is achieved, and, in particular, how the key measured variables (logarithmic size at

birth, interdivision time, growth rate, and total growth during a cell cycle) are con-

nected. Here, we introduce a joint description of the DNA replication cycle, which

at the modeling level makes it necessary to partition the cell cycle into sub-periods.

We then present the key elements and observations around the debate on whether

and how DNA replication and genome segregation is limiting cell division in E. coli. In

presenting this debate we aim to (i) highlight the positive and innovative aspects of

some of the cornerstone studies of recent years, (ii) provide the reader with robust

tools necessary to compare mathematical models against data. Finally, we conclude

the section by underlying a few open questions.

It is a classic question in biology [454, 455] how cells achieve the precise coordination

of the cell cycle with chromosome replication and segregation is necessary for cell

survival. DNA replication defines a way to subdivide the cell cycle into sub-periods.

In E. coli, the period between cell division and initiation of DNA replication is nor-

mally referred as the B-period. The C-period is the period needed to complete repli-

cation. Bacterial DNA is organized in circular chromosomes which replicate start-

ing from a well-defined “origin” region (called ori locus). The replication machinery

moves bi-directionally, and the two “replication forks” proceed approximately at the

same speed and terminate in a “terminus” region of the chromosome called ter lo-

cus [456, 457, 458]. For E. coli cells dividing at mean interdivision times from about 20

minutes to about one hour, the replication speed is approximately constant, result-

ing in an approximately constant C period of around 40 minutes [459]. The D-period
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is the period that lasts from the end of replication to the next division which thus in-

cludes segregation and septum formation. Note that the inter-division time, i.e. the

time between two consecutive division events, can be as short as 20 minutes in E.

coli. How can a cell with a division time shorter than the C-period duration have at

least two copies of the DNA? Classical studies have shown that E. coli and other bacte-

ria can set up multiple overlapping rounds of replication, as summarized by Cooper

and Helmstetter in 1968 [455]. For example, a cell at birth is already replicating DNA

and has two forks. During the cell cycle, two new initiation events take place, which

will only terminate in the daughter cells [460]. We will refer to the “G-period” and

the “I-period” as the periods between two consequent division and initiation events,

respectively.

As briefly mentioned in the introduction of this chapter, the recent single-cell exper-

iments allow to score initiation and termination of DNA replication by fluorescently

tagging proteins involved in the formation of the replication forks or directly the ori

locus [461, 462, 463, 464, 453]. The scoring of initiation and termination makes it

possible to produce the size-growth, and the equivalent adder, plots for any of the

sub-periods BCD 2 as well as for the G- and I-periods (jointly). In the remainder of

this section, we will refer to the slope of the size-growth plot of a sub-period X (X=

B,C,D,G, or I) as λX, and to the slope of the corresponding adder plot as ζX. The two

slopes are linked by the equation (1 − λX) = ζX +1
QX

, where QX = exp
(〈
growth during X

〉)
(see

Mathematical Detail Box 14.B).

Having formally defined sub-periods for the cell cycle and the corresponding linear-

response formalism, we now proceed by discussing a schematic overview of the ex-

perimental observations in E. coli that any mathematical model should reproduce:

◦ The G-period shows an adder behavior, (λG = −0.5, ζG = 0) [439, 440].

◦ The C-period duration is approximately constant across cells and experimental con-

ditionswith, a tendency to increase for slow growth rates and the C-period generally

shows a timer behavior3 (λC = 0, ζC = QC − 1) [465, 466, 467, 461, 457].

◦ The I-period shows an adder behavior, (λG = −0.5, ζG = 0)[468, 464, 463].

◦ The CD-period shows an adder behavior (λCD = QCD−1
QCD

, ζCD = 0)[464, 469].

◦ The single-cell growth rate and the duration of the CD period are inversely propor-

tional [462].

Other interesting observations that are considered in the mathematical models we

will present shortly are

◦ E. coli cells divide symmetrically with a narrow distribution of division length with
2Note that under fast-growing conditions the termination is experimentally harder to score reliably and

hence in many studies the C and D periods of single cells are considered together as a “CD period”.
3Given the difficulty in observing the C-period in single cells, this last question requires further experi-

mental investigation.
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Math box 14.B Linear formalism and adder plots

This box shows how to translate the linear response (“λ-formalism”) to an equiva-
lent formalism based on the slopes of adder plots (“ζ-formalism”). The interested
reader can find more information in [450, 451, 468, 470, 453]. As discussed pre-
viously, Eq. (C.2) makes it possible to estimate the linear-response parameter λ

in experimental data from the covariance of log-size fluctuations between subse-

quent generations, by noticing that (1 − λG) =
〈

δqi+1
0 δqi

0

〉
σ2

q0
, where we refer to λ in Eq. (C.2)

as λG, to highlight the fact that this equation refers to the G-period. Exponential
growth dictates that 2si+1

0 = si
0e

αiτ i, where si
0, αi, and τ i are the size at birth, the growth

rate and the interdivision time, respectively. For the cell cycle i one can expand
the logarithmic growth Gi

G := αiτ i around its average value (〈GG〉 ' log 2) in terms of vari-
ations around the logarithmic size at birth qi

0 := log si
0. Following this procedure, the

cell size at birth of generation i+ 1 within a lineage can be expressed as a function
of the parameters of generation i, as follows,

2si+1
0 = QG

(
si

0
)1−λG 〈s0〉λG + νi

0 , (14.10)

where QG = e〈GG〉 = exp 〈log sd/s0〉, sd is the cell size at division and νi
0 is a discrete-time

Gaussian noise with mean zero and standard deviation σs0. Expanding around the
average size, for small fluctuations we obtain a mapping between added size and
slope of the size-growth plot,

2si+1
0 = QG 〈s0〉 + (1 − λG)QGδs

i
0 + νi

0

δ∆i
G = + [(1 − λG)QG − 1] δsi

0 + νi
0.

Here ∆i
G = si

f −si
0 is the added size during a cell cycle, and δ∆i

G = ∆i
G−
〈
∆i

G

〉
is its fluctuation.

Hence, by definition, the term in square brackets must be the slope of the adder
plot

ζG := (1 − λG)QG − 1. (14.11)

Solving the equation for λG, we get

(1 − λG) = (ζG + 1)
QG

, (14.12)

which can be used (assuming as usual small fluctuations) to convert the slope ζG of
the adder plot into the slope of the size-growth plot λG, and vice-versa.

CV = 0.05 [437]. Note that this CV is lower than the CV of both the growth-rate

distribution (CV ≈ 0.1) and interdivision time distribution (CV ≈ 0.2).

◦ The growth rate of the mother cell is correlated positively with the growth rate of

the daughter cells, with a Pearson correlation of around 0.5 [436].

The mathematical models proposed in the literature can all be described with the

general framework we provided so far. However, they are different in terms of in-

gredients and relevant variables (Fig. 14.3). Specifically, they can be grouped into two

broad classes with fundamentally different views on the role of DNA replication, its

impact on cell division control, and ultimately on how the cell division and replication
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Math box 14.C Comparing cell-cycle sub-periods models with data

This box describes the quantitative tools necessary to systematically compare cell-
cycle sub-periods models with data using the linear-response formalism and size-
growth plots. Since the formalismmay become very heavy, to avoid complications
we will present the the case of slow-growth conditions, in which there are no over-
lapping replication rounds. In addition, we will assume that the growth rate is a
constant parameter and we will assume perfectly symmetric division.
Replication-centric models assume λCD and either λB or λI to be input parameters in
themodel. Here, we focus on the case inwhich λ∗

CD and λ∗
I are fixed, which is the case

for the Cooper andHelmstetter, Ho andAmir, andWitz et almodels [455, 473, 474].
In these models, one has that δqi+1

I = (1 − λ∗
I)δqi

I + ανi
I and δqi+1

0 = (1 − λ∗
CD)δqi

I + ανi
CD, where qi

0

and qi
I are the logarithmic sizes at birth and initiation of the cell cycle i, respectively;

α is the growth rate, and νi
I and νi

CD are the white noise contribution related to the I
and CD periods, respectively. In this class of models, λG and λB are mathematically
linked to λ∗

CD and λ∗
I, which provides predictions that can be validated or falsified

with data:

(1 − λG) :=
〈
δqi+1

0 δqi
0
〉

σ2
q0

=
(1 − λ∗

CD)2(1 − λ∗
I)σ2

qI

σ2
q0

, (14.13)

(1 − λB) :=
〈
δqi

Iδq
i
0
〉

σ2
q0

=
(1 − λ∗

CD)(1 − λ∗
I)σ2

qI

σ2
q0

. (14.14)

Note that by combining (14.13) with (14.14), we also get the relationship

(1 − λG) = (1 − λCD) (1 − λB) . (14.15)

cycles are coupled [470, 471, 457, 463, 464]. A class of ‘replication-centric’ models see

the completion of DNA replication as the crucial checkpoint for cell-cycle progres-

sion, which fundamentally limits division and initiation events [462, 464]. Instead,

‘replication-agnostic’ models assume that cell division is limited by a cell cycle-related

process such as septum or cell wall formation and not by DNA replication [472, 463].

The linear-response theory over sub-periods coupled with the new-generation ex-

perimental observations on single cells gives us a powerful tool to compare the dif-

ferent models (see Box 14.C). Crucially, while the slopes of the size-growth plots are

ultimately correlation patterns, the interpretation of the causal link between them

changes across different models. For instance, the replication-centric models gen-

erally assume that two parameters among λI, λB, λCD are input variables, fixed by an

underlying molecular mechanism, while λG is an output of the model, i.e. an emer-

gent correlation pattern predicted by the model. In contrast, the replication-agnostic

models assume a mechanism for the G-period (λG is fixed), and the other correla-

tion patterns are outputs of the model. Hence, the observed relationships between

linear-response constants across conditions can be used to select a specificmodel. In

the following, we present replication-agnostic theories first, then replication-centric

models, then we introduce a class of models that find a solution of this dichotomy.
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The replication-centric models are in line with the classic views on the E. coli cell cy-

cle, but they are challenged by recent findings [455, 475, 470, 472, 465]. The 1968

Cooper and Helmstetter model was based only on the available population-average

data at that time. The model posits that cell division happens within a defined period

(CD) of time after initiation. Shortly after, Donachie [475] combined the Cooper and

Helmstetter observation of a constant (population average) CD period with the even

older observation that population-average cell size increases with the growth rate

with a trend that is compatible with an exponential (Schaechter’s law [452], which

we mentioned above) and postulated that the population-average mass-per-origins

is constant with the growth rate. Crucially, the classic paradigm by which replication

limits division rested on indirect conclusions based on population averages, but these

assumptions needed to be verified by single-cell data, which showed that things are

much more complex [431].

In recent times, Ho and Amir [473] were the first to connect the Cooper-Helmstetter-

Donachie ideas with the new observation of adder correlation patterns over the G-

period. The authors assumed an adder mechanism during the I-period and a timer

mechanism during the CD period. This model produces (in the limit of small noise

in the timing of the CD period) an adder behavior in the G-period. Note that in this

model λI = −0.5 and λCD = 0 are inputs while λG ≈ −0.5 is an output of themodel. Thismodel,

by definition, fails in reproducing the adder behavior in the CD period (which was not

known at the time). Although it turned out to be an oversimplification, this work has

the merit of connecting the old theories with new single-cell data into a simple and

elegant replication-centric model.

The first studies measuring the initiation of DNA replication in single cells [461, 462]

brought two new experimental pieces of evidence into the field: they observed the

duration of the CD period was inversely proportional to the single-cell growth rate

and that the C period does not display any size compensation. Based on their data,

Wallden and coworkers proposed a replication-centric model with a sizer in the B-

period (ζB = −1), which was later falsified [468, 464, 463]. A subsequent study by a

different group [464] measured consecutive initiation events in single cells and ob-

served three adders in the G, I, and CD periods. They then designed an improved

version of the Ho-Amir model (already proposed for mycobacteria [476]) in which the

initiation of DNA replication triggers both the next initiation and a division event with

an adder mechanism. In this model, the adder in the G-period is an output of the

model, which emerges from the adder in I and CD when the growth rate is a ran-

dom variable and a sufficiently skewed asymmetry in cell division is added into the

model. This replicaiton-centric model is unable to capture the growth rate – CD pe-

riod inverse relationship discovered by Wallden and coworkers. However, it has the
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merit of improving the Ho and Amir model accounting for both adders in I and CD

and introducing a debate over the importance of asymmetric division.

The replication-agnostic models entered the debate more recently. Based on dy-

namic cell-wall and cell-geometrymeasurements, Harris and Theriot proposed amodel

in which the completion of the division septum, and not the chromosome, was the

limiting factor for cell division [471, 472]. This model proposes a simple molecular

mechanism for the adder based on three main ingredients: (i) a crucial factor in-

volved in setting division is produced at a rate proportional to the cell size; (ii) this

factor needs to reach a threshold in the number in order the cell to divide; (iii) the

factor in the next generation has to be reset, with no history dependencies on the

previous cell cycle (in the case of the septum, this is natural, as a new septum needs

to be produced from zero at every cell cycle). This model structure is still the basis

for different mechanistic models explaining the adder during the G period, but the

mechanistic factor was also proposed to be a protein [477, 478, 463]. Further evi-

dence in favor of a replication-agnostic view came from experiments performed by

the Jun lab [463] aiming to perturb independently the adder correlation pattern in

the G-period, while maintaining intact the adder pattern over the I-period, and vicev-

ersa. The perturbations were achieved by inducing oscillating levels of the FtsZ pro-

tein, which forms a contractile ring structure at the future cell-division site and of the

DnaA protein, responsible for the initiation of replication, respectively. The authors

interpreted the results of these experiments as a proof that the replication and di-

vision cycles are independently regulated, and in particular that completion of DNA

replication and segregation is not a limiting factor for cell division. Additionally, the

authors re-interpreted the ‘molecular adder’ model proposed by Harris and Teriot,

suggesting that the FtsZ may be the “adder protein” setting division. This work has

the merit of providing precious experimental information. However, the model fails

to explain the adder behavior over the CD period, as well as the correlation patterns

related to how the replication and the division cycles are coordinated [468, 470, 453].

The replication-centric and replication-agnostic views have been firmly opposing each

other in recent years (see e.g. [479, 474, 480]). However, a standpoint that is gaining

consensus is that neither of these views is able to capture the full complexity of the

correlation patterns in the data [468, 470, 453, 465, 457, 481]. The recently proposed

“concurrent-cycles” scenario [468, 470, 453] bridges the two opposing views and is

in better agreement with the data compared to all the above models. The key in-

novative element in this theoretical framework lies in the assumption that there is

no unique process limiting cell division. Rather a set of competing processes have

to be completed before division, and some “downstream control” module (modelled

as a logic gate) has to process the input from these processes. In its original formu-
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lation [468, 470], based on the available data the competing processes are the DNA

replication processes defined by an adder in the I-period, a timer in the replication-

segregation period cycle, and a cell division process that adds constant size between

two consecutive divisions (division-related cycle). The division is decided by an AND

gate, which triggers when both of two actions are completed, the interdivision period

is complete and the replication-segregation period is complete. Therefore, the AND

gate selects the slowest of the two random processes (which vary across single cells)

to set the timing. Note that in this framework the CD period can be set by the intrin-

sic replication-segregation period of this is the slowest process, or by the interdivision

period in case this other process is the slowest one. The concurrent-cycles framework

makes precise predictions on how the sub-periods correlations of size change when

either the replication-related or the division-related cycles are perturbed. Recently,

experiments in which cell wall insertion is delayed confirmed the prediction of the

model [453]. Other recent studies proposed similar frameworks, adding mechanistic

details, where the onset of constriction at the divisome [481] and/or a “progression

control complex” including the chromosome and the divisome play the role of the

gate deciding cell division [465, 457]. Technically, concurrent cycle models need an

additional set of parameters compared to the replication-centric and agnosticmodels

(see Box 14.D). These parameters are ultimately summarized by one extra relevant

parameter, which can be expressed as the probability that the division-related pro-

cess to sets division (in a given cell cycle). Thus, the replication-centric and replication-

agnosticmodels can be seen as limit cases of the concurrent-cycles framework, where

this probability is zero or one respectively.

Despite the large improvement that the concurrent-cycles framework provides in the

agreement with data, many questions remain open. For example, we do not know

the probability of either of the concurrent processes limiting division varies under

different conditions. Recent surveys of the available data [453, 481] suggest that the

probability of a chromosome-agnostic cycle increases with increasing growth rate.

At very slow growth (interdivision times of 300 minutes or more), it has been been

suggested that replication-segregation is the limiting process. Additionally, we cur-

rently do not know what tunes such probability and what the role of the growth rate

may be. We also do not know how many concurrent processes there are and which

precisely are the relevant players at the molecular level. Finally, the regulation of ini-

tiation of DNA replication could also be set by a “gate” integrating a set of processes,

a hypothesis that remains underexplored in the literature.
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Math box 14.D The concurrent-cycles framework

This box provides the mathematical relationships that correspond to the ones ap-
pearing in Box 14.C for the more general concurrent-cycles framework. Given the
complexity of this model, we restrict to the case of no overlapping rounds. In par-
ticular, we will show how Eq. (14.15) is no longer valid in the concurrent-cycles
framework (without the need to include additional ingredients such as asymmet-
ric division or mother-daughter growth rate correlations).
In the concurrent-cycles model, cell division is determined by the slowest of two
processes. The first process is an interdivision, (chromosome-agnostic) cycle that
is concluded, for generation i, at a log-size qi

H, which is expressed as qi
H = q∗

H + (1 −
λ∗

H)
(
qi

0 − (q∗
H − log 2)

)
+ ανi

H, with λH size control parameter of this process. The second
process is a chromosome replication-segregation cycle (replication-centric), that
is concluded, for generation i, at a log-size qi

R, which is expressed as qi
R = q∗

R + δqi
I +

ανi
I. Note that this equation assumes a timer for this process, λ∗

CD′ = 0, where CD′

identify the time needed for completing DNA replication, which is identical to the
measurable CD-period only when this second cycle sets division. The cell size at
division is determined by the slowest process, i.e. qi

d = max
(
qi

H , q
i
R

)
. The initiation of

DNA replication decides the next initiation independently on the size at birth or
division, generating the fluctuation around the logarithmic size at initiation that
we already found in Box 14.C, δqi+1

I = (1 − λ∗
I)δqi

I + ανi
I.

To calculate the fluctuations of the logarithmic size at division, we assume that
the replication-centric process sets the division of generation i with probability pH

independently on qi
0 and qi

I. With this assumption, and considering λ∗
H, λ∗

I and λ∗
CD′ = 0,

the model predicts the following values for the strength of the size-growth plots in
the B-, CD- and G-period,

(1 − λB) = (1 − λCD) (1 − λI)
σ2

qI

σ2
q0

(14.16)

(1 − λCD) = (1 − pH) + pH (1 − λ∗
H) (1 − λB)

σ2
qI

σ2
q0

, (14.17)

(1 − λG) = (1 − pH) (1 − λB) + pH (1 − λ∗
H) (14.18)

Overall, the concurrent-cycles model allows to match the experimental trends in
the size-growth plots with an additional parameter (pH). In particular, it allows
to break the relationship in Eq. (14.15) without including asymmetric divisions or
mother-daughter correlations in growth rates [468, 470, 453].

14.5 Protein sectors and cell division

This chapter focuses on quantitative descriptions of the cell cycle and cell division

control, and it is natural to wonder whether and how these consideration relate to the

topic of previous Chapters 8 and 10which deal with resource allocationmodelswhere

cell growth is set by catabolism and biosynthesis. There is a strong link between

regulation of growth and cell-cycle progression, which remains a largely open area of

investigation both in biology and in quantitative biology / physics of living systems.

This section discusses some recent models aimed to describe some specific aspects

of the coordination between cell growth and cell-cycle progression. We will start by
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presenting the main questions that we want to address with the aid of mathematical

models. Then we will discuss the main ideas and ingredients behind the models that

address these questions, and present some relevant predictions that can be tested

and validated against experimental data.

The maintenance of an interplay between cell growth and cell cycle is crucial for the

correct functioning of the cell. Specifically, a cell has to adapt both growth and divi-

sion rates concertedly when either one is perturbed. For example, the response and

adaptation to environmental stresses, such as sudden shifts in nutrient conditions or

exposure to drugs or toxins, requires the ability to reprogram in a coordinated way

cell growth and cell division. Consequently, cells across all kingdoms of life have de-

veloped specific mechanisms to precisely coordinate cell cycle progression with cell

growth and biosynthesis [142, 482, 434, 483, 438, 484]. There are many mechanisms

involved in this coordination, and we lack a complete and coherent quantitative un-

derstanding of how this coordinationworks in different contexts. Sometimeswe even

lack simple ways to frame questions concerning the effects on cell cycle progression

of cell growth perturbations/inhibitions, or the effects of cell growth of cell-cycle per-

turbations (such as cell cycle arrest).

To formulate and address these questions quantitatively, we would need a theoret-

ical framework where both growth physiology (as in “how does a cell grow?”) and

cell-cycle decisions/progression (as in “how does a cell decide when to divide?”) as-

pects are allowed to play a role and influence each other. However, while both cell

growth and cell cycle progression alone have been subject of intense study in the past

(especially in bacteria [432], but see ref. [485] for a recent review of these themes in

eukaryotes), comparatively little effort has been directed so far toward the develop-

ment of such unified framework. Nonetheless, recent work has advanced our quanti-

tative understanding of the cross-talk between cell growth and cell cycle progression

in bacteria. The remainder of this section will focus on discussing these aspects.

Relatively to the bacterium E. coli, recent and current efforts aimed at integrating al-

ready existing coarse-grained models of cell physiology and cell cycle control. More

precisely, several studies have extended the classic proteome allocation theory, (pre-

sented in chapters 8 and 10), which has proven successful in describing several phys-

iological laws, to include also a cell-division proteome sector “X”, whose dynamics

should implement cell-division control (or cell-cycle progression control) strategies

at a phenomenological or molecular level (Fig. 14.4). The current models for E. coli

usually include a threshold accumulation process for cell division, i.e., proteins of the

division sector accumulate during cell cycle progression up to a threshold level that

triggers cell division. The previous section has mentioned some candidate molecular

players for this accumulation (the FtsZ protein and the cell wall insertion).
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Math box 14.E A mathematical model

The model consists of two different layers of dynamical equations, and one re-
lationship connecting them. The first set of equations describes cell growth and
division as cellular processes

ds

dt
= λs ,

dX

dt
= kXs− dX

mX
X, X(τd) = Xth =⇒

s(τd) → s(τd)/2

X(τd) → 0
, (14.19)

where cell size s (mass or volume) grows exponentially at a rate λ ([λ] = [T ]−1), while
division proteins X, of mass mX being synthesized and degraded at rates (kX ([kX ] =
[s]−1[T ]−1), dX([dX ] = [M ][T ]−1)), accumulate until a threshold amount of them is reached
and cell division occurs, after that cell size is divided exactly in half and division
proteins number is reset to zero.
The second set of equations describes the dynamical allocation of the proteome
and the biosynthesis layer underlying cell growth, as follows

dA

dt
= 1
ma

knP − aktRfa +
∑

Pi∈{Q,P,R,X}

dPi
Pi

 ,

dPi

dt
= 1
mPi

(aktfPi
Rfa − dPi

Pi) . Pi ∈ {Q,P,R,X} .

(14.20)

According to Eq. (14.20), free amino-acids (A) are produced from import/catalysis
of nutrients at a rate kn ([kn] = [M ][T ]−1)) per number of catabolic/transport proteins P ,
and from protein degradation, occurring at a rate dPi

Pi (where dPi
([dPi

] = [M ][T ]−1) is the
degradation rate) for each specific sector. Free amino-acids are taken up to syn-
thesise each proteome sector Pi at a rate equal to the number of active ribosomes
(Rfa), times the fraction of ribosomes synthesising the specific sector fPi, times an
overall protein translation rate, which in this particular model is equal to a con-
stant translation rate per ribosomes kt ([kt] = [s][T ]−1) times the concentration of free
amino-acids a ≡ (maA)/ ([a] = [M ][s]−1).
Finally, there must be a connection between the two levels of description, in the
sense that cellular rates should be regarded as the result of the underlying biosyn-
thesis dynamics. To make this connection explicit, we write the equation

s = γM = γ(mAA+mPP +mRR+mQQ+mXX) , (14.21)

representing mass conservation (if ”size” stands for ”mass” s = M), or the assump-
tion of constant density (if ”size” stands for ”volume” s = V ), verified in E. coli for
population averages but not for single cells, or for certain perturbations [435, 486].
Together, Eqs. (14.19), (14.20) and (14.21) fully specify the model.

Let us take a closer look at the ingredients of this modeling framework. The two

main ingredients are (i) the standard proteome allocation theory extended to include

a division sector X, alongside to the standard main sectors (see Chapter 8), Q (house-

keeping), R (ribosomes), P (catabolism and transport), together with (ii) a threshold-

accumulation division strategy to set the decision to divide (Fig.14.4A). Note that the

fact that the division factor X is a protein is an implicit assumption in these frame-

work and experimentally things could be more complex. Crucially, the fact that cell

division is a proteome sector couples the rates of cellular growth and division, by con-
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trolling the synthesis of division proteins. Specifically, the models encode a trade-off

between ribosomes and division protein synthesis, which as we will see determines

many salient predictions.

Box 14.E shows how these ideas and ingredients can be translated into a mathe-

matical model. The framework that we are now going to discuss is consistent with

different models recently developed in the literature [487, 488, 489, 490, 483].

In order to exemplify how this framework can generate relevant predictions, we ded-

icated an appendix ”Growth Laws” at the end of this document where some concrete

examples taken from the literature are discussed. The mathematical derivations are

not exhaustive, but aimed to give the reader a feeling of the ”recipe” followed to ob-

tain a given prediction starting from the model’s ingredients. The interested reader

should have sufficient information to work out the mathematical calculations au-

tonomously or follow the complete derivation in the cited references (for example

by Serbanescu et al. [487, 488]).

14.6 Control of cell division across species andkingdoms

The concepts described in the previous sections are widely applicable, but there are

many relevant species-specific aspects, so that different crucial assumptions that we

have taken so far might break down for different species and kingdoms. Addition-

ally, it should be noted that the approach described here is purely phenomenologi-

cal, while a biological investigation might be concerned with the detailed molecular

players responsible for the cell division and cell-cycle progression decisions. Even

in this case, the approach is useful and is being applied in recent work. For exam-

ple, if the goal is to understand how the size control phenomenon is regulated, the

phenomenological analyses can quantify how the phenomenology of size correction

behaves under different mutants and perturbations, helping to identify molecular

players and their effects on cell-cycle decisions.

Let us consider briefly some important variations of the approach used so far, rel-

evant for the understanding of different species-specific behaviors. First, it is not

granted that single cells grow exponentially, or even that exponential growth is a

good approximate description. Even in the cases where exponential growth appears

to be a good average description, these averages may emerge from more complex

behaviors at the single-cell level or in cell cycle sub-periods. For bacteria, most stud-

ies conclude that exponential growth is a sufficiently good description, although re-

cent accounts show deviations [491, 492]. In budding yeast (S. cerevisiae), the aver-

age growth rate was reported to change at regulatory checkpoints with the cell-cycle

phase [493, 494, 495]. In the fission yeast S. pombe, a systematic study of single-cell

growth concludes that the majority of growth trajectories are best described by a bi-
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linear growth [496]. In cell lines of animal cells, most studies suggest that, on average,

cells grow exponentially until a certain saturation size after which they slow down, but

this mean behavior hides many details [434]. For example, it seems that cells in the

G1 phase of the cell cycle grow at a slightly slower rate than in later stages of the cell

cycle [497].

A second important aspect to consider is whether division is symmetric or not. In

E. coli, cells divide symmetrically, giving rise to two daughter cells that are nearly

equal in size, with a precision of a few percent [437]. However, different species use

very different strategies for cell division, which increase variability or explicitly aim for

asymmetry. For example, S. cerevisiae reproduces through budding (hence the term

“budding yeast”). The parent cell creates a small outgrowth that eventually becomes

a daughter cell. Both division strategies are common among unicellular organisms

(many filamentous fungi grow via budding). Budding creates a parent/offspring dis-

tinction in which age-related aspects are not transmitted equally. Since aging may

correspond to a decrease in fitness/growth rate, it can also create diversity along lin-

eages. A third important aspect to consider is that the growth rate may be coupled to

size and enforce size homeostasis. In other words, homeostasis can be achieved by

modulating cell-cycle duration based on size at birth, but also if large-born cells grow

slower than small-born ones.

As an example of how different issues can be analyzed with extensions of the phe-

nomenological approaches discussed so far, it is instructive to discuss in more de-

tail how one can use the linear-response framework to detect indications of growth-

based size homeostasis. Aswementionedpreviously, the overallmultiplicative growth

of a cell in one cycle is quantified by G = qf − q0 = log sf

s0
=: ατ. The slope λ of the size-growth

plot is equivalent to considering the conditional average of G over logarithmic size q,

〈G〉q = 〈G〉 − λδq (14.22)

As we have seen in Fig 14.1, we can consider the separate contributions of timing

and growth to the coupling by taking separate scatter plots with growth rate and cell

division time. We can give a more formal quantification of their contributions as fol-

lows. We call θ the coupling strength derived from the slope the first plot quantifying

control by modulation of interdivision time,

〈τ〉q = 〈τ〉 − 〈τ〉θδq , (14.23)

and γ the slope quantifying modulation of growth rate based on birth size,

α− 〈α〉 = −〈α〉 (γδq) + να . (14.24)
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For positive values of γ, cells that are born larger than average can correct their sizes

by growing with a slower growth rate, and cells that are born with a smaller size than

average can correct by growing at a faster rate. Conversely, for negative values of γ,

birth-size related specific growth rate variations increases systematically size variabil-

ity.

Intuitively, we can understand that θ γ and λ must be related. First, the overall home-

ostasis must be the result of the one enforced by growth-rate modulation and the

one enforced by interdivision-time modulation. More formally, the slopes of the cor-

relation plots illustrated in Fig. 14.1 for G, α and τ versus logarithmic birth size must be

related, because G = ατ.

Using the linear response approach defined in section 14.3, one can derive the fol-

lowing equation

λ = θ〈α〉〈τ〉 + γ〈α〉〈τ〉 . (14.25)

Eq. (14.25) states that the overall correction to size over a cell cycle has to be the sum

of a correction due to modulation of timing and a correction due to the modulation

of specific growth rate based on size at birth. For example, if the overall strength is

an adder, and the size coupling of the duration of the cell cycle is already an adder,

the growth rate must be uncoupled from initial size.

Going back to the data, one can use Eq. (14.25) to evaluate the different strategies, by

evaluating the couplings θ, γ and λ from the different scatter plots. Importantly, the

constraint imposed by Eq. (14.25) is realized in data from several bacterial species and

growth conditions, indicating that the framework is sufficient to describe the data.

Work on different bacteria shows widespread adder correlations [432], hence λ ' 0.5.

What is more surprising is that adder behavior has been reported for in budding

yeast and cultured human cells. Hence, for many species, the inter-division correla-

tion patterns are nearly always close to an adder. One interesting exception is the

fission yeast S. pombe, discussed below. The widespread adder patterns may sug-

gest common general principles underlying the division control of microorganisms

and cultured single mammalian cells. Considering the couplings θ, γ shows a different

scenario, with a clear distinction between microorganisms and cultured mammalian

cells. In the studied unicellular microbes, the inter-division adder is always due to

the modulation of cell-cycle duration. Instead, cultured mammalian cells also rely on

growth rate modulation to correct their size. In particular, this rejects the hypothesis

that adder behavior may be favored by common underlying mechanisms. Addition-

ally, for budding yeast andmammalian cells, the overall adder behavior emerges from

homeostatic regulations acting close to the initiation of replication (G1/S transition)

during the cell cycle, and from a weaker regulation of the subsequent parts of the
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cell cycle [434]. Cell growth outside of G1 is critical in setting the average cell size

but appears to be less significant for the size homeostasis effect setting cell-to-cell

variability in birth size. This is not the case in bacteria, where we have seen that key

questions regarding the specific events in the cell cycle where homeostasis is exerted

are still under debate.

The fission yeast S. pombe is an interesting case to discuss. This rapidly dividing mi-

croorganism is a yeast but uses symmetric division (hence it is sometimes called “fis-

sion yeast”), and was the central model system in pioneering studies of the cell cycle.

Its size-correctionmechanism is the strongest observed in nature, because it can cor-

rect size fluctuations in a single cell cycle. Its inter-division size pattern is close to a

sizer, but recently the study of mutants with different cell widths has shown that the

mechanism that triggers division is based on a surface-area sensor, triggered at a

critical cell surface. The molecular effector of this sensing, a protein called Cdr2, has

been indentified [498]. Curiously, genetic knockout of this protein does not lead to an

ablation of size homeostasis. Rather, fission yeast cells fall back to a volume-based

mechanism, suggesting that multiple biochemical circuits play a role in the decision

to divide.

Finally, since cells of different species and in different conditions use a range of ways

to control cell division, for example sizers or adders. An important question is why

a particular species would implement one particular strategy. One possibility is that

this trait is under selection, and the fitness of individual cells decreases away from

the optimal size. In this case sizers would be favored, because they can compen-

sate for deviations in one cell cycle and minimize fluctuations. A second, more likely,

possibility is that intrinsic physiological constraints linking cell cycle and growth are

important in determining cell division control. For example, it has been argued that

in bacteria size control is a result of a cell’s attempt to exert a tight control over the

initiation of DNA replication – rather than cell division [499].

14.7 Concluding remarks

This chapter focused on modeling the cell cycle. The reader should have acquired an

overview of some of the key recent experimental results in this area, as well as the

basic mathematical toolbox to address biological questions motivated by single-cell

dynamic data, concerning (i) decisional processes during the cell cycle and primarily

the decision to divide, (ii) coordination between different cell-cycle processes, and

primarily the chromosome cyclewith cell division and (iii) the coordination of cell cycle

progression with growth.

This chapter is connectedwith Chapters 8 and 10 describing resource allocationmod-

els used here to describe growth, and with Chapter 12, describing models of growth
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rate variability, because it provides a framework to include a description of the divi-

sion rate variability.

Problems

Problem 14.1

Show that for cells that grow linearly in time an adder and a timer are the same.

Problem 14.2

Analyze the consequences of a constant per-size hazard rate h∗
d = 1/s̃ and compare

them to the consequence of a constant per-time hd = r (a Poisson process).

Problem 14.3

Analyze the forward hazard rate model for cell division where hd(s) = (s/s̃2) by simula-

tion and/or analytical calculations.

Problem 14.4

Find the hazard rate corresponding to the process defined by appendix Eq. (C.2).

Problem 14.5

Write an explicit expression of the four parameters λab appearing in appendix Eqs

(C.5) and (C.4) as a function of the covariances between the fluctuations of growth

rates and log-size at the same or different generations.

Problem 14.6

Prove that the adder strategy rapidly achieves cell size homeostasis (that is, a con-

trolled cell size at birth) after a few cell generations, independently of the starting

initial size. Prove that convergence to homeostasis and loss of memory of the initial

cell size is exponential in the number of cell cycles. Write down a simple numerical

code to simulate this process and verify your analytical predictions. What is the role

of noise in setting the inter-division added size?

Problem 14.7

Write the equivalent of Eq. (C.2) for the I-period and for sub-periods B and CD, and

prove the following relationships:

(1 − λI) =
〈
δqi+1

I δqi
I

〉
σ2

qI

, (1 − λB) =
〈
δqi

Iδq
i
0
〉

σ2
q0

, (1 − λCD) =
〈
δqi+1

0 δqi
I

〉
σ2

qI

,

where the log-size fluctuation at initiation for the cell cycle i is δqi
I := qi

I − 〈qI〉 ≈ log
(
si

I/ 〈sI〉
)
,

with si
I the cell size at initiation.

Problem 14.8

Write the equivalent of Eq. (14.12) for the I-period and for sub-periods B and CD.
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Problem 14.9

Write the predicted λG and λI for a model in which λ∗
CD and λ∗

B are input parameters of

the model. Does Eq. (14.15) still hold?

Problem 14.10

Extend the models in Box 14.C for:

(a) Overlapping rounds of DNA replication. This case is more difficult to address

analytically, but can be easily simulated.

(b) The ζ-formalism (without overlapping rounds). Use the model to answer the

question: can an adder in the I- and CD-period provide the adder behavior in

the G-period4?

Problem 14.11

Runnumerical simulations of Eqs. (14.19). Prove that in order to obtain an adder, the

ingredients of a size-specific (rather than constant) production rate of the division

protein kX and a reset to zero (rather than partitioning in half in the two daughter

cells) of the division factor X turn out to be essential.

Problem 14.12

Rewrite the system of equations (14.20) in terms of protein fractions, either defined

as protein mass fractions φi ≡ Mi/Mprot or protein number fraction ψi ≡ Pi/
∑

i Pi, where

Mprot = mQQ + MPP + mRR + mXX = M − mAA. In both cases one has the obvious constraint∑
ψi = 1 =

∑
i φi. Find the connection between ψi and φi. What can be generally said

about the stationary composition of the proteome? How does the senario change if

degradation can be neglected?

Problem 14.13

For the mathematically curious readers, show that the model described in Box 14.E

far can be written in more general mathematical terms as

dXi

dt
= fi(X); dZ

dt
= h(X, Z)

V (X, Z) =
N∑

i=1
viXi + vZZ

(14.26)

where V is the volume of the cell and Xi, Z its chemical constituents. Identify the

functions fis and h. Show that the fis satisfy the property of homogeneity, fi(βX) =

βfi(X). The predictions of this model have been studied in the wider framework of

dynamical systems theory [500, 501].

Problem 14.14

By directly integrating Eq. (14.19), derive the following expression for the threshold

4Note that the adder behavior can be recovered introducing asymmetric divisions [464]
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number of division proteins Xth ≡ X(τd)

X(t) = kXs0

λ+ dX

mX

(
2

t
τd − 2− dX

mX λ
t

τd

)
=⇒ Xth = kX

λ+ dX

mX

(
sd − s02− dX

mX λ

)
. (14.27)
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Figure 14.3: Comparison of different cell-cycle models including chromosome sub-
periods proposed in the literature for E. coli – (A) The DNA replication-segregation cy-
cle divides of the cell cycle into sub-periods. The B-period is the period between cell
birth and initiation of DNA replication; the C-period is the period needed for complet-
ing DNA replication; and the D-period is the period between the termination of DNA
replication and cell division. Finally, the I-period is the period between two consecu-
tive initiations of DNA replication, which usually spans two generations. (B) Scheme
of the ‘replication-centric’ class of models in which DNA replication-segregation sets
division (first column). These models usually assume that the CD and the I periods
are adders (blue lines in the third and fourth column, respectively), in agreement with
data (red lines in the same panels). The G-period correlation pattern is a prediction of
the model in general agreement with data (yellow vs red lines in the second column).
(C) Schematic for the ‘replication-agnostic’ class of models in which a process starting
at cell birth drive division (first column). These models assume the G and I periods
to be adders (blue lines in the second and fourth panels, respectively). The C+D pe-
riod correlation pattern is a prediction of this model which does not agree with the
available data (yellow vs red lines in the third panel). (D) Schematic for the ‘concur-
rent cycles’ class of models in which two processes compete to set division through
an AND gate (first column). These models assume the I periods to be an adder (blue
lines in the fourth column) and using additional parameters predict both adders in
the G and C+D periods (yellow lines in the second and third column). (E) Plotting the
slope of the G versus the C+D-period allows to compare the different models with
data. Schematic similar Figure 4 in [453].
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Figure 14.4: Ingredients and predictions of modeling frameworks integrating sector
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X, implementing a threshold-accumulation process setting the decision to divide. (B)
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proteome sectors. The inclusion of a division protein sector X regulating cell division
allows the model to make predictions on cell size control and study the transient dy-
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Chapter 15

Economy of organ form and

function

ChristopheGoupil, Éric Herbert, Cyril Karamaoun, BenjaminMauroy, FrédériqueNoël,

and Paul Ross

Chapter overview

◦ This chapter extends the concept of economy that previous chapters have elab-

orated by considering its application to the organ and the living organisms.

◦ The development of organs in pluricellular living organisms is conditioned by a

number of factors such as nutrients, energy, and form that are here considered

in the context of the economy of the organ function

◦ The mammalian respiratory system is subject to a high degree of constraint, pri-

marily energetic andmorphometric in nature, that played a decisive role in shap-

ing the lung through evolutionary processes.

◦ The lung is the organ that is most directly responsible for respiration, a process

that involves connecting the external environment to the cellular compartment

through the ventilation.

◦ We show that the constraints on thismajor organ imply a high level of complexity

of the organ’s shape and a precise control of the ventilation.

◦ The scaling laws that govern the development and function of lung and are com-

mon to the entire mammalian class condition the lung’s growth and determine

its shape have been treated in previous works

◦ Through several examples, we demonstrate how these scaling i.e., allometric

laws control the ventilation, and the respiratory processes in general.

351
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15.1 Optimization of organs and systems

In the previous chapters, the central model of the cell has been deeply explored. On

another scale, the integration of cells into larger structures such as tissues, organs,

and entire systems in multicellular organisms requires an extension of the main con-

cepts presented in this book. Nevertheless, the completion of the multiple functions

of an organ follows the same general principles as for individual cells, including the

economic aspects.

15.1.1 Organs and constraints

The way that a cell population aggregates itself into a high-level structure, as part of

a pluricellular organism, has been determined through evolutionary processes, fol-

lowing a more general path of specialization of structures and functions. Each organ

evolved to fulfill its functions in themost optimizedmanner. This observation leads us

to interrogate the concept of optimization for such a large structure – from a cellular

point of view. In the context of organ function, optimization can be defined through

the processes by which the functions are fulfilled as best as possible while minimiz-

ing the associated cost variables. Among those variables, energy plays a central role.

Thus, one possibility for constraining the organ would be to maintain its function at

an optimal level while minimizing its cost in energy. This effect can be expressed

mathematically. Let us define the cost in energy E which depends on one or more

variables x ∈ Rn (n > 1). Furthermore, let us define one or more equality constraints to

our problem, c(x) = 0, where c : Rn → Rm. The optimization problem under constraints

comes down to finding an optimal value for x that minimizes the function E(x) while x

satisfies c(x) = 0. This results in

min
x∈Rn

E(x), such that c(x) = 0. (15.1)

The optimization under constraint problem can be solved using the Lagrangian func-

tion,

L(x, λ) = E(x) −
m∑

k=1
λkck(x),

where the λk are Lagrange multipliers. Indeed, if we assume that x∗ is the optimal

solution to the problem (15.1), then thanks to the Lagrangemultiplier theorem, there

exists a unique Lagrange multiplier λ∗ such that,

∇E(x∗) = λT
∗ Jc(x∗),

where Jc is the Jacobian of the function c. It implies that the optimal solution x∗ is a

stationary point of L, satisfying the condition of minimal energy expenditure.



Optimization of organs and systems 353

A study of the constraints on the cardiac system offers an excellent example of en-

ergy optimization, due to high consumption of the heart. The cardiac pump deliv-

ers deoxygenated blood to the lung through pulmonary circulation and brings oxy-

genated blood to the whole body through systemic circulation [502]. Interestingly,

blood pressure developed in both ventricles are not of the same order of magnitude,

with a left ventricular pressure approximately ten times larger than the right ventric-

ular one [502]. This makes sense from an energetic point of view; the heart requires

a non-negligible amount of energy to fulfill its role of blood pumping. Furthermore,

as with any mechanical system, only a fraction of the energy consumed (mainly in

the form of ATP) is converted in mechanical work – around 25% [503], the rest being

dissipated as heat. Thus, the pumping work tends to be optimized from an energy

consumption point of view. On one hand, the pressure needed to irrigate the pul-

monary circulation is low; the lung presents a small value of resistance to perfusion,

and its apex is located only centimeters above the heart position. And on the other

hand, the pressure developed in the systemic circulation must allow the oxygenated

blood to irrigate all the organs, including high-energy consumers – muscles, brain –

that located further above heart position, developing a hydrostatic pressure that the

blood flow has to overcome [502]. It is to be noted that this energetic optimization is

also connected to themetabolism requirements, with a pumping work closely related

to the body’s O2 consumption, which ensures an optimized adaptation of the cardiac

output to the body energy requirements.

Although often considered as a major aspect, this energetic constraint is far from be-

ing the only condition for a proper functioning of the organ. Other variables such

as nutrient consumption, metabolic integration or physical constraints participate in

shaping the organ function. Brain development in primates, and humans especially,

is a prime example of effect that combination of several constraints has on energetic

and nutrients availability. The underlying mechanisms that determine the evolution

towards a large and complex brain structure in humans are still debated [504]. How-

ever, it is evident that the development and normal function of this organ is depen-

dent on adequate and specific energetic and nutrients inputs. From the energetic

point of view, brain metabolism largely depends on glucose consumption. However,

in case of high consumption and/or deprivation, ketones metabolism takes place in

order to furnish a fast and rich source of energy for the organ. Ketones are catabo-

lized mainly in the liver [505], and have the important property of being able to cross

the blood-brain barrier, to the contrary of long chains of saturated fatty acids [506].

In parallel, proper brain development and function require a large input of specific

nutrients that are not common in every food source [507]. Among those, iodineand

ironappear to be essential for the brain, and exert a strong constraint on its ade-
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quate growth and functioning. The notable presence of iodine-enriched food sources

close to the sea shores, compared to traditional terrestrial food sources, is thought

to have favored the recent development of the so-called shore-based paradigm of hu-

man brain evolution i.e., that the access to seafood produce supported and enhanced

brain development in early hominid populations, leading to increased brainmass and

cognitive functions in those populations [507]. Among these considerations, let us

remind that any organ has to develop and function in specific localization and body

environment. Thus, the constraints applied to an organ and its development and

function can also be of morphometric nature.

15.1.2 Energy conversion in living systems

When energy is transferred to a system, its response manifests itself at the micro-

scopic level by the excitation of its individual degrees of freedom, and at the global

level when collective excitations are possible. In generic terms, a thermodynamicma-

chine is defined as a systemwhere an incident energy flow dispersed is converted into

an energy flow aggregated and a loss flow. This conversion is performed by a ther-

modynamic working fluid which, carrying entropy, leads to a coupling between the

respective potentials through the equations of state.

In the case of thermal machines, the dispersed form of energy is called heat and its

associated potential is temperature, while the aggregated form is called work and its

associated potential is, for example, pressure. Temperature and pressure are linked

by one ormore equations of state. The system response results from the collective re-

sponse of the microscopic degrees of freedom of the working fluid. Thus, part of the

energy received by the working fluid can be made available to a load on a global, and

possibly macroscopic, scale for a given purpose as useful work, the remainder being

redistributed (dispersed) at the microscopic level and dissipated due to internal fric-

tion and any other dispersion processes imposed by the boundary conditions [508].

Conversion efficiency is therefore closely related to the proportion of energy allocated

to the system’s collective modes.

Living organisms are open, out-of-equilibrium and dissipative systems, as they con-

tinuously exchange energy and matter with their environment [509]. Unlike classical

thermodynamic engines, for which equilibrium models can be constructed using ex-

tremal principles, such a possibility does not exist in the case of living organisms due

to the absence of truly identifiable equilibrium states and the absence of principle

for non-equilibrium systems. Nevertheless, assuming a global system close to equi-

librium, the development of a tractable thermodynamic model of metabolism can be

based on notions from classical equilibrium thermodynamics. In this approach, the

working fluid acts as a conversion medium, characterized by its thermoelastic prop-
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erties, or chemicoelastic coefficient for chemical systems.

15.1.3 The example of the lung

As an example of an organ submitted to geometric limitations, the lung has to face,

from its early development to its mature state, multiple constraints on its morphom-

etry and proper functioning. The principal role of this organ is, as well known, to es-

tablish the connection between the respiratory gases in the atmosphere and these in

circulation in the body i.e., O2 as a reactive agent, and CO2 as a by-product that has to

be eliminated from the organism. To fulfill its role, the lung has evolved in a manner

that maximizes the gas exchange surface – as diffusion is a surface phenomenon – in

a reduced thoracic volume. This surface-to-volume requirement has forged the lung

structure has it is known; an intricate dichotomic bronchial tree that conducts the air

inwards and outwards, to and from the alveolar sacs, respectively. This semi-fractal,

space-filling structure, presents the advantages of an extremely wide exchange sur-

face enclosed in a relatively small volume [502].

Themechanisms of development of the lung branching structure in a closed environ-

ment is still a debated question [510]. Indeed, the tree structure presents a series of

specific characteristics necessary for a proper functioning of the organ. Among these,

the space-filling aspect of the bronchial tree is remarkable, as it solves the problem

of the surface-to-volume constraint of the organ. In addition, the whole bronchial

tree is a self-avoiding structure, as no bronchus enters in contact with other ones

in its local environment, which ensures a proper circulation of the air in the struc-

ture. It is striking that these properties, which can be found in fractal geometries,

are observed in any well-functioning lung structure, leading to important develop-

mental questionings. For example, the pattern of branching of the bronchi, although

strongly stereotyped in the first generations starting from the trachea, appears to

follow a space-filling procedural development rather than a deterministic branching

pattern [510]. Accordingly, some authors have developed a set of hypotheses that

tend to explain these mechanisms. A group of restricted genes would encode the

steps of branching and growth of the bronchi during the organ development, ensur-

ing a proper structure of the adult lung,following procedural steps somehowencoded

in genes or groups of genes coding for periodicity, bifurcating and rotating routines.

However, to the best of our knowledge, these genes have not been determined nor

a proper molecular mechanism of stereotypical branching.

Among the questions raised by the programmedmorphogenesis approach, the link be-

tween the molecular dimensions and the organ world are still elusive. Another path

for branching procedure, which could reconcile the deterministic point of view with

the problem of the transfer of information along different orders of magnitude is the
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Figure 15.1: Proposed mechanism for the morphogenesis of biological branched
structures – In this approach, the gradient of concentration of a key molecular ac-
tivator guides the growth of specific tissue layer through the activation of the asso-
ciated receptor. In this example, the local gradient of concentration of FGF10 (black
arrows) activates the budding of the epithelium layer (branching mechanism – left). As
the tissue curvature flattens, the local concentration vanishes and the growth stops,
preventing the tissue overlap (avoiding mechanism – right) [510].

self-organizedmorphogenesis approach. Several authors [510, 511] suggested that the

branching routine of the bronchial tree is less stereotyped than thought, especially in

the central and distal generations. This hypothesis is supported by the observation

that modeling approaches using stochastic space-filling routines, constructed based

on a stereotyped proximal tree, are capable of generating tri-dimensional branched

structures that satisfy the constraints of amorphometric adult lung. On another side,

the core concept of the self-organized morphogenesis approach relies on the observa-

tion that key molecular components are necessary and sufficient for proper growth

and branching of the bronchial epithelium. Among these, the fibroblast growth fac-

tor 10 encoded by the fgf10 gene has been demonstrated to play a central role in

epithelial proliferation, whose activity is highly regulated [510].

In 2012, Clément et al. [510] proposed a scenario for the spontaneous emergence of

a tree structure. This scenario is based on the sole diffusion of a protein promoting

cell proliferation, such as FGF10, in an environment with two layers that mimic the

bronchial epithelium and the lung mesothelium.In addition, the layers present a re-

sistance to folding and are growing as a function of the received flow of proteins.This

scenario forms a model for the lung development and has been studied using math-

ematical and numerical tools. To mimic the diffusion process from the outer layer

of the organ (mesothelium) to the inner layer (bronchial epithelium), Clément et al.
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solved the Laplace equation applied on the protein concentration c:

4c = 0

Then, they considered that each layer was growing according to a function of the local

protein gradient:

dx
dt = fm (||∇c(x)||) for x in the mesothelium
dx
dt = fe (||∇c(x)||) for x in the bronchial epithelium

The functions fm and fe are increasing functions, typically with a sigmoid shape. To

avoid the epithelium to catch up with the mesothelium, fe is kept smaller than fm. A

smoothing of the layers based on a fixed characteristic size is then performed in order

to mimic the layers resistance to folding. With this model, Clément et al. observed

the spontaneous formation of branching patterns similar to those observed during

bronchial development, as depicted in Figure 15.1 and, based on an extendedmodel,

in Figure 15.2. Hence, this compact modeling approach is sufficient for observing de

novo branching and growth patterns in a simulated tissular environment. Since then,

this self-organized morphogenesis approach has been used as a framework for other

organs [512] and other branched systems [513]. To date, the question of the mech-

anisms of development of branching organs is not clearly elucidated. However, the

link between the molecular and cellular components requires further investigation,

in order to unveil the determinants at the scale of the tissues and organs.

Philosophical remark 15.A The origin of shape?

How growth and organ specialization define the shape and structure of a mature
organ is a long-debated scientific question that has not yet unveiled all its secrets
and mysteries. Organs are rarely functional during development, at least not in
the early stages. Thus, the function of an organ cannot directly drive its growth
and ultimately its mature shape. So how can development build an organ that,
when mature, has the correct shape and function? Evolution is the answer: if de-
velopment fails to achieve a functional, efficient organ, the associated organism
has little chance of being selected by evolution. But this answer raises many other
questions. What is the evolutionary cost of organogenesis? What about the bio-
logical path selected by evolution for growing an organ? Is it so robust that once
such a path has been selected, it renders all other paths inaccessible? Do these
paths and costs form bottlenecks for the organs in terms of possible shapes, func-
tions, and functional efficiencies? Insights into these questions will be given in
Section 15.3.

However, these examples of constrained organ development raises several issues

that need to be discussed in details. Among these, one can notice that the shape of

the system appears as central in the developmental considerations, especially under
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Figure 15.2: Tridimensional spontaneous emergence of a tree (budding) based on
the model of Clément et al. (2014) [514] – An eighth of the budded sphere has been
sliced out to show the branching core (blue). Notice the self-avoiding and space-filling
branching, which are commonly found in biological tree structures.

constraints.

In the next section, the respiratory system, and the lung as its central organ, will be

studied in details in light of the concepts of organ optimization. Indeed, the lung, its

structure, its functioning, its efficiency, are all the result of a series of optimization

under constraints that shaped the organ through evolution.

15.2 The lung as a model organ for optimization under

constraints

At the core of the respiration process, the lung is the organ that connects the ambi-

ent air to the blood, allowing to transport oxygen from the ambient air to blood and

carbon dioxide from blood to the ambient air. The needs of the body in oxygen and

carbon dioxide, the respiratory gases, determines the lung function, which is based

on a complex geometrical structure and on several physical and chemical processes.

15.2.1 Lung morphology, a complex structure

A basic description of the lung structure would consist in dividing it in two parts: the

bronchial tree and the exchange surface with blood. The function of the bronchial

tree is limited to the transport of the respiratory gases and no exchange occurs in

this part of the lung. It forms a cascade of bifurcating airways with cylindrical shapes.

There is an average of seventeen successive bifurcations in the human lung. The

trunk of the tree is called the trachea; it is connected to the ambient air through the

tracheo-pharyngeal pathway. The leaves of the tree are called the terminal bronchi-

oles; they are connected to the exchange surface with blood. At each bifurcation the
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size of the airways is decreasing, with a tracheal diameter of about 2 cm and a diame-

ter of the terminal bronchioles of about 0.3 to 0.5 mm. The exchange surface with blood

consists in a foam-like structure that is an assembly of exchange units called the acini.

Each acinus is also shaped as a bifurcating airway tree, but the size of the airways is

conserved at the bifurcations. There is an average of six successive bifurcations in

a typical acinus. The acinar airways are called the alveolar ducts and their walls are

garnished with bubble-like structures, the alveoli. The alveoli walls are mainly blood

capillaries, called pulmonary capillaries, and they are the location of the respiratory

gas exchanges. Each terminal airway of the bronchial tree feeds an average of two

acini. The auto-similar, multi-scaled structure of the bronchial tree and of the acini

allows the lung to contain a very large exchange surface that is folded in the thorax.

In a typical human, the exchange surface is about 70-100 m2 [502].

Since the morphology of the lung is complex, it becomes necessary to make assump-

tions in order to have a simplemodel while conserving the principal geometrical prop-

erties. Our model is then based on the assembly of self-similar trees with cylindrical

branches and symmetric bifurcations that mimic the two functional zones (see Figure

15.3). To account for the core geometrical properties of the lung, we assume that the

dimensions of the branches in the conductive tree decreases from one generation to

the next with a ratio h =
( 1

2
) 1

3 [522], while in the acinus we assume that the size of the

bronchi remains constant [522]. Note that the airways spatial distribution such as the

branching angles or the orientations of the branching planes is not taken into account

in our model since it is not really relevant for the computation of oxygen transport in

the lung.

15.2.2 Lung dynamics: where physics enters the play

The transport of the respiratory gases to and from blood involves a combination of

physical processes which ensure that the needs of the body in respiratory gases are

fulfilled.

Diffusion : no energy costs, but too weak. As blood entering the pulmonary capil-

laries has an oxygen partial pressure lower than the oxygen partial pressure in the

alveolar air, oxygen flows to the blood by the process of diffusion that tends to bal-

ance the partial pressures between blood and the alveolar air. For the lung’s point of

view, the blood acts as an oxygen sink. The transport of carbon dioxide in the lung

relies on the same processes than that for oxygen, except that blood flowing in the

alveoli membranes acts as a source of carbon dioxide. The diffusion process is pas-

sive in the lung i.e., no energy is spent by the organ to perform the transport. Notice

that this is not true from the pulmonary blood circulation point of view, as blood has

to be incessantly renewed to maintain the respiratory gas partial pressure difference
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Figure 15.3: Illustration of the lung model used in this chapter – The tree in beige
mimics the bronchial tree, where oxygen and carbon dioxide are only transported
along the branches. The tree in blue mimics the acini, where the respiratory gases
are transported along the branches. They are also captured by the alveoli that cover
the walls of the branches.

between the alveolar air and the blood. However, at the metabolic time scale, the

diffusion process has a limited range in the airway tree. Were the transport of the

respiratory gas only based on diffusion, the lung could not maintain the respiratory

gas flow at a level compatible with the mammals metabolisms. The reason behind

this limitation stands in the size of the airway tree. The pathways from the ambient

air to the respiratory zone are too long and narrow for the diffusion to provide gas

flows compatible with the metabolism of mammals. In the case of the human lung,

the typical length of these pathway is of about Lp = 30 cm [523]. The characteristic time

tp for an oxygen molecule to travel by diffusion through all such a pathway can be es-

timated using a dimensional analysis. Using Lp and the diffusion coefficient of oxygen

in air D = 0.2 cm2 · s−1 [524], the order of magnitude of tp can be estimated with:

tp =
L2

p

D
' 4500s = 1 hour and 15 minutes!

Hence, a pure diffusive transport of the respiratory gas cannot fit themammals needs.

Actually, in human, the order of magnitude of the length LD traveled by diffusion dur-

ing the typical time of inspiration i.e., ti = 2 seconds, is LD =
√
D × ti ' 6.3 mm. Thus, in the

resting human, diffusion can transport oxygen from the terminal bronchioles to the

nearby exchange surface. However, at a time scale compatible with the metabolism,

diffusion cannot reach the upper part of the bronchial tree. It cannot either reach

the deeper parts of the respiratory zone, which is non active at rest. Actually, this

last phenomenon, called the screening effect [524], plays a crucial role in the lung. It is

described in details later in this chapter. More generally, the limited spatial range of
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diffusion hasmany consequences on the living systems. An emblematic example is its

role on the size limitation of insects [525], where diffusion in the tracheal tubes is the

only mean of respiratory gas transport. It participates to the explanation of why the

increased atmospheric oxygen concentration during the Palaeozoic era allowed in-

sects to be larger than today as, following Fick’s law, the diffusive flow is proportional

to the gradient of partial pressure between the ambient air and the inner body.

Convection : the rescuer. We have seen that the diffusion process is too weak to

transport the respiratory gas through the whole airway tree. In the absence of other

transport mean, the oxygen partial pressure in the lung would decrease and the flow

of oxygen to blood would drop. Similarly, the carbon dioxide partial pressure would

increase and prevent the exchanges with blood to occur. Consequently, the air in

the lung has to be renewed in order to expel the excess of carbon dioxide and to re-

fresh the inhaled air volume with oxygen. This phenomenon is called the ventilation.

The ventilation is a dynamic i.e., time-dependent, process based on the succession

of inhalation and exhalation of a volume of air, the tidal volume, at a given rate, the

breathing frequency. Ventilation is performed thanks to a set of muscles that sur-

round the lung and modify its volume. At rest regime, the main acting muscle is the

diaphragm, located at the base of the lung. By first pulling onto the lung, this muscle

deforms the lung tissues, creating a negative pressure drop and the transport a vol-

ume of ambient air inside the lung; this is the inspiration phase. At rest, the elastic

energy stored in the tissues during the inspiration phase allows for a passive recoil

of the lung and a volume of air equal to the volume inhaled is expelled; this is the ex-

piration. Then the cycle repeats following the same procedure, at least at rest. Since

the duration of a breath cycle for a resting human is about four to five seconds, a

human performs, on average, about six to seven hundred millions breaths during

her/his lifetime.

Modeling the oxygen transport. The transport of oxygen in the lung is then driven

by three phenomena: diffusion, convection by the airflow and exchange with blood

through the alveoli walls in the alveolar ducts. The partial pressure of oxygen aver-

aged over the lumen area is transported along the longitudinal axis x of the airway.

Hence, in each airway of our idealized lung, the mean partial pressure of oxygen P

over the airway section follows,

∂P

∂t
−D

∂2P

∂x2 + u
∂P

∂x
= β

(
Pblood − P

)
, (15.2)

where D is the oxygen diffusion coefficient, u is the velocity of the airflow, β is a reactive

term and Pblood is the partial pressure of oxygen in the capillary blood. The reactive

term β mimics the exchanges with blood through the alveolar membrane. This coef-
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ficient depends on the diffusion coefficient of oxygen in water, on the solubility coef-

ficient of oxygen in water, on the thickness of the alveolar-capillary membrane, and

on the radius of the alveolar duct. It is equal to zero in the bronchial tree since no ex-

change with the blood happens in this part of the lung and is positive in the acini. The

oxygen partial pressure in blood is determined by assuming that the flow of oxygen

leaving an alveolar duct through the alveolar-capillary membrane is equal to the flow

of oxygen captured by blood, accounting for the oxygen captured by hemoglobin and

for the oxygen dissolved in plasma [502]. Finally, all generations are linked through

bifurcations by assuming continuity between generations and conservation of the

quantity of oxygen at each bifurcations.

15.2.3 The energy expenditure or the cost of breathing

Breathing is part of the basal metabolism, meaning that it is a regular andmandatory

energy cost for the maintenance of the body. Yet, natural selection, one of the main

processes driving evolution, tends to select for minimal energetic cost so that the or-

ganisms can allocatemost of their resources to their reproduction. Hence, in order to

understand breathing, it is important to determine the origin of the energetic costs

and how they are affected by the breathing process. We already pointed out that

diffusion, considered from the lung point of view, is a passive process. So, most of

the energetic costs involved in the lung function arise from the process of ventilation.

Energy is spent through the action of the muscles on the lung. This action has two

main effects: it deforms the tissues and it displaces the air along the bronchial tree.

On the one hand, the tissues are deformed due to the action of the thoracic muscles,

especially the diaphragm. This deformation is considered as elastic in the normal

range of ventilation [526], and energy is dissipated along the displacement of the tis-

sues. On the other hand, as every gas, air acts as a fluid with specific viscosity. As the

bronchial tree is an assembly of a high number of narrow tubes with decreasing size,

the energy spent for the displacement of the air in the bronchial tree is dominated

by the energy dissipated by the friction of air in the bronchi. The air kinetic energy is

negligible relatively to the dissipation. This can be summarized in term of the power

spent by the muscles (energy per unit of time):

Pm︸︷︷︸
muscle power

' Pe︸︷︷︸
elastic power

+ Pa︸︷︷︸
air viscous dissipation

.

These quantities depend on several lung characteristics, on the breathing frequency

f and on the amount of air inhaled during on breath cycle VT . This raises the trade-off

shown in Figure 15.4 and, using optimization theory, optimal ventilation frequencies

and tidal volume can be be predicted. The viscous dissipation of air in the bronchial
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Figure 15.4: Trade-off between elastic energy stored in the tissue and viscous energy
dissipated in the air circulation (exercise regime, computed from our model).

tree is characterized by the lung hydrodynamic resistance R, which is directly related

to the geometry, size, number and structuring of the bronchi [526]. The hydrody-

namic resistance is a physical quantity that represents how the energy put in the

system is divided between kinetic energy and heat energy. It connects the volume of

air displaced per unit of time, also called air flow F , to the force per unit of surface

applied to the air, also called air pressure pa: p = RF . For the same pressure applied

on the lung, the higher the hydrodynamic resistance, the lower the air flow and the

higher the dissipation. Then, the power dissipated by viscous friction of the air inside

all the bronchi can be estimated by Pa = pF = RF 2. By assuming in our case that the

velocity of the air follows a sinus function, we can deduce the power dissipated by

viscous friction as follows:

Pa = 1
4R (πfbVT )2

,

where R is the hydrodynamic resistance, fb the respiratory frequency and VT the tidal

volume.

The elastic power is characterized by the compliance C of the lung, that relates the

force per unit of surface applied by the muscles (pm) to the volume change of the

lung [527]. The compliance depends on the lung’s volume, especially when the de-

formation of the lung is high although the compliance can be considered constant

while healthy. That is why, in our case, we assume that the compliance is a constant

andwe neglect the non-linearities arising at large lung’s deformations [528]. The elas-

tic power can be estimated by integration of the volume along the inspiration phase

and it gives us,

Pe = V 2
T fb

2C
,

where C is the compliance of the lung previously defined. Finally, the total energetic
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Figure 15.5: Total power expenditure during ventilation (W) as a function of the res-
piratory frequency (s−1) for different intensities of exercise – Dots correspond to the
optimal ventilation frequency i.e., thatminimizes the dissipated power. Adapted from
[529].

cost of breathing P can be written as the sum of the power dissipated by viscous

friction Pa and the elastic power Pe. The total power has to be minimized relatively to

the tidal volume VT and the breathing frequency fb with a constraint on the oxygen flow

toblood that has tomatch the oxygenflowdemand (see Equation 15.1). Thanks to our

model previously defined, we can compute the oxygen flow to blood as a function of

tidal volume and breathing frequency and compare it to the oxygen flow V̇O2 requested

by the body at the regime considered.

Our model predicts (see Figure 15.5), for a human at rest, an optimal breathing fre-

quency of 12.2 breaths per minute and an optimal tidal volume of 497 mL, which are

very close to the average physiological values [530]. The model exhibits a robust-

ness in term of frequency perturbation around the optimal. A 5% shift in the energy

brings the frequency into a range between 8 breaths per minute up to 18.5 breaths per

minute. This effect is due to the fact that, at low regimes, a low tidal volume VT is

sufficient to perform an optimal ventilation. When the exercise intensity increases,

the power profiles as a function of the frequency become steeper and steeper and

focus the optimal value within a tighter region. It implies that a shift from the optimal

configuration at high intensities is predicted to be costly in term of energy spent. This

behavior is fully compatible with the fact that the control of ventilation is stronger at

exercise, preventing even talking. The question of the optimal conditions of ventila-

tion in human leads naturally to a series of extensions that need to be considered. We

have seen previously that the optimization under constraints occurs in almost every

organ in all the living beings. Thus, couldwe expect the presentmodel to be extended

to all mammals, as the control of ventilation is, more than probably, present in the



Allometric scaling laws for respiration and ventilation 365

whole mammalian class?

15.3 Allometric scaling laws for respiration and ventila-

tion

The answer to this question of generalization leads us to a vast scientific question that

will bring us back to the late 19th century and which is still open on many aspects.

15.3.1 The emergence of scaling relations in nature

In 2007, Savage and West published a seminal work in which they present a collec-

tion of data of sleep duration in a set of mammalian species. Among other major

results, their analysis confirmed the previous observation that the larger the animal,

the shorter the duration of its sleep cycle [531]. More precisely, the sleep duration

correlates negatively with the body mass of the mammal and follows, based on the

data from Savage &West, an interesting exponential law of the form ts = 10.1M−0.103, with

ts the sleep duration in hours during a 24 hours period and M the body mass of the

mammal in kilograms, as seen in Figure 15.6 [531]. Thus, by taking the logarithm of

both sides of the equation, one can write this sleep-to-mass relation as log ts = log 10.1

- 0.103 logM i.e., a linear relation between the logarithm of the sleep duration and the

logarithm of the mass of the animal, see Figure 15.6. As we will see later, this type of

exponential relation is now referred, in ecological sciences, as an allometric scaling.

In general, an allometric law will write Y = Y0M
b, where Y is the studied – physiological,

morphometric – property, M the mass of the living organism, Y0 and b the allometric

prefactor and exponent, respectively [532]. Actually, the concept presented by Sav-

age & West is far from being recent. The history of the study of allometric relations

dates back to the 19th century. Scientists from various disciplines started to analyze

the changes in shape and form of living beings in relation with their overall size.

15.3.2 A brief history of allometry

In a pioneer work from 1897, Eugène Dubois described the relation that guides the

evolution of brain’smass and that of the individual in a variety ofmammal species [533].

He observed that brain is smaller, relatively to the their mass, in bigger animals. He

then derived an adequate expression for this relation, such as e = c sr, where e is the

brain’s mass, s the body mass and c and r two coefficient that define the relation, with

r close to 1/2, justifying the relative decrease in brain’s mass that he observed. As far

as we know, this represents the first mathematical expression of an allometric law,

years before this term was even coined as it. It is in 1907 that Lapicque [534] had

the idea to transform Dubois’ relation in a log-log dependency, giving a straight line

representation in logarithmic coordinates that is now familiar to us, cf. Figure 15.6.
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Figure 15.6: Distribution of total sleep duration (S) in mammals – The plot is based
on data from Savage & West [531]. The data is best fitted by the red curve which
represents the corresponding allometric relation S = 10.1 ×M−0.103.

At that time, this work was purely descriptive and empirical. However, biological and

ecological data started to accumulate in the following years that led, mainly in animal

species, to a variety of scaling laws. Thus, the ubiquity of allometric relations in every

ecological discipline raised the question of the nature of the biological mechanisms

underlying their observation.

In parallel, the question of the emergence of forms in living organisms arose in the lit-

erature. One of themajor works at that time came from the Scottish naturalist D’Arcy

Wentworth Thompson, whose main contribution came from his book On Growth and

Form, first published in 1917 [535]. In this publication, he adopted the – still debated –

thesis that the living systems as we know are submitted, in addition to the process of

natural selection, to the physical laws of nature that canmodify, transform and adapt

their form and their path of development i.e., their growth. This reference publication

paved the way to the new disciplinary research field of biomathematics and, even in

present times, is still considered as a major contribution to this field. However, the

D’Arcy Thompson’s approach has not been accepted by the whole community, and

the debate is still vivid more than a century after the publication of the first edition

of his work [536]. Indeed, D’Arcy Thompson was not entirely convinced by the pure

Darwinian approach that dominated the field of developmental biology in his time.

Although a strong Darwin’s admirer, he rather considered that the paths of devel-

opment of the organisms were not dictated purely by acquired mutations and hard-

encoded routines. At the contrary, he was convinced that these paths could only

follow a number of sequences, a series of schemes that, following the laws of physics

and chemistry, would allow for the formation of the variety of shapes and develop-
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ments observed in nature [537]. Critics emerged about his teleological – in someways

– conception of evolution, or at least of emergence of form. In essence, his work was

one of his time, and his theories of forces of development were not supported by

the genetic and molecular knowledge that has since been accumulated [536]. D’Arcy

Thompson was an author of his time. He paved the way, with others developmental

naturalists, to numerous concepts in biomathematics that influenced a number of

past and present works, as discussed in Section 15.1. But D’Arcy Thompson was also

an author among his peers. Motivated by his conception of developmental shap-

ing forces, he started to correspond with a younger British naturalist named Julian

Huxley, who will later forge a prolific international career as a biologist and science

advocate, although carrying with him some controversies that are beyond the scope

of this chapter.

The scientific correspondence started slightly after one of Huxley’s major publication,

dated from 1924. In this article, Huxley studied the dynamics of growth of chelae in

a crab species whose individuals possess one small and one large chela [538]. What

seems at first a highly specific topic is enlarged by the idea to measure the mass of

the chelae relatively to the mass of the individual. Following the steps of Dubois and

Lapicque, Huxleyweighted around 400 specimens of crab and plotted in a logarithmic

scale the mass of the large chela against the total weight of the animal minus the

weight of the large chela. He then observed that the experimental data could be

joinedby a straight line in this logarithmic plot. The originality ofHuxley’swork resides

in his interpretation of the results that he obtained. He noticed that the slope k of the

regression line remained larger than one, in accordance with the observation of the

relative larger i.e., heterogonic growth of the chela compared to the growth of each

individual. He then provided a proposed mechanism for this relative growth: the

rate of cellular division in the chela is larger than the one in the rest of the body, more

precisely in a k : 1 ratio [538]. With this – still emergent –mechanistic approach, Huxley

provided for the first time a simple method for deciphering heterogonic growth of a

characteristic, thatwill be observed as a straight line of slope k > 1whenplotted against

the normalized mass of the individual in logarithmic coordinates.

Finally, the works of Lapicque, Dubois, D’Arcy Thompson and all their contemporaries

emerged in 1936 in a joint paper between Huxley and a younger scientist, Georges

Teissier, in which they agreed for the terminology of allometry and the associated

law that is now famous y = bxα [539]. Altogether, this brief section on the historical

emergence of the allometric concept in ecological sciences depicts a vibrant and ac-

tive research theme, developed in the late 19th century, which extends the Darwinian

concept of natural selection towards the emergence of growth, form and function.

However, the reader will notice that the allometric approach of these times is still
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largely descriptive, with limited causal explanations of the nature of the scaling coef-

ficients and the putative mechanisms that drive their behavior.

15.3.3 Allometry: a mechanistic approach

Many years later, a possible approach that compensates for this lack of mechanistic

causality would be found in the work of West, Brown and Enquist (WBE), published in

1997 [532]. In this major article, the authors focused on the allometries in metabolic

properties that have been described in the past decades, with the aim of developing

a new mechanistic framework that would explain these allometries i.e., be able to

derive the allometric exponents for the numerous physiological properties at stake

here. The question of the existence of a general allometry for the metabolic rate of

the living beings is a thrilling question. This would imply that all the organisms, from

the tiny bacteria to the massive trees or mammals, do possess shared mechanisms

of energy expenditure that would reflect on the presence of a common exponent all

over the different orders of magnitudes among the species. Furthermore, the expo-

nent should reflect somehow, by its value, the nature of the energetic mechanisms,

and thus could be derived by a comprehensivemodeling approach. WBE answer posi-

tively to these strong hypotheses, and developed a structured approach that focuses

on the modeling of energy and mass fluxes in biological networks – cardiovascular

and respiratory systems for example – which they consider as the common ground

for all the species [532]. The hypotheses of WBE are of strong nature, and have been

discussed largely in the literature (see for example [540]. Although this important –

and still open – debate lies beyond the scope of this chapter, it appears important to

emphasize that the WBE approach created a mechanistic, mathematical framework

for the study of allometric relations that, somehow, acted as a bridge between the

traditional descriptive allometry and the modern mechanistic approach.

15.3.4 Allometric relations for the respiratory system

As far as the respiratory system is concerned, the model of WBE appears to act as

a promising framework for the study of the allometric relations of this system [541].

Indeed, the lungs of mammals are built as a network of mass and energy transfer,

as described before, and share morphological and functional properties, raising the

question on whether the previous results for human can be extended or not to all

mammals. These properties are known to be dependent on the mass M of the mam-

mal with allometric scaling laws [532, 539]. Furthermore, the physics of ventilation,

and hence its control, is linked to the geometry of the lung. Consequently, the mor-

phological differences among mammals also affect the control of ventilation.

First, our gas transport model for the human lung presented in the previous section
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Figure 15.7: Scaling laws for lung usage – Predicted ventilation frequency (s−1 – left)
and tidal volume (L – right) as a function of the mammal mass (kg – log-log scale) at
different metabolic regimes. BMR: Basal Metabolic Rate, FMR: Field Metabolic Rate,
MMR: Maximal Metabolic Rate.

can be slightly modified to be valid for all mammals. Indeed, we know that the lungs

of mammals share invariant characteristics [530] such as the tree-like structure with

bifurcating branches and the decomposition into two parts: the bronchial tree and

the acini. The derivation of a lungmodel that depends only onmammalmass requires

to relate explicitly the morphological parameters involved in our model such as the

tracheal radius and length, with the animal mass. We used the datasets from [532].

The oxygen transport and exchange now occur in the idealized lung that has been

generalized to fit any mammal. The transport of oxygen in the mammals lung is still

driven by the tree phenomena: convection by the airflow, diffusion and exchange

with blood through the alveoli walls. Hence, in each airway, the partial pressure of

oxygen follows the convection-diffusion-reaction equation (15.2) previously defined.

The exchange coefficient β is dependent on the mammals mass since it depends on

the radius of the alveolar duct which follows an allometric law. Finally, we search for

the minimum of the total energetic cost of breathing P relatively to the tidal volume

VT and the breathing frequency fb with a constraint on the oxygen flow to blood that

has to match the oxygen flow demand V̇O2. Since allometric scaling laws for oxygen

flow demands for mammals at basal, field and maximal metabolic rates are available

in the literature [542, 543, 544, 545], we can compute the desired oxygen flow V̇O2

depending on the mammal mass and on the metabolic regime.

Our model predicts that breathing frequencies and tidal volumes follow indeed allo-

metric scaling laws. Furthermore, these laws canbederived in three differentmetabolic

regimes: basalmetabolic rate (BMR), fieldmetabolic rate (FMR) andmaximalmetabolic
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rate (MMR), as seen in Figure 15.7,

fBMR
b ≈ 0.61M−0.27 Hz, V BMR

T ≈ 6.1M1.04mL,

fFMR
b ≈ 1.17M−0.31 Hz, V FMR

T ≈ 11.8M0.97mL,

fMMR
b ≈ 1.37M−0.17 Hz, VMMR

T ≈ 29.7M1.01mL.

It predicts exponents that are in accordance with the values observed in the liter-

ature. Indeed, breathing rate at BMR has been estimated to follow the law fBMR
b '

0.58 M− 1
4 Hz [546] and tidal volume to follow the law V BMR

T ' 7.14 M1 mL [532]. At other

metabolic rates, less data is available in the literature except for the breathing rate

of mammals at MMR, estimated to follow the law fMMR
b ' 5.08 M−0.14 Hz [547]. The valida-

tion of our model at both minimal and maximal metabolic regimes suggests that its

predictions should be coherent whatever the regime, in the limit of the availability of

its input parameters. This indicates that the mechanical power spent for ventilation

might have driven the selection by evolution of the ventilation patterns.

The idealized representation of the bronchial tree and of the exchange surface used

in this study accounts for five core characteristics common to all the mammals lungs,

as identified in the literature [530, 523, 529, 532]: a bifurcating tree structure; an ho-

mogeneous decrease of the size of the bronchi at the bifurcations; the size of the

trachea; the size of the alveoli; and the surface area of the exchange surface. These

characteristics are the main determinants for the tuning of the ventilation in order to

minimize its energetic cost. This indicates that once themetabolic regime is fixed, the

morphology of the lung is probably the primary driver of the physiological control of

ventilation. We tested this hypothesis by altering, in our analysis, the allometric scal-

ing laws related to the geometry of the lung. We observed corresponding alteration

of the laws predicted for tidal volumes and breathing frequencies. Since morphology

itself has probably been selected by evolution in order tominimize the hydrodynamic

resistance in a constrained volume [523], morphology and ventilation patterns are in-

tertwined together in order for the lung to function with a low global energetic cost

i.e., a low hydrodynamic resistance R and a low ventilation cost P(VT , fb) that also de-

pends on R. Interestingly, our representation of the lung does not account for inter-

specific differences known to exist between the lungs of mammals, such as different

degrees of branching asymmetry, monopodial or bipodial lungs, etc. [548].

As in the human lung, the transport of gases in the mammalian lung relies on the

two major processes of diffusion and convection. We know that, in humans, the dif-

fusive transport in the alveolar ducts is submitted to a physical phenomenon called

the screening effect [524]. Indeed, as gas exchanges occur through the alveoli walls

lining the alveolar ducts, the diffusion can transport the respiratory gases only on a
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Figure 15.8: Localization in terms of lung generation index of the conductive zone
and of the exchange surface (acini) as a function of the mammal species mass (kg)
– Both the green line (rest regime – left) and the red line (maximal exercise regime –
right) represent the transition from a transport of the respiratory gas by convection
to a transport by diffusion. Adapted from [541].

limited range of generations. This range depends on the physico-chemical properties

affecting the diffusion of the gas in the alveolar air and through the alveolo-capillary

membrane. This range has been estimated to be of about four generations for oxy-

gen and one for carbon dioxide [524] in humans. The description of the screening

effect in mammals requires several additional hypotheses. Because of the screening

effect, the alveolar ducts far from the convection–diffusion transition get only a small

diffusive oxygen flow, as most of the available oxygen has been captured by the alve-

olar ducts closer to the transition. In these deep parts of the acini, the oxygen partial

pressure gradient between the deoxygenated blood and the alveolar ducts, which

drives the oxygen capture by blood, is low. Carbon dioxide is mostly evacuated from

the alveolar ducts very close to the transition: they are refilled by carbon dioxide

too quickly for the deeper ducts to be drained of gas by diffusion. Hence, the ducts

far from the transition cannot be relieved of the carbon dioxide and the exchange

with blood in these ducts is low. As a consequence, the deeper part of the exchange

surface is not available for the exchanges. The location of the transition between

convective and diffusive transport of the respiratory gas drives the magnitude of the

screening, and this transition depends on the geometry of the airway tree and of the

ventilation regime. The screening phenomenon in mammals has been studiedmath-

ematically in [541]. Within the framework of the models hypotheses, the authors

show that the number of conductive airways NconD and the number of alveolar ducts

Nad follow allometric scaling laws:

NconD ∝ Nad ∝ M
7
8 .
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Additionally, they show that the number of airways NconV in which the gases are trans-

ported by convection also follows an allometric scaling law. This law depends on the

ventilation regime:

NconV ∝



 M0.56 if M < 150 kg

M0.405 if M ≥ 150 kg
at rest

M0.63 at maximal exercise

These equations translate into linear relationships in terms of log(M), as shown in Fig-

ure 15.8. Rest regime is represented on the left plot and maximal exercise regime on

the right plot. The figure indicates that, at rest regime, the small mammals use their

lung very efficiently, as only a few of their acini generations are fed by diffusion, as

indicated by the green curve in Figure 15.8. Hence, the screening effect in small mam-

mals is weak. However, this suggests that they have few reserve for increasing their

metabolism at exercise [524, 541]. As suggested by the red curve on the right plot

in Figure 15.8, the shift of the transition between convection and diffusion to deeper

generations does not increase significantly the available exchange surface. To the

contrary, large mammals are submitted to large screening effects at rest regime, and

a large part of their exchange surface is not used. However, during exercise, the shift

of the transition towards a deeper lung generation allows to recruit a significantly

larger exchange surface.

It is to benoted that the predictions of ourmodel for the localization of the convection–

diffusion transition in idealized lungs lead to good estimations of the allometric scal-

ing laws for tidal volumes and breathing frequencies, indicating that the morphologi-

cal parameters included in our model might drive primarily the control of ventilation.

Through this short introduction to allometry of constrained organs, we started to de-

cipher the latent mechanisms of development of a constrained organ inside a class

of organisms. The example of the lung is emblematic: how a complex and central or-

gan can develop, specialize and evolve to fulfill the needs of organisms, while sharing

among species its particularities, and efficiency.

15.4 Concluding remarks

Biological optimization, making the most effective use of limited resources within a

set of given constraints, is a multifaceted subject that has been a source of content

for countless articles and a stimulus for related discussion. Tomake the optimization

of biological systems more readily comprehensible, this chapter has focused atten-

tion on a single organ, the human lung, and used it as a stage on which to introduce
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basic principles and a canvas on which to illustrate their application. The range of

constraints, for the most part energetic or morphometric in nature, that have condi-

tioned the development of the lung over the long course of its evolutionary history

and given the mammalian respiratory system its particular shape is expansive. The

characteristics of these constraints and the conditions that govern their interplay can

be represented as mathematical equations that form the basis for models that de-

scribe the scale of the effect constraints have on biological systems and illuminate the

magnitude of their impact. The insights into the lung’s form that these models yield

also provide amore thorough understanding of its function, characterizing, for exam-

ple, modulations in the regulation of respiratory ventilation that occur in response to

changes in the body’s state – e.g., when the body is at rest or in motion; when it is

healthy or when its health is compromised. The models are also a source of results

that can be abstracted and subsequently applied to both human organs and those

of other species that are larger and more complex. Considered within this broader

context, they can also be seen as integral elements of much larger systems and as

instances of the general allometric laws to which those systems adhere. The signif-

icance of the larger orthogenetic and phylogenetic implications that this abstraction

of specific models into generalized laws carries cannot be overstated and discussion

of those implications is vigorous and far-reaching. Through these discussions, many

aspects of allometry have been illuminated and a deeper understanding of the com-

plex systems that determine the ways individuals, species and systems function and

interact has been achieved. Yet many of the field’s underlying mechanisms and gov-

erning principles remain to be discovered. This chapter is the prelude to a journey

into a space at the intersection of biology, ecology, andmathematics that the allomet-

ric universe occupies and the fuel for the exploration of the mysteries those hidden

mechanisms are waiting to reveal.

Recommended readings

◦ For a proper introduction to respiratory physiology, in healthy and pathological con-

ditions: John B. West, Respiratory Physiology: The Essentials [502].

◦ A reading for a deeper understanding of the lung morphometry: Ewald R. Weibel,

Morphometry of the human lung [522] and one for the respiratory gases exchange:

Ewald R. Weibel, The Pathway for Oxygen: Structure and Function in the Mammalian

Respiratory System [530].

◦ A nice thesis about (in)organic mechanisms of morphogenesis: Raphaël Clément,

Morphogénèse et développement pulmonaire [551].

◦ The old but gold textbook in morphogenesis of living beings: D’Arcy Wentworth

Thompson, On Growth and Form [535].
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◦ On allometric relations, in general: Robert H. Peters, The Ecological Implications of

Body Size [542] and from a modeling approach: G. B. West et al., A general model for

the origin of allometric scaling laws in biology [532].

Problems

Problem 15.1

Recover the expression of the power dissipated by viscous friction Pa and the elastic

power Pe while assuming that:

◦ the air velocity is a sine function,

◦ the power obtained is a mean value over inspiration.

Hint: The instantaneous elastic power is written as follow,

Pe = 1
C
V (t)F (t),

where C is the compliance of the lung, V (t) is the volume of the lung and F (t) is the air

flow.

Problem 15.2

The localization of the transition between convective and diffusive transport can be

estimated with the Péclet number. This number measures the relative influence of

the transport of oxygen by convection on the transport by diffusion. It depends on

the generation and can be written as follow,

Pei(t) = liui(t)
D

,

where li is the length of the bronchi of generation i, ui(t) is the air velocity, and D is the

diffusion coefficient.

(a) Compute the average of the time-dependent Péclet number Pei(t) over a half

breath cycle while assuming that,

◦ the length of the bronchi of generation i depends on the length of the trachea

as follow : li = l0h
i,

◦ the air velocity in generation i depends on the air velocity in the trachea as

follow, ui(t) = u0(t)
(
2h2)−i,

◦ u0 is a sine function,

◦ the tidal volume is the integral over the inspiration of the product of the cross

section of the trachea and the velocity of the air, VT =
∫ T/2

0 πr2
0u0(t)dt.

The expected expression is :

Pei = 2VT fbl0
πr2

0D

(
1

2h

)i

.
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(b) The generation k at which the transition between convection and diffusion oc-

curs is computed by solving the equation Pek = 1. Compute the value 2k for which

Pek = 1.
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Physics box 15.B Energy conversion in muscles

Despite the complexity of biological systems, it is possible to apply the Onsager’s
phenomenological approach of locally linearized non-equilibrium thermodynam-
ics Onsager [515]. Through this approach, it is possible to identify the non-
equilibrium processes that link the degradation of the chemical potential of food
by its digestion into a macroscopic form of energy made available for muscular
work. By applying Onsager’s approach and integrating it with macroscopic sys-
tems, we can describe the behavior of certain thermodynamic conversion ma-
chines under mixed boundary conditions [508, 516, 517]. In the case of Dirich-
let boundary conditions the system is driven by the potential differences, mean-
while in Neumann boundary conditions the system is driven by the fluxes. Mixed
conditions are located between these two extreme configurations. These lead to
feedback effects and the emergence of complex dynamic behaviors [518].
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(A) Illustration of muscle as an energy converter. The incoming energy flow Φ+ is converted
into mechanical power P = FM IM and a waste fraction Φ−. IM is the so-called metabolic
intensity. (B) Plot of the system’s response under varying metabolic intensities IM . The
response extends from the basal resting point to the point of exhaustion, via the point of
maximum work production.

If we apply this description to the case of living organisms that have been re-
duced to chemical conversion machines, we obtain a thermodynamic formalism
(see Figure above) that regains the phenomenological description of the muscular
response proposed by Hill [519, 520]. In Hill’s phenomenology, themetabolic force
FM and the contracting velocity v are linked by three constants represented by the
equation FM = c

v+b −a. The thermodynamic formulation gives FM = Fiso+Rfb

IM +IT
IT −(RfbIT +RMIM )

where IM ∝ v. The thermodynamic approach gives us access to the physicalmeaning
of the parameters i.e., Fiso is the isometric force of themuscle, IT defines the thresh-
old of acceptable metabolic intensity, RM is the viscous resistance to displacement
and Rfb the feedback resistance induced by the mixed conditions previously men-
tioned .
A proxy for the flow released by the muscle is the quantity of oxygen breathed
in during ventilation [521]. To achieve an effort of a given intensity, the level of O2

adjusts accordingly. Naturally, this quantity cannot grow indefinitely, and is limited
by the absolute size of the organ that enables this exchange and by the relative size
of this organ compared to the size of the individual.
For an individual, this is an intrinsic limitation on the ability to produce effort. So,
depending on the size of the individual, which constrains its volume, the respi-
ratory system must be optimized to maximize the flow of O2. By comparing inter-
species data and using a generic description, it is then possible to find an allometric
law, as we shall see in this chapter.
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Math box 15.C Conditions for the numerical simulations

Our model takes as input the ventilation parameters: the tidal volume VT (in mL)
and the breathing frequency fb (in min−1) and outputs the mean amount of oxygen
exchanged with blood over a respiratory cycle. To validate our model, we per-
formed computations at rest by assuming that a human breathes around 12 times
per minute and inhales around 500 mL of air for each breathing cycle. With these
parameters, our transport model gives an oxygen flow exchanged with blood of 230

mL ·min
−1
, which is close to the average physiological value of 250 mL ·min

−1
[502].
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Physics box 15.D The cost of oxygen transport

The allometric relationship found applies to the pulmonary organ. This is a crucial
link in muscular activity, and therefore in locomotion or any activity requiring an
effort, evenmoderate. As such, its propertiesmust also be present during physical
exercise. A useful quantity, based on oxygen consumption V̇O2 and frequently used
in the literature, is the Cost of Oxygen Transport (COT). This corresponds to the
ratio V̇O2/v with v the locomotion velocity. Using the correct metabolic conversion
factor COT is the energy dissipated per unit length. It is known empirically that
COT shows a local minimum corresponding to an optimal situation in which the
minimum energy is dissipated per unit length. Building on this property, Tucker in
1975 [549] noted that this minimum follows distinct allometric laws according to
themajor locomotion families, runners, swimmers and fliers, see the Figure below.
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The COT is defined here as the ratio P/(M v), with P the power production and v the
velocity as a function of the body mass M for several species (adapted from [549]).
Green are swimmers, red are fliers, black are runners, blue are engines designed
by engineers. Continuous lines correspond to linear fits on data shown with filled
markers.
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Physics box 15.E The cost of oxygen transport as a function of speed

Inwalking or running animals, the cost of oxy-
gen transport (see Box 15.D) depends on an
animal’s speed, as shown in the figure on the
right. On top is oxygen consumption V̇O2 of a
horse plotted against the speed v/v? for walk
(red stars), trot (blue dots), and gallop (green
squares), and their fits with our modeling.
Bottom is COT for the same set of data. The
three gaits data are normalized by themuscle
fiber ratio leading to a unique master curve.
Based on themodel proposed in Box ”Energy
conversion”, it has been demonstrated that a
living system can be described as a collection
of N identical, standard, muscle units operat-
ing in parallel [550]. Then the COT expression
becomes:

COT = N

NH

(
a0 k + rM k2 v + b

v

)
(15.3)

with a0 k a constant, rM a dissipative term and b

the basal consumption i.e., out of effort. This
last three parameters describing the stan-
dard muscle unit. v/v*
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We are then allowed to derive the minimum of the COT as an intrinsic property of
energy conversion machines, COTmin ∝

√
rM b. It is found independent of the number

of standard muscle fibers involved in the effort. Thus, effort is a combination of
the number N of standard muscle fibers used and their characteristics b and rM .
The parameterization of the standard muscle fiber depends on the specific imple-
mentations for an organism. It can be expected to be identical for a single animal.
We have carried out this work in the case of the horse, which exhibits three well-
differentiated gaits: walk, trot and gallop (see the Figure above. We show that the
COT curves, or equivalently V̇O2, of the different gaits can be found using N as the
only adjustable parameter, leaving the muscle fiber parameters unchanged.
As muscle is the most common means of producing power in animals, the typical
behavior described here should be found in the most general way, without bar-
riers between species, genera or classes. Of course, muscular implementation is
specific to each animal, constrained by its own characteristics (intensity of effort,
size, etc.), which suggests the origin of the observed scaling laws.
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Metabolic flux v concentration/time mmol/L/ sec
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Reaction rate ν concentration/time mmol/L/ sec

Maximal velocity νmax concentration/time mmol/L/ sec

Catalytic rate (enzyme efficiency) κ 1/time mmol/L/ sec

Apparent catalytic constant kapp 1/time 1/ sec
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General rate constant k 1/time 1/ sec
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Forward catalytic constant k+
cat 1/time 1/ sec

Backward catalytic constant k−
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Michaelis-Menten constant KM concentration mmol L−1

Inhibition constant KI concentration mmol L−1
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Full stoichiometric matrix N = (nij) dimensionless 1

Internal stoichiometric matrix Nint = (nij) dimensionless 1
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Flux (as an objective) J concentration/time mmol/L/ sec

Thermodynamics

Equilibrium constant Keq - -

Reaction Gibbs free energy ∆rG
′ energy/mol kJ mol−1
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′◦ energy/mol kJ mol−1

Thermodynamic driving force θ dimensionless 1

Enzyme cost and efficiency

Reversibility efficiency term ηfor dimensionless 1

Saturation efficiency term ηsat dimensionless 1

Regulation efficiency term ηreg dimensionless 1

Enzyme molecular mass m mass/mol Dalton = g mol−1

Cell physiology

(Specific) cell growth rate µ 1/time 1/h

Total enzyme level etot concentration mmol L−1

Yield on substrate Y - -
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meter m

liter L

Joule J

Kelvin K

mol mol

Physical variables and constants

Symbol Name Value Unit

t Time s or h

T Temperature K

R Boltzmann’s gas constant ≈ 8.31 J K−1 mol−1

NA Avogadro number ≈ 6.022 · 1023 mol−1

Mathematical symbols

Name Symbol

real numbers R

nonnegative integers N

integer numbers Z
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differential (as in d/dt) d
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sign of a vector sign(·)



444 LIST OF BOXES

List of abbreviations

General

WT Wildtype (non-mutant, non-modified cell strain)

Biochemical compounds

ADP Adenosine diphosphate

ATP Adenosine triphosphate

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

rRNA ribosomal RNA

tRNA transfer RNA

mRNA messenger RNA

Biochemical pathways

ED Entner-Doudoroff pathway (a version of glycolysis)

EMP Embden-Meyerhof-Parnas pathway (a version of glycolysis)

Modeling methods
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DA Direct Approach
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Reading recommendations
Cellular economics - and systems biology more generally - builds on knowledge from

different disciplines and on a history of ideas in biology and beyond. Below you will

find a number of books, articles, and online resources that provide background infor-

mation. For readings specific to individual chapters, please see the “Recommended

readings” sections at the end of each chapter.

Recommended textbooks

Books on Biochemistry and cell biology:

Cornish-Bowden, Athel. Fundamentals of Enzyme Kinetics; Wiley Blackwell, 2012 (4th

Edition). A detailed presentation of enzyme kinetics that also considers the broader

implications of the field for areas such as systems biology and bioinformatics. The

book devotes particular attention to the areas of multi-enzyme complexes and coop-

erativity.

Alberts Bruce, Heald Rebecca, et al. Molecular Biology of the Cell; Garland Science,

2022 (6th Edition). A comprehensive textbook of cell biology which covers expression

and transmission of genetic information, internal organization of cells, and behavior

of cells in multicellular organisms. The book also presents experimental methods

used to investigate cells and understand their behavior. Free access online (5th Edi-

tion): archive.org/details/MolecularBiologyOfTheCell5th.

Swanson, Michele, S., Joyce, Elizabeth, A. and Horak, Rachel, E.A. Microbe; ASM

Press, 2022 (3rd Edition). An introductory textbook to microbiology that incorporates

both fundamental principles and accessible case studies to illustrate microbiology’s

social and environmental relevance.

Milo, Ron and Phillips, Rob et. al. Cell Biology By TheNumbers; Taylor & Francis, 2016.

The book addresses the relative paucity of quantitative information about biological

systems. The authors propose ways to quantify biological processes and objects and

develop a “sense” for applicable scales and sizes. Free access online: book.bionum-

bers.org.

Phillips, Rob, Kondev, Jane, et al. Physical Biology of the Cell; Garland Science, 2012

(2nd Edition). This textbook presents molecular and cell biology through the lens of

physical biology. Biological phenomena are treated as coherent systems founded

on physical principles. The overarching topic is that quantitative biological intuition

builds on applying few fundamental physical models, and this logic can be used to

address a wide range of biological problems.

https://archive.org/details/MolecularBiologyOfTheCell5th
http://book.bionumbers.org/
http://book.bionumbers.org/
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Harold, Franklin M. The Way of the Cell: Molecules, Organisms, and the Order of Life;

Oxford University Press, 2003. The text offers connections between physics, chem-

istry, and biology and how insights gained from integrative approach help to under-

stand the processes and principles that make the creation of living organisms from

inanimate chemicals possible.

Books on Biothermodynamics and biological physics:

Haynie, Donald T. Biological Thermodynamics; CambridgeUniversity Press, 2008 (2nd

Edition). An introduction to bioenergetics focused on the physical nature of energy

transformation in living cells. The book covers relevant concepts of physics, like the

lawsof thermodynamics, Gibbs free energy, statistical thermodynamics, binding equi-

libria and reaction kinetics.

Nicholls, David, G and Fergueso, Scott J. Bioenergetics; Academic Press, 2013 (4th

Edition). A textbook on cellular energy flows and intracellular thermodynamics. The

book takes recent advances in chemiosmotic energy conversion into account; the

book also covers the role that mitochondria play in the life and death of the cell.

Nelson, Philip. Biological Physics; Chiliagon Science, 2020. The book covers bio-

physics, bioengineering andnanotechnology andhighlights recent advances inmolec-

ular motors, self-assembly, and single-molecule manipulation. It also describes prac-

tical applications, and contains exercises designed to develop modeling skills of com-

puter programming in languages such as MATLAB and Python.

Books on Systems Biology:

Klipp, Edda, Liebermeister, Wolfram, et. al. Systems biology, A Textbook; Wiley-

Blackwell, 2016 (2nd Edition). An overview of basic concepts in systems biology sup-

plemented with illustrative examples and practical case studies. The book presents

an integrative approach to living systems combining biology, computer science, and

engineering.

Voit, Eberhard. A First Course in Systems Biology; Garland Science, 2018 (2nd Edition).

Amoderately advanced introduction to systems biology. The book prioritizes concep-

tualization and development of computational models and the ways theoretical work

enhances understanding of diverse biological systems.

Sauro, Herbert. Systems Biology: Introduction to Pathway Modeling; Ambrosius Pub-

lishing, 2020. The book covers fundamentals of biochemical modeling, including a

review on differential equations and stochastic models. The book highlights the in-

creasingly prominent role of computer models inmodern systems and synthetic biol-
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ogy. Book includes hands-on modeling exercises to illustrate computational models

methods for designing, building, simulatingmodels; performing stability analysis, and

parameter estimation.

Palsson, Bernhard. Systems Biology: Simulation of Dynamic Network States; Cam-

bridge University Press, 2011. An introduction to the mass action stoichiometric sim-

ulation (MASS) approach to transform stoichiometric reconstructions into dynamic

models making use of metabolomic and fluxomic data. The MASS approach aims at

depicting integratedprocesses that dependonaprecise accounting of smallmolecules

and proteins.

Alon, Uri. An Introduction to Systems Biology: Design Principles of Biological Circuits;

Chapman & Hall, 2006. The book presents design principles of biological systems

such as stability, robustness, and optimal design, and how they can be applied to

deepen the understanding of living cells. The book provides a mathematical frame-

work that can be used to better understand and design biological circuits by high-

lighting the recurring circuit elements that make up biological networks.

Szallasi, Zoltan, Periwal, Vipul, and Stelling, Joerg. System Modeling in Cellular Bi-

ology: From Concepts to Nuts and Bolts; MIT Press, 2010. An overview of systems

modeling in cell biology. The book incorporates concepts from biology, computer sci-

ence, mathematics, statistics, physics, and biochemistry and considers how they can

be integrated to study biological systems. The book also covers multiple modeling

paradigms and discusses their suitability for modeling different biological systems.

Savageau, Michael, A. Biochemical Systems Analysis: A Study of Function and Design

in Molecular Biology; CreateSpace Independent Publishing Platform, 2010. A primer

to identifying and defining biological design principles for systems like complex bio-

chemical pathways, intricate gene regulation circuits, network interactions within the

immune system, plasticity of neural networks, and the pattern formations of cellular

networks. The book addresses integration of multiple viewpoints, the relation be-

tween the behavior of intact systems and their molecular components; unifying de-

sign principles that give meaning for vast diversity of alternative molecular designs;

higher-level theory and quantitative prediction.

Books onMetabolic control:

Heinrich, Reinhart and Schuster, Stefan. The Regulation of Cellular Systems; Springer,

1996. The book covers the mathematical analysis of enzymatic systems such as stoi-

chiometric analysis, enzyme kinetics, dynamical simulation, metabolic control analy-

sis, and evolutionary optimization.

Fell, David. Understanding The Control of Metabolism; Frontiers in Metabolism Ser.
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No. 2; Ashgate Publishing Company, 1997. The book offers a comprehensive theory

ofmetabolic regulation, metabolic control analysis, that encompasses the philosophi-

cal underpinnings of regulation and control concepts. It also reviews and summarizes

experimental methods that add a new dimension to the study of metabolism and its

regulation in complete multicellular organisms, isolated tissues, organs and individ-

ual cells.

Sauro, Herbert. Systems Biology: An Introduction to Metabolic Control Analysis; Am-

brosius Publishing, 2018. This book provides an introduction to the field of Systems

Biology and demonstrates how computational models can be used to understand

the dynamics of complex biological systems and how the individual components that

comprise those systems interact to produce complex behaviors. The book details

the fundamentals of modeling biological pathways, such as metabolic, signaling, and

gene regulatory networks and instruction in the application of tools that can create

those models.

Books onMathematics:

Slivanus, P. Thompson and Gardner, Martin. Calculus Made Easy; St. Martin’s Press,

1998 (revised/expanded edition). An introduction to Calculus for beginners and those

with no previous background. Essentials of differentiation and integration are cov-

ered: the power rule, product rule, and chain rule for differentiation, as well as basic

techniques of integration. The book takes a different approach to calculus by em-

phasizing an intuitive understanding of calculus rather than insisting on a rigorous

formalism. The applications-oriented approach highlights the applicability of those

concepts to real-world cases. Free pdf at calculusmadeeasy.org.

Johnston, Nathaniel. Introduction to Linear and Matrix Algebra; Springer, 2021. The

book introduces key concepts of linear algebra, such as vectors, matrices, systems of

linear equations. The book primarily covers vector spaces and their subspaces, and

linear transformations between vector spaces. The book is full of examples in which

linear algebra is used in fields such as computer science, physics, and engineering,

e.g., least-squares solutions, Markov chains, and cryptography.

Strang, Gilbert. Introduction to Linear Algebra; Wellesley-Cambridge Press, 2023 (6th

Edition). The book covers theory and applications of vector algebra and geometry,

systems of linear equations, vector spaces and subspaces, orthogonality, determi-

nants, and eigenvalues and eigenvectors, and linear statistical analysis. Later chap-

ters concern contemporary applications and computational issues in linear algebra.

Strang, Gilbert. Calculus; Wellesley-Cambridge Press, 1991 (2nd Edition). This book

is a thorough review of both single-variable and multivariable calculus. The book

https://calculusmadeeasy.org/
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makes use of visual methodologies (diagrams) and illustrative examples to aid under-

standing and enhance the learning experience. Examples highlight the application of

calculus to a variety of domains such as physics and engineering and economics.

Lay, David, Lay, Steven, and McDonald, Judi. Linear Algebra and Its Applications;

Pearson, 2014 (5th Edition). The book provides a basic introduction to linear algebra,

illustrated by a broad selection of case studies. The emphasis is on developing a

conceptual view of the subject and an understanding of why, and not just how, certain

methods are used. Problems and cases presented demonstrate how linear algebra

can be applied to various fields.

Strogatz, Steven. Nonlinear dynamics and chaos: With applications to physics, biol-

ogy, chemistry, and engineering; CRC Press, 2000. An exploration of concepts related

to dynamical systems and nonlinear behaviors that exhibit unpredictable or chaotic

behavior and cannot be easily predicted by simple equations. The book covers the

basics of dynamical systems, characterizing the properties of non-linear systems and

the points of equilibrium. The book also describes temporal dynamics of systems.

Finally, it considers fractals and unique properties of chaotic systems with practical

examples.

Books on Information theory:

Cover, Thomas A. and Thomas, Joy A. Elements of Information Theory; Wiley Series

in Telecommunications and Signal Processing; Wiley-Interscience, 2006 (2nd Edition).

The book considers the theoretical underpinnings and practical application of infor-

mation theory. It also provides a thorough review of information theory’s constituent

elements: entropy, data compression, channel capacity, rate distortion, network in-

formation theory, and hypothesis testing.

Bialek, William. Searching for Principles; Princeton University Press, 2012. The book

explores the intersection of theoretical physics and biology and argues that the fun-

damental principles of physics can be applied to living systems and used to better un-

derstand their behavior. The book advocates for an interdisciplinary approach that

integrates insights from physics, biology, and mathematics to develop a deeper un-

derstanding of how living organisms behave and function.

Book on Economics:

Core ECON. Economics for a Changing World. A free textbook offering a new approach

to teaching and learning economics, supported by an extensive collection of online

resources. Written by a global collective of economists. All content is freely available

at www.core-econ.org.

www.core-econ.org
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Classical books, relevant to cell biology and the “economy of the cell”

Brasier, Martin. Secret Chambers: The Inside Story of Cells and Complex Life; Oxford

University Press, 2012. This book draws on insights from paleontology, biology, and

history of science in its exploration of the evolution of complex life on Earth. It focuses

specifically on how cells developed the capacity for organization and complexity using

an investigation into the origins of eukaryotic cells, the fundamental elements of all

complex life forms, as illustration.

Zimmer, Carl. Microcosm: E. coli and the New Science of Life; Knopf Doubleday, 2009.

This book describes the role E. coli has played in defining the history of biology - from

the discovery of DNA to more recent advances in biotechnology. The book highlights

the bacterium’s malleability, mutability, and survivability. Methods which exploited E.

coli’s inherent malleability have modified and repurposed the bacterium to produce

a range of beneficial products from drugs to fuels. Because it mutates in near real-

time, E. coli has also been a source of insight into the process of evolution. Detailed

examination of its genome has revealed a record of billions of years of evolutionary

history. Finally, the book highlights the numerous strategies E. coli uses to survive,

from practicing chemical warfare to building microbial cities.

Monod, Jacques. Chance and Necessity: An Essay on the Natural Philosophy of Mod-

ern Biology; Vintage Books, 1972. Monod argues that life should be understood as a

result of natural processes that do not adhere to a predetermined purpose or follow

a predefined design: it arose by chance and that was then conditioned by natural

selection. Hence the book’s central thesis is that the observed evolution of life and its

diversity is the product of “Chance” - random mutations in genetic material and ”Ne-

cessity” the deterministic laws of physics and chemistry that govern these mutations.

Together, “Chance” and “Necessity” explain the evolution and diversity of life.

Prigogine, Ilya and Stengers, Isabelle. Order Out Of Chaos; Bantam, 1984. The text

reconciles order with chaos and synthesizes concepts of time and chance to form a

lens through which thermodynamics can be appreciated and its attendant laws can

be better understood. In doing so, it offers a provocative view of the universe and

novel insights into humankind’s position within it.

Harold, Franklin M. In Search of Cell History: The Evolution of Life’s Building Blocks;

University of Chicago Press, 2014. The book presents research into the history of the

cell and the debate conclusions from that research have generated while describing

the evolution of cellular organization, the origin of complex cells, and the incorpora-

tion of symbiotic organelles.

Lyons, Sherrie L. From Cells to organisms: re-envisioning cell theory; University of

Toronto Press, 2020. The book integrates the history of science with fundamental
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biological concepts and provides context that draws on the nature of scientific prac-

tice and rise of ideas. The book shows how discoveries, debates, and scientific pro-

cesses regarding understanding of cells and organisms shaped modern biology. The

focus on controversy highlights the iterative nature of science, showing how scientific

knowledge evolves through argument, testing, and reinterpretation of evidence. The

book connects past and present by describing how cell theory laid the foundation for

the development of fields such as molecular biology, biochemistry, and genetics.

Niklas, Karl J. Plant Allometry: The Scaling of Form and Process; University of Chicago

Press, 1994. The author seeks to apply allometry to studies of plant evolution, mor-

phology, physiology, and reproduction and shed light on the relationship between

organ size and plant form and physiology.

Rosen, Robert. Optimality Principles in Biology; Springer, 1967. The text concentrates

on conceptual and theoretical aspects of cost functions and the decisive role they

play in the achievement of optimality in biological systems. It focuses in particular on

the relationship between extremization and stationarity, and the significance of the

necessary conditions for stationarity.

Rosen, Robert. Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fab-

rication of Life; Columbia University Press, New York, 1991. A treatise on complex

biological systems that calls into question “reductionism”, the belief that all complex

systems can be broken down (reduced) to their constituent parts. The goal of this

approach is to effect more rigorous analysis.

Schrödinger, Erwin. What is life? WithMind andMatter andAutobiographical Sketches;

Canto Classics (Cambridge University Press reprint), 2012. The book investigates the

nature of life from the physics perspective and speculates on the age-old question

of the relationship between mind and matter. Throughout the book, the author at-

tempts to reconcile biology and quantumphysics, in order to demonstrate how seem-

ingly chaotic processes of living organisms in fact obey the laws of physics whilemain-

taining order and stability. Some of the hypotheses articulated in the book laid the

conceptual foundation for molecular biology, e.g. the supposition that the key to life

lies in molecular structures that store and transmit information.

Cornish-Bowden, Athel. The Pursuit of Perfection: Aspects of Biochemical Evolution;

Oxford University Press, 2004. The book explores the interplay of biochemistry and

evolutionary biology, the two being implicitly connected and that each can only be

understood fully in the context of the other. The book also argues for a more bal-

anced approach to science: in light of Nature’s complexity and unpredictability, per-

fect models are unattainable; we should strike a balance between accuracy and prac-

tical application. Diversity of biological systems is a prime example of this. The book
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examines how natural selection optimizes biochemical processes and enzymes but

stops short of achieving absolute perfection due to constraints like energy efficiency,

environmental fluctuations, and genetic variation.

West, Geoffrey. Scale: The Universal Laws of Growth, Innovation, Sustainability, and

the Pace of Life in Organisms, Cities, Economies, and Companies; Weidenfeld & Nicol-

son, 2017. This book presents the theory of scale that is grounded in the realization

that universalmathematical laws govern complex systems in nature, society, and eco-

nomics. These so-called scaling laws reflect underlying efficiencies and constraints

based on how energy, resources, or information are distributed across networks. The

book draws from biology, physics, and complexity theory to explain the mathemati-

cal principles that govern the scaling of both living systems and social organizations:

cities, companies, and organisms.

Dawkins, Richard. The Blind Watchmaker: Why the Evidence of Evolution Reveals a

Universe Without Design; Norton & Company, 1986. Dawkins makes the case for the

theory of evolution through natural selection and in doing so refutes the intervention

of the divine (metaphorically referred to as the “Watchmaker”). The book highlights

the differences between human design and planning and the way natural selection

works. Drawing adistinctionwith the originalmetaphor for the presence of the divine,

the book concludes that the evolutionary process, on further investigation, reveals

itself to be more similar to that of a blind watchmaker.

Classical articles that shaped the thinking in our field

Jacob, François. “Evolution and Tinkering” ; Science, volume 196, issue 4295, 1977.

The article elucidates the concept of evolution by viewing it through the lens of “tin-

kering”. It proposes that consideration of the cumulative effects of history on the

evolution of life leads to an alternative account of the patterns that characterize the

history of life on earth.

Gould, Stephen Jay, Lewontin, Richard. The spandrels of San Marco and the panglos-

sian paradigm: a critique of the adaptationist programme; Proceedings of the Royal

Society B: Biological Sciences, 205(1161), 581–598, 1979. This paper is a critique of

the adaptationist view of evolution that the authors illustrate by drawing an zanal;ogy

to an architectural feature called the spandrel. The adaptationist school holds that

most biological features adaptations and that these adaptations are the result of evo-

lutionary pressures that have favored their development because they offer some

advantage to the organism in its environment. Countering the adaptationist view,

the authors of the critique posit that just as the spandrel, a triangle-shaped space

between arches in structures like the Basilica of San Marco, is a byproduct of the

arches and domes that are the Basilica’s constituent elements but can be artistically
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decorated, making them look intentional many biological traits may be byproducts of

other structural necessities, not direct adaptations. In fact, these traits may not serve

any specific adaptive purpose but have come into being as a result of constraints, like

the need to maintain structural integrity, or as side effects of other adaptations.

Lazebnik, Yuri. Can a biologist fix a radio?— Or, what I learned while studying apop-

tosis; Cancer Cell, 3, 179-182, 2002. The paper offers a critique of the way systems

biology, in particular, approaches the study of living organisms through the analogy

of the way an engineer approaches the diagnosis and repair of a broken radio. En-

gineers typically understand systems holistically while the approach of a biologist is

characteristically reductionist. The reductionist approach to amalfunctioning radio is

to isolate and count radio’s components without fully understanding how they inter-

act with one another as parts of a larger, integrated system. The paper argues that

biologists should follow the example of engineers in taking a more integrative and

systems-based approach: an understanding of how an entire system functions is the

key to identifying and diagnosing problems. The approach the paper advocates takes

the form of improved models and frameworks that enable a better understanding of

the complex interactions that characterize biological systems.

Newsholme, Philip. Mapping life’s reactions: a brief history of metabolic pathways

and their regulation; The Biochemist Volume 31, Issue 3, 2009. The article provides

a historical review of discovery of metabolic functions and assembling them into

metabolic pathways. This period begins in the early 20th century with a highlight

of contributions made by German chemists such as Meyerhof and Krebs. The pa-

per charts advances in the understanding of metabolic regulation and the refine-

ment of mathematically-grounded methods for accurately and adequately modeling

metabolic pathways from the post-war era. Finally, it extends the account into the

current time with a description of the advent of metabolomics and the evolution of

systems biology.

Recommended online videos and podcasts

Milo, Ron. Lectures on “Cell biology by the numbers” The lectures, accompanying the

book “Cell biology by the numbers”, invite viewers to think about cells quantitatively.

Ron Milo shows that knowing a few important numbers (or looking them up in the

BioNumbers database) and using them for rough estimates gives an intuitive sense

for how cells function!

TEDx talk “A sixth sense for understanding our cells”: www.youtube.com/watch?v=JC7WnzM2Lsc

Full BioNumbers lectures: www.youtube.com/channel/UChCzuzoZp5NheAPWH5Yo-

GWw

Lercher, Martin J., and Yanai, Itai. Night Science. Series of editorials in Genome

https://www.youtube.com/watch?v=JC7WnzM2Lsc
https://www.youtube.com/channel/UChCzuzoZp5NheAPWH5YoGWw
https://www.youtube.com/channel/UChCzuzoZp5NheAPWH5YoGWw
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Biology (Springer Nature) 2019-2022, and podcast 2021-ongoing. The title, ”Night

Science”, draws on a term coined by the biologist Francois Jacob to characterize the

significant parts of scientific research that occur “behind the scenes”. This iteration on

the original concept charts the decline of innovation and creative thinking in Science

in favor of a focus on near-term results and financial gain. It also offers prescriptions

for restoring the creative spirit to science and revitalizing innovation.

Website: night-science.org

Materials: www.biomedcentral.com/collections/night-science

Podcast on Spotify: open.spotify.com/show/6berzd2rX6rpJQ6CPnbOtI?si=2176cbb795f24c6a

Khan Academy. Free Math Courses. Khan Academy offers free math courses, in-

cluding advanced topics like differential equations, linear algebra, and multivariable

calculus. These courses feature video tutorials, practice problems, and step-by-step

solutions, making complex topics like systems of equations, vector spaces, and partial

derivatives easier to grasp. The lessons are self-paced and adaptable.

Website: www.khanacademy.org

https://night-science.org/
https://www.biomedcentral.com/collections/night-science
https://open.spotify.com/show/6berzd2rX6rpJQ6CPnbOtI?si=2176cbb795f24c6a
https://www.khanacademy.org/


Appendix A

Appendix “Cell metabolism”

A.1 Dynamics ofmetabolism: experimental evidence and

model-based explanations

The high-level of connectivity among reactions, together with the plurality of molec-

ular level mechanisms that can arise in enzyme-mediated reactions, gives metabolic

systems the capacity to display rich dynamic behaviors [61, 90]. Here, we highlight

some of the illustrative experimental observations on thesemetabolic dynamics, and

their possible model-based explanations.

A.1.1 Flux switching / regulation

We have introduced above the redox-based, electron flow view of metabolism. A

common electron donor inmetabolism is glucose, while a common electron acceptor

is oxygen together with the associated, membrane-bound electron transport chain

(ETC). The ensuing metabolic pathway linking glucose oxidation to oxygen reduction

is termed as ‘respiration’, resulting in formation of CO2 (from full oxidation of glu-

cose) and water (from reduction of oxygen, cf. Fig. ??). However, it is possible for cell

metabolism to stop the sequential oxidation of glucose (or other sugars) at an inter-

mediate level. In this case, the ensuing metabolism is termed as ‘fermentation’ due

to production of partially oxidized carbon compounds such as acetate and ethanol

(Fig. A.1) [51].

One of the earliest observation on metabolic dynamics is a shift from pure respira-

tion into fermentation or respiro-fermentation with changing conditions. This shift,

known as contre-Pasteur, Warburg, or, Crabtree effect, is described initially in yeast

and mammalian cells, especially cancerous cells. The respiration to fermentation

shift happens under lack of electron acceptors or with increasing growth rate. While

a shift into fermentative pathways due to lack of electron acceptors can be intuitively

understood as the only route to sustain electron flow, a similar shift due to increased

459
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`contre-effect Pasteur`
("Crabtree effect")

respiration
(O2)

substrate
(sugars)

fermentation
(internal NAD+/NADH "neutrality")

Figure A.1: Respiration-fermentation switch – Cartoon representation of the respi-
ration and fermentation pathways. There is an observed switch of metabolic fluxes
between these pathways, from full respiration to fermentation or a combination of
respiration and fermentation, as glucose levels (and consequently growth rate) in-
creases. It is postulated that this relates to a limitation in the respiration and ETC
system, but the molecular basis of the switch is not fully clear with several, equally
plausible hypotheses postulated.

carbon availability or growth rate are non-intuitive as they occur under the continued

presence of strong electron acceptors such as oxygen.

A dominant concept to explain the switch to respiro-fermentation has been the idea

of ‘overflowmetabolism’. It postulates that this switch should be seen as an overflow,

arising due to limitations in respiration not being sufficient in sustaining metabolic

fluxes in the face of increasing substrate availability. The dynamic regulation and

origin of this respiro-fermentation switch is still a focus of significant systems biology

research. Hence, this topic is discussed further in other chapters of this book with

several alternative models presented for its underlying causes.

It must also be noted that, while respiro-fermentation switch is commonly referred to

as ‘overflowmetabolism’ (due to excretion of fermentation products such as acetate,

lactate and ethanol), the phenomenon of overflow, i.e. excretion of energy rich com-

pounds is not limited to fermentation. Excretion of amino acids and vitamins seem

particularly common, and it is not clear in these cases what type of metabolic flux

switching happens or how it happens.

Flux switching / regulation - flux sensors, branch point dynamics and dynamical

flux regulation How can we understand cells switching their metabolic fluxes with

changing external or internal conditions. As discussed above, one possibility is that

cells alter the expression levels of their various enzymes, so to achieve a re-distribution
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of fluxes (given that enzyme levels are directly involved in the determination of fluxes,

see Eq. (3.8)). This kind of enzyme-level regulation can be mediated through regula-

tion of transcription factors by specific signaling molecules, including metabolites.

The latter case is explored in models of central metabolism, and it was shown that

fructose-1,6-bisphosphate could act as a ”flux sensor”, conveying information about

the glycolytic flux onto key transcription factors regulating glycolytic enzymes.

While regulation of enzyme levels can alter flux levels, this type of regulation can be

made more sensitive if the coupling between enzyme and flux levels can be made

more nonlinear. It has been shown that such nonlinear coupling of flux and enzyme

levels can arise at branching points in metabolism [59]. In particular, branch points

(as a metabolic motif) have been shown to give rise to ultrasensitivity - a system dy-

namics feature that describes the situation when a given input to a system results in

more than a proportional change in its output. When enzymes at the two branches

of a branching point have highly differing affinities for the substrate (i.e. different KM

values, see Eq. (3.8)), then alterations of the maximal rate of one enzyme with higher

affinity to the substrate can result in a nonlinear effect on the flux into the other

branch of the branching point [59]. Thus, branching points can be one structural

motif that can result in switch-like, nonlinear flux changes within metabolism.

It is clear that changing of enzyme levels can regulate fluxes, and can do so in an

abrupt, switch-like fashion through structural motifs such as branching points. How-

ever, regulation of enzyme levels via transcription factors is found to not capture all

observed flux changes in experiments. This suggests that cells might be able to

regulate fluxes by other means as well. Recently, one such possible mechanisms is

proposed to be the co-substrate pools [65]. For example, in ametabolic branch point,

where the two branches involve different co-substrates, regulating the pool sizes of

those two co-substrates can induce flux switching at the branch point.

A.1.2 Bistability

Bistability is introduced above, and refers to a dynamical system having three steady

state, two of which are dynamically stable and can be attained by the system. When

bistable systems exist in cell metabolism, their combination with population level

variance (i.e. noise) in enzyme levels or activity can lead to bimodal distribution of

metabolic fluxes (i.e phenotypes) in isogenic population of cells. In this context, it is

notable that significant level of variance is seen in several metabolic parameters, in-

cluding sugar uptake, ATP levels, and expression levels of the enzymes involved in

glycolysis and the TCA cycle.

Bistability inmetabolic responses is experimentally implicated in the context of respi-

ration to fermentation switch, andwhen carbonmetabolism is initiated on glucose or



462 Appendix “Cell metabolism”

when it switches from glucose to other carbon sources. In particular, the latter stud-

ies found sub-populations, within isogenic populations (i.e. no mutations), that show

different metabolic responses to changing conditions. Experiments with isotope la-

beled carbon indicated that these sub-populations emerged at the time of the shift

in carbon source is induced, i.e. in response to changing conditions, and in a manner

dependent on the concentration of the new carbon source. This suggests that the

metabolic system implements bistable dynamics, such that changes in external glu-

cose concentrations can lead some cells to shift to a new metabolic steady-state flux

distribution, while others remain at their original steady state.

Bistability - negative feedback via substrate inhibition There have beenmany theo-

retical studies indicating the possibility of bistability within simple enzymatic reaction

systems. Bistability is shown to be possible even in a single enzymatic reaction, involv-

ing allosteric regulation, or in a system of few coupled enzymatic reactions. A partic-

ular ‘reaction motif’ that has been studied extensively is a two-enzyme cyclic reaction

system, where a substrate is converted into a product and then back again, with both

forward and backward reactions usually involving different enzymes (see Fig. A.2).

It is common, in these models, that the enzyme catalyzing the forward reaction is

assumed to be regulated by substrate inhibition, or by substrate inhibition coupled

with product activation. This motif is found in several locations within metabolism,

particularly around dehydrogenases, such as lactate dehydrogenase, and kinase/

phosphatase pairs, such as those involved around fructose-6-phosphate, that can

convert differentmetabolites back and forth, using theNAD+/NADHor ADP/ATP pairs

as reaction partners.

These theoretical findings are supported by several in vitro re-constitution experi-

ments that confirmed bistability experimentally using enzyme preparations of pyru-

vate kinase, lactate dehydrogenase, and isocitrate dehydrogenase enzymes and their

corresponding partners resulting in cyclic reaction schemes.

It is notable that many of these models incorporated negative feedback via empirical

alteration of a Michaelis-Menten type reaction rate model (i.e. one of the approaches

wementioned in the paragraph above on allosteric ratemodels, see 3.12). This raises

the question about the actual biochemical mechanisms that can lead to bistability in

a enzyme-mediated reaction model. In a recent study, it was shown that the pres-

ence of multiple enzyme-substrate complexes, as would be the case in an enzyme

with multiple substrate binding sites, creates a potential in the reaction system for

bistability [80] (see Fig. A.2). Thus, multi-site enzymes could be points of multistabil-

ity generation in metabolic systems and any larger models featuring such enzymes

or inherently including feedback regulation can demonstrate bistability.
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A.1.3 Oscillations

Sustained and damped oscillations are common dynamics in nonlinear systems and

can arise from a combination of positive and negative feedbacks [86]. In metabolic

systems both types of oscillations are seen in vivo or in situ, with cell extracts, where

concentrations of all observed metabolites are found to oscillate over time. In the

case of experiments involving cell extracts, thesemetabolite oscillations had a period

ranging from few to tens of minutes. In these experiments, oscillations are verified

not to be due to artificial changes in ATP dynamics arising in the cell extract prepa-

rations, and oscillations could be entrained by controlled glucose additions. This

shows that there is an inherent ability for oscillatory dynamics in the underpinning

enzymatic reaction system. This ability is suggested to be linked to the enzyme phos-

phofructokinase (PFK), which catalyzes the phosphorylation of fructose-6-phosphate

into fructose-diphosphate in the glycolysis pathway and is allosterically regulated.

In vivo, oscillatory dynamics are observed to occur within the central carbon pathways

and displaying a phase of tens ofminutes up to several hours. Metabolic oscillations

were demonstrated at single cell level and are found to be autonomous of, but cou-

pled with, the cell cycle oscillations. Additional studies across cell populations found

that cells can synchronize metabolic oscillations under some conditions, and pro-

posed several possible mediators for such synchronization, including acetaldehyde,

hydrogen sulphide, carbon dioxide, and media pH.

Oscillations - intertwined negative and positive feedbacks Several mathematical

models of the reaction catalyzed by the enzyme phosphofructokinase (PFK) in the

glycolysis pathway has shown that oscillations are possible to arise from the dynam-

ics of this reaction alone. These models incorporate some of the observed allosteric

regulation of PFK both by its substrates and products, resulting in intertwined nega-

tive and positive feedbacks.

It must be noted that some of these models, and others, use the same basic mod-

els that show bistable behavior (as discussed above) and extend them with in- and

out-fluxes of involved metabolites, to display oscillations. While these theoretical

demonstrations of specific enzymatic schemes leading to oscillations have not been

explored in detail experimentally, metabolic oscillations are readily observed both

in vivo and in vitro, as discussed above. Models, involving some of these proposed

synchronization molecules, were also developed and could reproduce experimental

findings.
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A.2 Derivation of enzymatic rate laws

Enzymatic reactions can be modeled using a mechanistic model of enzyme binding

and catalysis. The general approach is to develop a ‘cartoon’ model of the physical

steps in a reaction. This cartoonmodel usually takes the form of a series of reactions,

involving either binding / unbinding events or chemical conversions. Once a model is

developed one can write down ordinary differential equations (ODEs) based on these

reactions, and assuming each reaction to be governed by mass action kinetics (see

Section 3.2.3). The ODEs can be simplified using certain assumptions, or sometimes

just kept as is, before applying a quasi steady-state assumption (which states the

enzyme-substrate complexes to be in steady-state). This assumption would allow

us to solve the ODE for the enzyme-substrate complex(es ) at steady-state. We then

enter these solutions into the ODE for the product, so to obtain a reduced system and

a specific rate law for product formation. This approach forms the basis of obtaining

simplified rate laws, that is, a reduced ODE for the rate of product formation, for

enzymatic reactions.

A.2.1 Derivation of the single substrate, irreversible rate law

This is the most generic model of an enzymatic reaction that has been developed/

studied by Leonor Michaelis (1875 – 1947) and Maud Leonora Menten (1879 – 1960),

and their contemporaries. It involves the following reaction scheme, where a sub-

strate binds to an enzyme to form a enzyme-substrate complex, gets converted into

a product, and then released from the enzyme:

S + E
k1−−−−⇀↽−−−−k2

ES
k3−−−−⇀↽−−−−k4

EP
k5−−−−⇀↽−−−−k6

P + E. (A.1)

We can simplify this reaction system by assuming that (1) the transition between en-

zyme complexes ES and EP are instantaneous and are therefore considered as a sin-

gle entity, e.g. es, and (2) that the release of product and enzyme is irreversible. The

scheme now becomes:

S + E
k1−−−−⇀↽−−−−k2

ES k3−−−−→ P + E. (A.2)
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We can now write a set of ODEs to describe the dynamics of this reaction system -

using mass action kinetics. The ODEs are as follows:

ds
dt = −s · e · k1 + es · k2

de
dt = −s · e · k1 + es · (k2 + k3)

dc
dt = s · e · k1 − es · (k2 + k3)

dp
dt = es · k3

whereweused the small letter notation to represent the concentration of each species,

e.g. “e” for the concentration of the enzyme, E, and “es” for the concentration of the

enzyme-substrate complex, ES. At this stage, we can see that if we can formulate “es”

as a function of “s”, we can provide a simpler ratemodel that relates production of the

product, P, to the level of the substrate, s. To achieve this we make several additional

assumptions. First, we will assume that the total level of the enzyme is conserved,

i.e. e + es = C, where C is a constant (referred to as etot in the main text). This assump-

tion effectively means that total enzyme levels are fixed in the timescale of reaction

dynamics. This assumption already allows us to re-define the ODEs and reduce their

number to three from four - since, we can now express e, as a function of es. The new

ODEs look like this:

ds
dt = −s · (C − es) · k1 + es · k2

des

dt = s · (C − es) · k1 − es · (k2 + k3)

dp
dt = es · k3

Second, we will assume that the binding/unbinding of substrate to the enzyme hap-

pens much faster than release of product from the enzyme-substrate complex. This

assumption, together with the additional assumption that enzyme levels are much

lower than substrate levels, allows us to consider the enzyme-substrate complex to

remain constant throughout the reaction. In other words, we consider the enzyme-

substrate complex to be in a ‘quasi steady-state’. This allows us to solve the second
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ODE from above for steady-state:

des

dt = 0 = s · (C − es) · k1 − es · (k2 + k3)

es · (k2 + k3) = s · (C − es) · k1

es · (k2 + k3) = sC · k1 − s · es · k1

es · (k2 + k3 + s · k1) = s · C · k1

es = s · C · k1

(k2 + k3 + s · k1)

Wehave now an expression for “es”, whichwe can simply introduce to theODE system.

We have effectively reduced our ODE system from a three variable system into a two

variable one:

ds
dt = −s · (C − s · C · k1

(k2 + k3 + s · k1) )k1 + s · C · k1

(k2 + k3 + s · k1) · k2

dp
dt = s · C · k1

(k2 + k3 + s · k1) · k3

The secondODE describes the rate of change in product, P, as a function of substrate,

S. It is a rate model for this enzymatic reaction, and holds under the assumptions we

made in its derivation. It is known as the Michaelis-Menten kinetic rate model and is

commonly expressed as:

v = s · etot · kcat

KM + s

where etot is equal to C and represents total enzyme concentration, kcat is equal to k3

and is known as the maximal catalytic rate of an enzyme, and KM is equal to (k2 + k3)/k1

and is known as the Michaelis-Menten coefficient of the enzyme. Plotting this rate

against increasing substrate concentration would show that the rate is a ‘saturating

function’ of s, i.e. the rate approaches a threshold point - given by νmax = etot · k3 as sub-

strate increases. The enzymatic nature of the reaction introduces a limiting factor on

the reaction rate! This saddle point is actually a underpinning point for some of the

constraint-based methods discussed in this book.

A.2.2 Derivation of a two substrate, irreversible rate law

See Problem 3.2

A.2.3 Derivation of the single substrate, reversible rate law

We now return to the reaction scheme we considered in the above section:

S + E
k1−−−−⇀↽−−−−k2

ES
k3−−−−⇀↽−−−−k4

EP
k5−−−−⇀↽−−−−k6

P + E.
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The corresponding ODE system, written only for the key variables es, ep, and p, is as

follows:

des

dt = e · s · k1 + ep · k4 − es · (k2 + k3)

dep

dt = e · p · k6 + es · k3 − ep · (k4 + k5)

dp
dt = ep · k5 − e · p · k6

As above, wewill now introduce the assumptions of (1) total enzyme being conserved,

and (2) the quasi steady-state, but this time for both of the enzyme-substrate and

enzyme-product complexes. We will denote total enzyme concentration as C, as be-

fore, and use these two assumptions to express es and ep in terms of each other, and

the other variables. Let us first proceed with es ;

des

dt = 0 = e · s · k1 + ep · k4 − es · (k2 + k3)

es · (k2 + k3) = (C − es − ep) · s · k1 + ep · k4

es · (k2 + k3 + s · k1) = (C − ep) · s · k1 + ep · k4

es = C · s · k1 + ep · (k4 − s · k1)
(k2 + k3 + s · k1)

We carry the same derivation for ep;

dep
dt = 0 = e · p · k6 + es · k3 − ep · (k4 + k5)

ep · (k4 + k5) = (C − es − ep) · p · k6 + es · k3

ep · (k4 + k5 + p · k6) = (C − es) · p · k6 + es · k3

ep = C · p · k6 + es · (k3 − p · k6)
(k4 + k5 + p · k6)

We see that we have a symmetry in the expressions for es and ep, in that the two

expressions can be derived from each other by a replacement of variables (k1, k4, k2, s) →

(k6, k3, k5, p). Keeping this symmetry in mind, we now attempt to eliminate one of the
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complexes from the equation for the other:

ep · (k4 + k5 + p · k6) = C · p · k6 + es · (k3 − p · k6)

ep · (k4 + k5 + p · k6) = C · p · k6 + C · s · k1 + ep · (k4 − s · k1)
(k2 + k3 + s · k1) · (k3 − p · k6)

ep · (k4 + k5 + p · k6) = C · p · k6 + C · s · k1k3 − C · s · k1 · p · k6 + ep · (k4 − s · k1) · (k3 − p · k6)
(k2 + k3 + s · k1)

ep · (k4 + k5 + p · k6) · (k2 + k3 + s · k1) = C · p · k6 · (k2 + k3 + s · k1) + C · s · k1k3 − C · s · k1 · p · k6+

ep · (k4 − s · k1) · (k3 − p · k6)

ep · (k4 + k5 + p · k6) · (k2 + k3 + s · k1) = C · p · k6k2 + C · p · k6k3 + C · s · k1k3 + ep · (k4 − s · k1) · (k3 − p · k6)

ep · ((k4 + k5 + p · k6) · (k2 + k3 + s · k1) − (k4 − s · k1) · (k3 − p · k6)) = C · p · k6k2 + C · p · k6k3 + C · s · k1k3

ep = C · p · k6 · (k2 + k3) + C · s · k1k3

(k4 + k5 + p · k6) · (k2 + k3 + s · k1) − (k4 − s · k1) · (k3 − p · k6)

ep = C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

Note that, in the above equation set, we have dropped the dot notation from multi-

plication of parameters for simplicity of expression. Based on the above argument

of symmetry, or by following the same steps for “es”, we can show that we will have a

similar expression with different parameters in the numerator:

es = C · s · (k1k5 + k1k4) + C · p · k6k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

With these expressions for es and ep at hand, we can now derive an expression for e:

e = C − es − ep

e = C − C · s · (k1k5 + k1k4) + C · p · k6k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

− C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

e = C − C · s · (k1k3 + k1k5 + k1k4) + p · (k6k2 + k6k3 + k6k4)
(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

e = C · k3k5 + k2k5 + k2k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

We are now ready to substitute all these expressions into the ODE for the product,
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so to obtain our rate law:

dp
dt = C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4) · k5

− C · k3k5 + k2k5 + k2k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4) · p · k6

dp
dt = C · s · k1k3k5 − p · k2k4k6

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

We can somewhat simplify this expression by defining the following composite rate

constants:

KS = k3k5 + k2k5 + k2k4

k1 · (k3 + k4 + k5)

KP = k3k5 + k2k5 + k2k4

k6 · (k2 + k3 + k4)

k+
cat = k3k5

k3 + k4 + k5

k−
cat = k2k4

k2 + k3 + k4

and substituting them into the rate expression from above, to get:

dp
dt = v = C · k

+
cat
KS

·

s− p ·
k

−
cat

KP
k

+
cat

KS

1 + p
KP

+ s
KS

This reaction rate is referred to as the Haldane kinetic rate law, named after Jack

Burden Sanderson Haldane (5 November 1892 – 1 December 1964). It can be re-

expressed by recognizing the fact that the fraction entering as a multiplier for the

product concentration is actually equivalent to the equilibrium constant of the re-

action scheme drawn above, at the beginning of this section, when we assume the

reaction proceeding in the forward direction, i.e. towards product formation:

k−
cat

KP

k+
cat

KS

= k2k4k6

k1k3k5
= 1/Keq

This allows us to re-express the Haldane rate law as:

v = C · k+
cat · s/KS

1 + p
KP

+ s
KS

· (1 − p/s

Keq
)

This re-arranged expression is interesting becausewe can recognize that the last term

is related to the thermodynamic Gibbs free energy of the reaction, allowing us to
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finally derive:

v = C · k+
cat · s/KS

1 + p/KP + s/KS
· (1 − e∆rG′/RT )

where ∆rG
′ is the Gibbs free energy of reaction for given substrate and product levels,

considering forward direction, and R and T stand for the gas constant and tempera-

ture respectively. This rate law shows that forward reaction rate will be independent

of thermodynamics, when the reaction free energy is highly negative (i.e. thermody-

namically highly favored), but the reaction ratewill decrease as Gibbs free energy gets

close to zero.

A second, faster derivation of this rate law is found by noting that the ODEs for des

dt and
dep

dt are linear in e, es and ep, and can therefore be solved with linear matrix algebra. One

may write: 
s k1 −(k2 + k3) k4

p k6 k3 −(k4 + k5)

1 1 1



e

es

ep

 =


0

0

C

 , (A.3)

where the first two rows of the matrix correspond to des

dt = 0 and dep
dt = 0, and the last row

represents conservation of total enzyme concentration. The equilibrium concentra-

tions of e, es and ep are then found by left-multiplying both sides of the equation by the

inverse of this matrix. The obtained results are the same as given above.

A.2.4 Derivation of two-substrate, reversible rate law with simulta-

neous binding

The two-substrate case is described by the following reaction scheme:

S1 + S2 + E
k1−−−−⇀↽−−−−k2

ES1S2
k3−−−−⇀↽−−−−k4

EP1P2
k5−−−−⇀↽−−−−k6

P1 + P2 + E,

Where we assume that binding and unbinding of the substrates and products occurs

simultaneously. Proceeding as above we let e, es1s2, ep1p2, s1, s2, p1 and p2 denote the con-

centrations of E, ES1S2, EP1P2, S1, S2, P1 and P2 respectively. The differential equations for

es1s2, ep1p2 and p1 + p2 are:

des1s2

dt
= e · s1 · s2 · k1 + ep1p2 · k4 − es1s2 · (k2 + k3)

dep1p2

dt
= e · p1 · p2 · k6 + es1s2 · k3 − ep1p2 · (k4 + k5)

d(p1 + p2)
dt

= ep1p2 · k5 − e · p1 · p2 · k6.

Proceeding as in the single substrate case, we note that the the ODEs for des1s2
dt and

dep1p2
dt are linear in e, es1s2 and ep1p2, and that the total enzyme concentration e + es1s2 + ep1p2
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is constant, denoted C.


s1s2k1 −(k2 + k3) k4

p1p2k6 k3 −(k4 + k5)

1 1 1




e

es1s2

ep1p2

 =


0

0

C

 . (A.4)

We therefore see that the results for the two-substrate case are the same as for the

single substrate case, with s replaced by s1s2 and p replaced by p1p2. This result is de-

pendent on the assumption that binding/unbinding of substrates/products occurs

simultaneously.

A.3 A simple model illustrating product activation

This model demonstrates that allosteric regulation of an enzymatic reaction by its

product can create a bistable system. In this simple example, we consider enzymatic

production of a metabolite (labelled ’x’) and its non-enzymatic consumption. It is as-

sumed that the metabolite allosterically regulates the enzyme that produces it. The

listing uses the Antimony format [552] which can be easily converted into SBML [278].

An online converter can be found at sys-bio.github.io/makesbml/

1 // The following model admits three steady-states at:

2 // x = 0.325, x = 1.671, and x = 0.873

3 // The first reaction step `-> x' uses a rate law that models

4 // positive feedback via the product x. The constant 0.2

5 // is to ensure that the lower steady-state is non-zero.

6 // The statement `ext Xo' indicates that the species Xo is fixed.

7

8 ext Xo

9 Xo -> x; (vo*x^n)/(1 + x^n) + 0.2

10 x ->; k1*x

11

12 k1 = 0.65

13 n = 4; vo = 1

14 x = 0

Listing A.1: Model illustrating bistability

1 # Equivalent model as a differential equation in python:

2 def ode (x, t):

3 vo = 1

4 n = 4

5 k1 = 0.65

https://sys-bio.github.io/makesbml/
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6 return [((vo*x**n)/(1 + x**n) + 0.2) - k1*x]

Listing A.2: Equivalent model as a differential equation in python
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(A) Allosteric enzyme model
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(B) Multi-site enzyme model
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Figure A.2: Cartoon representations and brief analysis results of two enzymatic mod-
els capable of bistability. (A) Allosteric enzyme model. The first model considers an
enzyme that can convert a substrate (S) into a product (P) and that is allosterically
regulated by its own substrate. This regulation takes the form of inhibition and is im-
plemented mathematically in the rate of the enzyme - black colored equation. This
model results in a nonlinear curve for the relation between rate of production of P
at steady state and the total concentration of substrate and product in the system,
Stot (black curve on the top right panel). The intersections of this curve with the lin-
ear curve for the relation between rate of consumption of P at steady state and Stot

(red curve on top right panel). We can see that the model is capable of resulting
in three intersections, i.e. three steady states of the system. (B) Multi-site enzyme
model. The second model considers instead of allostery, an enzyme that binds mul-
tiple substrates. This results in several enzyme-substrate complexes depending on
the number of binding sites - 3 sites in the model shown. The resulting model can be
solved for the steady state values of flux through each enzyme complex against Stot

(shown in red and blue colors on the bottom right panel). The sum of these gives the
rate of production of P at steady state (black curve on the bottom right panel). This
model can also result in a non-linear production curve and three steady states. For
further discussion of these models, see relevant citations.
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Appendix B

Appendix “Optimization of

metabolic states”

B.1 A model of central metabolism in Escherichia coli

Metabolite name Biomass stoichiometric coefficient
AcCoA -41
ADP 547
2-oxoglutarate -14
ATP -547
H2O -547
Pi 547
CO2 2
CoA 41
DHAP -5
G6P -4
NAD+ 178
NADH -178
NH3 -139
2-oxoglutarateAcetate -24
PEP -32
Pyruvate -38
E4P -5
R5P -13

Table B.1: Stoichiometry of biomass reaction – R70

Reaction ID EC number Reaction name Formula
R1 2.7.1.69 pts Glucose + PEP 
 G6P + Pyruvate
R2r 5.3.1.9 pgi G6P 
 F6P
R3 2.7.1.11 pfk F6P + ATP 
 FBP + ADP
R4 3.1.3.11 fbp FBP + H2O 
 F6P + Pi

R5r 4.1.2.13 ald FBP 
 DHAP + G3P
R6r 5.3.1.1 tim G3P 
 DHAP
R7ra 1.2.1.12 gap G3P + NAD+ + Pi 
 BPG + NADH
R7rb 2.7.2.3 pgk BPG + ADP 
 3PG + ATP
R7rc 5.4.2.11 / 5.4.2.12 pgm 3PG 
 2PG
R8r 4.2.1.11 pgh 2PG 
 PEP
R9 2.7.1.40 pyk PEP + ADP 
 Pyruvate + ATP
RR9 2.7.9.2 pps Pyruvate + 2 ATP 
 PEP + 2 ADP + Pi

Table B.2: Glycolysis

475
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Reaction ID EC number Reaction name Formula
R10a 1.1.1.49 zwf G6P + NAD+ 
 6PGL + NADH
R10b 3.1.1.31 glh 6PGL 
 6PGC
R10c 1.1.1.44 pgd 6PGC + NAD+ 
 NADH + CO2 + Ru5P
R11r 5.1.3.1 rpe Ru5P 
 X5P
R12r 5.3.1.6 rpi Ru5P 
 R5P
R13r 2.2.1.1 txt1 R5P + X5P 
 S7P + G3P
R14r 2.2.1.2 tal G3P + S7P 
 E4P + F6P
R15r 2.2.1.1 txt2 E4P + X5P 
 G3P + F6P
R60 4.2.1.12 edd 6PGC 
 KDPG
R61r 4.1.2.14 eda KDPG 
 G3P + Pyruvate

Table B.3: Pentose Phosphate Pathway

Reaction ID EC number Reaction name Formula
R20 2.3.1.54 pfl Pyruvate + CoA 
 AcCoA + Formate
R21 1.2.4.1 / 2.3.1.12 pdh Pyruvate + NAD+ + CoA 
 AcCoA + CO2 + NADH
R22 2.3.3.1 csn 2-oxoglutarateacetate + AcCoA 
 Citrate + CoA
R23r 4.2.1.3 acn Citrate 
 iso-Citrate
R24 1.1.1.41 icd iso-Citrate + NAD+ 
 2-oxoglutarate + NADH + CO2

R25 1.2.4.2 kgd 2-oxoglutarate + NAD+ + CoA 
 NADH + Succinateinyl-CoA + CO2

R26r 6.2.1.5 scs Succinateinyl-CoA + ADP + Pi 
 Succinateinate + ATP + CoA
R27 1.3.5.1 sdh Succinateinate + ADP + O2[e] + Pi 
 Fumarate + ATP
R27b 1.3.5.4 frd Fumarate + NADH 
 Succinateinate + NAD+

R28r 4.2.1.2 fum Fumarate 
 Malate
R29r 1.1.1.37 mdh Malate + NAD+ 
 2-oxoglutarateacetate + NADH

Table B.4: TCA Cycle

Reaction ID EC number Reaction name Formula
R40 4.1.1.31 ppc PEP + CO2 
 2-oxoglutarateacetate + Pi

R41 1.1.1.38 me Malate + NAD+ 
 Pyruvate + NADH + CO2

R42 4.1.1.49 ppck 2-oxoglutarateacetate + ATP 
 PEP + ADP + CO2

Table B.5: Anaplerotic Reactions

Reaction ID EC number Reaction name Formula
R53r 1.1.1.27 ldh Pyruvate + NADH 
 Lactate + NAD+

R54ra 1.2.1.10 ada AcCoA + NADH 
 Acetaldehyde + NAD+ + CoA
R54rb 1.1.1.1 adh Acetaldehyde + NADH 
 ETOH + NAD+

R55a 2.3.1.8 pta AcCoA + Pi 
 Acetyl-P + CoA
R55b 2.7.2.1 ack Acetyl-P + ADP 
 Acetate + ATP

Table B.6: Redox-associated reactions

Reaction ID Reaction name Formula
R80 oxphos NADH + 2 ADP + 0.5 O2[e] + 2 Pi 
 NAD+ + 2 ATP + 3 H2O
R82 atpmain ATP + H2O 
 ADP + Pi + ATPmain

Table B.7: Oxidative phosphorylation

Reaction ID Reaction name Formula
R90 exetoh ETOH 
 ETOH[e]
R91 exace Acetate 
 Acetate[e]
R93 exNH3 NH3[e] 
 NH3

R94 exlac Lactate 
 Lactate[e]
R95 exsuc Succinateinate 
 Succinateinate[e]
R96 exfor Formate 
 Formate[e]
R97r exCO2 CO2 
 CO2[e]

Table B.8: Membrane Transport Reactions
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Reaction ID k+
cat [1/s] Keq [unitless] Enzyme molecular weight [Da]

R1 100 N/A 2.6·105

R10a 240 N/A 5.6·104

R10b 410 N/A 3.6·104

R10c 110 N/A 1.0·105

R11r 130 2.3 2.5·104

R12r 1400 2.3 1.9·104

R13r 46 3.7 7.3·104

R14r 17 0.9 3.5·104

R15r 75 38 7.3·104

R20 4800 N/A 8.5·104

R21 38 N/A 2.8·105

R22 360 N/A 9.6·104

R23r 33 0.074 9.6·104

R24 110 N/A 4.6·104

R25 150 N/A 1.2·106

R26r 89 0.52 7.1·104

R27 78 N/A 7.9·105

R27b 180 N/A 1.8·105

R28r 280 4.7 6.0·104

R29r 210 6.1·10−5 3.2·104

R2r 320 0.51 6.2·104

R3 110 N/A 1.4·105

R4 25 N/A 3.7·104

R40 120 N/A 2.0·105

R41 76 N/A 6.3·104

R42 51 N/A 6.0·104

R53r 140 2.1·104 3.7·104

R54ra 0.35 2.3·10−3 9.6·104

R54rb 320 2.8·103 9.6·104

R55a 91 N/A 7.7·104

R55b 59 N/A 4.3·104

R5r 8.0 3.0·10−4 3.9·104

R60 250 N/A 6.5·104

R61r 80 9.6·10−3 2.2·104

R6r 7800 11 5.4·104

R70 99 N/A 6.0·104

R7ra 230 0.088 3.6·104

R7rb 390 730 4.1·104

R7rc 53 0.16 2.9·104

R80 4.0·106 N/A 9.1·105

R82 180 N/A 6.0·104

R8r 210 3.5 4.6·104

R9 510 N/A 5.0·104

R90 100 N/A N/A
R91 100 N/A 5.9·104

R93 100 N/A 4.5·104

R94 100 N/A 5.9·104

R95 100 N/A 4.5·104

R96 100 N/A 3.1·104

R97r 100 N/A N/A
RR9 13 N/A 8.7·104

Table B.9: Kinetic parameters associated with reactions
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Reaction ID Metabolite name KM [mM]

R1 G6P 0.102

R1 Glucose 0.116

R1 PEP 0.0983

R1 Pyruvate 0.102

R10a G6P 0.314

R10a 6PGL 0.129

R10a NAD+ 0.863

R10a NADH 0.129

R10b 6PGL 0.168

R10b 6PGC 0.0594

R10c CO2 0.0626

R10c 6PGC 0.101

R10c Ru5P 0.0626

R10c NAD+ 0.0591

R10c NADH 0.0626

R11r Ru5P 0.0878

R11r X5P 0.114

R12r R5P 1.25

R12r Ru5P 0.558

R13r G3P 1.23

R13r R5P 0.972

R13r S7P 2.11

R13r X5P 0.157

R14r E4P 0.175

R14r F6P 0.888

R14r G3P 0.578

R14r S7P 0.206

R15r E4P 0.0934

R15r F6P 0.737

R15r G3P 1.27

R15r X5P 0.152

R20 AcCoA 0.0352

R20 CoA 0.0168

R20 Formate 6.35

R20 Pyruvate 2.18

R21 AcCoA 0.159

R21 CO2 0.159

R21 CoA 0.0629

R21 Pyruvate 0.291

R21 NAD+ 0.0629

R21 NADH 0.159

R22 AcCoA 0.0867

R22 Citrate 0.0756

R22 CoA 0.0756

R22 2-oxoglutarate 0.0287

R23r Citrate 3.49

R23r iso-Citrate 2.42

R24 2-oxoglutarate 0.483

R24 CO2 2.02

R24 iso-Citrate 0.0227

Reaction ID Metabolite name KM [mM]

R24 NAD+ 1.06

R24 NADH 0.0119

R25 2-oxoglutarate 0.0670

R25 CO2 0.108

R25 CoA 0.0927

R25 Succinyl-CoA 0.108

R25 NAD+ 0.0927

R25 NADH 0.108

R26r CoA 0.00731

R26r Succinate 0.237

R26r Succinyl-CoA 0.0105

R26r ADP 0.0560

R26r ATP 0.0812

R27 Fumarate 0.0812

R27 O2[e] 0.371

R27 Succinate 0.0756

R27 ADP 0.371

R27 ATP 0.0270

R27b Fumarate 0.0201

R27b Succinate 0.205

R27b NAD+ 0.0431

R27b NADH 0.232

R28r Fumarate 0.314

R28r Malate 0.615

R29r Malate 3.19

R29r 2-oxoglutarate 0.0283

R29r NAD+ 0.460

R29r NADH 0.0321

R2r F6P 0.162

R2r G6P 0.273

R3 F6P 0.116

R3 FBP 0.113

R3 ADP 0.113

R3 ATP 0.141

R4 F6P 0.171

R4 FBP 0.0161

R40 CO2 0.115

R40 2-oxoglutarate 0.0426

R40 PEP 0.364

R41 CO2 0.0885

R41 Malate 0.361

R41 Pyruvate 0.0885

R41 NAD+ 0.0691

R41 NADH 0.0885

R42 CO2 5.21

R42 2-oxoglutarate 0.571

R42 PEP 0.0643

R42 ADP 0.0484

R42 ATP 0.0750

R53r LACTATE 0.517
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Michaelis constants – part I

Reaction ID Metabolite name KM [mM]

R53r Pyruvate 0.0193

R53r NAD+ 0.517

R53r NADH 0.0193

R54ra AcCoA 0.0242

R54ra Acetaldehyde 1.80

R54ra CoA 0.00786

R54ra NAD+ 0.0415

R54ra NADH 0.113

R54rb Acetaldehyde 0.0593

R54rb ETOH 5.49

R54rb NAD+ 0.169

R54rb NADH 0.0593

R55a AcCoA 0.0424

R55a Acetyl-P 0.313

R55a CoA 0.0860

R55b Acetate 3.44

R55b Acetyl-P 0.154

R55b ADP 0.402

R55b ATP 0.0714

R5r DHAP 0.0782

R5r FBP 0.204

R5r G3P 0.0782

R60 6PGC 0.0434

R60 KDPG 0.150

R61r G3P 0.00146

R61r KDPG 0.561

R61r Pyruvate 0.00146

R6r DHAP 0.0750

R6r G3P 0.745

R70 AcCoA 0.462

R70 2-oxoglutarate 0.352

R70 BIOMASS 0.0998

R70 CO2 0.0996

R70 CoA 0.891

R70 E4P 0.0144

R70 G6P 4.31

R70 NH3 0.0151

R70 2-oxoglutarate 0.00672

R70 PEP 0.169

R70 Pyruvate 0.319

R70 R5P 0.881

R70 ADP 0.0293

R70 ATP 0.342

R70 NAD+ 1.43

Reaction ID Metabolite name KM [mM]

R70 NADH 0.0913

R7ra DPG 0.0576

R7ra G3P 0.687

R7ra NAD+ 0.0558

R7ra NADH 0.0576

R7rb DPG 0.0426

R7rb 3PG 0.235

R7rb ADP 0.0426

R7rb ATP 0.235

R7rc 3PG 0.132

R7rc 2PG 0.0755

R80 O2[e] 0.116

R80 ADP 0.136

R80 ATP 0.0737

R80 NAD+ 0.0859

R80 NADH 0.116

R82 ATPmain 0.130

R82 ADP 0.130

R82 ATP 0.0769

R8r PEP 0.131

R8r 2PG 0.108

R9 PEP 0.291

R9 Pyruvate 0.0476

R9 ADP 0.218

R9 ATP 8.45

R90 ETOH 0.100

R90 ETOH[e] 0.100

R91 Acetate 0.100

R91 Acetate[e] 0.100

R93 NH3 0.0999

R93 NH3[e] 0.100

R94 Lactate 0.100

R94 Lactate[e] 0.100

R95 Succinate 0.100

R95 Succinate[e] 0.100

R96 Formate 0.0999

R96 Formate[e] 0.100

R97r CO2 0.0999

R97r CO2[e] 0.100

RR9 PEP 0.0934

RR9 Pyruvate 0.0864

RR9 ADP 0.0873

RR9 ATP 0.0350

Michaelis constants – part II
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(A) (B)

Figure B.1: Metabolic strategies in the E. coli model, depending on external glucose
and oxygen concentrations, In the EFM pahse diagram. Each region represents the
winning EFM as explained in Figure 7.8. Here, the colors represent the flux in one spe-
cific reaction based on the winning EFM in that region. (A) The lactate secretion flux
is strikingly equal to 0 in most regions. The only conditions where lactate is secreted
is at low oxygen and medium/high glucose concentrations. (B) The biomass yield is,
in general, high if and only if lactate is not secreted. This makes sense because the
carbon coming from the glucose is often the limiting nutrient for growth, and there
is a trade-off between using it for biomass versus fermentation products such as lac-
tate. Interestingly, the region with high glucose and high oxygen levels (upper right
quadrant) is occupied by an EFM that doesn’t achieve the highest possible yield (i.e.
max-gr). In low glucose and high oxygen, or in medium oxygen levels, the winning
EFMs are the ones with relatively higher biomass yields.

B.2 More results for the E. coli centralmetabolismmodel

This section contains additional results for the E. coli central metabolism model from

Chapter 7, in particular, fluxes plotted in the EFM phase diagram and in flux space, as

well as ideal and real enzyme costs for all EFMs.

Each point in the Monod landscape in Figure 7.8 (A) corresponds to a state of the

model, and the calculations that lead to the growth rate and the ”winning EFM” shown

yield a full description of this state, including all fluxes, metabolite concentrations and

enzyme levels. These data can be explored and visualized in many ways. For illustra-

tion, Figure B.2 shows a variant of Figure 7.8 (A) in the horizontal axes do not de-

scribe the external concentrations of glucose and oxygen, but their uptake rates, and

the vertical axes shows the biomass production rate. Since uptake rates are a func-

tion of external concentrations, and the growth rate directly depends on the biomass

production rate, we might have expected that this yields the same picture, just a bit

stretched along each of the axes. However, the picture looks very different: instead

of forming a continuous surface, the points now fall on disconnected rays, appar-
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ently with one ray for each colored region of the surface. In fact, when looking at the

picture closely, we can see that each of the winning EFMs gives rise to exactly one

ray. But this, after all, is logical. In the new plot, all axes refer to reaction rates, and

for each EFM all rates come in fixed ratios, giving rise to a ray. So, if our solutions

are EFMs, this picture cannot be continuous – in line with the fact that, in the orig-

inal Monod landscape 7.8 (A), when moving from one region to the other one, one

would notice a discrete jump of the reaction rates. But why is the new picture not

a continuos surface, if uptake rates depends smoothly on external metabolite con-

centrations? In fact, they do not only depend on these concentrations, but also on

resource allocation to the transporter. If this allocation shows a discrete jump (again,

when moving from one region to another one), then also the rate shows a jump. The

comparison between the two plots shows us what we gain by considering enzyme ki-

netics as compared to a pure stoichiometric model. With the biomass rate as a proxy

for cell growth, each EFM defines fixed ratios between this growth rate and each of

the metabolic fluxes, including the uptake rates. When continuously scaling an EFM,

the glucose uptake, oxygen uptake, and biomass production will scale proportionally.

So the rays in Figure B.2 reflect what we can know about possible metabolic fluxes

based on network structure alone; but to get to theMonod landscape, as a function of

concentrations, we had to use kinetic information and a extra principle of economical

enzyme usage.

The phase diagram of “winning EFMs” can also be used to visualize other (optimized)

quantities as functions of glucose and oxygen concentrations. Figure B.1 shows as

example the (biomass-specific) lactate secretion (showing that also a number of other

winning EFMs, apart from ana-lac, secrete lactate) and the biomass yield on glucose.

Finally, a statistics over all EFMs shows that the range of possible enzyme demands

per biomass production rate is quite large: as shown in Figure B.3, they vary over

more than twoorders ofmagnitude,making someEFMsahundred-foldmore enzyme-

expensive than others. The same plot also shows how enzyme costs depend on the

fact that enzymes do not operate at their full capacity (reaching their kcat value), but

at best at the enzyme efficiencies predicted by enzyme cost minimization. For our

E. colimodel and the aerobic glucose conditions studied, if all enzymes could operate

at their kcat values, this would decrease to overall enzyme demand by a factor of at

least 1.4, or maximally 4.7, depending on the EFM in question. But still, in this case,

for determining enzyme costs the choice of the right EFM (even assuming ”ideal” en-

zymes) is muchmore important than considering the actual, ”non-ideal” way in which

enzymes operate. But this may not always hold: under low-oxygen conditions, the

enzyme demands of some EFMs may increase much more drastically.
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Figure B.2: Proportional scaling of fluxes within each EFM – In the diagram with glu-
cose uptake, oxygen uptake, and biomass production rate on the axes, each colored
line corresponds to one EFM, and shows the possible combinations of fluxes obtained
from the model behind Figure 7.8 (which also shares the EFM colors with this fig-
ure). Importantly, here the x and y axes represent uptake rates and not substrate
concentrations. Therefore, as expected, each EFM yields a straight line (because of
the proportional scaling of different fluxes for each EFM). Since – according to our rea-
soning – optimal flux distributions must be EFMs, only these combinations of fluxes
are actually possible. When glucose and oxygen concentrations are varied smoothly
in Figure 7.8, the corresponding movement in this plot would be along the lines and
sometimes, jumps between different lines (when the system moves from one region
to another one in Figure 7.8).
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Figure B.3: Ideal and real enzyme costs of elementary flux modes – For each EFM
(shown as a cyan dot), the ideal enzyme cost per biomass production rate (i.e. as-
suming that all the enzymes are saturated) is compared to the actual cost (calculated
using EnzymeCostMinimization, assuming standard aerobic glucose conditions). The
costs span a wide range from themost enzyme-efficient EFMs on the lower left to the
least enzyme-efficient ones on the upper right. For different EFMs, the ratio of actual
and ideal costs varies between 1.4 and 4.7. Here, the EFM with the minimal actual
cost is among the top 5 in terms of ideal cost.
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Appendix C

Appendix “Strategies for cell

cycle control”

C.1 Equations for birth size

Here we derive the dynamic equations of the birth size qi
0 across generations (indexed

by i) in the discrete-time formalism. We define 〈q0〉α as the average value of q0, and the

log size deviation δqi
0 := qi

0 − 〈q0〉α. The dynamics for the log-size deviation takes the form

δqi+1
0 = g(δqi

0, α) + ζi(δqi
0, α) , (C.1)

where ζi(δqi
0, α) is a random variable with zero mean. This equation has the same de-

gree of generality of Eq. (14.8) and can express any arbitrary division control model

(or equivalently any shapes of the hazard rate function). In order to make further

mathematical (and biological) progress, we need to simplify the equation and make

the comparison with data possible. There are several possible choices. In the follow-

ing, for simplicity, we first neglect the fluctuation of the growth rate α. Assume that

the size at birth is the only variable influencing cell division (g(·) is a function of δqi
0 only)

will allow us to introduce a linear-response framework. We will then describe how to

consider the heterogeneity of multiple growth parameters.

The main empirical observation that comes to our help is the fact that the coeffi-

cient of variation of qi
0 is small (typically around 0.15) [432, 440, 450, 447, 449]. The

small value of the coefficient of variation strongly suggests the possibility of Taylor-

expanding the function g(δqi
0) around δqi

0 = 0 [450]. In this limit, the function g(δqi
0) is ap-

proximately linear and the random variable ζi(δqi
0, α) can be well approximated by a

Gaussian random variable with zero mean and constant variance [449]. The result-

ing equation reads

δqi+1
0 = (1 − λ)δqi

0 + σξi , (C.2)

485
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where ξi is a Gaussian random variable with zeromean and unit variance. The two pa-

rameters λ and σ encode, respectively, the relevant information about themechanism

of size control and the level of stochasticity. The parameter σ simply corresponds to

ζi(0, α). The parameter λ, which quantifies the strength of size control, has a direct re-

lationship with the mechanism at its origin. It is defined as λ = 1 − g′(0, α). For instance,

the sizer corresponds to λ = 1 and an adder to λ = 1/2. The case λ = 0 does not lead to

a stationary process and corresponds to a timer. Consequently, this parameter can

easily be inferred from the plots in Figure ??.

Eq. (C.2) can be solved analytically [449]. In particular one can show that the condi-

tional probability of observing a log-size deviation δqi
0 from the average at generation

i given a deviation at generation 0, is a Gaussian with mean

〈δqi
0〉δq0

0
= (1 − λ)iδq0

0 . (C.3)

This result clearly shows howdifferentmechanisms correspond to different strengths

of cell-size homeostasis, leading to fluctuations persisting across a different number

of generations. For a sizer, λ = 1, the expected deviation of the daughter cell is indepen-

dent of the mother cell fluctuations. A timer, with λ = 0, does not lead to homeostasis,

as the expected deviation of size at birth of a daughter cell is the same as the devia-

tion of the mother. The adder, λ = 1/2, leads on average to a halving of the size at birth

deviation at each generation, as approximately observed in experiments [440].

One can generalize the linear-response framework to consider fluctuations of dif-

ferent growth parameters [451]. In general, one can assume that the size at birth

of the daughter cell depends on both size at birth of the mother and her individual

growth rate fluctuations.

δqi+1
0 = (1 − λqq)δqi

0 − λqαδα
i + ξi

q . (C.4)

Along the same lines, one can assume that the growth rate fluctuations obey a similar

equation

δαi+1 = −λαqδq
i
0 − λααδα

i + ξi
α . (C.5)

This kind of equation canbewritten inmultiple forms, i.e. includingmultiple variables.

For example, one can write an equation explicitly for the elongation rate between

divisions δG := δqi+1
0 − δqi

0 or for the division time. Since the linear-response equations

assume that the fluctuations around the means of these variables are small, all these

choices turn out to be mathematically equivalent. This is also the reason why the dif-

ferent plots in Figure ?? are equivalent. While a linear dependency of growth rate α

and division time τd on (log-)size at birth q0 would induce a non linear dependency of

the elongation G = ατd on the initial size, such non-linearities can be neglected in the



Growth laws 487

limit of small fluctuations, leading always to linear dependencies [450, 451].

The values of the parameters λab can be easily inferred using the standard tools of

linear regression. Notably, the best (maximum likelihood) estimates of these param-

eters can be directly obtained from the variable covariances [449, 451]. For instance,

〈δqi+1δqi〉 = λqqσ
2
q + λqα〈δαiδqi〉. By writing the expressions for other correlations (e.g., 〈δqi+1δαi〉

or 〈δαi+1δqi+1〉 ) one can map the coefficient λab with the measured covariances.

C.2 Growth laws

Growth laws and trade-offs between protein sectors. Prototypical predictions are

the so-called ”growth laws”, general quantitative relationships linking proteome com-

position and rates of cellular processes. The reason why relationships of the kind

λ = λ(φR, φX , . . . ) and kX(φR, φX , . . . ) naturally emerge in the framework is due to cell growth

and division rates being coupled to proteome allocation dynamics.

Growth law for the ribosome sector. For example, the first growth law, stating that the

ribosomemass fraction increases linearlywith the nutrient-imposed growth rate, that

is λ = λ(φR) = K(φR −φmin
R ), is obtained straightforwardly by noting that upon differentiation

of Eq. (14.21) with respect to time and substitution of Eq. (14.19) and Eq. (14.20) one

finds the dynamical relation λ(t) = knP (t)
M , which at equilibrium reads (neglecting degra-

dation)

λ∗ = knP
∗

M
= aktR

∗fa

M
= akt

mR

Mprot

M

(
φR − φmin

R

)
, (C.6)

since at equilibrium the amino-acid import flux knP
∗ matches the biosynthesis flux

aktR
∗fa (dA/dt = 0 in absence of degradation). Note that we have used the definitions

φi ≡ (miPi)/Mprot = (miPi)/(M −Ma) and Rfa = Ractive = R−Rinactive and we have identified φinactive
R = φmin

R .

Trade-Offs between Ribosomes and Division Protein Synthesis. Following Refs. [487, 488],

we re-write Eq. (C.6) as kn = akt

mR
mP

φR−φmin
R

φP
and use the constraint φmax

R = 1 − φQ = φR + φP + φX to

obtain

φX = −Kn +Kt

Kn
φR + Ktφ

min
R +Knφ

max
R

Kn
, (C.7)

where Kn ≡ kn/mP ([Kn] = [T ]−1) and Kt ≡ akt/mR ([Kt] = [T ]−1). Eq. (C.7) shows a negative cor-

relation between the ribosome and division sectors under nutrient or translational

perturbations, in agreement with recent published data [553]. Also, since the rates

of growth and division protein synthesis are respectively proportional to the ribo-

some and the division sector, this negative correlation reflects a trade-offs between

allocating ribosomal resources towards growth or division (see Fig.1F in Ref. [487]).

Growth law for the division sector. So, the larger the fraction of ribosomes making

division proteins the smaller the fraction of ribosomes making ribosomes. In other

words, there is a negative correlation between the growth rate and the division pro-
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tein sector. Indeed, the ribosome sector is related to the growth rate via the first

growth law φR = Mλ
MprotKt

+φmin
R , but it is also related to φX via Eq. (C.7) φR = Ktφmin

R +Knφmax
R

Kn+Kt
− Kn

Kn+Kt
φX.

Equating the two terms yields

λ = KnKt

Kn +Kt

Mprot

M

(
φmax

R − φmin
R − φX

)
, (C.8)

which is Eq. (9) in Ref. [487].

We now discuss how two known steady-growth size-related behaviors emerge in the

unified framework from the interplay between cell growth and cell division.

Adder mechanism. As we discussed, E. coli cells regulate their size by adding a con-

stant volume between consecutive cell divisions (adder mechanism). In a previous

problem, we investigatedwith numerical simulations the range of validity of this prop-

erty. In the following one, we instead show analytically that the adder property is

naturally embedded in the unified framework.

It can be seen then that whenever λ � dX/mX (e.g. fast growth conditions), ∆s1cycle ≈ λ
kX
Xth =

const which is the adder property. Notably, in increasingly slower growth conditions,

where degradation becomes with the growth rate, deviations from the adder are pre-

dicted, up to the point λ � dX/mX where sd ≈ XthdX/(kXmX) = const.

“Schaechter–Maaloe–Kjeldgaard” (SMK) growth law. According to this law, the population-

averaged cellular size scales with growth rate in an approximately exponential fash-

ion [554]. Interestingly, deviations from the exponential trend have recently been re-

ported, particularly at slow growth, leading to a different proposition [465]. Notably,

deviations from this law are accounted in our framework. Indeed, in an exponen-

tially expanding population the average cell size can be expressed as 〈s〉 = 2 log 2〈s0〉 [432],

which, combined with Eq. (14.27) and 〈sd〉 = 2〈s0〉 leads to

〈s〉 =
λ+ dX

mX

k̃X

(
2 − 2− dX

mX λ

) (C.9)

where, following Ref. [487], we have defined k̃X ≡ kX/(2 log 2Xth). Note that since λ ∝ φR and

kX ∝ −φR the average cell size increases with ribosome abundance, a trend observed

in experiments. Notably, upon determining the model parameters and making full

explicit the growth rate dependence, the authors in Ref. [487] with no further fitting

showed that Eq. (C.9) recapitulates the experimental data [465, 487], a remarkable

achievement of the unified framework.

Non-steady relationships. Finally, we contextualize within the unified framework

some predictions of a model recently proposed to unify cell division and growth in

non-steady growth conditions [478]. As we saw, although there is consensus on an
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inter-division adder at the phenomenological level, the mechanisms regulating cell

division dynamics in the bacterium E. coli are still widely debated. In particular sev-

eral mechanistic models based on different mechanisms for division control were

proposed for the adder [472, 392, 463, 462]. In order to help selecting different sce-

narios, experiments beyond steady-state growth help comparing the specific causal

relationships underlying different models with data. Following this philosophy, and

aiming to shed more light on cell division dynamics, Panlilio et al. [478] ran multi-

ple long-term E. colimicrofluidics experiments jointy monitoring size-division dynam-

ics and reporters of ribosomal and constitutive genes through nutritional up-shifts.

The fluorescent reporters can be seen as proxies for the dynamics of the R and P

sectors during the shift. Remarkably, in their experiments they observed highly-

complex multiple-timescale dynamics in different cell-division variables (particularly

inter-division time, division rate, added volumeandadded-to-initial volume ratio) dur-

ing the nutritional up-shift. Notably, in spite of this complex dynamics, they found

the division control strategy to be unaffected by the shift. The transient observed

division dynamics in their shift data falsifies several scenarios, such as the Harris-

Theoriot septum-limited division and the classic scenario of replication-limited divi-

sion. Instead, the authors found that a threshold accumulation model such as the

one described by Eq. (14.19) could not be falsified,

ds(t)
dt

= α(t)s(t) dN(t)
dt

= rX(t)s(t) . (C.10)

This the usual scenario where a constitutive X-sector protein accumulates to a thresh-

old value N∗ and at that point triggers cell division. The regulation of cell division from

a constitutive sector is coherent with the observation that ppGpp is a cell size and

cell division regulator [555]. These results are also in line with independent conclu-

sions based on steady-state data [488, 463, 477] and isolate FtsZ as a likely candidate

cell-division trigger, although the previous section has clarified how the complexity

of the decision to divide is likely higher than described by the chromosome-agnostic

cell-division models that are used in integrated frameworks. Future efforts will have

to integrate this complexity in a description that also accounts for the interplay of

different processes relevant for cell cycle progression with cell growth.
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Appendix D

Solutions to problems

D.1 Chapter “The inventory of a cell”

Problem 2.1 (Intuition for biological numbers)

Check the results at bionumbers.hms.harvard.edu, book.bionumbers.org or doi.org/10.1016/j.cell.2010.06.019.

Problem 2.2 (Proteins per cell - estimate one)

Proteins
mL = 0.2 g

mL · 6 · 1023 1
mol · 1

40000
mol
g = 3 · 1018 1

mL

Proteins
µm3 = 3 · 1018 1

mL · 10−12 mL
µm3 = 3 · 106 1

µm3

Proteins
cell ≈


3 · 106 E. coli

2 · 108 S. cerevisiae

9 · 109 mammalian cells

Problem 2.3 (Proteins/ribosomes per cell - estimate two)

109 · 0.3/25 ≈ 1.2 · 107 proteins

109 · 0.3/3400 ≈ 88000 ribosomes

Problem 2.4 (Buoyant cell density)

Density = 1 · 0.7 + 1.3 · 0.18 + 1.7 · 0.08 + 1 · 0.03 + 1.5 · 0.01 = 1.115

Problem 2.5 (Concentrations enzymes and substrates)

Concentration of one molecule per E. coli cell:

1
µm3 · 1015µm3

L · 1
6 · 1023

mol
1 = 1.7 · 10−9 mol

L
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Enzyme mass: 40 000 g mol−1 (BNID 105861)

Glucose mass: 180 g mol−1

40000/180 = 222

Assuming that the mass of the free enzyme and the mass of the substrate should be

equal for optimal flux, we need approximately 222 molecules of substrate (glucose)

per one molecule of free enzyme. This corresponds to the following concentrations:

Enzyme: ∼ 1.7 nmol L−1

Substrate: ∼ 370 nmol L−1

Problem 2.6 (Cell size in different dimensions)

Cell 1 Cell 2 Ratio

Diameter 1 2 2

Surface area 3.14 12.57 4

Volume 0.52 4.19 8

SA/V 6 3 0.5

As the cell diameter increases, the volume grows faster than the surface area, lead-

ing to a decrease in the surface area-to-volume ratio (SA/V). This decrease can impact

nutrient uptake as there is less relative surface area available for membrane trans-

porters. Therefore, larger cellswith lower SA/V ratiosmay face challenges in obtaining

enough nutrients to meet their metabolic demands.

Problem 2.7 (Alien lifeforms)

We do not know the answer to this question. These are ideas from ChatGPT (ope-

nai.com, GPT-3.5, version 2023) – take them with a grain of salt:

When imagining alien lifeforms, it is difficult tomake definitive statements about their

nature since we have no direct knowledge of extraterrestrial life. However, we can

explore some possibilities and consider the principles of biology and physics as we

currently understand them.

1. Composition of cells. While cells are the fundamental building blocks of life on

Earth, it is not certain that extraterrestrial life would be composed of cells. Cells are a

product of evolution on our planet and are highly efficient structures for carrying out

biological processes. However, alternative forms of life may exist with entirely dif-

ferent structures and organization. For example, hypothetical non-cellular life forms

based on self-replicating molecules or other complex arrangements have been pro-

posed.

2. Different features of alien cells. (a) Membranes: While cells on Earth have lipid

bilayer membranes, it is conceivable that alien life forms might have different mem-

brane compositions. For example, they could have membranes composed of dif-

https://openai.com
https://openai.com
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ferent molecules or organized in alternative ways. (b) Genetic Material: On Earth,

DNA and RNA are the primary carriers of genetic information. However, it is pos-

sible that alternative genetic molecules or information storage systems could exist

in alien life. These could have different base pairs or use different coding mecha-

nisms. (c) Metabolism: Alien life could have different metabolic processes compared

to Earth organisms. They might utilize different energy sources, employ unique en-

zymatic reactions, or even rely on completely novel biochemical pathways. (d) Size

and Structure: Cells on Earth exhibit a wide range of sizes, frommicroscopic bacteria

to the largest known cells in organisms like ostrich eggs. It is conceivable that alien

cells could differ significantly in size and overall structure, depending on the specific

conditions and evolutionary paths of their respective environments.

3. Features dictated by physics. Certain fundamental principles of physics are likely

to impose constraints on the functioning and structure of any kind of cell, including

potential alien cells. These features include: (a) Biochemistry: Regardless of the spe-

cific molecular composition, alien cells would need a biochemistry that allows for the

storage and utilization of energy, the replication and expression of genetic informa-

tion, and the maintenance of internal equilibrium. (b) Thermodynamics: The laws

of thermodynamics, such as energy conservation and entropy increase, are univer-

sal physical principles. Any living system, including alien cells, would need to adhere

to these principles to maintain their internal processes. (c) Water: Water is a highly

abundantmolecule and a fundamental solvent for life on Earth. It provides amedium

for biochemical reactions and allows for efficient transport of molecules within cells.

It is possible that water or another suitable liquid would be essential for alien life, but

alternative solvents cannot be ruled out entirely.

While these considerations provide a starting point for thinking about alien life, the

possibilities are vast, and it is challenging to predict the specific characteristics of ex-

traterrestrial organisms. Future discoveries and investigations in astrobiology will

help refine our understanding of life beyond Earth.

Problem2.8 (Substrate demand to saturate anenzyme) Take the irreversibleMichaelis-

Menten law, and plug in v = 0.1 ×νmax and v = 0.9 ×νmax. By rearranging the terms to express

S in terms of KM, the answers are S0.1 = 0.1
0.9KM ≈ 0.11KM and S0.9 = 0.9

0.1KM = 9KM. This is approx.

81-fold difference to go from 0.1 × νmax to 0.9 × νmax!

D.2 Chapter “Cell metabolism”

Problem 3.1 (An irreversible reaction with simultaneous binding)

(a)

E + S1 + S2
k1−−−−⇀↽−−−−k2

ES1S2
k3−−−−→ E + P1 + P2 (D.1)
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(b)
dp

dt
= k3

s1s2C

s1s2 + k2+k3
k1

, (D.2)

where p = [P1 + P2] and C = [E] + [ES1S2].

Problem 3.2 (A reversible reaction with simultaneous binding)

(a)

E + S1 + S2
k1−−−−⇀↽−−−−k2

ES1S2
k3−−−−⇀↽−−−−k4

E + P1 + P2 (D.3)

(b)
dp
dt = k3

C(s1s2 − k2k4
k1k3

p)
s1s2 + k4

k1
p+ k2+k3

k1

(D.4)

where p = [P1 + P2] and C = [E] + [ES1S2].

Problem 3.3 (An irreversible reaction with sequential binding)

(a)

E + S1
k1−−−−⇀↽−−−−k2

ES1

ES1 + S2
k3−−−−⇀↽−−−−k4

ES1S2
k5−−−−→ E + P1 + P2 (D.5)

(b)
dp
dt = k5

s1s2C

s1s2 + s1
k4+k5

k3
+ s2

k5
k3

+ k2
k1k3

(k1 + k5)
, (D.6)

where p = [P1 + P2] and C = [E] + [ES1] + [ES1S2]

Problem 3.4 (An irreversible reaction with random-order binding)

(a)

E + S1
k1−−−−⇀↽−−−−k2

ES1

ES1 + S2
k3−−−−⇀↽−−−−k4

ES1S2

E + S2
k5−−−−⇀↽−−−−k6

ES2

ES2 + S1
k7−−−−⇀↽−−−−k8

ES1S2

ES1S2
k9−−−−→ E + P1 + P2 (D.7)

(b)
dp
dt = k9

Cs1s2
(
k1k3(k6 + k7s1) + k5k7(k2 + k3s2)

)
s1A(s1) + s2B(s2) + s1s2C(s1, s2) +D

(D.8)
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where p = [P1 + P2], C = [E] + [ES1] + [ES2] + [ES1S2], and

A(s1) = k1k6(k4 + k8 + k9) + k7(k0 + k4)(k2 + k1s1)

B(s2) = k2k5(k4 + k8 + k9) + k3(k0 + k8)(k6 + k5s2)

C(s1, s2) = k1k3(k6 + k8 + k7s1) + k5k7(k2 + k4 + k3s2) + k3k7k9

D = k2k6(k4 + k8 + k9)

D.3 Chapter “Metabolic flux distributions”

Problem 4.4 (Elementary Flux Modes (2))

EFMs containing forward fluxes only:

1 3/4
A B

C

D
1 5/4

A B

C

D A B

C

D
1/21

EFMs containing forward and backward fluxes:

1

13/2

2/3

1

2

1

1

A B

C

D

3/2

A B

C

A B

C

DA B

C

D D

A

C

B D

2

A

C

B D
1

2

A

C

B D
5/41

A B

C

D

D.4 Chapter “The enzyme cost of metabolic fluxes”

Problem 6.9 (Haldane kinetic rate law)

First, we add the constraint on the total enzyme concentration ([E] + [ES] + [EP ] = Etot) and

rewrite the ODE system in matrix notation:



1 1 1

[S]k1 −(k2 + k3) k4

[P ]k6 k3 −(k4 + k5)

−[S]k1 − [P ]k6 k2 k5




[E]

[ES]

[EP ]

 =



[E0]

0

0

0


. (D.9)

Note that the last row is linearly dependent on the two previous ones (it is minus their

sum). Therefore, we can drop it from the system without loosing information. Then,

we will find exlicit expressions for [E], [ES], and [EP ] by using Gaussian elimination – a
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process of eliminating off-diagonal values in the matrix until we reach the identity

matrix, while at the same time applying the same operations to the vector on the

right-hand side of the equality.

Step 1, elimination the off-diagonal elements on the first column (subtracting the first

row times [S]k1 from the 2nd row and the first row times [P ]k6 from the 3rd row)


1 1 1

0 −(k2 + k3) − [S]k1 k4 − [S]k1

0 k3 − [P ]k6 −(k4 + k5) − [P ]k6




[E]

[ES]

[EP ]

 = [Etot]


1

−[S]k1

−[P ]k6

 .

Step 2, dividing the second row by −(k2 + k3 + [S]k1) to have 1 on the diagonal:


1 1 1

0 1 [S]k1−k4
k2+k3+[S]k1

0 k3 − [P ]k6 −(k4 + k5) − [P ]k6




[E]

[ES]

[EP ]

 = [Etot]


1

[S]k1
k2+k3+[S]k1

−[P ]k6

 .

Step 3, subtracting the second row from the 1st, and again from the 3rd (after multi-

plying by k3 − [P ]k6):


1 0 1 − [S]k1−k4

k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 −(k4 + k5) − [P ]k6 − ([S]k1−k4)(k3−[P ]k6)
k2+k3+[S]k1




[E]

[ES]

[EP ]

 = [Etot]


1 − [S]k1

k2+k3+[S]k1

[S]k1
k2+k3+[S]k1

−[P ]k6 − [S]k1(k3−[P ]k6)
k2+k3+[S]k1

 .

which after simplifying becomes:


1 0 k2+k3+k4

k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 − [S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
k2+k3+[S]k1




[E]

[ES]

[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1

[S]k1
k2+k3+[S]k1

− [P ]k6k2+[P ]k6k3+[S]k1k3
k2+k3+[S]k1

 .

and we normalize the last row to have 1 on the diagonal:


1 0 k2+k3+k4

k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 1




[E]

[ES]

[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1

[S]k1
k2+k3+[S]k1

[P ]k6k2+[P ]k6k3+[S]k1k3
[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5

 .

Step 4, we eliminate the off-diagonal values of the third column using the 3rd row:


1 0 0

0 1 0

0 0 1




[E]

[ES]

[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
− k2+k3+k4

k2+k3+[S]k1
· [P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5

[S]k1
k2+k3+[S]k1

− [S]k1−k4
k2+k3+[S]k1

· [P ]k6k2+[P ]k6k3+[S]k1k3
[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5

[P ]k6k2+[P ]k6k3+[S]k1k3
[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5


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Simplifying the expressions on the right-hand side is a lengthy process (which we do

not show here) and in the end we get:


1 0 0

0 1 0

0 0 1




[E]

[ES]

[EP ]

 = [Etot]


k2k4+k2k5+k3k5

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5

[P ]k4k6+[S]k1k4+[S]k1k5
[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5

[P ]k2k6+[P ]k3k6+[S]k1k3
[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5



Therefore,

[E] = [Etot]
k2k4 + k2k5 + k3k5

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(D.10)

[ES] = [Etot]
[P ]k4k6 + [S]k1k4 + [S]k1k5

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(D.11)

[EP ] = [Etot]
[P ]k2k6 + [P ]k3k6 + [S]k1k3

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(D.12)

D.5 Chapter “Optimization of metabolic states”

Problem 7.1 (Effect of oxygen concentration)

The oxygen concentration affects only the rate v3, and an increase in oxygen increases

this rate for the same enzyme concentration. Since EFM2 does not contain v3, the

enzyme cost of this EFM will not change. EFM1 and EFM3 benefit from an increase of

the oxygen concentration, because they will have to invest less enzyme in v3 to obtain

the same rate. Therefore, those EFMs can become more beneficial and the optimal

EFM could shift to one of those EFMs.

Problem 7.2 (Effect of external metabolites)

Increasing [Pex] will benefit EFM3 and decrease the benefit of EFM2 (because for EFM2

[Pex] will inhibit reaction v2 and therefore more enzyme is needed for reaction v2 and

the enzyme cost of EFM2 will increase. Qualitatively, with increasing [Pex], EFM2 might

become more expensive, and either EFM1 or EFM3 will become beneficial, or both at

different Pex concentrations, depending on the kinetics of the reactions.

Problem 7.3 (States of maximal growth rate)

(a) v1 = e1(k+
1 s1 − k−

1 X), v2 = e2(k+
2 s2 − k−

2 x) and v3 = e3(k+
3 x− k−

3 p)

(b) etot = v1
(2s1−x) + v2

(30−x) + v3
x

(c) When e1 = 0, v1 is also 0 and to achieve steady state v2 = v3 and using the rate equa-

tions and filling in the parameters we get etot = v3
(30−x) + v3

x . We now set etot = 1 to obtain

v3 = (1 − v3
30−x )x which we can rewrite to v3 = x

1+ x
30−x

. We can take the derivative to x and

set it equal to 0 to find the optimum, which leads to x = 15 and v3/etot = 15
2 . Note that

in this specific case we did not need to set etot = 1 and could have maximized v3/etot

directly, but in general this does not always work. In the rest of the answers we
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assume we set etot = 1 and therefore v3 = v3/etot.

(d) e2 = 0 implies v2 = 0 and filling in s1 = 10 leads to v3 = (1 − v3
20−x )x, which can be rewritten to

v3 = x
1+ x

20−x
. This is optimal when x = 10 and v3/etot = 5.

(e) e1 = e2 implies v1
20−x = v2

30−x . From the steady state we know that v2 = v3 − v1. Filling this

in and solving for v1 leads to v1 = v3
x−20
x−50 . From the total enzyme and by replacing e1

by e2 we get e3 = 1 − 2 v1
20−x . Putting this in the equation for v3 and using the previous

equality to replace v1 leads to: v3 = (1 + v3
x−25 )x. Solving this for v3 gives v3 = x− x2

25 , which

is optimal for x = 12.5 with v3/etot = 25
4 .

(f) It was optimal to invest all enzyme in e2 and none in e1, because that lead to the

highest specific flux v3 (namely v3 = 7.5).

(g) Since v1 = 0, S1 is not involved in any reaction and the solution is the same as above,

x = 15 and v3/etot = 15
2 .

(h) Similar calculations as above but now with s1 = 50 lead to v3 = x
1+ x

100−x
, which is optimal

when x = 50 and gives v3/etot = 25.

(i) Similar calculations as above but now with s1 = 50 lead to v3 = x− x2

65 . v3/etot is maximal

at x = 32.5 and takes the value 16.25.

(j) Now s1 increased the optimal strategy would be to invest all enzymes in e1, and

have e2 = 0, because that leads to the highest specific flux of v3, namely v3/etot = 25.

(k) The two EFMs in this pathway that produce P are v1 = v3 with v2 = 0 and v2 = v3 with

v1 = 0. In the problem we saw when we optimize the specific flux, we always ob-

tained one of those EFMs as the best solution, from the options that we tested.

Therefore, these results are in agreement with the proof outlined in this chapter.

D.6 Chapter “Universal features of autocatalytic systems”

Problem9.1 (Production functionof aworkstationwith a single resource and single

product)

(a) The equations follow directly from the definitions of the variables and an assump-

tion similar to mass-action law kinetics.

(b) Since the total number of machines (busy machines and idling machines) is con-

stant, we have

u+ v = u0. (D.13)

It follows from this that the steady state solution (ẋ = v̇ = 0) of the dynamical equa-

tions takes the form

a
βv̄

α
+ qx̄ = r,

αx̄(u0 − v̄) = βv̄, (D.14)
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which leads to

v̄ = αu0x̄

β + αx̄
. (D.15)

Therefore, the output rate dy/dt which equals bv̄ saturates as a function of the

amount of stock x. This saturation due to an excess of stock is similar to the one

present in Michaelis-Menten enzyme kinetics.

(c) One finds from the previous questions that v̄ satisfies a second order equation

which can be written in the form

v̄

u0
= ρ+ 1 + γ

2 ± 1
2
√

(ρ+ 1 + γ)2 − 4ρ. (D.16)

As a result, to lowest order in γ � 1,

v̄

u0
= min(1, ρ). (D.17)

Thus, the output approaches the Leontief production function in the limit γ → 0.

This function describes two separate regimes: when ρ < 1, only a fraction of ma-

chines ρ are busy which limits the production. Instead when ρ > 1, all machines are

busy, and the production is limited by the total number of machines u0. Thus, the

Leontief function can describe limitations due to fluxes (term due to ρ) but also

due to the amount of stocks (term due to u0).

(d) It follows that the above solution is below the Leontief function for finite γ and

approaches it as γ → 0.

Problem 9.2 (UPF model)

(a) The equations follow directly from the definitions of the variables and from the

use of Leontief production function.

(b) In Regime I where nF � nU and nf � nP , the equations simplify to :

dnU

dt = αnU

τa
− nU

τL

dnP

dt = (1 − α)nU

τa

dnF

dt = nP

τF
− nU

τa
.

(D.18)

Therefore, the growth rate µ at which all species grow exponentially is µ = α/τa − 1/τL.

Note that α is an increasing function of µ.

Similarly, in regime II where nF � nU and nf � nP , and the growth rate satisfies the

second order equation

µ2 + µ

τa
− 1 − α

τaτF
= 0, (D.19)
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so that

µ = 1
2τa

2

√
1 + 4(1 − α)τa

τF
− 1

 , (D.20)

thus now, α is a decreasing function of µ.

In regime III, where nF � nU and nf � nP , the growth rate is the same as in regime I

and in regime IV, where nF � nU and nf � nP , and the growth rate is the same as in

regime II.

(c) As a result, the plot of µ versus α contains a linear part and part of a parabola, and

one can put the four regimes in a single table in which the columns are nf � nP

and nf � nP , while the rows are U starved or U non starved, as done in A. Roy et al.,

PNAS (2020).

Problem 9.3 (MGF for two simple networks)

(a) Let v = (v1, v2)T be the flux vector. After splitting the stoichiometric matrix into N+

and N−, we find for the first network:

α(v) = min(2v2

v1
,
v1

v2
). (D.21)

Thus, either α(v) = 2v2/v1 if 2v2/v1 ≤ v1/v2, then v2/v1 ≤ 1/
√

2 and α(v) ≤
√

2, or α(v) = v1/v2 if

2v2/v1 ≥ v1/v2, then v1/v2 < 1/
√

2 and α(v) ≤ 1/
√

2. Thus in the end, α = maxv α(v) =
√

2.

The second network follows a similar calculation which leads to α = 1/
√

2.

(b) For the first network, there is autocatalytic growth because α > 1, while in the sec-

ond network, there is degrowth (or shrinking) because α < 1.

D.7 Chapter “Cells in the face of uncertainty”

Problem 13.1 (Kelly strategy with partial information)

(a) This is a direct application of Eq. (1.3) to the case f(R,E) = f(E) if R = E and f(R,E) = 0

otherwise after noticing that q(S|E)p(E) = p(E|S)p(S) = p(E,S) (Bayes’ formula).

(b) Without sensing, the strategy u(E) that maximizes Λ =
∑

E p(E) ln(f(E)u(E)) is propor-

tional betting given by u(E) = p(E). Formally, Eq. (1.15) has the form Λ =
∑

S p(S)Λ(S),

where Λ(S) has the same form as without sensing, with E replaced by E|S. The op-

timal strategy with sensing is therefore conditional proportional betting, u(E|S) =

p(E|S) or, using Bayes’ formula, u(E|S) = q(S|E)p(E)/p(S) with p(S) =
∑

E q(S|E)p(E).

(c) In the absence of information, the optimal Λ is Λ0 =
∑

E p(E) ln(f(E)p(E)) while it is Λ =∑
E q(S|E)p(E) ln(f(E)p(E|S)) in the presence of information. The difference is therefore

Λ − Λ0 =
∑

E

q(S|E)p(E) ln
(
p(E|S)
p(E)

)

which is equivalent to Eq (1.16) since p(E|S) = q(S|E)p(E)/q(S).
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(d) The information channel is beneficial if Λ − c > Λ0, i.e., I(E,S) > c.

(e) For a binary erasure channel, S can take two values given E: S = E with probability

q(S|E) = 1 − ε and S = ∗ (erased information) with probability q(∗|E) = ε. The mutual

information is therefore:

I(E,S) =
∑

E

(
(1 − ε)p(E) ln (1 − ε)

(1 − ε)p(E) + εp(E) ln ε
ε

)
= (1 − ε)

∑
E

p(E) ln 1
p(E) = (1 − ε)H(E)

where H(E) = −
∑

E p(E) ln p(E) is the entropy of the environment. The dependence

of the growth rate on ε is therefore controlled by (1 − ε)H(E) − c(ε) and the optimal ε

is the one that maximizes this quantity. This represents a trade-off since both

I(S,E) = (1 − ε)H(E) and c(ε) decrease with increasing ε.

Problem 13.2 (Value of information beyond Kelly’s model)

(a) Applying Eq. (1.3) we obtain

Λ =
∑

S

q(S|E = low)(1 − pa) ln(2 − u(d|S)) + q(S|E = high)pa ln u(d|S)

(b) We can apply again Eq. (1.15) from Problem 12.1 to obtain that the optimal u(d|S)

is given by the same formula as the optimal ud in the absence of information with

pa = p(E = high) replaced by pa = p(E = high|S), i.e. u(d|S) = 2p(E|S) if p(E|S) < 1/2 and 1 otherwise,

where p(E|S) = q(S|E = high)p(E = high)/p(S) with p(S) = q(S|E = high)pa + q(S|E = low)(1 − pa).

(c) Let consider for instance the erasure channel introduced in problem 12.2 and

assume pa < 1/2. Then u(d|E = high) = 1, u(d|E = low) = 0 and u(d|∗) = 2pa, which leads to an

optimal growth rate given by

Λ = (1 − ε)(1 − pa) ln 2 + ε[ln 2 −H(p)]

The case without information corresponds to ε = 1, in which case Λ0 = ln 2 − H(p). We

therefore have a gain in growth rate due to the information given by

Λ − Λ0 = (1 − ε)[H(pa) − pa ln 2] = I(S,E) − pa ln 2

since I(S,E) = (1 − ε)H(pa) for an erasure channel (see Problem 12.1). We verify that

Λ − Λ0 < I(S,E) as soon as pa > 0.

Problem 13.3 (Stochastic sensing at the level of individual cells)

(a) If each individual has its own sensor, the information S is formally part of the state

of the individual and the strategy is of the form u(R,S|E) = u(R|S)q(S|E) where E is here

treated as a common information. More generally, if the individual information

Si were derived from a source Sc that is common at the population level, we would
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have

Λ =
∑
E,Sc

qc(Sc|E)p(E) ln

∑
R,Si

f(R,E)u(R|Si)qi(Si|Sc)


(b) Since

∑
S q(S|E) = 1, the concavity of the logarithm implies

Λ =
∑

E

p(E) ln

∑
R,S

f(R,E)u(R|S)q(S|E)

 ≤
∑
E,S

q(S|E)p(E) ln
(∑

R

f(R,E)u(R|S)
)

where the right-hand part is interpreted as the growth rate given an information

S that is common at the population level.

Problem 13.4 (Pareto front for Kelly’s model)

(a) Let the probability that the first horse wins (resp. loses) be p (resp. 1 − p); the bet

and the odd on the first (resp. second) horse are b and 1/r (resp. 1 − b and 1/(1 − r)).

In this way, the odds are fair because the sum of the inverse of the odds is one.

Using the definitions of the growth rate and volatility, we find:

〈W 〉 = p ln
(
b

r

)
+ (1 − p) ln

(
1 − b

1 − r

)
,

and

σ2
W = p(1 − p) ln2 b(1 − r)

(1 − b)r =
(
σ ln b(1 − r)

(1 − b)r

)2
,

where we have introduced the parameter σ =
√
p(1 − p) to simplify the expression of

the volatility. When b = r, it is obvious from these expressions that 〈W 〉 = 0, i.e. the

strategy has no growth rate, and σW = 0, the strategy is also risk free.

(b) The maximization of the objective function

J = α〈W 〉 − (1 − α)σW ,

interpolates between themaximization of the 〈W 〉 when α = 1 and theminimization

of σW when α = 0. We find from the condition that J be optimized with respect to b

the optimal strategy b±:

b± = p± γσ,

where γ := 1−α
α and the + (resp. −) sign corresponds to an overbetting (resp. under-

betting) strategy with respect to Kelly’s strategy where b = p. As shown in Fig. 12.3

of the main text, these two solutions form the two branches of the efficient bor-

der which meet at Kelly’s point. When p < r, the lower blue solid line is the trade-

off branch associated with b+, while the upper red solid line is the non-tradeoff

branch, associated with b−. The roles of b− and b+ exchange when instead p > r.

(c) Let us first focus on the region where 〈W 〉 ≥ 0 and let us assume e.g. p > r, in which
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case

b = p− γσ.

Using the solutions for 〈W 〉 and σ2
W from the step (1), we find

d〈W 〉
db

= p− b

b(1 − b) = γσ

b(1 − b) ,

and
1
2
d(σ2

W )
db

= σ2

b(1 − b) ln
(
b(1 − r)
(1 − b)r

)
.

Hence by taking the ratio of the two equations,

1
2
d(σ2

W )
d〈W 〉

= σ

γ
ln
(
b(1 − r)
(1 − b)r

)
= σW

γ
> 0. (D.22)

Using the definition of γ, we deduce that the slope of the Pareto border is

dσW

d〈W 〉

∣∣∣∣
γ

= σ

p− b
,

where b is equal to b− since we have assumed r < p. This equation shows that the

slope becomes infinite at Kelly’s point where γ → 0 and b− → p; while it reaches a

finite value near the null strategy, namely

dσW

d〈W 〉

∣∣∣∣
γc

= 1
γc

= σ

p− r
.

This suggests that there is a phase transition between the null strategy and a

mixed strategy at this critical value γc. To confirm this point, we need to check

that the border is convex near the null strategy. To do so, we take the derivative

of Eq.([? ]) with respect to 〈W 〉 as before:

1
2
d2(σ2

W )
d〈W 〉2 =

σ
γ

d
db ln

(
b

1−b

)
+ σW

σγ2

d〈W 〉/db
= 1
γ2 + b(1 − b) σW

σ2γ3 ;

Finally, using the general formula

(
√
f)′′ = 1

2
√
f
f ′′ − 1

4f
−3/2(f ′)2,

we find the simple result
d2σW

d〈W 〉2 = b(1 − b)
σ2γ3 ,

which is always positive, in particular near the null strategy where it takes the

value
d2σW

d〈W 〉2

∣∣∣∣
γ=γc

= r(1 − r)
σ2γ3

c

> 0.
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Problem 13.5 (Evolution of an optimal strategy)

The questions are already in the form of pseudocode.
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